Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

Abstract

General Description The MAX19994A dual-channel downconverter is designed to provide 8.4 dB of conversion gain, +25 dBm input IP3, +14 dBm 1 dB input compression point, and a noise figure of 9.8 dB for 1200 MHz to 2000 MHz diversity receiver applications. With an optimized LO frequency range of 1450 MHz to 2050 MHz , this mixer supports both high- and low-side LO injection architectures for the 1200 MHz to 1700 MHz and 1700 MHz to 2000 MHz RF bands, respectively. In addition to offering excellent linearity and noise performance, the device also yields a high level of component integration. This device includes two double-balanced passive mixer cores, two LO buffers, a dual-input LO selectable switch, and a pair of differential IF output amplifiers. Integrated on-chip baluns allow for singleended RF and LO inputs. The MAX19994A requires a nominal LO drive of 0 dBm and a typical supply current of 330 mA at $\mathrm{VCC}=5.0 \mathrm{~V}$, or 264 mA at $\mathrm{VCC}=3.3 \mathrm{~V}$. The MAX19994A is pin compatible with the MAX9985/ MAX9995/MAX19985A/MAX19993/MAX19995/ MAX19995A series of 700 MHz to 2500 MHz mixers and pin similar with the MAX19997A/MAX19999 series of 1850 MHz to 4000 MHz mixers, making this entire family of downconverters ideal for applications where a common PCB layout is used across multiple frequency bands.

The device is available in a $6 \mathrm{~mm} \times 6 \mathrm{~mm}, 36$-pin thin QFN package with an exposed pad. Electrical performance is guaranteed over the extended temperature range, from $\mathrm{T} C=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Applications

WCDMA/LTE Base Stations
TD-SCDMA Base Stations
GSM/EDGE Base Stations
cdma2000® Base Stations
Wireless Local Loop
Fixed Broadband Wireless Access
Private Mobile Radios
Military Systems
Features

- 1200MHz to 2000MHz RF Frequency Range
- 1450MHz to 2050MHz LO Frequency Range
- 50 MHz to 500 MHz IF Frequency Range
- 8.4dB Typical Conversion Gain
- 9.8dB Typical Noise Figure
- +25dBm Typical Input IP3
- +14dBm Typical Input 1dB Compression Point
- 68dBc Typical 2LO-2RF Spurious Rejection at PRF $=-10 \mathrm{dBm}$
- Dual Channels Ideal for Diversity Receiver Applications
- 47dB Typical Channel-to-Channel Isolation
- Low -6dBm to +3dBm LO Drive
- Integrated LO Buffer
- Internal RF and LO Baluns for Single-Ended Inputs
- Built-In SPDT LO Switch with 48dB LO-to-LO Isolation and 50ns Switching Time
- Pin Compatible with the MAX9985/MAX9995/ MAX19985A/MAX19993/MAX19995/MAX19995A Series of 700MHz to 2200MHz Mixers
- Pin Similar to the MAX19997A/MAX19999 Series of 1850 MHz to 4000 MHz Mixers
- Single 5.0V or 3.3V Supply
- External Current-Setting Resistors Provide Option for Operating Device in Reduced-Power/ReducedPerformance Mode

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX19994AETX +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 Thin QFN-EP*
MAX19994AETX +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 Thin QFN-EP

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
T = Tape and reel.

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

ABSOLUTE MAXIMUM RATINGS

V Cc to GND.	o +5.5V
LO1, LO2 to GND	.-0.3V to +0.3V
LOSEL to GND-0	o (VCC + 0.3V)
RFMAIN, RFDIV, and LO_ Input Power +15 dBm
RFMAIN, RFDIV Current (RF is DC shorted to GND through a balun)	
Continuous Power Dissipation (Note 1)	8.7W
$\theta_{\text {JA }}($ Notes 1, 3)	$+38^{\circ} \mathrm{C} /$

OJc (Notes 2, 3).	$7.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Case Temperature	
Range (Note 4).	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$\ldots+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)	$+260^{\circ} \mathrm{C}$

