FEATURES

- · -55° to +100°C operation
- · 160 to 400 VDC input
- · Fully isolated
- · Magnetic feedback
- · Fixed frequency, 600 kHz typical
- Topology
 - Two Switch, Single Ended Forward
- 450 V / 50 ms transient protection
- · Inhibit input side and output side
- · Sync in and out
- Indefinite short circuit protection
- · Remote sense on single models
- Up to 85% efficiency
- · Parallelable: up to 5 converters

DC/DC CONVERTERS 270 VOLT INPUT

MHP270 SERIES 65 WATT

MODELS							
VDC OUTPUT							
SINGLE	DUAL						
5	±5						
12	±12						
15	±15						
28							

Size (max.): 3.005 x 1.505 x 0.400 inches (76.33 x 38.23 x 10.16 mm)

See "Case U Maximum Dimensions" and "Case U."

Weight: 86 grams maximum

Screening: MHP270 Standard or MHP270 ES.

See "QA Screening: MHP270" for more information

DESCRIPTION

The MHP270 Series™ DC/DC converters provide up to 65 watts of output power over the full −55°C to 100°C temperature range. MHP270 models operate from a MIL-STD-704 nominal 270 volt DC power bus – from 160 to 400 VDC continuous operation with surges to 450 volts – and provide isolated outputs at 5, 12, 15, and 28 VDC. Parallel operation for all loading conditions is supported without any requirement for external components.

MHP270 DC/DC converters are constant frequency, pulse width modulated switching power supplies which use a quasi-square wave, two-switch single-ended forward converter design. Tight load regulation is achieved through a wide-bandwidth magnetic feedback circuit

Up to five single output MHP converters may be used in parallel to power a single load by simply connecting the share pins of all units. Units in this configuration have a 85% current sharing accuracy over all loading conditions.

MHP Series of converters feature a flexible synchronization scheme in which units may be synchronized to an external clock or to one another by using sync in and sync out pins provided on each unit. MHP converters have a nominal switching frequency of 600 kHz, but may be synchronized at any frequency from 525 to 675 kHz.

MHP converters meet a wide variety of military/aerospace performance and environmental specifications. Their continuous operation input voltage (160 to 400) meets the normal operating limits of MIL-STD-704. The unit shuts down above approximately 425 volts, but it is rated to withstand a surge of up to 450 volts for 50 msec. The units are built as fully hermetic thick film hybrids in Interpoint's MIL-STD-1772 certified facilities.

The MHP270 Series offer a complete list of standard features which include:

Undervoltage lock-out – shuts down when the input line voltage falls below approximately 120 VDC to provide smooth initialization.

Continuous short circuit protection – current limit set at approximately 125%.

Soft-start - controlled start-up at turn-on, release from inhibit, and recovery from load fault conditions.

Remote sense – to provide automatic compensation for voltage drops on output lines on single output models.

MHP270 SERIES **65 WATT**

DC/DC CONVERTERS

ABSOLUTE MAXIMUM RATINGS

Input Voltage

160 to 400 VDC

Output Power

· 50 to 65 watts depending on model

Lead Soldering Temperature (10 sec)

Storage Temperature Range (Case)

• -65°C to +150°C

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range

- · 160 to 400 VDC continuous
- 450 VDC for 50 msec transient

Case Operating Temperature (Tc)

–55 to +100°C full power

SYNC AND INHIBIT (INH1, INH2)

Sync In (525 to 675 kHz)

- Duty cycle 40% min, 60% max
- · Logic low 0.8 V max
- · Logic high 4.5 V min
- · If not used, connect to input common
- · Referenced to input common

Sync Out - Referenced to input common Inhibit (INH1, INH2) TTL Open Collector

- Logic low (output disabled) INH1 referenced to input common Logic low 0.8 V max INH2 referenced to output common Logic low 0.5 V max
- · Logic high (output enabled) Open collector

PINS NOT IN USE

Inhibit (INH1, INH2) No connection Sync Out No connection

Sync In Connect to input common Share Connect to output common Sense Lines Must be connected to appropriate outputs

