
XC886/888CLM

8-Bit Single-Chip Microcontroller

0

Edition 2006-02

Published by Infineon Technologies AG, 81726 München, Germany © Infineon Technologies AG 2006. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

XC886/888CLM

8-Bit Single-Chip Microcontroller

Microcontrollers

	88 Data Sheet n History: 2006-02	V0.1
Previous	Version:	
Page	Subjects (major changes since last revision)	
	1	

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

8-Bit Single-Chip Microcontroller

XC886/888

1 Summary of Features

- High-performance XC800 Core
 - compatible with standard 8051 processor
 - two clocks per machine cycle architecture (for memory access without wait state)
 - two data pointers
- · On-chip memory
 - 12 Kbytes of Boot ROM
 - 256 bytes of RAM
 - 1.5 Kbytes of XRAM
 - 24/32 Kbytes of Flash; or
 24/32 Kbytes of ROM, with additional 4 Kbytes of Flash (includes memory protection strategy)
- I/O port supply at 3.3 V or 5.0 V and core logic supply at 2.5 V (generated by embedded voltage regulator)

(more features on next page)

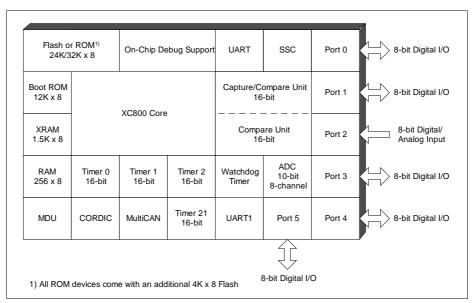


Figure 1 XC886/888 Functional Units

Data Sheet 1 V0.1, 2006-02 Prelimary

Summary of Features

Features (continued):

- · Power-on reset generation
- · Brownout detection for core logic supply
- · On-chip OSC and PLL for clock generation
 - PLL loss-of-lock detection
- · Power saving modes
 - slow-down mode
 - idle mode
 - power-down mode with wake-up capability via RXD or EXINT0
 - clock gating control to each peripheral
- Programmable 16-bit Watchdog Timer (WDT)
- · Six ports
 - 34/48 pins as digital I/O
 - 8 pins as digital/analog input
- 8-channel, 10-bit ADC
- Four 16-bit timers
 - Timer 0 and Timer 1 (T0 and T1)
 - Timer 2 and Timer 21
- Multiplication/Division Unit for arithmetic operations (MDU)
- CORDIC Coprocessor for computation of trigonometric, hyperbolic and linear functions
- MultiCAN with 2 nodes, 32 message objects (MCAN)
- Capture/compare unit for PWM signal generation (CCU6)
- Two full-duplex serial interfaces (UART and UART1)
- Synchronous serial channel (SSC)
- · On-chip debug support
 - 1 Kbyte of monitor ROM (part of the 12-Kbyte Boot ROM)
 - 64 bytes of monitor RAM
- · Packages:
 - PG-TQFP-48
 - PG-TQFP-64
- Temperature range T_A:
 - SAF (-40 to 85 °C)
 - SAK (-40 to 125 °C)

Summary of Features

XC886/888 Variant Devices

The XC886/888 product family features devices with different configurations, program memory sizes, package options, temperature and quality profiles (Automotive or Industrial), to offer cost-effective solutions for different application requirements.

The list of XC886/888 device configurations are summarized in **Table 1**. For each configuration, 2 types of packages are available:

- PG-TQFP-48, which is denoted by XC886 and;
- PG-TQFP-64, which is denoted by XC888.

Table 1 Device Configuration

Device Name	CAN Module	LIN BSL Support	MDU Module
XC886/888	No	No	No
XC886/888C	Yes	No	No
XC886/888CM	Yes	No	Yes
XC886/888LM	No	Yes	Yes
XC886/888CLM	Yes	Yes	Yes

From these 10 different combinations of configuration and package type, each are further made available in 6 sales types, which are grouped according to program memory sizes, temperature and quality profiles (Automotive or Industrial), as shown in **Table 2**.

Table 2 Device Profile

Sales Type	Device Type	Program Memory Size (Kbytes)	Temperature Profile (°C)	Quality Profile
SAK-XC886*/888*-8FFA	Flash	32	-40 to 125	Automotive
SAK-XC886*/888*-6FFA	Flash	24	-40 to 125	Automotive
SAF-XC886*/888*-8FFA	Flash	32	-40 to 85	Automotive
SAF-XC886*/888*-6FFA	Flash	24	-40 to 85	Automotive
SAF-XC886*/888*-8FFI	Flash	32	-40 to 85	Industrial
SAF-XC886*/888*-6FFI	Flash	24	-40 to 85	Industrial

Note: The asterisk (*) above denotes the device configuration letters from **Table 1**. Corresponding ROM derivatives will be available on request.

Summary of Features

Ordering Information

The ordering code for Infineon Technologies microcontrollers provides an exact reference to the required product. This ordering code indentifies:

- The derivative itself, i.e. its function set
- the specified temperature range
- the package and the type of delivery

For the available ordering codes for the XC886/888, please refer to the "**Product Catalog Microcontrollers**" which summarizes all available microcontroller variants.

Note: The ordering codes for the Mask-ROM versions are defined for each product after verification of the respective ROM code.

2 General Device Information

2.1 Block Diagram

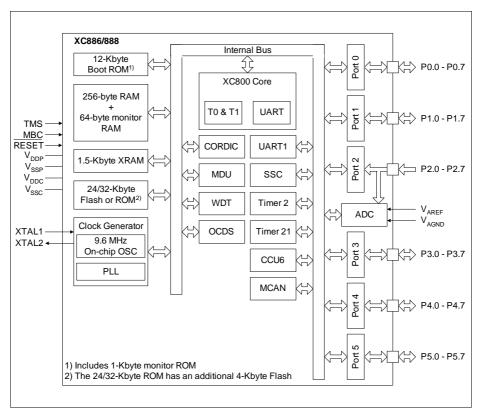


Figure 2 XC886/888 Block Diagram

2.2 Logic Symbol

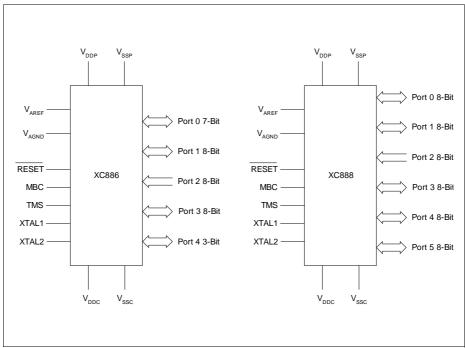


Figure 3 XC886/888 Logic Symbol

2.3 Pin Configuration

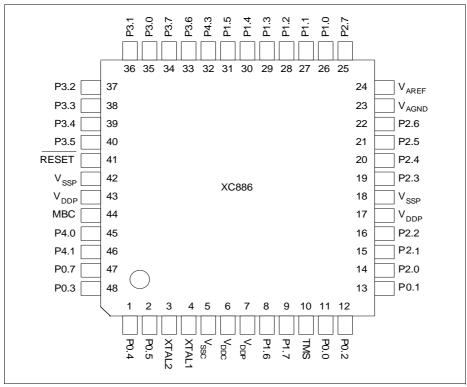


Figure 4 XC886 Pin Configuration, PG-TQFP-48 Package (top view)

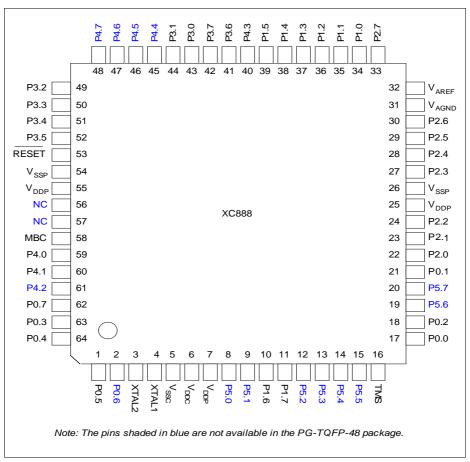


Figure 5 XC888 Pin Configuration, PG-TQFP-64 Package (top view)

2.4 Pin Definitions and Functions

Table 3 Pin Definitions and Functions

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P0	,	I/O		I/O port. It ca for the JTAG	B-bit bidirectional general purpose an be used as alternate functions 6, CCU6, UART, UART1, Timer 2, CAN and SSC.
P0.0	11/17		Hi-Z	TCK_0 T12HR_1 CC61_1 CLKOUT_0 RXDO_1	JTAG Clock Input CCU6 Timer 12 Hardware Run Input Input/Output of Capture/ Compare channel 1 Clock Output UART Transmit Data Output
P0.1	13/21		Hi-Z	TDI_0 T13HR_1 RXD_1 RXDC1_0 COUT61_1 EXF2_1	JTAG Serial Data Input CCU6 Timer 13 Hardware Run Input UART Receive Data Input MCAN Node 1 Receiver Input Output of Capture/Compare channel 1 Timer 2 External Flag Output
P0.2	12/18		PU	CTRAP_2 TDO_0 TXD_1 TXDC1_0	CCU6 Trap Input JTAG Serial Data Output UART Transmit Data Output/ Clock Output MCAN Node 1 Transmitter Output
P0.3	48/63		Hi-Z	SCK_1 COUT63_1 RXDO1_0	SSC Clock Input/Output Output of Capture/Compare channel 3 UART1 Transmit Data Output

Table 3 Pin Definitions and Functions (cont'd)

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P0.4	1/64		Hi-Z	MTSR_1	SSC Master Transmit Output/ Slave Receive Input
				CC62_1	Input/Output of Capture/ Compare channel 2
				TXD1_0	UART1 Transmit Data Output/ Clock Output
P0.5	2/1		Hi-Z	MRST_1 EXINTO_0 T2EX1_1 RXD1_0 COUT62_1	SSC Master Receive Input/ Slave Transmit Output External Interrupt Input 0 Timer 21 External Trigger Input UART1 Receive Data Input Output of Capture/Compare
P0.6	-/2		PU	GPIO	channel 2
P0.7	47/62		PU	CLKOUT_1	Clock Output

Table 3 Pin Definitions and Functions (cont'd)

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P1		I/O		I/O port. It ca for the JTAG	B-bit bidirectional general purpose an be used as alternate functions 5, CCU6, UART, Timer 0, Timer 1, per 21, MCAN and SSC.
P1.0	26/34		PU	RXD_0 T2EX RXDC0_0	UART Receive Data Input Timer 2 External Trigger Input MCAN Node 0 Receiver Input
P1.1	27/35		PU	EXINT3 T0_1 TDO_1 TXD_0 TXDC0_0	External Interrupt Input 3 Timer 0 Input JTAG Serial Data Output UART Transmit Data Output/ Clock Output MCAN Node 0 Transmitter Output
P1.2	28/36		PU	SCK_0	SSC Clock Input/Output
P1.3	29/37		PU	MTSR_0 TXDC1_3	SSC Master Transmit Output/ Slave Receive Input MCAN Node 1 Transmitter
					Output
P1.4	30/38		PU	MRST_0	SSC Master Receive Input/ Slave Transmit Output
				EXINT0_1 RXDC1_3	External Interrupt Input 6 MCAN Node 1 Receiver Input
P1.5	31/39		PU	CCPOS0_1 EXINT5 T1_1 EXF2_0 RXDO_0	CCU6 Hall Input 0 External Interrupt Input 5 Timer 1 Input Timer 2 External Flag Output UART Transmit Data Output

Table 3 Pin Definitions and Functions (cont'd)

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P1.6	8/10		PU	CCPOS1_1 T12HR_0	CCU6 Hall Input 1 CCU6 Timer 12 Hardware Run Input
				EXINT6_0 RXDC0_2 T21_1	• •
P1.7	9/11		PU	CCPOS2_1 T13HR_0	CCU6 Hall Input 2 CCU6 Timer 13 Hardware Run Input
				T2_1 TXDC0_2	Timer 2 Input MCAN Node 0 Transmitter Output
					.6 can be used as a software chip t for the SSC.