Note 1: Junction temperature $T_{J}=T_{A}+\left(\theta_{J A} \times V_{C C} \times I C C\right)$. This formula can be used when the ambient temperature of the $P C B$ is known. The junction temperature must not exceed $+150^{\circ} \mathrm{C}$.
Note 2: Based on junction temperature $T_{J}=T C+\left(\theta_{\mathrm{JC}} \times \mathrm{VCC}_{C} \times \mathrm{ICC}\right)$. This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed $+150^{\circ} \mathrm{C}$.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: T_{C} is the temperature on the exposed pad of the package. T_{A} is the ambient temperature of the device and PCB.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, $\mathrm{VCC}=4.75 \mathrm{~V}$ to 5.25 V , no input AC signals. $\mathrm{Tc}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{R} 1=\mathrm{R} 4=681 \Omega, \mathrm{R} 2=\mathrm{R} 5=1.82 \mathrm{k} \Omega$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T} \mathrm{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted. All parameters are production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX
UNITS					
Supply Voltage	VCC		4.75	5	5.25
Supply Current	ICC	Total supply current	330	420	mA
LOSEL Input High Voltage	VIH		2		V
LOSEL Input Low Voltage	VIL		-10	0.8	V
LOSEL Input Current	$I_{I H}$ and IIL		+10	$\mu \mathrm{~A}$	

3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, VCC $=3.0 \mathrm{~V}$ to 3.6 V , no input AC signals. $\mathrm{TC}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{R} 1=\mathrm{R} 4=681 \Omega, \mathrm{R} 2=\mathrm{R} 5=1.43 \mathrm{k} \Omega$. Typical values are at $\mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	VCC		3.0	3.3	3.6	V
Supply Current	ICC	Total supply current		264		mA
LOSEL Input High Voltage	$\mathrm{VIH}^{\text {I }}$			2		V
LOSEL Input Low Voltage	VIL			0.8		V

RECOMMENDED AC OPERATING CONDITIONS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
RF Frequency	fRF	C1 $=$ C8 $=39 \mathrm{pF}$ (Note 5)	1200		1700	MHz
		$\mathrm{C} 1=\mathrm{C} 8=1.8 \mathrm{pF}, \mathrm{L} 7=\mathrm{L} 8=4.7 \mathrm{nH}$ (Note 5)	1700		2000	
LO Frequency	flo	(Note 5)	1450		2050	MHz

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

RECOMMENDED AC OPERATING CONDITIONS (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
IF Frequency	fiF	Using Mini-Circuits TC4-1W-17 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Note 5)	100		500	MHz
		Using alternative Mini-Circuits TC4-1W-7A 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Note 5)	50		250	
LO Drive Level	PLO	(Note 5)	-6		+3	dBm

5.0V SUPPLY, HIGH-SIDE INJECTION AC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit optimized for the Standard RF Band (see Table 1). R1 = R4 = 681 Ω, R2 $=\mathrm{R} 5=1.82 \mathrm{k} \Omega, \mathrm{VCC}=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources, $\mathrm{PLO}=-6 \mathrm{dBm}$ to +3 dBm , $\mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{fRF}=1200 \mathrm{MHz}$ to 1700 MHz , $\mathrm{fLO}=1550 \mathrm{MHz}$ to 2050 MHz , fIF $=350 \mathrm{MHz}$, fRF $<\mathrm{fLO}, \mathrm{TC}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{VCC}=5.0 \mathrm{~V}$, PRF $=-5 \mathrm{dBm}$, PLO $=0 \mathrm{dBm}, \mathrm{fRF}=1450 \mathrm{MHz}, \mathrm{fLO}=1800 \mathrm{MHz}, \mathrm{fIF}=350 \mathrm{MHz}, \mathrm{TC}=+25^{\circ} \mathrm{C}$. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Conversion Gain	Gc		6.2	8.4	9.8	dB
		TC $=+25^{\circ} \mathrm{C}$ (Note 7)	7.0	8.4	9.0	
		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{fRF}=1427 \mathrm{MHz}$ to 1463 MHz (Note 7)	7.9	8.4	8.9	
Conversion Gain Flatness	$\Delta \mathrm{GC}$	fRF $=1427 \mathrm{MHz}$ to 1463 MHz		± 0.05		dB
Gain Variation Over Temperature	TCCG	$\mathrm{T} \mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		-0.01		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Input Compression Point	$1 P_{1 d B}$	fRF $=1450 \mathrm{MHz}$ (Notes 7, 8)	12.6	14.0		dBm
Input Third-Order Intercept Point	IIP3	frF1 - fRF2 $=1 \mathrm{MHz}$, PRF $=-5 \mathrm{dBm}$ per tone	21.5	25.0		dBm
		$\mathrm{f}_{\mathrm{RF}} 1-\mathrm{f}_{\mathrm{RF}} 2=1 \mathrm{MHz}, \mathrm{PRF}_{\mathrm{RF}}=-5 \mathrm{dBm}$ per tone, fRF $=1427 \mathrm{MHz}$ to $1463 \mathrm{MHz}, \mathrm{TC}=+25^{\circ} \mathrm{C}$ (Note 7)	23.0	25.0		
		f_{RF} - $\mathrm{fRF} 2=1 \mathrm{MHz}$, PRF $=-5 \mathrm{dBm}$ per tone, $\mathrm{f}_{\mathrm{RF}}=1427 \mathrm{MHz}$ to 1463 MHz	22	25.0		
Input Third-Order Intercept Point Variation Over Temperature	TCIIP3	$\begin{aligned} & \text { fRF1 }- \text { fRF2 }=1 \mathrm{MHz}, \text { PRF }=-5 \mathrm{dBm} \text { per tone, } \\ & \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		± 0.75		dBm
Noise Figure (Note 9)	NFSSB	Single sideband, no blockers present		9.8	13	dB
		$\mathrm{f}_{\mathrm{RF}}=1427 \mathrm{MHz}$ to $1463 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, PLO $=0 \mathrm{dBm}$, single sideband, no blockers present		9.8	11	
		$\mathrm{f}_{\mathrm{RF}}=1427 \mathrm{MHz}$ to $1463 \mathrm{MHz}, \mathrm{PLO}=0 \mathrm{dBm}$, single sideband, no blockers present		9.8	12.5	
Noise Figure Temperature Coefficient	TCNF	Single sideband, no blockers present, TC $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		0.016		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Noise Figure with Blocker	NF_{B}	PBLOCKER $=+8 \mathrm{dBm}, \mathrm{fRF}=1450 \mathrm{MHz}$, $\mathrm{fLO}=1800 \mathrm{MHz}, \mathrm{fBLOCKER}=1350 \mathrm{MHz}$, $\mathrm{PLO}=0 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{TC}=+25^{\circ} \mathrm{C}$ (Notes 9, 10)		20.2	22	dB