TYPICAL CHARACTERISTICS

Output Voltage Temperature Coefficient

100 ppm/°C typical

Isolation

• 100 megohm minimum at 500 V

Conversion Frequency

- Free run mode 600 kHz typical 525 kHz. min., 675 kHz max
- · External sync range: 525 to 675 kHz

Inhibit Pin Voltage (unit enabled)

• INH1 =12 V typ., INH2 = 5 V typ Low Line Drop Out - Vout drops 50 mv

Input voltage 155 VDC max **Undervoltage Lockout**

- · Input voltage 110 VDC min Current Limit
 - · 125% of full load typical

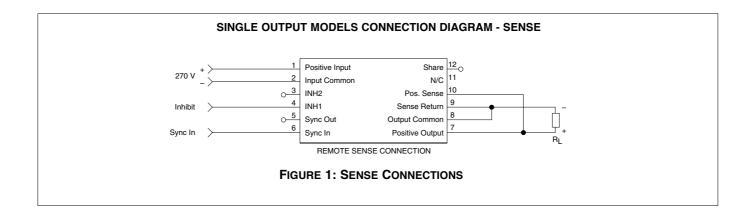
Electrical Characteristics: 25°C Tc, 270 VDC Vin, 100% load, free run, unless otherwise specified.

SINGLE OUTPUT MOD	DELS	М	HP270	05S	MI	1P270	12S	MI	HP2701	15S	MH	HP270	28S	
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	27.22	28.00	28.28	VDC
OUTPUT CURRENT	V _{IN} = 160 TO 400 VDC	0	_	10	0	_	5	0	_	4.33	0	_	2.32	А
OUTPUT POWER	V _{IN} = 160 TO 400 VDC	0	_	50	0	_	60	0	_	65	0	_	65	W
OUTPUT RIPPLE														
VOLTAGE	10 kHz - 2 MHz	_	_	50	_	_	50	-	_	75	_	_	280	mV p-p
LINE REGULATION	V _{IN} = 160 TO 400 VDC	_	_	50	_	_	120	_	_	150	_	_	280	mV
LOAD REGULATION	NO LOAD TO FULL	_	_	50	_	_	120	T -	_	150	_	_	280	mV
INPUT VOLTAGE	CONTINUOUS	160	270	400	160	270	400	160	270	400	160	270	400	VDC
	TRANSIENT ¹ 50 ms	_	_	450	_	_	450	_	_	450	_	_	450	V
INPUT CURRENT	NO LOAD	_	_	20	_	_	20	T -	_	20	_	_	20	mA
	INHIBITED - INH1	_	_	8	_	_	10	T -	_	7	_	_	10	mA
	INHIBITED - INH2	_	_	15	_	_	15	T -	_	15	_	_	15	IIIA
INPUT RIPPLE														
CURRENT	10 kHz - 10 MHz	_	_	50	-	_	50	-	_	45	_	_	50	mA p-p
EFFICIENCY		76	_	_	81	_	_	80	_	_	80	_	_	%
LOAD FAULT ²	POWER DISSIPATION													
	SHORT CIRCUIT	_	_	19	_	_	19	-	_	19	_	_	23	W
	V _{OUT}	_	_	1.5	_	_	1.5	_	_	1.0	_	_	1.0	VDC
STEP LOAD RESP.	50% - 100% - 50%													
	TRANSIENT	_	_	300	_	_	700	_	_	700	_	_	1800	mV pk
	RECOVERY ³	_	_	300	_	_	500	-	_	300	_	_	1000	μs

Notes

- 1. Unit will shut down above approximately 425V but will be undamaged and will restart when voltage drops into normal range.
- 2. Indefinite short circuit protection not guaranteed above 100°C case.
- 3. Recovery time is measured from application of the transient to point at which Vout is within 1% of final value.