Table 3 Pin Definitions and Functions (cont'd)

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P2		I		port. It can b the digital inp	B-bit general purpose input-only e used as alternate functions for outs of the JTAG and CCU6. It is the analog inputs for the ADC.
P2.0	14/22		Hi-Z	CCPOS0_0 EXINT1_0 T12HR_2 TCK_1	CCU6 Hall Input 0 External Interrupt Input 1 CCU6 Timer 12 Hardware Run Input JTAG Clock Input
				CC61_3 AN0	Input of Capture/Compare channel 1 Analog Input 0
P2.1	15/23		Hi-Z	CCPOS1_0 EXINT2_0 T13HR_2	CCU6 Hall Input 1 External Interrupt Input 2 CCU6 Timer 13 Hardware Run Input
				TDI_1 CC62_3 AN1	JTAG Serial Data Input Input of Capture/Compare channel 2 Analog Input 1
P2.2	16/24		Hi-Z	CCPOS2_0 CTRAP_1 CC60_3	CCU6 Hall Input 2 CCU6 Trap Input Input of Capture/Compare channel 0
				AN2	Analog Input 2
P2.3	19/27		Hi-Z	AN3	Analog Input 3
P2.4	20/28		Hi-Z	AN4	Analog Input 4
P2.5	21/29		Hi-Z	AN5	Analog Input 5
P2.6	22/30		Hi-Z	AN6	Analog Input 6
P2.7	25/33		Hi-Z	AN7	Analog Input 7

Table 3 Pin Definitions and Functions (cont'd)

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P3		I/O		I/O port. It ca	3-bit bidirectional general purpose an be used as alternate functions ART1, Timer 21 and MCAN.
P3.0	35/43		Hi-Z	CCPOS1_2 CC60_0 RXDO1_1	CCU6 Hall Input 1 Input/Output of Capture/ Compare channel 0 UART1 Transmit Data Output
P3.1	36/44		Hi-Z	CCPOS0_2 CC61_2	CCU6 Hall Input 0 Input/Output of Capture/ Compare channel 1
				COUT60_0 TXD1_1	Output of Capture/Compare channel 0 UART1 Transmit Data Output/ Clock Output
P3.2	37/49		Hi-Z	CCPOS2_2 RXDC1_1 RXD1_1 CC61_0	CCU6 Hall Input 2 MCAN Node 0 Receiver Input UART1 Receive Data Input Input/Output of Capture/ Compare channel 1
P3.3	38/50		Hi-Z	COUT61_0 TXDC1_1	Output of Capture/Compare channel 1 MCAN Node 1 Transmitter Output
P3.4	39/51		Hi-Z	CC62_0 RXDC0_1 T2EX1_0	Input/Output of Capture/ Compare channel 2 MCAN Node 0 Receiver Input Timer 21 External Trigger Input
P3.5	40/52		Hi-Z	COUT62_0 EXF21_0 TXDC0_1	Output of Capture/Compare channel 2 Timer 21 External Flag Output MCAN Node 0 Transmitter Output
P3.6	33/41		PD	CTRAP_0	CCU6 Trap Input

Table 3 Pin Definitions and Functions (cont'd)

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P3.7	34/42		Hi-Z	EXINT4 COUT63_0	External Interrupt Input 4 Output of Capture/Compare channel 3
P4		I/O		I/O port. It ca	3-bit bidirectional general purpose an be used as alternate functions mer 0, Timer 1, Timer 21 and
P4.0	45/59		Hi-Z	RXDC0_3 CC60_1	MCAN Node 0 Receiver Input Output of Capture/Compare channel 0
P4.1	46/60		Hi-Z	TXDC0_3 COUT60_1	MCAN Node 0 Transmitter Output Output of Capture/Compare channel 0
P4.2	-/61		PU	EXINT6_1 T21_0	External Interrupt Input 6 Timer 21 Input
P4.3	32/40		Hi-Z	EXF21_1 COUT63_2	Timer 21 External Flag Output Output of Capture/Compare channel 3
P4.4	- /45		Hi-Z	CCPOS0_3 T0_0 CC61_4	CCU6 Hall Input 0 Timer 0 Input Output of Capture/Compare channel 1
P4.5	-/ 46		Hi-Z	CCPOS1_3 T1_0 COUT61_2	CCU6 Hall Input 1 Timer 1 Input Output of Capture/Compare channel 1
P4.6	-/47		Hi-Z	CCPOS2_3 T2_0 CC62_2	CCU6 Hall Input 2 Timer 2 Input Output of Capture/Compare channel 2
P4.7	-/48		Hi-Z	CTRAP_3 COUT62_2	CCU6 Trap Input Output of Capture/Compare channel 2

Table 3 Pin Definitions and Functions (cont'd)

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P5		I/O		I/O port. It ca	8-bit bidirectional general purpose an be used as alternate functions IART1 and JTAG.
P5.0	-/8		PU	EXINT1_1	External Interrupt Input 1
P5.1	-/9		PU	EXINT2_1	External Interrupt Input 2
P5.2	- /12		PU	RXD_2	UART Receive Data Input
P5.3	-/13		PU	TXD_2	UART Transmit Data Output/ Clock Output
P5.4	- /14		PU	RXDO_2	UART Transmit Data Output
P5.5	- /15		PU	TDO_2 TXD1_2	JTAG Serial Data Output UART1 Transmit Data Output/ Clock Output
P5.6	-/19		PU	TCK_2 RXDO1_2	JTAG Clock Input UART1 Transmit Data Output
P5.7	-/20		PU	TDI_2 RXD1_2	JTAG Serial Data Input UART1 Receive Data Input
V _{DDP}	7, 17, 43/ 7, 25, 55	_	_	I/O Port Su	pply (3.3 or 5.0 V)
V _{SSP}	18, 42/26, 54	_	_	I/O Port Gro	ound
V _{DDC}	6/6	_	_	Core Suppl	y Monitor (2.5 V)
V _{SSC}	5/5	_	_	Core Suppl	y Ground
V _{AREF}	24/32	_	_	ADC Refere	ence Voltage
V _{AGND}	23/31	_	_	ADC Refere	ence Ground
XTAL1	4/4	I	Hi-Z		scillator Input on-chip OSC, normally NC)
XTAL2	3/3	0	Hi-Z		scillator Output on-chip OSC, normally NC)
TMS	10/16	I	PD	Test Mode	Select
RESET	41/53	I	PU	Reset Input	1
МВС	44/58	I	PU	Monitor & E	BootStrap Loader Control
NC	-/21 , 59, 60	_	_	No Connec	tion

3 Functional Description

3.1 Processor Architecture

The XC886/888 is based on a high-performance 8-bit Central Processing Unit (CPU) that is compatible with the standard 8051 processor. While the standard 8051 processor is designed around a 12-clock machine cycle, the XC886/888 CPU uses a 2-clock machine cycle. This allows fast access to ROM or RAM memories without wait state. Access to the Flash memory, however, requires an additional wait state (one machine cycle). The instruction set consists of 45% one-byte, 41% two-byte and 14% three-byte instructions.

The XC886/888 CPU provides a range of debugging features, including basic stop/start, single-step execution, breakpoint support and read/write access to the data memory, program memory and SFRs.

Figure 6 shows the CPU functional blocks.

V0.1, 2006-02

Functional Description

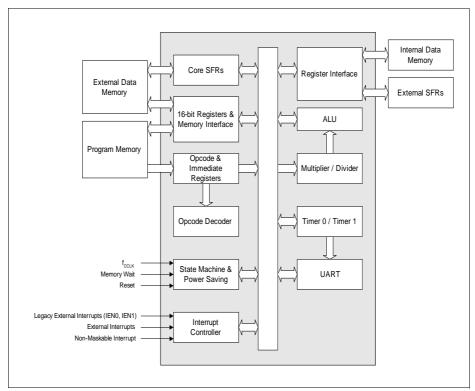


Figure 6 CPU Block Diagram

3.2 Memory Organization

The XC886/888 CPU operates in the following five address spaces:

- 12 Kbytes of Boot ROM program memory
- 256 bytes of internal RAM data memory
- 1.5 Kbytes of XRAM memory (XRAM can be read/written as program memory or external data memory)
- a 128-byte Special Function Register area
- 24/32 Kbytes of Flash program memory (Flash devices); or 24/32 Kbytes of ROM program memory, with additional 4 Kbytes of Flash (ROM devices)

Figure 7 illustrates the memory address spaces of the 32-Kbyte Flash devices. For the 24-Kbyte Flash devices, the shaded banks are not available.

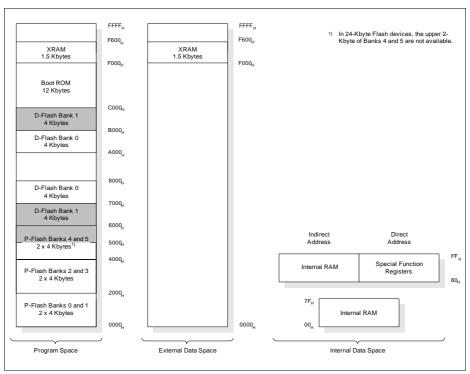


Figure 7 Memory Map of XC886/888 Flash Device

3.2.1 Memory Protection Strategy

The XC886/888 memory protection strategy includes:

- Read-out protection: The user is able to protect the contents in the Flash (for Flash devices) and ROM (for ROM devices) memory from being read
- Flash program and erase protection (for Flash devices only)

Flash memory protection modes are available only for Flash devices:

- Mode 0: Only the P-Flash is protected; the D-Flash is unprotected
- · Mode 1: Both the P-Flash and D-Flash are protected

The selection of each protection mode and the restrictions imposed are summarized in **Table 4**.

Table 4 Flash Protection Modes

Mode	0	1
Activation	Program a valid password via BSL m	ode 6
Selection	MSB of password = 0	MSB of password = 1
P-Flash contents can be read by	Read instructions in the P-Flash	Read instructions in the P-Flash or D-Flash
P-Flash program and erase	Not possible	Not possible
D-Flash contents can be read by	Read instructions in any program memory	Read instructions in the P-Flash or D-Flash
D-Flash program	Possible	Not possible
D-Flash erase	Possible, on the condition that bit DFLASHEN in register MISC_CON is set to 1 prior to each erase operation	Not possible

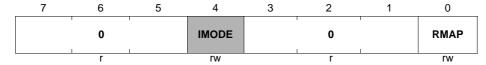
BSL mode 6, which is used for enabling Flash protection, can also be used for disabling Flash protection. Here, the programmed password must be provided by the user. A password match triggers an automatic erase of the protected P-Flash and D-Flash contents, including the programmed password. The Flash protection is then disabled upon the next reset.

Although no protection scheme can be considered infallible, the XC886/888 memory protection strategy provides a very high level of protection for a general purpose microcontroller.

Note: If ROM read-out protection is enabled, only read instructions in the ROM memory can target the ROM contents.

3.2.2 Special Function Register

The Special Function Registers (SFRs) occupy direct internal data memory space in the range $80_{\rm H}$ to FF_H. All registers, except the program counter, reside in the SFR area. The SFRs include pointers and registers that provide an interface between the CPU and the on-chip peripherals. As the 128-SFR range is less than the total number of registers required, address extension mechanisms are required to increase the number of addressable SFRs. The address extension mechanisms include:


- Mapping
- Paging

3.2.2.1 Address Extension by Mapping

Address extension is performed at the system level by mapping. The SFR area is extended into two portions: the standard (non-mapped) SFR area and the mapped SFR area. Each portion supports the same address range $80_{\rm H}$ to FF_H, bringing the number of addressable SFRs to 256. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit RMAP in the system control register SYSCON0 at address $8F_{\rm H}$. To access SFRs in the mapped area, bit RMAP in SFR SYSCON0 must be set. Alternatively, the SFRs in the standard area can be accessed by clearing bit RMAP. The SFR area can be selected as shown in **Figure 8**.

SYSCON0 System Control Register 0

The functions of the shaded bits are not described here

Field	Bits	Type	Description
RMAP	0	rw	Special Function Register Map Control The access to the standard SFR area is enabled. The access to the mapped SFR area is enabled.
0	[7:5], [3:1]	r	Reserved Returns 0 if read; should be written with 0.

Note: The RMAP bit must be cleared/set by ANL or ORL instructions. The rest bits of SYSCON0 should not be modified.

As long as bit RMAP is set, the mapped SFR area can be accessed. This bit is not cleared automatically by hardware. Thus, before standard/mapped registers are accessed, bit RMAP must be cleared/set, respectively, by software.