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

5.0V SUPPLY, HIGH-SIDE INJECTION AC ELECTRICAL CHARACTERISTICS (continued)

(Typical Application Circuit optimized for the Standard RF Band (see Table 1). $\mathrm{R} 1=\mathrm{R} 4=681 \Omega, \mathrm{R} 2=\mathrm{R} 5=1.82 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources, PLO $=-6 \mathrm{dBm}$ to +3 dBm , $\mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}$, $\mathrm{fRF}=1200 \mathrm{MHz}$ to 1700 MHz , $\mathrm{fLO}=1550 \mathrm{MHz}$ to 2050 MHz , fIF $=350 \mathrm{MHz}$, fRF $<\mathrm{fLO}, \mathrm{TC}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{VCC}=5.0 \mathrm{~V}$, PRF $=-5 \mathrm{dBm}$, PLO $=0 \mathrm{dBm}, \mathrm{fRF}=1450 \mathrm{MHz}, \mathrm{fLO}=1800 \mathrm{MHz}, \mathrm{fIF}=350 \mathrm{MHz}, \mathrm{TC}=+25^{\circ} \mathrm{C}$. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
2LO-2RF Spur Rejection (Note 9)	2×2	$\begin{aligned} & \mathrm{fRF}=1450 \mathrm{MHz}, \\ & \mathrm{fLO}=1800 \mathrm{MHz}, \\ & \mathrm{fSPUR}=1625 \mathrm{MHz} \end{aligned}$	PRF $=-10 \mathrm{dBm}$	57	68		dBc
			PRF $=-5 \mathrm{dBm}$	52	63		
		$\begin{aligned} & \mathrm{fRF}=1450 \mathrm{MHz}, \\ & \mathrm{fLO}=1800 \mathrm{MHz}, \\ & \mathrm{fSPUR}=1625 \mathrm{MHz}, \\ & \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{VCC}=5.0 \mathrm{~V}, \\ & \mathrm{TC}=+25^{\circ} \mathrm{C} \end{aligned}$	PRF $=-10 \mathrm{dBm}$	58	68		
			PRF $=-5 \mathrm{dBm}$	53	63		
3LO-3RF Spur Rejection (Note 9)	3×3	$\begin{aligned} & \mathrm{fRF}=1450 \mathrm{MHz}, \\ & \mathrm{fLO}=1800 \mathrm{MHz}, \\ & \mathrm{fSPUR}=1683.33 \mathrm{MHz} \end{aligned}$	PRF $=-10 \mathrm{dBm}$	68	84		dBc
			$P_{\text {RF }}=-5 \mathrm{dBm}$	58	74		
		$\begin{aligned} & \text { fRF }=1450 \mathrm{MHz}, \\ & \text { fLO }=1800 \mathrm{MHz}, \\ & \text { fSPUR }=1683.33 \mathrm{MHz}, \\ & \text { PLO }=0 \mathrm{dBm}, \mathrm{VCC}=5.0 \mathrm{~V}, \\ & \mathrm{TC}=+25^{\circ} \mathrm{C} \end{aligned}$	PRF $=-10 \mathrm{dBm}$	70	84		
			PRF $=-5 \mathrm{dBm}$	60	74		
RF Input Return Loss		LO and IF terminated into matched impedance, LO "on"			17		dB
LO Input Return Loss		LO port selected, RF and IF terminated into matched impedance			16		dB
		LO port unselected, RF and IF terminated into matched impedance			20		
IF Output Impedance	ZIF	Nominal differential impedance of the IF outputs			200		Ω
IF Output Return Loss		RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application Circuit			13.0		dB
RF-to-IF Isolation		(Note 7)		19	30		dB
LO Leakage at RF Port		(Note 7)			-42		dBm
2LO Leakage at RF Port		(Note 7)			-30		dBm
LO Leakage at IF Port		(Note 7)			-35		dBm
Channel Isolation (Note 7)		RFMAIN converted power measured at IFDIV relative to IFMAIN, all unused ports terminated to 50Ω		43	47		dB
		RFDIV converted power measured at IFMAIN relative to IFDIV, all unused ports terminated to 50Ω		43	47		
LO-to-LO Isolation		$\begin{aligned} & \text { PLO1 }=+3 \mathrm{dBm}, \mathrm{PLO} 2=+3 \mathrm{dBm}, \\ & \mathrm{fLO}=1800 \mathrm{MHz}, \mathrm{fLO}=1801 \mathrm{MHz}(\text { Note } 7) \end{aligned}$		42	48		dB
LO Switching Time		50% of LOSEL to IF settled within 2 degrees			50		ns