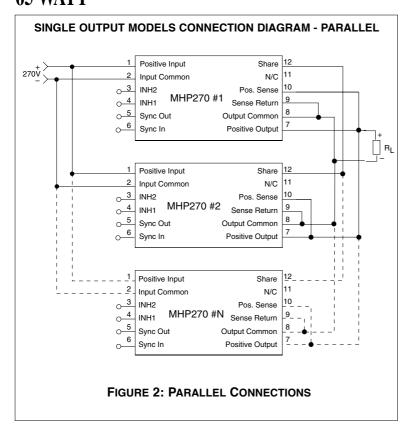
DC/DC CONVERTERS

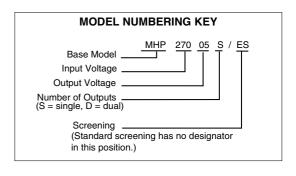

MHP270 SERIES 65 WATT

Electrical Characteristics: 25°C Tc, 270 VDC Vin, 100% load, free run, unless otherwise specified.

DUAL OUTPUT MODELS ¹		MHP27005D		MHP27012D			MHP27015D				
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	+V _{OUT}	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	VDC
	-V _{OUT}	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	VDC
OUTPUT CURRENT ²	V _{IN} = 160 TO 400 VDC	0	±5	8.0	0	±2.5	4.0	0	±2.16	3.46	Α
OUTPUT POWER ²	V _{IN} = 160 TO 400 VDC	0	_	50	0	_	60	0	_	65	W
OUTPUT RIPPLE	10 kHz - 2 MHz										
VOLTAGE	± V _{OUT}	_	50	100	_	50	125	_	50	125	mV p-p
LINE REGULATION	V _{IN} = 160 TO 400 VDC										
	± V _{OUT}	_	_	100	-	_	120	_	_	150	mV
LOAD REGULATION ³	NO LOAD TO FULL										
	± V _{OUT}	_	_	100	_	_	120	_	_	150	mV
CROSS REGULATION ⁴	EFFECT ON -V _{OUT}	_	_	1000	<u> </u>	_	800	_	_	750	mV
INPUT VOLTAGE	CONTINUOUS	160	270	400	160	270	400	160	270	400	VDC
	TRANSIENT ⁵ 50 ms	0	_	450	0	_	450	0	_	450	V
INPUT CURRENT	NO LOAD	_	_	20	_	_	20	_	_	20	mA
	INHIBITED - INH1	_	_	10	_	_	10	_	_	8	4
	INHIBITED - INH2	_	_	15	_	_	15	_	_	15	mA
INPUT RIPPLE											
CURRENT	10 kHz - 10 MHz	_	_	45	_	_	45	_	_	45	mA p-p
EFFICIENCY	BALANCED LOAD	74	_	_	81	_	_	82	_	_	%
LOAD FAULT ⁶	POWER DISSIPATION										
	SHORT CIRCUIT	_	_	8	-	_	7.5	_	_	19	W
	V _{OUT}	_	_	±2.0	_	_	±1.0	_	_	±1.5	V
STEP LOAD	50 %-100% LOAD ⁷										
RESPONSE ± V _{OUT}	TRANSIENT	_	_	300	-	_	900	_	_	900	mV pk
	RECOVERY8	_	_	500	-	_	500	_	_	500	μs