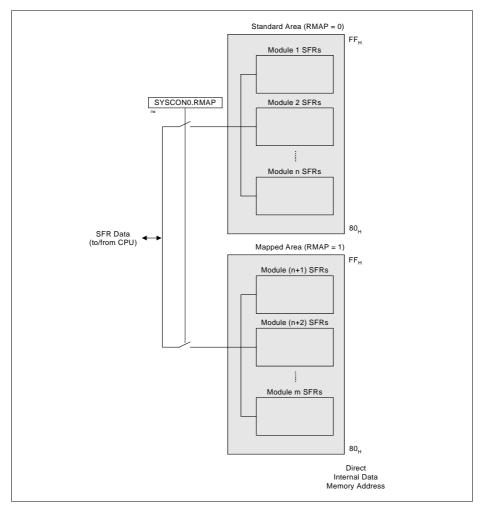


Figure 8 Address Extension by Mapping

3.2.2.2 Address Extension by Paging

Address extension is further performed at the module level by paging. With the address extension by mapping, the XC886/888 has a 256-SFR address range. However, this is still less than the total number of SFRs needed by the on-chip peripherals. To meet this requirement, some peripherals have a built-in local address extension mechanism for increasing the number of addressable SFRs. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit field PAGE in the module page register MOD_PAGE. Hence, the bit field PAGE must be programmed before accessing the SFR of the target module. Each module may contain a different number of pages and a different number of SFRs per page, depending on the specific requirement. Besides setting the correct RMAP bit value to select the SFR area, the user must also ensure that a valid PAGE is selected to target the desired SFR. A page inside the extended address range can be selected as shown in Figure 9.

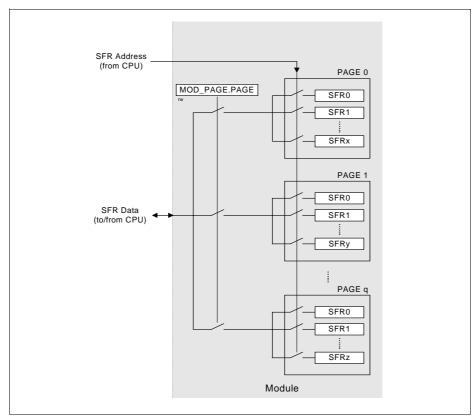


Figure 9 Address Extension by Paging

In order to access a register located in a page different from the actual one, the current page must be left. This is done by reprogramming the bit field PAGE in the page register. Only then can the desired access be performed.

If an interrupt routine is initiated between the page register access and the module register access, and the interrupt needs to access a register located in another page, the current page setting can be saved, the new one programmed and finally, the old page setting restored. This is possible with the storage fields STx (x = 0 - 3) for the save and restore action of the current page setting. By indicating which storage bit field should be used in parallel with the new page value, a single write operation can:

- Save the contents of PAGE in STx before overwriting with the new value (this is done in the beginning of the interrupt routine to save the current page setting and program the new page number); or
- Overwrite the contents of PAGE with the contents of STx, ignoring the value written to the bit positions of PAGE (this is done at the end of the interrupt routine to restore the previous page setting before the interrupt occurred)

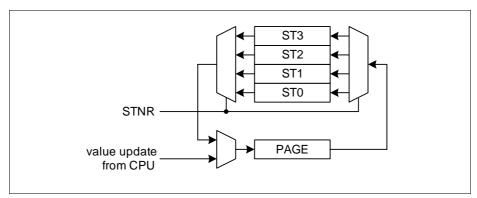
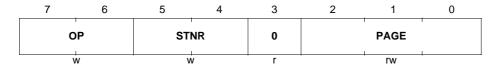


Figure 10 Storage Elements for Paging

With this mechanism, a certain number of interrupt routines (or other routines) can perform page changes without reading and storing the previously used page information. The use of only write operations makes the system simpler and faster. Consequently, this mechanism significantly improves the performance of short interrupt routines.

The XC886/888 supports local address extension for:


- Parallel Ports
- Analog-to-Digital Converter (ADC)
- Capture/Compare Unit 6 (CCU6)
- System Control Registers

The page register has the following definition:

MOD_PAGE Page Register for module MOD

Reset Value: 00_H

Field	Bits	Type	Description
PAGE	[2:0]	rw	Page Bits When written, the value indicates the new page. When read, the value indicates the currently active page.
STNR	[5:4]	W	Storage Number This number indicates which storage bit field is the target of the operation defined by bit field OP. If OP = 10 _B , the contents of PAGE are saved in STx before being overwritten with the new value. If OP = 11 _B , the contents of PAGE are overwritten by the contents of STx. The value written to the bit positions of PAGE is ignored.
			00 ST0 is selected. 01 ST1 is selected. 10 ST2 is selected. 11 ST3 is selected.

Field	Bits	Type	Description							
OP	[7:6]	w	Operation OX Manual page mode. The value of STNR is ignored and PAGE is directly written. 10 New page programming with automatic page saving. The value written to the bit positions of PAGE is stored. In parallel, the previous contents of PAGE are saved in the storage bit field STx indicated by STNR. 11 Automatic restore page action. The value written to the bit positions PAGE is ignored and instead, PAGE is overwritten by the contents of the storage bit field STx indicated by STNR.							
0	3	r	Reserved Returns 0 if read; should be written with 0.							

3.2.3 Bit Protection Scheme

The bit protection scheme prevents direct software writing of selected bits (i.e., protected bits) using the PASSWD register. When the bit field MODE is $11_{\rm B}$, writing $10011_{\rm B}$ to the bit field PASS opens access to writing of all protected bits, and writing $10101_{\rm B}$ to the bit field PASS closes access to writing of all protected bits. Note that access is opened for maximum 32 CCLKs if the "close access" password is not written. If "open access" password is written again before the end of 32 CCLK cycles, there will be a recount of 32 CCLK cycles. The protected bits include the N- and K-Divider bits, NDIV and KDIV; the Watchdog Timer enable bit, WDTEN; and the power-down and slow-down enable bits, PD and SD.

PASSWD Password Register

7	6	5	4	3	2	1	0
	1	PASS	i		PROTECT _S	МОГ	DE
	•	wh			rh	rw	,

Field	Bits	Туре	Description
MODE	[1:0]	rw	Bit Protection Scheme Control bits 00 Scheme Disabled 11 Scheme Enabled (default) Others: Scheme Enabled These two bits cannot be written directly. To change the value between 11 _B and 00 _B , the bit field PASS must be written with 11000 _B ; only then, will the MODE[1:0] be registered.
PROTECT_S	2	rh	Bit Protection Signal Status bit This bit shows the status of the protection. O Software is able to write to all protected bits. Software is unable to write to any protected bits.
PASS	[7:3]	wh	Password bits The Bit Protection Scheme only recognizes three patterns. 11000 _B Enables writing of the bit field MODE. 10011 _B Opens access to writing of all protected bits. 10101 _B Closes access to writing of all protected bits.

3.2.4 XC886/888 Register Overview

The SFRs of the XC886/888 are organized into groups according to their functional units. The contents (bits) of the SFRs are summarized in **Table 5** to **Table 18**, with the addresses of the bitaddressable SFRs appearing in bold typeface.

The CPU SFRs can be accessed in both the standard and mapped memory areas (RMAP = 0 or 1).

Table 5 CPU Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0		
RMAP =	0 or 1		L	1	I				I		1		
81 _H	SP	Reset: 07 _H	Bit Field				S	P					
	Stack Pointer Register		Туре				r	w					
82 _H	DPL	Reset: 00 _H	Bit Field	DPL7	DPL6	DPL5	DPL4	DPL3	DPL2	DPL1	DPL0		
	Data Pointer Register Lo	w	Туре	rw	rw	rw	rw	rw	rw	rw	rw		
83 _H	DPH	Reset: 00 _H	Bit Field	DPH7	DPH6	DPH5	DPH4	DPH3	DPH2	DPH1	DPH0		
	Data Pointer Register Hi	gh	Туре	rw	rw	rw	rw	rw	rw	rw	rw		
87 _H	PCON	Reset: 00 _H	Bit Field	SMOD		0		GF1	GF0	0	IDLE		
	Power Control Register		Туре	rw		r		rw	rw	r	rw		
88 _H	TCON	Reset: 00 _H	Bit Field	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0		
	Timer Control Register		Туре	rwh	rw	rwh	rw	rwh	rw	rwh	rw		
89 _H	TMOD	Reset: 00 _H	Bit Field	GATE1	0	T.	1M	GATE0	0	T	MC		
	Timer Mode Register		Туре	rw	r	r	w	rw	r	r	w		
8A _H	TL0	Reset: 00 _H	Bit Field	VAL									
	Timer 0 Register Low		Туре	rwh									
8B _H	TL1	Reset: 00 _H	Bit Field	VAL									
	Timer 1 Register Low		Туре				rv	vh					
8C _H	THO Reset: 00 _H Bit Field VAL												
	Timer 0 Register High		Туре	rwh									
8D _H	TH1	Reset: 00 _H	Bit Field	VAL									
	Timer 1 Register High		Туре	rwh									
98 _H	SCON	Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI		
	Serial Channel Control R	legister	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh		
99 _H	SBUF	Reset: 00 _H	Bit Field				V	AL					
	Serial Data Buffer Regist	ter	Туре				rv	vh					
A2 _H	EO	Reset: 00 _H	Bit Field	0 TRAP_ 0							DPSEL		
	Extended Operation Reg	ister					EN				0		
			Туре		r	1	rw		r	1	rw		
A8 _H	IEN0 Interrupt Enable Registe	Reset: 00 _H	Bit Field	EA	0	ET2	ES	ET1	EX1	ET0	EX0		
	, ,		Туре	rw	r	rw	rw	rw	rw	rw	rw		
B8 _H	IP Interrupt Priority Register	Reset: 00 _H	Bit Field)	PT2	PS	PT1	PX1	PT0	PX0		
			Туре		r	rw	rw	rw	rw	rw	rw		
B9 _H	IPH Interrupt Priority Register	Reset: 00 _H	Bit Field)	PT2H	PSH	PT1H	PX1H	PT0H	PX0H		
	, , ,		Туре		r	rw	rw	rw	rw	rw	rw		
D0 _H	PSW Program Status Word Re	Reset: 00 _H	Bit Field	CY	AC	F0	RS1	RS0	OV	F1	Р		
	ŭ		Туре	rwh	rwh	rw	rw	rw	rwh	rw	rh		
E0 _H	ACC Accumulator Register	Reset: 00 _H	Bit Field	ACC7	ACC6	ACC5	ACC4	ACC3	ACC2	ACC1	ACC0		
	Ů.		Туре	rw	rw	rw	rw	rw	rw	rw	rw		
E8 _H	IEN1 Interrupt Enable Registe	Reset: 00 _H r 1	Bit Field	ECCIP 3	ECCIP 2	ECCIP 1	ECCIP 0	EXM	EX2	ESSC	EADC		
	,			rw	rw	rw	rw	rw	rw	rw	rw		

Table 5 CPU Register Overview (cont'd)

Addr	Register Name	1	Bit	7	6	5	4	3	2	1	0
F0 _H	В	Reset: 00 _H	Bit Field	B7	B6	B5	B4	B3	B2	B1	B0
	B Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F8 _H	IP1 Interrupt Priority Reg	Reset: 00 _H ister 1	Bit Field	PCCIP 3	PCCIP 2	PCCIP 1	PCCIP 0	PXM	PX2	PSSC	PADC
			Туре	rw	rw	rw	rw	rw	rw	rw	rw
F9 _H	IPH1 Interrupt Priority Regi	Reset: 00 _H ister 1 High	Bit Field	PCCIP 3H	PCCIP 2H	PCCIP 1H	PCCIP 0H	PXMH	PX2H	PSSCH	PADC H
			Туре	rw	rw	rw	rw	rw	rw	rw	rw

The MDU SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 6 MDU Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0		
RMAP =	1				1		ı		1	1	1		
B0 _H	MDUSTAT	Reset: 00 _H	Bit Field			0			BSY	IERR	IRDY		
	MDU Status Register		Туре			г			rh	rwh	rwh		
B1 _H	MDUCON	Reset: 00 _H	Bit Field	IE	IR	RSEL	START		OPC	ODE			
	MDU Control Register		Туре	rw	rw	rw	rwh		r	w			
B2 _H	MD0	Reset: 00 _H	Bit Field				DA	TA					
	MDU Data Register 0		Туре				r	w					
	MR0	Reset: 00 _H	Bit Field				DA	TA					
	MDU Data Register 0		Туре				r	h					
B3 _H	MD1	Reset: 00 _H	Bit Field				DA	TA					
	MDU Data Register 1		Туре				r	w					
	MR1	Reset: 00 _H	Bit Field				DA	TA					
	MDU Data Register 1		Туре				r	h					
B4 _H	MD2	Reset: 00 _H	Bit Field				DA	TA					
	MDU Data Register 2		Туре				r	w					
	MR2	Reset: 00 _H	Bit Field				DA	TA					
	MDU Data Register 2		Туре				r	h					
B5 _H	MD3	Reset: 00 _H	Bit Field				DA	TA					
	MDU Data Register 3		Туре				r	w					
	MR3	Reset: 00 _H	Bit Field				DA	TA					
	MDU Data Register 3		Туре				r	h					
B6 _H	MD4 MDU Data Register 4	Reset: 00 _H	Bit Field				DA	TA					
	Multiplication/Division		Туре				r	w					
	Shift/Normalization				0	SLR			SCTR				
				r	w	rw			rw				
	MR4 MDU Data Register 4	Reset: 00 _H	Bit Field				DA	TΑ					
	Multiplication/Division		Туре				r	h					
	Shift/Normalization				0				SCTR				
					rh				rh				
B7 _H	MD5	Reset: 00 _H	Bit Field				DA	TA					
	MDU Data Register 5		Туре	rw									
	MR5	Reset: 00 _H	Bit Field	DATA									
	MDU Data Register 5		Туре				r	h					