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

3.3V SUPPLY, HIGH-SIDE INJECTION AC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit optimized for the Standard RF Band (see Table 1). R1 $=\mathrm{R} 4=681 \Omega$, R2 $=\mathrm{R} 5=1.43 \mathrm{k} \Omega$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{fRF}=1450 \mathrm{MHz}, \mathrm{fLO}=1800 \mathrm{MHz}, \mathrm{fIF}_{\mathrm{IF}}=350 \mathrm{MHz}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 6)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Conversion Gain	Gc	(Note 7)	8.2		dB
Conversion Gain Flatness	$\Delta \mathrm{GC}$	$\mathrm{fRF}=1427 \mathrm{MHz}$ to 1463 MHz	± 0.05		dB
Gain Variation Over Temperature	TCCG	$\mathrm{T} \mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-0.01		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Input Compression Point	$1 \mathrm{P}_{1 \mathrm{~dB}}$	(Note 8)	10.6		dBm
Input Third-Order Intercept Point	IIP3	frF1-fRF2 $=1 \mathrm{MHz}$	23.6		dBm
Input Third-Order Intercept Point Variation Over Temperature	TCIIP3	$\begin{aligned} & \text { fRF1 }-\mathrm{f}_{\mathrm{RF} 2}=1 \mathrm{MHz}, \mathrm{PRF}=-5 \mathrm{dBm} \text { per tone, } \\ & \mathrm{T} \mathrm{C}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	± 0.5		dBm
Noise Figure	NFSSB	Single sideband, no blockers present	9.8		dB
Noise Figure Temperature Coefficient	TCNF	Single sideband, no blockers present, $\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	0.016		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
2LO-2RF Spur Rejection	2×2	PRF $=-10 \mathrm{dBm}$	68		dBc
		$\mathrm{P}_{\text {RF }}=-5 \mathrm{dBm}$	63		
3LO-3RF Spur Rejection	3×3	$P_{\text {RF }}=-10 \mathrm{dBm}$	77		dBc
		PRF $=-5 \mathrm{dBm}$	67		
RF Input Return Loss		LO and IF terminated into matched impedance, LO "on"	15		dB
LO Input Return Loss		LO port selected, RF and IF terminated into matched impedance	18		dB
		LO port unselected, RF and IF terminated into matched impedance	21		
IF Output Return Loss		RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application Circuit	12.5		dB
RF-to-IF Isolation			31		dB
LO Leakage at RF Port			-49		dBm
2LO Leakage at RF Port			-40		dBm
LO Leakage at IF Port			-35		dBm
Channel Isolation		RFMAIN converted power measured at IFDIV relative to IFMAIN, all unused ports terminated to 50Ω	48		dB
		RFDIV converted power measured at IFMAIN relative to IFDIV, all unused ports terminated to 50Ω	48		
LO-to-LO Isolation		$\begin{aligned} & \text { PLO1 }=+3 \mathrm{dBm}, \text { PLO2 }=+3 \mathrm{dBm}, \\ & \mathrm{fLO1}=1800 \mathrm{MHz}, \mathrm{fLO}=1801 \mathrm{MHz} \end{aligned}$	50		dB
LO Switching Time		50% of LOSEL to IF settled within 2 degrees	50		ns