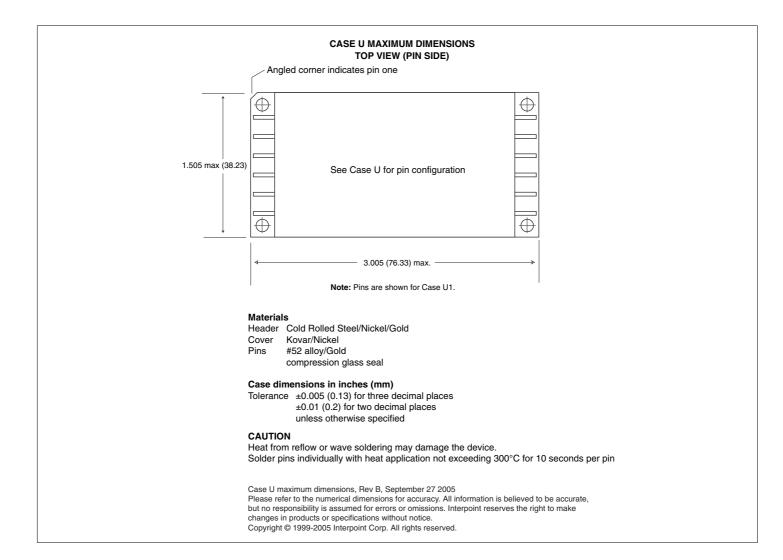
Notes


- 1. Share operation not characterized for dual outputs.
- 2. Up to 80% of the total output power (current) is available from either output providing the opposite output is carrying 20% of the power (current) in use.
- ${\it 3. Assumes balanced loads on the outputs.}\\$
- 4. Effect on the negative output from 50%/50% loads to 70%/30% or 70%/30% loads.
- Unit will shut down above approximately 425V but will be undamaged and will restart when voltage drops into normal range.
- 6. Indefinite short circuit protection not guaranteed above 125°C case.
- 7. Second output at 50%
- 8. Recovery time is measured from application of the transient to point at which Vout is within 1% of final value.



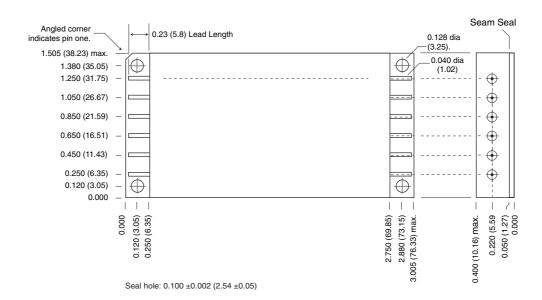
MHP270 SERIES 65 WATT

DC/DC CONVERTERS



			PIN OUT			
Pin	Single Output	Dual Output	Angled corner indicates pin one.			
1 2	Positive Input Input Common	Positive Input Input Common				
3	Inhibit 2 (INH2)	Inhibit 2 (INH2)				
4	Inhibit 1 (INH1)	Inhibit 1 (INH1)	l <u></u> 1	12		
5	Sync Out	Sync Out		11		
6	Sync In	Sync In	2 TOP VIEW	"		
7	Positive Output	Positive Output	3 MHP	10		
8	Output Common	Output Common	4 (Pin side, marked side)	9		
9	Sense Return	Negative Output	(i iii sias, mainea sias)	<u> </u>		
10	Positive Sense	No connection	5 See "Case U Maximum Dimensions"	8		
11	No connection	No connection	and "Case U"	7 📖		
12	Share	Share				
FIGURE 3: PIN OUT						

CASES



CASES

TOP VIEW CASE U

MOR Series, MFL Series, MHP Series, MFLHP Series, FMTR Series. SMFL Series, SMFLHP Series, SMHP Series, FME EMI Filter, FMD270 EMI Filter, SFCS EMI Filter, SFME EMI Filter, HUM70 Module, and LCM Module

Case dimensions in inches (mm)

 $\begin{array}{ll} \hbox{Tolerance} & \pm 0.005 \ (0.13) \ \hbox{for three decimal places} \\ & \pm 0.01 \ (0.3) \ \hbox{for two decimal places} \\ & \hbox{unless otherwise specified} \end{array}$

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin

Case U, Rev B, September 27, 2005

Please refer to the numerical dimensions for accuracy. All information is believed to be accurate, but no responsibility is assumed for errors or omissions. Interpoint reserves the right to make changes in products or specifications without notice.

Copyright © 1999-2005 Interpoint Corp. All rights reserved.

QA SCREENING: MHP270 (STANDARD & ES)

MHP270 SCREENING (STANDARD & ES)

TEST	MHP270 STANDARD	MHP270 /ES
Pre-cap Inspection		
Method 2017, 2032	yes	yes
Temperature Cycle (10 times)		
Method 1010, Cond. B, -55°C to 125°C, ambient	no	yes
Method 1010, dona. B, -33 0 to 123 0, ambient	110	yes
Constant Acceleration		
Method 2001, 500 g	no	yes
Burn-In		
96 hours at 100°C case, typical	no	yes
Final Electrical Test MIL-PRF-38534, Group A		
Subgroups 1 and 4: +25°C case	yes	yes
Hammataka Tan		
Hermeticity Test		
Fine Leak, Method 1014, Cond. A	no	yes
Gross Leak, Method 1014, Cond. C	no	yes
Gross Leak, Dip (1 x 10 ⁻³)	yes	no
F: 126 11 1:		
Final Visual Inspection		
Method 2009	yes	yes

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