The CORDIC SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 7 CORDIC Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0		
RMAP =	:1			ļ	1	1	1	1		1			
9A _H	CD_CORDXL	Reset: 00 _H	Bit Field				DA	TAL					
	CORDIC X Data Low Byte	е	Туре				r	w					
9B _H	CD_CORDXH	Reset: 00 _H	Bit Field				DA ⁻	TAH					
	CORDIC X Data High Byt	e	Туре	rw									
9C _H	CD_CORDYL	Reset: 00 _H	Bit Field				DA	TAL					
	CORDIC Y Data Low Byte	е	Туре				r	W					
9D _H	CD_CORDYH	Reset: 00 _H	Bit Field	DATAH									
	CORDIC Y Data High Byt	e	Туре				r	w					
9E _H	CD_CORDZL	Reset: 00 _H	Bit Field				DA	TAL					
	CORDIC Z Data Low Byte	€	Туре				r	W					
9F _H	CD_CORDZH	Reset: 00 _H	Bit Field				DA	TAH					
	CORDIC Z Data High Byt	е	Туре				r	w					
A0 _H	CD_STATC CORDIC Status and Data	Reset: 00 _H Control	Bit Field	KEEPZ	KEEPY	KEEPX	DMAP	INT_E N	EOC	ERRO R	BSY		
	Register		Туре	rw	rw	rw	rw	rw	rwh	rh	rh		
A1 _H	CD_CON CORDIC Control Register	Reset: 00 _H	Bit Field	eld MPS X_USI ST_MO ROTVE MODE GN DE C					ST				
			Туре	rw w rw rw rw					w	rwh			

The system control SFRs can be accessed in the standard memory area (RMAP = 0).

Table 8 System Control Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	0 or 1	ļ		1	1	1	1	1	1	
8F _H	SYSCON0 Reset: 00 _H	Bit Field		0		IMODE		0		RMAP
	System Control Register 0	Туре	r			rw		r		rw
RMAP =	: 0									
BF _H	SCU_PAGE Reset: 00 _H	Bit Field)P	ST	NR	0		PAGE	
	Page Register	Туре		w	,	N	r		rw	
RMAP =	0, PAGE 0	•	•							
B3 _H	MODPISEL Reset: 00 _H Peripheral Input Select Register	Bit Field	0	URRIS H	JTAGT DIS	JTAGT CKS	EXINT 2IS	EXINT 1IS	EXINT 0IS	URRIS
		Туре	r	rw	rw	rw	rw	rw	rw	rw
B4 _H	IRCON0 Reset: 00 _H Interrupt Request Register 0	Bit Field	0	EXINT 6	EXINT 5	EXINT 4	EXINT 3	EXINT 2	EXINT 1	EXINT 0
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh
B5 _H	IRCON1 Reset: 00 _H Interrupt Request Register 1	Bit Field	0	CANS RC2	CANS RC1	ADCS RC1	ADCS RC0	RIR	TIR	EIR
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh
B6 _H	IRCON2 Reset: 00 _H Interrupt Request Register 2	Bit Field		0		CANS RC3		0		CANS RC0
		Туре		r		rwh		r		rwh
B7 _H	EXICON0 Reset: F0 _H	Bit Field	EX	INT3	EXI	NT2	EXI	NT1	NT1 EXI	
	External Interrupt Control Register 0	Туре	ı	rw	r	w	r	rw n		W
BA _H	EXICON1 Reset: 3F _H	Bit Field		0	EXI	NT6	EXI	NT5	EXI	NT4
	External Interrupt Control Register 1	Туре		r	rw		rw		rw	

30

Table 8 System Control Register Overview (cont'd)

Addr	Register Name		Bit	7	6	5	4	3	2	1	0	
BB _H	NMICON R NMI Control Register	leset: 00 _H	Bit Field	0	NMI ECC	NMI VDDP	NMI VDD	NMI OCDS	NMI FLASH	NMI PLL	NMI WDT	
			Туре	r	rw	rw	rw	rw	rw	rw	rw	
BC _H	NMISR R NMI Status Register	leset: 00 _H	Bit Field	0	FNMI ECC	FNMI VDDP	FNMI VDD	FNMI OCDS	FNMI FLASH	FNMI PLL	FNMI WDT	
			Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh	
BD _H	BCON R	eset: 00 _H	Bit Field	BG	SEL	0	BRDIS		BRPRE		R	
	Baud Rate Control Register	•	Туре	r	w	r	rw		rw		rw	
BE _H		eset: 00 _H	Bit Field				BR_V	ALUE		I.		
	Baud Rate Timer/Reload Re	egister	Туре				rv	/h				
E9 _H	FDCON R Fractional Divider Control R	teset: 00 _H tegister	Bit Field	BGS	SYNEN	ERRSY N	EOFSY N	BRK	NDOV	FDM	FDEN	
			Туре	rw	rw	rwh	rwh	rwh	rwh	rw	rw	
EA _H		eset: 00 _H	Bit Field				ST	EP				
	Fractional Divider Reload R	egister	Туре				r	N				
EB _H		leset: 00 _H	Bit Field				RES	ULT				
	Fractional Divider Result Re	egister	Туре				r	h				
RMAP =	0, PAGE 1											
B3 _H		leset: 09 _H	Bit Field			PRODIC)		VERID			
	Identity Register		Туре			r				r		
B4 _H	PMCON0 R Power Mode Control Regist	eset: 00 _H er 0	Bit Field	0	WDT RST	WKRS	WK SEL	SD	PD	W	/S	
			Туре	r	rwh	rwh	rw	rw	rwh	r	w	
B5 _H	PMCON1 R Power Mode Control Regist	eset: 00 _H er 1	Bit Field	0	CDC_D IS	CAN_D IS	MDU_ DIS	T2_DIS	CCU _DIS	SSC _DIS	ADC _DIS	
		Туре	r	rw	rw	rw	rw	rw	rw	rw		
B6 _H	OSC_CON ROSC Control Register	leset: 08 _H	Bit Field		0		OSC PD	XPD	OSC SS	ORDR ES	OSCR	
			Туре		r		rw	rw	rw	rwh	rh	
B7 _H	PLL_CON R PLL Control Register	leset: 90 _H	Bit Field		NE	OIV		VCOB YP	OSC DISC	RESLD	LOCK	
			Туре			w		rw	rw	rwh	rh	
BA _H	CMCON R Clock Control Register	leset: 10 _H	Bit Field	VCO SEL	KDIV	0	FCCFG		CLK	REL		
			Туре	rw	rw	r	rw			N		
BB _H	PASSWD R Password Register	leset: 07 _H	Bit Field			PASS			PROTE CT_S		DDE	
			Туре			wh			rh	r	w	
BC _H	FEAL R	eset: 00 _H	Bit Field				ECCER					
			Type				r					
BD _H	FEAH R Flash Error Address Registe	eset: 00 _H	Bit Field					RADDR				
			Туре				r	h				
BE _H	COCON R Clock Output Control Regis	ter	Bit Field	0 TLEN COUT COREL S								
			Туре		r	rw	rw		rw			
E9 _H	MISC_CON R Miscellaneous Control Regi	teset: 00 _H ster	Bit Field					DFLAS HEN				
			Туре	pe r rwh					rwh			
	0, PAGE 3		Investor									
B3 _H	XADDRH R On-chip XRAM Address Hig	eset: F0 _H	Bit Field									
	Out-only Vivvin Address Life	gner Order	Туре	rw								

Table 8 System Control Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
B4 _H	IRCON3 Reset: 00 _H Interrupt Request Register 3	Bit Field	Ċ		CANS RC5	CCU6S R1	()	CANS RC4	CCU6S R0
		Туре	r		rwh	rwh		r	rwh	rwh
B5 _H	IRCON4 Reset: 00 _H Interrupt Request Register 4	Bit Field	C		CANS RC7	CCU6S R3	()	CANS RC6	CCU6S R2
		Туре	r		rwh	rwh		r	rwh	rwh
B7 _H	MODPISEL1 Reset: 00 _H Peripheral Input Select Register 1	Bit Field	EXINT 6IS	(Ö	UR1	RIS	T21EXI S	JTAGT DIS1	JTAGT CKS1
		Туре	rw		r	r	N	rw	rw	rw
BA _H	MODPISEL2 Reset: 00 _H	Bit Field		(0		T21IS	T2IS	T1IS	TOIS
	Peripheral Input Select Register 2	Type			r		rw	rw	rw	rw
BB _H	PMCON2 Reset: 00 _H Power Mode Control Register 2	Bit Field			(0			UART1 _DIS	T21 _DIS
		Туре				r			rw	rw
BD _H	MODSUSP Reset: 00 _H Module Suspend Control Register	Bit Field		0		T21SU SP	T2SUS P	T13SU SP	T12SU SP	WDTS USP
		Туре		r		rw	rw	rw	rw	rw

The WDT SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 9 WDT Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	: 1	1				!			!		
BB _H	WDTCON Reset: 00 _H Watchdog Timer Control Register	Bit Field	0		WINB EN	WDT PR	0	WDT EN	WDT RS	WDT IN	
		Туре	r		rw	rh	r	rw	rwh	rw	
BC _H	WDTREL Reset: 00 _H	Bit Field	WDTREL								
	Watchdog Timer Reload Register	Туре	rw								
BD _H	WDTWINB Reset: 00 _H Watchdog Window-Boundary Count	Bit Field	WDTWINB								
	Register	Туре	rw								
BE _H	WDTL Reset: 00 _H Watchdog Timer Register Low	Bit Field	WDT[7:0]								
		Туре	rh								
BF _H	WDTH Reset: 00 _H Watchdog Timer Register High	Bit Field	WDT[15:8]								
		Туре	rh								

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Table 10 Port Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
RMAP =	0				I				I	1	
B2 _H	PORT_PAGE Reset: 0 Page Register for PORT	Reset: 00 _H	Bit Field OP		P	STNR		0	PAGE		
			Туре	w		w		r	rw		
RMAP =	0, Page 0										
80 _H	P0_DATA P0 Data Register	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
			Туре	rw	rw	rw	rw	rw	rw	rw	rw
86 _H	P0_DIR P0 Direction Register	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
			Туре	rw	rw	rw	rw	rw	rw	rw	rw
90 _H	P1_DATA P1 Data Register	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
			Туре	rw	rw	rw	rw	rw	rw	rw	rw

Table 10 Port Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
91 _H	P1_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Direction Register	Туре	rw							
92 _H	P5_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Data Register	Туре	rw							
93 _H	P5_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Direction Register	Туре	rw							
A0 _H	P2_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Data Register	Туре	rw							
A1 _H	P2_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Direction Register	Туре	rw							
B0 _H	P3_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Data Register	Туре	rw							
B1 _H	P3_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Direction Register	Туре	rw							
C8 _H	P4_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Data Register	Туре	rw							
C9 _H	P4_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Direction Register	Type	rw							
	0, Page 1	1			_					
80 _H	P0_PUDSEL Reset: FF _H P0 Pull-Up/Pull-Down Select Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	·	Туре	rw							
86 _H	P0_PUDEN Reset: C4 _H P0 Pull-Up/Pull-Down Enable Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							
90 _H	P1_PUDSEL Reset: FF _H P1 Pull-Up/Pull-Down Select Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	·	Туре	rw							
91 _H	P1_PUDEN Reset: FF _H P1 Pull-Up/Pull-Down Enable Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
00		Type	rw P7	rw P6	rw P5	rw P4	rw	rw P2	rw P1	rw
92 _H	P5_PUDSEL Reset: FF _H P5 Pull-Up/Pull-Down Select Register	Bit Field Type			rw		P3			P0
93 _H	,	Bit Field	rw P7	rw P6	P5	rw P4	rw P3	rw P2	rw P1	rw P0
aoH	P5_PUDEN Reset: FF _H P5 Pull-Up/Pull-Down Enable Register	Туре	rw							
A0 _H	P2_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
ДОН	P2 Pull-Up/Pull-Down Select Register	Type	rw							
A1 _H	P2_PUDEN Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
/н	P2 Pull-Up/Pull-Down Enable Register	Туре	rw							
B0 _H	P3_PUDSEL Reset: BF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
-11	P3 Pull-Up/Pull-Down Select Register	Туре	rw							
B1 _H	P3_PUDEN Reset: 40 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Enable Register	Туре	rw							
C8 _H	P4_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Select Register	Туре	rw							
C9 _H	P4_PUDEN Reset: 04 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Enable Register	Туре	rw							
RMAP =	0, Page 2	•								
80 _H	P0_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 0 Register	Туре	rw							
86 _H	P0_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 1 Register	Туре	rw							
90 _H	P1_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Alternate Select 0 Register	Туре	rw							