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

5.0V SUPPLY, LOW-SIDE INJECTION AC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit optimized for the Extended RF Band (see Table 1), R1 $=\mathrm{R} 4=681 \Omega, \mathrm{R} 2=\mathrm{R} 5=1.82 \mathrm{k} \Omega$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{fRF}=1850 \mathrm{MHz}, \mathrm{fLO}=1500 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=350 \mathrm{MHz}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 6)

Note 5: Not production tested. Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics.

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

Note 6: All limits reflect losses of external components, including a 0.8 dB loss at $\mathrm{fIF}=350 \mathrm{MHz}$ due to the $4: 1$ transformer. Output measurements were taken at IF outputs of the Typical Application Circuit.
Note 7: 100\% production tested for functionality.
Note 8: Maximum reliable continuous input power applied to the RF or IF port of this device is +12 dBm from a 50Ω source.
Note 9: Not production tested.
Note 10: Measured with external LO source noise filtered so the noise floor is $-174 \mathrm{dBm} / \mathrm{Hz}$. This specification reflects the effects of all SNR degradations in the mixer, including the LO noise, as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.

Typical Operating Characteristics
(Typical Application Circuit optimized for the Standard RF Band (see Table 1). Vcc $=5.0 \mathrm{~V}$, $\mathrm{fRF}=1200 \mathrm{MHz}$ to 1700 MHz , LO is high-side injected for a 350 MHz IF, $\mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

(Typical Application Circuit optimized for the Standard RF Band (see Table 1). VCc $=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=1200 \mathrm{MHz}$ to 1700 MHz , LO is high-side injected for a 350 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)
(Typical Application Circuit optimized for the Standard RF Band (see Table 1). Vcc $=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=1200 \mathrm{MHz}$ to 1700 MHz , LO is high-side injected for a $350 \mathrm{MHz} \mathrm{IF}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)

(Typical Application Circuit optimized for the Standard RF Band (see Table 1). Vcc $=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=1200 \mathrm{MHz}$ to 1700 MHz , LO is high-side injected for a $350 \mathrm{MHz} \mathrm{IF}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)
(Typical Application Circuit optimized for the Standard RF Band (see Table 1). Vcc $=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=1200 \mathrm{MHz}$ to 1700 MHz , LO is high-side injected for a $350 \mathrm{MHz} \mathrm{IF}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)

(Typical Application Circuit optimized for the Standard RF Band (see Table 1). Vcc $=3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=1200 \mathrm{MHz}$ to 1700 MHz , LO is high-side injected for a $350 \mathrm{MHz} \mathrm{IF}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)
(Typical Application Circuit optimized for the Standard RF Band (see Table 1). Vcc $=3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=1200 \mathrm{MHz}$ to 1700 MHz , LO is high-side injected for a $350 \mathrm{MHz} \mathrm{IF}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)
(Typical Application Circuit optimized for the Standard RF Band (see Table 1). Vcc $=3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=1200 \mathrm{MHz}$ to 1700 MHz , LO is high-side injected for a 350 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)
(Typical Application Circuit optimized for the Standard RF Band (see Table 1). Vcc $=3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=1200 \mathrm{MHz}$ to 1700 MHz , LO is high-side injected for a 350 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)

(Typical Application Circuit optimized for the Standard RF Band (see Table 1). Vcc $=3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=1200 \mathrm{MHz}$ to 1700 MHz , LO is high-side injected for a $350 \mathrm{MHz} \mathrm{IF}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics

(Typical Application Circuit optimized for the Extended RF Band (see Table 1). Vcc = 5.0V, fRF = 1700MHz to 2000MHz, LO is low-side injected for a 350 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)

(Typical Application Circuit optimized for the Extended RF Band (see Table 1). Vcc $=5.0 \mathrm{~V}, \mathrm{fRF}=1700 \mathrm{MHz}$ to 2000MHz, LO is low-side injected for a 350 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