Table 10 Port Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
91 _H	P1_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Alternate Select 1 Register	Туре	rw							
92 _H	P5_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Alternate Select 0 Register	Туре	rw							
93 _H	P5_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Alternate Select 1 Register	Туре	rw							
B0 _H	P3_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Alternate Select 0 Register	Туре	rw							
B1 _H	P3_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Alternate Select 1 Register	Туре	rw							
C8 _H	P4_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Alternate Select 0 Register	Туре	rw							
C9 _H	P4_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Alternate Select 1 Register	Туре	rw							
RMAP =	0, Page 3									
80 _H	P0_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Open Drain Control Register	Туре	rw							
90 _H	P1_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Open Drain Control Register	Туре	rw							
92 _H	P5_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Open Drain Control Register	Туре	rw							
B0 _H	P3_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Open Drain Control Register	Туре	rw							
C8 _H	P4_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Open Drain Control Register	Туре	rw							

The ADC SFRs can be accessed in the standard memory area (RMAP = 0).

Table 11 ADC Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
RMAP =	0			1	!						!
D1 _H	ADC_PAGE	Reset: 00 _H	Bit Field	C	P	ST	NR	0		PAGE	
	Page Register for ADC		Туре	,	V	١	N	r		rw	
RMAP =	0, Page 0										
CA _H	ADC_GLOBCTR	Reset: 30 _H	Bit Field	ANON	DW	C.	TC		(0	
	Global Control Register		Туре	rw	rw	r	w			r	
CB _H	ADC_GLOBSTR Global Status Register	Reset: 00 _H	Bit Field)		CHNR		0	SAM PLE	BUSY
			Туре		r		rh		r	rh	rh
CCH	ADC_PRAR	Reset: 00 _H	Bit Field	ASEN1	ASEN0	0	ARBM	CSM1	PRIO1	CSM0	PRIO0
	Priority and Arbitration R	egister	Type	rw	rw	г	rw	rw	rw	rw	rw
CD _H	ADC_LCBR	Reset: B7 _H	Bit Field		BOU	ND1			BOU	JND0	
	Limit Check Boundary Re	egister	Туре		r۱	N			r	w	
CE _H	ADC_INPCR0	Reset: 00 _H	Bit Field				S	ГС			
	Input Class Register 0		Туре				r	w			
CF _H	ADC_ETRCR External Trigger Control	Reset: 00 _H Register	Bit Field	SYNEN 1	SYNEN 0		ETRSEL	1	E	ETRSEL	0
			Туре	rw	rw		rw			rw	
RMAP =	0, Page 1		•								

Table 11 ADC Register Overview (cont'd)

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
CA _H	ADC_CHCTR0	Reset: 00 _H	Bit Field	0		LCC	I	()	RES	RSEL
	Channel Control Register	0	Туре	r		rw		- 1		ı	w
СВн	ADC_CHCTR1	Reset: 00 _H	Bit Field	0		LCC		()	RES	RSEL
	Channel Control Register	1	Туре	r		rw		ı	r	1	w
ССн	ADC_CHCTR2	Reset: 00 _H	Bit Field	0		LCC		()	RES	RSEL
••	Channel Control Register	2	Туре	r		rw		- 1		ı	w
CD _H	ADC_CHCTR3	Reset: 00 _H	Bit Field	0		LCC		()	RES	RSEL
••	Channel Control Register	3	Туре	r		rw		- 1		ı	w
CEH	ADC_CHCTR4	Reset: 00 _H	Bit Field	0		LCC		()	RES	RSEL
	Channel Control Register	4	Туре	r		rw		- 1		ı	w
CF _H	ADC_CHCTR5	Reset: 00 _H	Bit Field	0		LCC		0 RES		RSEL	
	Channel Control Register	5	Туре	r		rw		ı	r	1	w
D2 _H	ADC_CHCTR6	Reset: 00 _H	Bit Field	0		LCC		()	RES	RSEL
	Channel Control Register	6	Туре	r		rw		- 1		ı	w
D3 _H	ADC_CHCTR7	Reset: 00 _H	Bit Field	0		LCC		()	RES	RSEL
	Channel Control Register	7	Туре	r		rw		- 1		ı	w
RMAP =	: 0, Page 2			1				1		1	
CA _H	ADC_RESR0L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
	Result Register 0 Low		Туре	r	h	r	rh	rh		rh	
CB _H	ADC_RESR0H	Reset: 00 _H	Bit Field	RESULT[9:2]					,		
	Result Register 0 High		Туре				r	h			
CCH	ADC_RESR1L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
	Result Register 1 Low		Туре	r	h	r	rh	rh		rh	
CD _H	ADC_RESR1H	Reset: 00 _H	Bit Field				RESU	LT[9:2]			
	Result Register 1 High		Туре				r	h			
CE _H	ADC_RESR2L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
	Result Register 2 Low		Туре	r	h	r	rh	rh		rh	
CF _H	ADC_RESR2H	Reset: 00 _H	Bit Field				RESU	LT[9:2]			
	Result Register 2 High		Туре				r	h			
D2 _H	ADC_RESR3L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
	Result Register 3 Low		Туре	r	h	r	rh	rh		rh	
D3 _H	ADC_RESR3H	Reset: 00 _H	Bit Field				RESU	LT[9:2]			
	Result Register 3 High		Туре				r	h			
RMAP =	0, Page 3		•								
CA _H	ADC_RESRA0L	Reset: 00 _H	Bit Field	RI	SULT[2	2:0]	VF	DRC		CHNR	
	Result Register 0, View A	Low	Туре		rh		rh	rh		rh	
CB _H	ADC_RESRA0H	Reset: 00 _H	Bit Field				RESUL	T[10:3]			
	Result Register 0, View A	High	Туре				r	h			
CCH	ADC_RESRA1L	Reset: 00 _H	Bit Field	RI	SULT[2	2:0]	VF	DRC		CHNR	
	Result Register 1, View A	Low	Туре		rh		rh	rh		rh	
CD _H	ADC_RESRA1H	Reset: 00 _H	Bit Field				RESUL	T[10:3]			
	Result Register 1, View A	High	Туре				r	h			
CE _H	ADC_RESRA2L	Reset: 00 _H	Bit Field	RI	SULT[2	2:0]	VF	DRC		CHNR	
	Result Register 2, View A	Low	Туре		rh		rh	rh		rh	
CF _H	ADC_RESRA2H	Reset: 00 _H	Bit Field				RESUL	T[10:3]			
	Result Register 2, View A	High	Туре				r	h			
D2 _H	ADC_RESRA3L	Reset: 00 _H	Bit Field	RI	SULT[2	2:0]	VF	DRC		CHNR	
	Result Register 3, View A	Low	Туре		rh		rh	rh		rh	
D3 _H	ADC_RESRA3H	Reset: 00 _H	Bit Field				RESUL	T[10:3]			
	Result Register 3, View A	High	Туре				-	h			

Table 11 ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	0, Page 4	1	1	1	1	1	1	1	l .	ı
CA _H	ADC_RCR0 Reset: 00 _H Result Control Register 0	Bit Field	VFCTR	WFR	FEN	IEN		0		DRCT R
	Result Control Register 0	Type	rw	rw	rw	rw		r		rw
CB _H	ADC_RCR1 Reset: 00 _H	Bit Field	VFCTR	WFR	FEN	IEN		0		DRCT
СБН	Result Control Register 1									R
		Туре	rw	rw	rw	rw		r		rw
CCH	ADC_RCR2 Reset: 00 _H Result Control Register 2	Bit Field	VFCTR	WFR	FEN	IEN		0		DRCT R
		Туре	rw	rw	rw	rw		r		rw
CD _H	ADC_RCR3 Reset: 00 _H Result Control Register 3	Bit Field	VFCTR	WFR	FEN	IEN		0		DRCT R
		Туре	rw	rw	rw	rw		r		rw
CEH	ADC_VFCR Reset: 00 _H	Bit Field		(0		VFC3	VFC2	VFC1	VFC0
	Valid Flag Clear Register	Туре			r		w	w	w	w
RMAP =	0, Page 5									
CA _H	ADC_CHINFR Reset: 00 _H Channel Interrupt Flag Register	Bit Field	CHINF 7	CHINF 6	CHINF 5	CHINF 4	CHINF 3	CHINF 2	CHINF 1	CHINF 0
		Туре	rh							
CB _H	ADC_CHINCR Reset: 00 _H Channel Interrupt Clear Register	Bit Field	CHINC 7	CHINC 6	CHINC 5	CHINC 4	CHINC 3	CHINC 2	CHINC 1	CHINC 0
		Туре	w	w	w	w	w	w	w	w
CCH	ADC_CHINSR Reset: 00 _H Channel Interrupt Set Register	Bit Field	CHINS 7	CHINS 6	CHINS 5	CHINS 4	CHINS 3	CHINS 2	CHINS 1	CHINS 0
		Туре	w	w	w	w	w	w	w	w
CD _H	ADC_CHINPR Reset: 00 _H Channel Interrupt Node Pointer	Bit Field	CHINP 7	CHINP 6	CHINP 5	CHINP 4	CHINP 3	CHINP 2	CHINP 1	CHINP 0
	Register	Туре	rw							
CE _H	ADC_EVINFR Reset: 00 _H Event Interrupt Flag Register	Bit Field	EVINF 7	EVINF 6	EVINF 5	EVINF 4	(0	EVINF 1	EVINF 0
		Туре	rh	rh	rh	rh		r	rh	rh
CF _H	ADC_EVINCR Reset: 00 _H Event Interrupt Clear Flag Register	Bit Field	EVINC 7	EVINC 6	EVINC 5	EVINC 4	(0	EVINC 1	EVINC 0
		Туре	W	W	w	W		r	w	w
D2 _H	ADC_EVINSR Reset: 00 _H Event Interrupt Set Flag Register	Bit Field	EVINS 7	EVINS 6	EVINS 5	EVINS 4	(0	EVINS 1	EVINS 0
		Туре	W	W	w	W		r	w	W
D3 _H	ADC_EVINPR Reset: 00 _H Event Interrupt Node Pointer Register	Bit Field	EVINP 7	EVINP 6	EVINP 5	EVINP 4	(0	EVINP 1	EVINP 0
		Туре	rw	rw	rw	rw		r	rw	rw
RMAP =	- 0, Page 6									
CA _H	ADC_CRCR1 Reset: 00 _H Conversion Request Control Register 1	Bit Field	CH7	CH6	CH5	CH4		()	
		Туре	rwh	rwh	rwh	rwh			r	
CB _H	ADC_CRPR1 Reset: 00 _H Conversion Request Pending	Bit Field	CHP7	CHP6	CHP5	CHP4)	
	Register 1	Туре	rwh	rwh	rwh	rwh			r	
CCH	ADC_CRMR1 Reset: 00 _H Conversion Request Mode Register 1	Bit Field	Rsv	LDEV	CLR PND	SCAN	ENSI	ENTR	EN	GT
		Туре	r	w	w	rw	rw	rw	r	W
CD _H	ADC_QMR0 Reset: 00 _H	Bit Field	CEV	TREV	FLUSH	CLRV	0	ENTR	EN	IGT
	Queue Mode Register 0	Туре	W	w	w	w	r	rw	r	w

Table 11 ADC Register Overview (cont'd)

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
CEH	ADC_QSR0	Reset: 20 _H	Bit Field	Rsv	0	EMPTY	EV	()	FI	_L
	Queue Status Register 0		Туре	r	r	rh	rh	1	r	rl	า
CF _H	ADC_Q0R0	Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	R
	Queue 0 Register 0		Туре	rh	rh	rh	rh	r		rh	
D2 _H	ADC_QBUR0	Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	R
	Queue Backup Register	0	Туре	rh	rh	rh	rh	r		rh	
D2 _H	ADC_QINR0	Reset: 00 _H	Bit Field	EXTR	ENSI	RF	()	F	REQCHN	R
	Queue Input Register 0		Туре	w	w	w		r		w	

The Timer 2 SFRs can be accessed in the standard memory area (RMAP = 0).

Table 12 Timer 2 Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
C0H	T2_T2CON Timer 2 Control Register	Reset: 00 _H	Bit Field	TF2	EXF2	(0	EXEN2	TR2	0	CP/ RL2
			Туре	rwh	rwh		r	rw	rwh	r	rw
C1 _H	T2_T2MOD Timer 2 Mode Register	Reset: 00 _H	Bit Field	T2 REGS	T2 RHEN	EDGE SEL	PREN		T2PRE		DCEN
			Туре	rw	rw	rw	rw		rw		rw
C2 _H	T2_RC2L	Reset: 00 _H	Bit Field				R	C2			
	Timer 2 Reload/Capture	Register Low	Туре				rv	vh			
C3 _H	T2_RC2H	Reset: 00 _H	Bit Field				R	C2			
	Timer 2 Reload/Capture	Register High	Туре				rv	vh			
C4 _H	T2_T2L	Reset: 00 _H	Bit Field				TH	IL2			
	Timer 2 Register Low		Туре				rv	vh			
C5 _H	T2_T2H	Reset: 00 _H	Bit Field				TH	IL2			
	Timer 2 Register High		Туре				rv	vh			

The Timer 21 SFRs can be accessed in the standard memory area (RMAP = 1).

Table 13 T21 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	1		ł	!					!	!
C0 _H	T2CON Reset: 00 _H Timer 2 Control Register	Bit Field	TF2	EXF2	0	0	EXEN2	TR2	C/T2	CP/ RL2
		Туре	rwh	rwh	r	r	rw	rwh	rw	rw
C1 _H	T2MOD Reset: 00 _H Timer 2 Mode Register	Bit Field	T2 REGS	T2 RHEN	EDGE SEL	PREN		T2PRE		DCEN
		Туре	rw	rw	rw	rw		rw		rw
C2 _H	RC2L Reset: 00 _H	Bit Field				R	C2			
	Timer 2 Reload/Capture Register Low	Туре				rv	vh			
C3 _H	RC2H Reset: 00 _H	Bit Field				R	C2			
	Timer 2 Reload/Capture Register High	Туре				rv	vh			
C4 _H	T2L Reset: 00 _H	Bit Field				TH	IL2			
	Timer 2 Register Low	Туре				rv	vh			
C5 _H	T2H Reset: 00 _H	Bit Field				TH	IL2			
	Timer 2 Register High	Туре				rv	vh			

The CCU6 SFRs can be accessed in the standard memory area (RMAP = 0).

Table 14 CCU6 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	0		1	I	1	I	1	1	1		
A3 _H	CCU6_PAGE Reset: 00 _H	Bit Field	C	P	ST	NR	0		PAGE		
	Page Register for CCU6	Туре	١	v	,	v	r		rw		
RMAP =	0, Page 0	•	1								
9A _H	CCU6_CC63SRL Reset: 00 _H Capture/Compare Shadow Register for	Bit Field				CC	63SL				
	Channel CC63 Low	Туре					w				
9B _H	CCU6_CC63SRH Reset: 00 _H Capture/Compare Shadow Register for Channel CC63 High	Bit Field					63SH				
	•	Туре					w		I = = =		
9C _H	CCU6_TCTR4L Reset: 00 _H Timer Control Register 4 Low	Bit Field	T12 STD	T12 STR)	DTRES	RES	T12RS		
	 	Туре	w	W		r	w	W T13	W	w	
9D _H	CCU6_TCTR4H Reset: 00 _H Timer Control Register 4 High	Bit Field	T13 STD	T13 STR		0		T13RS			
_		Туре	W	w		r		W	w		
9E _H	CCU6_MCMOUTSL Reset: 00 _H Multi-Channel Mode Output Shadow Register Low	Bit Field	STRM CM	0		MCMPS					
	· ·	Туре	W	r							
9F _H	CCU6_MCMOUTSH Reset: 00 _H Multi-Channel Mode Output Shadow	Bit Field	STRHP	0		CURHS	3		EXPHS		
	Register High	Туре	W	r	20000	rw	rw	D0000			
A4 _H	CCU6_ISRL Reset: 00 _H Capture/Compare Interrupt Status Reset Register Low	Bit Field	RT12P M	RT12O M	F	R	RCC60 F	R			
	•	Туре	W	w	W	W	W	w	W	W	
A5 _H	CCU6_ISRH Reset: 00 _H Capture/Compare Interrupt Status Reset Register High	Bit Field	RSTR	RIDLE	RWHE	RCHE	0	RTRPF	PM	RT13 CM	
	* *	Туре	W	w	w	w	r	W	W	W	
A6 _H	CCU6_CMPMODIFL Reset: 00 _H Compare State Modification Register Low	Bit Field	0	MCC63 S		0		S	S	MCC60 S	
		Туре	r	w		r		W	W	W	
A7 _H	CCU6_CMPMODIFH Reset: 00 _H Compare State Modification Register High	Bit Field	0	MCC63 R		0		R	R	MCC60 R	
	· ·	Туре	r	W		r	2001	w	W	W	
FA _H	CCU6_CC60SRL Reset: 00 _H Capture/Compare Shadow Register for Channel CC60 Low	Bit Field					60SL				
		Туре					wh				
FB _H	CCU6_CC60SRH Reset: 00 _H Capture/Compare Shadow Register for Channel CC60 High	Bit Field					50SH				
	<u> </u>	Туре					wh				
FC _H	CCU6_CC61SRL Reset: 00 _H Capture/Compare Shadow Register for Channel CC61 Low	Bit Field			CC61SL						
		Туре					wh				
FD _H	CCU6_CC61SRH Reset: 00 _H Capture/Compare Shadow Register for	Bit Field					S1SH				
	Channel CC61 High	Туре					wh				
FE _H	CCU6_CC62SRL Reset: 00 _H Capture/Compare Shadow Register for	Bit Field					62SL				
	Channel CC62 Low	Туре					wh				
FF _H	CCU6_CC62SRH Reset: 00 _H Capture/Compare Shadow Register for	Bit Field					S2SH				
	Channel CC62 High	Туре				rv	wh				

Table 14 CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
	0, Page 1		1	_				1	ļ			
9A _H	CCU6_CC63RL Reset: 00 _H	Bit Field				CCE	63VL					
57 H	Capture/Compare Register for Channel CC63 Low											
a.D.		Туре					h					
9B _H	CCU6_CC63RH Reset: 00 _H Capture/Compare Register for Channel	Bit Field					3VH					
	CC63 High	Туре					h					
9C _H	CCU6_T12PRL Reset: 00 _H Timer T12 Period Register Low	Bit Field					PVL					
<u> </u>	Ŭ	Туре					vh					
9D _H	CCU6_T12PRH Reset: 00 _H Timer T12 Period Register High	Bit Field Type					PVH vh					
9E _H	CCU6_T13PRL Reset: 00 _H	Bit Field					PVL					
a⊏H	Timer T13 Period Register Low	Type					vh					
9F _H	CCU6_T13PRH Reset: 00 _H	Bit Field					PVH					
о н	Timer T13 Period Register High	Туре					vh					
A4 _H	CCU6 T12DTCL Reset: 00 _H	Bit Field					TM					
	Dead-Time Control Register for Timer T12 Low	Туре					rw					
A5 _H	CCU6_T12DTCH Reset: 00 _H Dead-Time Control Register for Timer	Bit Field	0	DTR2	DTR1	DTR0	0	DTE2	DTE1	DTE0		
	T12 High	Туре	r	rh	rh	rh	r	rw	rw	rw		
A6 _H	CCU6_TCTR0L Reset: 00 _H Timer Control Register 0 Low	Bit Field	СТМ	CDIR	STE12	T12R	T12 PRE		Č			
		Туре	rw	rh	rh	rh	rw		rw			
A7 _H	CCU6_TCTR0H Reset: 00 _H Timer Control Register 0 High	Bit Field		0	STE13	T13R	T13 PRE		T13CLK	(
		Туре		r	rh	rh	rw		rw			
FA _H	CCU6_CC60RL Reset: 00 _H Capture/Compare Register for Channel	Bit Field				CC6	60VL					
	CC60 Low	Туре					h					
FB _H	CCU6_CC60RH Reset: 00 _H Capture/Compare Register for Channel	Bit Field					60VH					
	CC60 High	Туре					h					
FC _H	CCU6_CC61RL Reset: 00 _H Capture/Compare Register for Channel CC61 Low	Bit Field					S1VL					
		Туре					h					
FD _H	CCU6_CC61RH Reset: 00 _H Capture/Compare Register for Channel	Bit Field				CC6	S1VH					
	CC61 High	Туре					h					
FE _H	CCU6_CC62RL Reset: 00 _H Capture/Compare Register for Channel	Bit Field					62VL					
	CC62 Low	Туре	rh									
FF _H	CCU6_CC62RH Reset: 00 _H Capture/Compare Register for Channel	Bit Field					S2VH					
	CC62 High	Туре				r	h					
	0, Page 2	I= =										
9A _H	CCU6_T12MSELL Reset: 00 _H T12 Capture/Compare Mode Select Register Low	Bit Field			EL61				EL60			
0.0	,	Туре										
9B _H	CCU6_T12MSELH Reset: 00 _H T12 Capture/Compare Mode Select	Bit Field										
	Register High	Type	Type rw rw rw									

Table 14 CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
9C _H	CCU6_IENL Reset: 00 _H Capture/Compare Interrupt Enable	Bit Field	ENT12 PM	ENT12 OM	ENCC 62F	ENCC 62R	ENCC 61F	ENCC 61R	ENCC 60F	ENCC 60R		
	Register Low	Туре	rw	rw	rw	rw	rw	rw	rw	rw		
9D _H	CCU6_IENH Reset: 00 _H Capture/Compare Interrupt Enable	Bit Field	ENSTR	EN IDLE	EN WHE	EN CHE	0	EN TRPF	ENT13 PM	ENT13 CM		
	Register High	Туре	rw	rw	rw	rw	r	rw	rw	rw		
9E _H	CCU6_INPL Reset: 40 _H Capture/Compare Interrupt Node	Bit Field	INP	CHE	INPO	CC62	INPO	CC61	INPO	CC60		
	Pointer Register Low	Туре		w		w		w		w		
9F _H	CCU6_INPH Reset: 39 _H Capture/Compare Interrupt Node Pointer Register High	Bit Field		0		T13		PT12		ERR		
	ů ů	Туре		r		w		W		w		
A4 _H	CCU6_ISSL Reset: 00 _H Capture/Compare Interrupt Status Set Register Low	Bit Field	ST12P M	ST12O M	SCC62 F	R	F	R	F	SCC60 R		
A.F.	ŭ	Type	W SSTR	W	W	W	W	W	W	W		
A5 _H	CCU6_ISSH Reset: 00 _H Capture/Compare Interrupt Status Set Register High	Bit Field		SIDLE	SWHE	SCHE	SWHC	STRPF	ST13 PM	ST13 CM		
4.0	• •	Type	W	W	W	W	W	W	W	W		
A6 _H	CCU6_PSLR Reset: 00 _H Passive State Level Register	Bit Field	PSL63	0 r			PSL rwh					
۸.7	CCU6 MCMCTR Reset: 00 _H	Type Bit Field	rwh	р г О	CIA	SYN	0		SWSEL			
A7 _H	Multi-Channel Mode Control Register	Type				W STIN	r		rw			
FA _H	CCU6_TCTR2L Reset: 00 _H Timer Control Register 2 Low	Bit Field	0	T13	TED	vv	T13TEC	<u> </u> ;	T13 SSC	T12 SSC		
	Times control regions 2 2011	Туре	r	r	w		rw		rw		rw	rw
FB _H	CCU6 TCTR2H Reset: 00 _H	Bit Field	-		0		T13RSEL			RSEL		
	Timer Control Register 2 High	Туре			r		r	rw		w		
FC _H	CCU6_MODCTRL Reset: 00 _H Modulation Control Register Low	Bit Field	MC MEN	0			T12M	ODEN				
		Туре	rw	r			r	w				
FD _H	CCU6_MODCTRH Reset: 00 _H Modulation Control Register High	Bit Field	ECT13 O	0			T13M	ODEN				
		Type	rw	r			r	w				
FE _H	CCU6_TRPCTRL Reset: 00 _H	Bit Field			0			TRPM2	TRPM1	TRPM0		
	Trap Control Register Low	Type			r			rw	rw	rw		
FF _H	CCU6_TRPCTRH Reset: 00 _H Trap Control Register High	Bit Field	N	TRPEN 13				PEN				
		Туре	rw	rw			r	w				
9A _H	0, Page 3 CCU6_MCMOUTL Reset: 00 _H Multi-Channel Mode Output Register	Bit Field	0	R			MC	CMP				
	Low	Туре	r	rh			r	'h				
9B _H	CCU6_MCMOUTH Reset: 00 _H Multi-Channel Mode Output Register	Bit Field		0		CURH			EXPH			
	High	Туре		r		rh			rh			
9C _H	CCU6_ISL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	T12PM	T12OM	ICC62F	ICC62 R	ICC61F	ICC61 R	ICC60F	ICC60 R		
	Register Low	Туре	rh	rh	rh	rh	rh	rh	rh	rh		
9D _H	CCU6_ISH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	STR	IDLE	WHE	CHE	TRPS	TRPF	T13PM	T13CM		
	Register High	Туре	rh	rh	rh	rh	rh	rh	rh	rh		
9E _H	CCU6_PISELOL Reset: 00 _H	Bit Field	IST	RP	ISC	C62	ISC	C61		C60		
	Port Input Select Register 0 Low	Type	r	W	r	w	r	w	r	w		