2RF - 2LO RESPONSE vs. RF FREQUENCY

3RF - 3LO RESPONSE vs. RF FREQUENCY

INPUT P1dB vs. RF FREQUENCY

2RF - 2LO RESPONSE vs. RF FREQUENCY

3RF - 3LO RESPONSE vs. RF FREQUENCY

INPUT P1dB vs. RF FREQUENCY

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)
(Typical Application Circuit optimized for the Extended RF Band (see Table 1). Vcc = 5.0V, fRF $=1700 \mathrm{MHz}$ to 2000MHz, LO is low-side injected for a 350 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)
(Typical Application Circuit optimized for the Extended RF Band (see Table 1). $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{fRF}=1700 \mathrm{MHz}$ to 2000MHz, LO is low-side injected for a 350 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)
(Typical Application Circuit optimized for the Extended RF Band (see Table 1). $\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{fRF}=1700 \mathrm{MHz}$ to 2000MHz, LO is low-side injected for a 350 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

vs. 10 FREQUENCY

IF PORT RETURN LOSS
vs. IF FREQUENCY

LO SELECTED PORT RETURN LOSS
vs. LO FREQUENCY

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

Pin Configuration/Functional Block Diagram

EXPOSED PAD ON THE BOTTOM OF THE PACKAGE

Pin Description

PIN	NAME	FUNCTION
1	RFMAIN	Main Channel RF input. Internally matched to 50Ω. Requires an input DC-blocking capacitor.
2	TAPMAIN	Main Channel Balun Center Tap. Bypass to GND with 39 pF and $0.033 \mu F$ capacitors as close as possible to the pin with the smaller value capacitor closer to the part.
$3,5,7$, 12,20, 22,24, $25,26,34$	GND	Ground
$4,6,10$, 16,21, 30,36	VCC	Power Supply. Bypass to GND with capacitors as close as possible to the pin, as shown in the Typical Application Circuit.
8	TAPDIV	Diversity Channel Balun Center Tap. Bypass to GND with 39pF and $0.033 \mu F$ capacitors as close as possible to the pin with the smaller value capacitor closer to the part.

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

Pin Description (continued)

PIN	NAME	FUNCTION
9	RFDIV	Diversity Channel RF input. Internally matched to 50Ω. Requires an input DC-blocking capacitor.
11	IFD_SET	IF Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the diversity IF amplifier (see the Typical Application Circuit).
13, 14	IFD+, IFD-	Diversity Mixer Differential IF Output +/-. Connect pullup inductors from each of these pins to VCC (see the Typical Application Circuit).
15	IND_EXTD	Diversity External Inductor Connection. Connect this pin to ground. For improved RF-to-IF and LO-to-IF isolation, connect a low-ESR 10nH inductor from this pin to ground (see the Typical Application Circuit).
17	LO_ADJ_D	LO Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the diversity LO amplifier (see the Typical Application Circuit).
18, 28	N.C.	No Connection. Not internally connected.
19	LO1	Local Oscillator 1 Input. This input is internally matched to 50Ω. Requires an input DC-blocking capacitor.
23	LOSEL	Local Oscillator Select. Set this pin to high to select LO1. Set to low to select LO2.
27	LO2	Local Oscillator 2 Input. This input is internally matched to 50Ω. Requires an input DC-blocking capacitor.
29	LO_ADJ_M	LO Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the main LO amplifier (see the Typical Application Circuit).
31	IND_EXTM	Main External Inductor Connection. Connect this pin to ground. For improved RF-to-IF and LO-toIF isolation, connect a low-ESR 10nH inductor from this pin to ground (see the Typical Application Circuit).
32, 33	IFM-, IFM+	Main Mixer Differential IF Output -/+. Connect pullup inductors from each of these pins to Vcc (see the Typical Application Circuit).
35	IFM_SET	IF Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the main IF amplifier (see the Typical Application Circuit).
-	EP	Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground vias are also required to achieve the noted RF performance.

Detailed Description

The MAX19994A is a dual-channel downconverter designed to provide up to 8.4 dB of conversion gain, +25 dBm input IP3, +14 dBm 1 dB input compression point, and a noise figure of 9.8 dB .
In addition to its high-linearity performance, the device achieves a high level of component integration. The device integrates two double-balanced mixers for twochannel downconversion. Both the main and diversity channels include a balun and matching circuitry to allow 50Ω single-ended interfaces to the RF ports and the two LO ports. An integrated single-pole/double-throw (SPDT) switch provides 50ns switching time between the two LO inputs, with 48 dB of LO-to-LO isolation and -42 dBm of

LO leakage at the RF port. Furthermore, the integrated LO buffers provide a high drive level to each mixer core, reducing the LO drive required at the device's inputs to a range of -6 dBm to +3 dBm . The IF ports for both channels incorporate differential outputs for downconversion, which is ideal for providing enhanced 2LO-2RF performance.
With an optimized 1450 MHz to 2050 MHz LO frequency range, this mixer supports both high- and low-side LO injection architectures for the 1200 MHz to 1700 MHz and 1700 MHz to 2000 MHz RF bands, respectively. The device also supports an IF range of 50 MHz to 500 MHz . The external IF components set the lower frequency range (see the Typical Operating Characteristics for