Table 14 CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
9F _H	CCU6_PISEL0H Reset: 00 _H Port Input Select Register 0 High	Bit Field	IST1	2HR	ISP	OS2	ISP	OS1	ISP	OS0
		Туре	r	w	r	w	r	W	r	W
A4 _H	CCU6_PISEL2 Reset: 00 _H	Bit Field			()			IST1	3HR
	Port Input Select Register 2	Туре				r			n	W
FA _H	CCU6_T12L Reset: 00 _H	Bit Field								
	Timer T12 Counter Register Low	Туре	rwh							
FB _H	CCU6_T12H Reset: 00 _H	Bit Field								
	Timer T12 Counter Register High	Туре								
FC _H	CCU6_T13L Reset: 00 _H	Bit Field				T13	CVL			
	Timer T13 Counter Register Low	Туре				rv	vh			
FD _H	CCU6_T13H Reset: 00 _H	Bit Field				T13	CVH			
	Timer T13 Counter Register High	Туре				rv	vh			
FE _H	CCU6_CMPSTATL Reset: 00 _H Compare State Register Low	Bit Field	0	CC63 ST	CCPO S2	CCPO S1	CCPO S0	CC62 ST	CC61 ST	CC60 ST
		Туре	Г	rh	rh	rh	rh	rh	rh	rh
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh

The UART1 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 15 UART1 Register Overview

	_												
Addr	Register Name	Bit	7	6	5	4	3	2	1	0			
RMAP =	: 1		1	I						I			
C8 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI			
Serial Channel C	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh			
C9 _H	SBUF Reset: 00 _H	Bit Field				V	AL						
	Serial Data Buffer Register	Туре	rwh										
CA _H	BCON Reset: 00 _H	Bit Field		-	0			BRPRE	R				
	Baud Rate Control Register	Туре			r			rw		rw			
CB _H	BG Reset: 00 _H	Bit Field	BR_VALUE										
	Baud Rate Timer/Reload Register	Туре	rwh										
CCH	FDCON Reset: 00 _H	Bit Field			0			NDOV	FDM	FDEN			
	Fractional Divider Control Register	Туре			r			rwh	rw	rw			
CD _H	FDSTEP Reset: 00 _H	Bit Field	STEP										
	Fractional Divider Reload Register	Туре	rw										
CEH	FDRES Reset: 00 _H	Bit Field				RES	SULT						
	Fractional Divider Result Register	Туре				rh							

The SSC SFRs can be accessed in the standard memory area (RMAP = 0).

Table 16 SSC Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	0									
A9 _H		Bit Field			0			CIS	SIS	MIS
	Port Input Select Register	Туре			r			rw	rw	rw

Table 16 SSC Register Overview

AA _H	SSC_CONL Reset: 00 _H	Bit Field	LB	PO	PH	НВ		В	M		
	Control Register Low Programming Mode	Туре	rw	rw	rw	rw		rw			
	Operating Mode	Bit Field	0					В	С		
		Type			r			r	h		
AB _H	SSC_CONH Reset: 00 _H Control Register High	Bit Field	EN	MS	0	AREN	BEN	PEN	REN	TEN	
	Programming Mode	Туре	rw	rw	r	rw	rw	rw	rw	rw	
	Operating Mode	Bit Field	EN	MS	0	BSY	BE	PE	RE	TE	
		Туре	rw	rw	r	rh	rwh	rwh	rwh	rwh	
AC _H	SSC_TBL Reset: 00 _H	Bit Field	TB_VALUE								
	Transmitter Buffer Register Low	Туре	rw								
AD_H	SSC_RBL Reset: 00 _H	Bit Field	RB_VALUE								
	Receiver Buffer Register Low	Туре				r	h				
AE _H	SSC_BRL Reset: 00 _H	Bit Field				BR_V	ALUE				
	Baudrate Timer Reload Register Low	Туре	rw								
AF _H	SSC_BRH Reset: 00 _H	Bit Field				BR_V	ALUE				
	Baudrate Timer Reload Register High	Туре				r	w				

The MultiCAN SFRs can be accessed in the standard memory area (RMAP = 0).

Table 17 MultiCAN Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0	
RMAP =	= 0		I	1	I							
D8 _H	ADCON	Reset: 00 _H	Bit Field	V3	V2	V1	V0	AUAD		BSY	RWEN	
	CAN Address/Data Conf	trol Register	Туре	rw	rw	rw	rw	r	w	rh	rw	
D9 _H	ADL	Reset: 00 _H	Bit Field	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2	
	CAN Address Low Register		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	
DA _H	ADH				(0		CA13	CA12	CA11	CA10	
	CAN Address High Regi	ster	Туре			r		rwh	rwh	rwh	rwh	
DB _H	DATA0	Reset: 00 _H	Bit Field	CD								
	CAN Data Register 0		Туре	rwh								
DC _H	DATA1	Reset: 00 _H	Bit Field	CD								
	CAN Data Register 1		Туре	rwh								
DD_H	DATA2	Reset: 00 _H	Bit Field				C	D				
	CAN Data Register 2		Туре	rwh								
DE _H	DATA3	Reset: 00 _H	Bit Field				C	D				
	CAN Data Register 3		Туре	rwh								

The OCDS SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 18 OCDS Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	1	•								
E9 _H	MMCR2 Reset: 1U _H Monitor Mode Control 2 Register	Bit Field	STMO DE	EXBC	DSUSP	MBCO N	ALTDI	MMEP	MMOD E	JENA
		Туре	rw	rw	rw	rwh	rw	rwh	rh	rh
F1 _H	MMCR Reset: 00 _H Monitor Mode Control Register	Bit Field	MEXIT _P	MEXIT	0	MSTEP	MRAM S_P	MRAM S	TRF	RRF
		Туре	w	hw	r	rw	w	rwh	rh	rh

Table 18 OCDS Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
F2 _H	MMSR Reset: 00 _H Monitor Mode Status Register	Bit Field	MBCA M	MBCIN	EXBF	SWBF	HWB3 F	HWB2 F	HWB1 F	HWB0 F
		Туре	rw	rwh	rwh	rwh	rwh	rwh	rwh	rwh
F3 _H	MMBPCR Reset: 00 _H BreakPoints Control Register	Bit Field	SWBC HWB3C		HWB2C		HWB1 HWB00		B0C	
		Type	rw	n	N	r	w	rw	r	W
F4 _H	MMICR Reset: 00 _H Monitor Mode Interrupt Control Register	Bit Field	DVECT	DRETR	COM RST	MST SEL	MMUIE _P	MMUIE	RRIE_ P	RRIE
		Туре	rwh	rwh	rwh	rh	w	rw	w	rw
F5 _H	MMDR Reset: 00 _H Monitor Mode Data Transfer Register	Bit Field	MMRR							
	Receive	Туре				r	h			
	Transmit	Bit Field MM				MTR				
		Туре				١	٧			
F6 _H	HWBPSR Reset: 00 _H Hardware Breakpoints Select Register	Bit Field	0 BPSEL BPSEL _P					SEL		
		Туре		r		w		r	w	
F7 _H	HWBPDR Reset: 00 _H Hardware Breakpoints Data Register	Bit Field				HWI	BPxx			
		Туре				r	W			
EB _H	MMWR1 Reset: 00 _H Monitor Work Register 1	Bit Field	d MMWR1							
		Туре				r	w			
EC _H	MMWR2 Reset: 00 _H Monitor Work Register 2	Bit Field				MM	WR2			
		Туре				r	w			

3.3 **Flash Memory**

The Flash memory provides an embedded user-programmable non-volatile memory, allowing fast and reliable storage of user code and data. It is operated from a single 2.5 V supply from the Embedded Voltage Regulator (EVR) and does not require additional programming or erasing voltage. The sectorization of the Flash memory allows each sector to be erased independently.

Features:

- · In-System Programming (ISP) via UART
- In-Application Programming (IAP)
- Error Correction Code (ECC) for dynamic correction of single-bit errors
- Background program and erase operations for CPU load minimization
- Support for aborting erase operation
- Minimum program width¹⁾ of 32-byte for D-Flash and 64-byte for P-Flash
- 1-sector minimum erase width
- 1-byte read access
- 135.1 ns minimum read access time (3 x t_{CCLK} @ f_{CCLK} = 24 MHz ± 7.5 %²)
- Operating supply voltage: 2.5 V ± 7.5 %
- Program time: 2.3 ms³⁾ Erase time: 120 ms³⁾

Table 19 shows the Flash data retention and endurance targets⁴).

Table 19 Flash Data Retention and Endurance Targets

		_	
Retention up to	Endurance up to	Programming Temperature	Size
20 years	1,000 cycles	0 – 100°C	15 Kbytes
5 years	10,000 cycles	-40 – 125°C	896 bytes
2 years	70,000 cycles	-40 – 125°C	512 bytes
2 years	100,000 cycles	-40 – 125°C	128 bytes

¹⁾ P-Flash: 64-byte wordline can only be programmed once, i.e., one gate disturb allowed.

D-Flash: 32-byte wordline can be programmed twice, i.e., two gate disturbs allowed.

2) f_{sys} = 96 MHz ± 7.5% (f_{CCLK} = 24 MHz ± 7.5%) is the maximum frequency range for Flash read access.

3) f_{sys} = 96 MHz ± 7.5% is the only frequency range for Flash programming and erasing. f_{sysmin} is used for obtaining the worst case timing.

⁴⁾ Specification according to operating temperature profile with 0.2ppm error rate.

3.3.1 Flash Bank Sectorization

The XC886/888 product family offers Flash devices with either 24 Kbytes or 32 Kbytes of embedded Flash memory. Each Flash device consists of Program Flash (P-Flash) bank(s) and a single Data Flash (D-Flash) bank with different sectorization shown in **Figure 11**. Both types can be used for code and data storage. The label "Data" neither implies that the D-Flash is mapped to the data memory region, nor that it can only be used for data storage. It is used to distinguish the different Flash bank sectorizations. The XC886/888 ROM devices offer a single 4-Kbyte D-Flash bank.

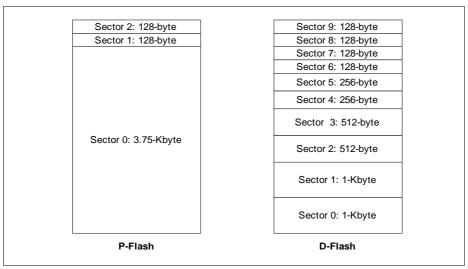


Figure 11 Flash Bank Sectorization

The internal structure of each Flash bank represents a sector architecture for flexible erase capability. The minimum erase width is always a complete sector, and sectors can be erased separately or in parallel. Contrary to standard EPROMs, erased Flash memory cells contain 0s.

The D-Flash bank is divided into more physical sectors for extended erasing and reprogramming capability; even numbers for each sector size are provided to allow greater flexibility and the ability to adapt to a wide range of application requirements.