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

details). Operation beyond these ranges is possible; see the Typical Operating Characteristics for additional information.
Although this device is optimized for a 1450 MHz to 2050 MHz LO frequency range, it can operate with even lower LO frequencies to support 1200 MHz to 1700 MHz low-side LO injection architectures. However, performance degrades as flo continues to decrease. Contact the factory for a variant with increased low-side LO performance.
RF Port and Balun
The RF input ports for both the main and diversity channels are internally matched to 50Ω, requiring no external matching components when operating the device over a 1200 MHz to 1700 MHz RF frequency range. A DC-blocking capacitor is required as the input is internally DC shorted to ground through the on-chip balun. The RF port input return loss is typically better than 15 dB over the 1200 MHz to 1700 MHz RF frequency range.
The RF inputs of the device can also be matched to operate over an extended 1700 MHz to 2000 MHz RF frequency range of with the addition of two shunt 4.7 nH inductors. See Table 1 for details.

LO Inputs, Buffer, and Balun

 The device is optimized for a 1450 MHz to 2050 MHz LO frequency range. As an added feature, the device includes an internal LO SPDT switch for use in frequencyhopping applications. The switch selects one of the two single-ended LO ports, allowing the external oscillator to settle on a particular frequency before it is switched in. LO switching time is typically 50 ns , which is more than adequate for typical GSM applications. If frequency hopping is not employed, simply set the switch to either of the LO inputs. The switch is controlled by a digital input (LOSEL), where logic-high selects LO1 and logic-low selects LO2. LO1 and LO2 inputs are internally matched to 50Ω, requiring only 39 pF DC-blocking capacitors.If LOSEL is connected directly to a logic source, then voltage MUST be applied to Vcc before digital logic is applied to LOSEL to avoid damaging the part. Alternatively, a $1 \mathrm{k} \Omega$ resistor can be placed in series at the LOSEL to limit the input current in applications where LOSEL is applied before Vcc.
The main and diversity channels incorporate a two-stage LO buffer that allows for a wide-input power range for the LO drive. The on-chip low-loss baluns, along with LO buffers, drive the double-balanced mixers. All interfacing
and matching components from the LO inputs to the IF outputs are integrated on-chip.

High-Linearity Mixer
The core of the MAX19994A dual-channel downconverter consists of two double-balanced, high-performance passive mixers. Exceptional linearity is provided by the large LO swing from the on-chip LO buffers. When combined with the integrated IF amplifiers, the cascaded IIP3, 2LO-2RF rejection, and noise-figure performance are typically $+25 \mathrm{dBm}, 68 \mathrm{dBc}$, and 9.8 dB , respectively.

Differential IF

The device has a 50 MHz to 500 MHz IF frequency range, where the low-end frequency depends on the frequency response of the external IF components. Note that these differential ports are ideal for providing enhanced IIP2 performance. Single-ended IF applications require a $4: 1$ (impedance ratio) balun to transform the 200Ω differential IF impedance to a 50Ω single-ended system. After the balun, the return loss is typically 13 dB . The user can use a differential IF amplifier on the mixer IF ports, but a DC block is required on both IFD+/IFD- and IFM + / IFM- ports to keep external DC from entering the IF ports of the mixer.

Applications Information

Input and Output Matching
The RF and LO inputs are internally matched to 50Ω when operating over 1200 MHz to 1700 MHz and 1450 MHz to 2050 MHz frequency ranges, respectively. No matching components are required for operation within these bands. The RF port input return loss is typically better than 15 dB over the 1200 MHz to 1700 MHz RF frequency range and return loss at the LO ports is typically better than 15 dB over the entire LO range. RF and LO inputs require only DC-blocking capacitors for interfacing.
If operating the device over the Extended RF Band of 1700 MHz to 2000 MHz , simply change the DC-blocking capacitors to 1.8 pF and add a shunt 4.7 nH inductor to each RF port. See Table 1 for details. When matched with this alternative set of elements, the RF port input return loss is typically better than 14 dB over the 1700 MHz to 2000 MHz band.
The IF output impedance is 200Ω (differential). For evaluation, an external low-loss $4: 1$ (impedance ratio) balun transforms this impedance to a 50Ω single-ended output (see the Typical Application Circuit).

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

Reduced-Power Mode

Each channel of the device has two pins (LO_ADJ_ IF_SET) that allow external resistors to set the internal bias currents. Nominal values for these resistors are given in Table 1. Larger value resistors can be used to reduce power dissipation at the expense of some performance loss. If $\pm 1 \%$ resistors are not readily available, substitute with $\pm 5 \%$ resistors.
Significant reductions in power consumption can also be realized by operating the mixer with an optional 3.3 V supply voltage. Doing so reduces the overall power consumption by approximately 47%. See the 3.3 V Supply AC Electrical Characteristics table and the relevant 3.3V curves in the Typical Operating Characteristics section.

IND_EXT_ Inductors For applications requiring optimum RF-to-IF and LO-toIF isolation, connect low-ESR inductors from IND_EXT_ (pins 15 and 31) to ground. When improved isolation is not required, connect IND_EXT_ to ground using 0Ω resistance.

Layout Considerations

A properly designed PCB is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. The load impedance presented to the mixer must be such that any capacitance from both IF- and IF+ to
ground does not exceed several picofarads. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. Use multiple vias to connect this pad to the lower-level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX19994A evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.

Power-Supply Bypassing

 Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each Vcc pin and TAPMAIN/TAPDIV with the capacitors shown in the Typical Application Circuit (see Table 1 for component values). Place the TAPMAIN/TAPDIV bypass capacitors to ground within 100 mils of the pin.
Exposed Pad RF/Thermal Considerations

The exposed pad (EP) of the MAX19994A's 36-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PCB on which the device is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.

Table 1. Component Values

DESIGNATION	QTY	DESCRIPTION	COMPONENT SUPPLIER
C1, C8	2	39pF microwave capacitors (0402) 1.8pF for Extended RF Band applications (fRF $=1.7 \mathrm{GHz}$ to 2 GHz)	Murata Electronics North America, Inc.
C2, C7, C14, C16	4	39pF microwave capacitors (0402)	Murata Electronics North America, Inc.
C3, C6	2	$0.033 \mu \mathrm{~F}$ microwave capacitors (0603)	Murata Electronics North America, Inc.
C4, C5	2	Not used	-
$\begin{gathered} \text { C9, C13, C15 } \\ \text { C17, C18 } \end{gathered}$	5	0.01 $\mu \mathrm{F}$ microwave capacitors (0402)	Murata Electronics North America, Inc.
$\begin{aligned} & \text { C10, C11, C12, } \\ & \text { C19, C20, C21 } \end{aligned}$	6	150pF microwave capacitors (0603)	Murata Electronics North America, Inc.
L1, L2, L4, L5	4	120nH wire-wound, high-Q inductors (0805)	Coilcraft, Inc.
L3, L6	2	10nH wire-wound, high-Q inductors (0603). Smaller values or a 0Ω resistor can be used at the expense of some LO leakage at the IF port and RF-to-IF isolation performance loss.	Coilcraft, Inc.
L7, L8	2	4.7nH inductor (0603). Installed for Extended RF Band applications only (1.7 GHz to 2 GHz).	TOKO America, Inc.

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

Table 1. Component Values (continued)

DESIGNATION	QTY	DESCRIPTION	COMPONENT SUPPLIER
R1, R4	2	$681 \Omega \pm 1 \%$ resistors (0402). Used for VCC = 5.0V applications. Larger values can be used to reduce power at the expense of some performance loss.	Digi-Key Corp.
		$681 \Omega \pm 1 \%$ resistors (0402). Used for $\mathbf{V} \mathbf{C C}=\mathbf{3 . 3 V}$ applications.	
R2, R5	2	$1.82 \mathrm{k} \Omega \pm 1 \%$ resistors (0402). Used for $\mathbf{V c c}=\mathbf{5 . 0 V}$ applications. Larger values can be used to reduce power at the expense of some performance loss.	Digi-Key Corp.
		$1.43 \mathrm{k} \Omega \pm 1 \%$ resistors (0402). Used for $\mathbf{V} \mathbf{C C}=\mathbf{3 . 3 V}$ applications.	
R3, R6	2	0Ω resistors (1206)	Digi-Key Corp.
T1, T2	2	4:1 transformers (200:50) TC4-1W-17	Mini-Circuits
U1	1	MAX19994A IC (36 TQFN-EP)	Maxim Integrated Products, Inc.

Typical Application Circuit

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

 Chip InformationFor the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
36 Thin QFN-EP	T3666+2	$\underline{\mathbf{2 1 - 0 1 4 1}}$

Dual, SiGe, High-Linearity, 1200MHz to 2000MHz Downconversion Mixer with LO Buffer/Switch

Revision History

| REVISION
 NUMBER | REVISION
 DATE | DESCRIPTION | PAGES
 CHANGED |
| :---: | :---: | :--- | :---: | :---: |
| 0 | $4 / 10$ | Initial release | - |