3.3.2 Flash Programming Width

For the P-Flash banks, a programmed wordline (WL) must be erased before it can be reprogrammed as the Flash cells can only withstand one gate disturb. This means that the entire sector containing the WL must be erased since it is impossible to erase a single WL.

For the D-Flash bank, the same WL can be programmed twice before erasing is required as the Flash cells are able to withstand two gate disturbs. Hence, it is possible to program the same WL, for example, with 16 bytes of data in two times (see Figure 12).

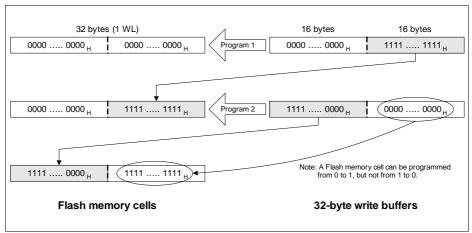


Figure 12 D-Flash Programming

Note: When programming a D-Flash WL the second time, the previously programmed Flash memory cells (whether 0s or 1s) should be reprogrammed with 0s to retain its original contents and to prevent "over-programming".

3.4 Interrupt System

The XC800 Core supports one non-maskable interrupt (NMI) and 14 maskable interrupt requests. In addition to the standard interrupt functions supported by the core, e.g., configurable interrupt priority and interrupt masking, the XC886/888 interrupt system provides extended interrupt support capabilities such as the mapping of each interrupt vector to several interrupt sources to increase the number of interrupt sources supported, and additional status registers for detecting and determining the interrupt source.

3.4.1 Interrupt Source

Figure 13 to Figure 17 give a general overview of the interrupt sources and illustrates the request and control flags.

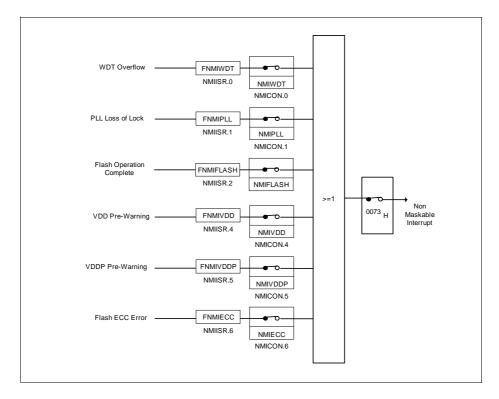


Figure 13 Non-Maskable Interrupt Request Sources

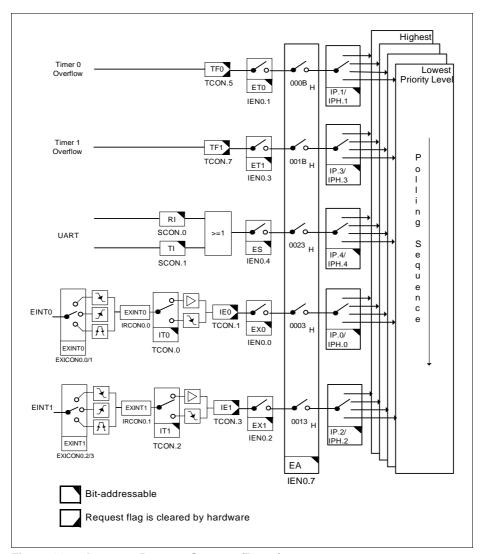


Figure 14 Interrupt Request Sources (Part 1)

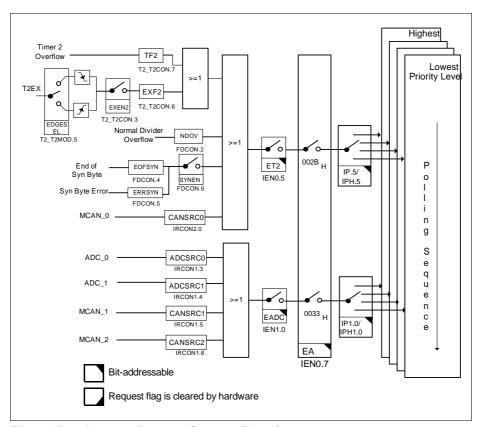


Figure 15 Interrupt Request Sources (Part 2)

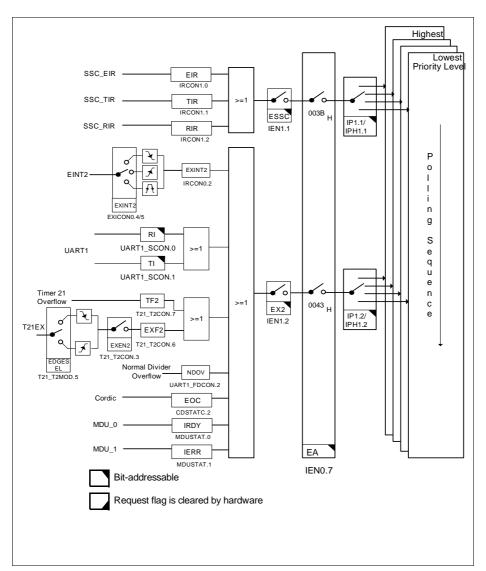


Figure 16 Interrupt Request Sources (Part 3)

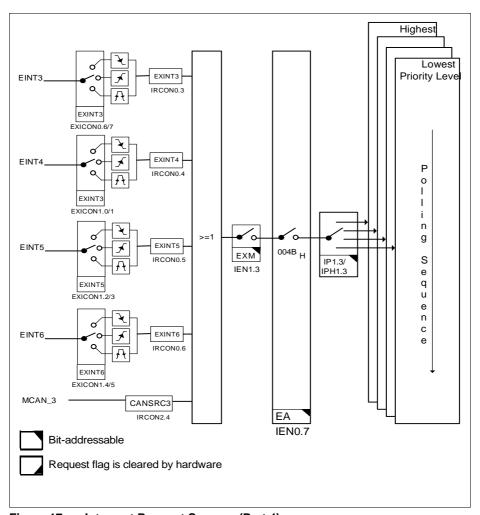


Figure 17 Interrupt Request Sources (Part 4)

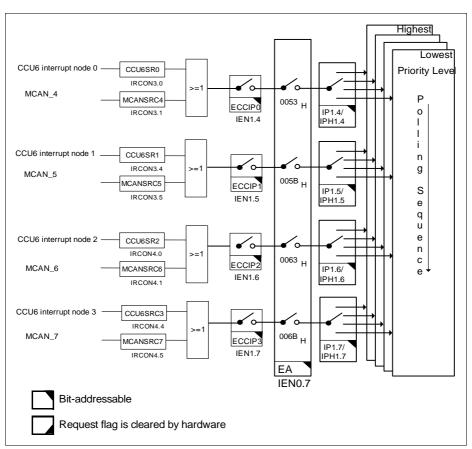


Figure 18 Interrupt Request Sources (Part 5)

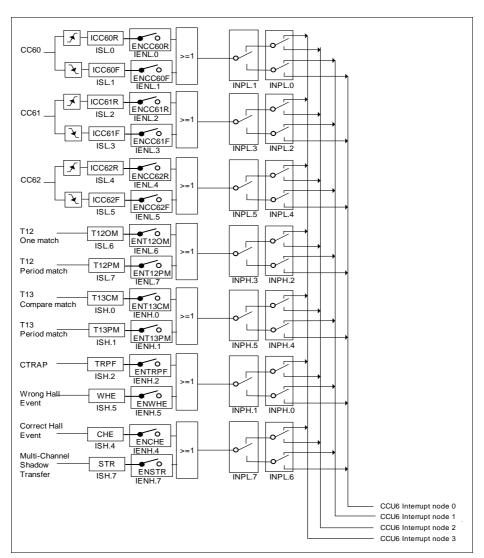


Figure 19 Interrupt Request Sources (Part 6)

3.4.2 Interrupt Source and Vector

Each interrupt source has an associated interrupt vector address. This vector is accessed to service the corresponding interrupt source request. The interrupt service of each interrupt source can be individually enabled or disabled via an enable bit. The assignment of the XC886/888 interrupt sources to the interrupt vector addresses and the corresponding interrupt source enable bits are summarized in **Table 20**.

Table 20 Interrupt Vector Addresses

Interrupt Source	Vector Address	Assignment for XC886/ 888	Enable Bit	SFR
NMI	0073 _H	Watchdog Timer NMI	NMIWDT	NMICON
		PLL NMI	NMIPLL	
		Flash NMI	NMIFLASH	
		VDDC Prewarning NMI	NMIVDD	
		VDDP Prewarning NMI	NMIVDDP	
		Flash ECC NMI	NMIECC	
XINTR0	0003 _H	External Interrupt 0	EX0	IEN0
XINTR1	000B _H	Timer 0	ET0	
XINTR2	0013 _H	External Interrupt 1	EX1	
XINTR3	001B _H	Timer 1	ET1	
XINTR4	0023 _H	UART	ES	
XINTR5	002B _H	T2	ET2	
		UART Fractional Divider (Normal Divider Overflow)		
		MultiCAN Node 0		
		LIN		

Table 20 Interrupt Vector Addresses (cont'd)

XINTR6	0033 _H	MultiCAN Nodes 1 and 2	EADC	IEN1
		ADC[1:0]		
XINTR7	003B _H	SSC	ESSC	
XINTR8	0043 _H	External Interrupt 2	EX2	
		T21		
		CORDIC		
		UART1		
		UART1 Fractional Divider (Normal Divider Overflow)		
		MDU[1:0]		
XINTR9	004B _H	External Interrupt 3	EXM	
		External Interrupt 4		
		External Interrupt 5		
		External Interrupt 6		
		MultiCAN Node 3		
XINTR10	0053 _H	CCU6 INP0	ECCIP0	
		MultiCAN Node 4		
XINTR11	005B _H	CCU6 INP1	ECCIP1	
		MultiCAN Node 5		
XINTR12	0063 _H	CCU6 INP2	ECCIP2	
		MultiCAN Node 6		
XINTR13	006B _H	CCU6 INP3	ECCIP3	
		MultiCAN Node 7		

3.4.3 Interrupt Priority

Each interrupt source, except for NMI, can be individually programmed to one of the four possible priority levels. The NMI has the highest priority and supersedes all other interrupts. Two pairs of interrupt priority registers (IP and IPH, IP1 and IPH1) are available to program the priority level of each non-NMI interrupt vector.

A low-priority interrupt can be interrupted by a high-priority interrupt, but not by another interrupt of the same or lower priority. Further, an interrupt of the highest priority cannot be interrupted by any other interrupt source.

If two or more requests of different priority levels are received simultaneously, the request of the highest priority is serviced first. If requests of the same priority are received simultaneously, then an internal polling sequence determines which request is serviced first. Thus, within each priority level, there is a second priority structure determined by the polling sequence shown in **Table 21**.

Table 21 Priority Structure within Interrupt Level

Source	Level
Non-Maskable Interrupt (NMI)	(highest)
External Interrupt 0	1
Timer 0 Interrupt	2
External Interrupt 1	3
Timer 1 Interrupt	4
UART Interrupt	5
Timer 2, UART Fractional Divider, MCAN, LIN Interrupt	6
ADC, MCAN Interrupt	7
SSC Interrupt	8
External Interrupt 2, Timer 21, UART1, UART1 Fractional Divider, MDU, CORDIC Interrupt	9
External Interrupt [6:3], MCAN Interrupt	10
CCU6 Interrupt Node Pointer 0, MCAN interrupt	11
CCU6 Interrupt Node Pointer 1, MCAN Interrupt	12
CCU6 Interrupt Node Pointer 2, MCAN Interrupt	13
CCU6 Interrupt Node Pointer 3, MCAN Interrupt	14

3.5 Parallel Ports

The XC886 has 34 port pins organized into five parallel ports, Port 0 (P0) to Port 4 (P4), while the XC888 has 48 port pins organized into six parallel ports, Port 0 (P0) to Port 6 (P6). Each pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled. Ports P0, P1, P3, P4 and P5 are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can be selected. Port P2 is an input-only port, providing general purpose input functions, alternate input functions for the on-chip peripherals, and also analog inputs for the Analog-to-Digital Converter (ADC).

Bidirectional Port Features:

- · Configurable pin direction
- · Configurable pull-up/pull-down devices
- Configurable open drain mode
- Transfer of data through digital inputs and outputs (general purpose I/O)
- Alternate input/output for on-chip peripherals

Input Port Features:

- · Configurable input driver
- Configurable pull-up/pull-down devices
- · Receive of data through digital input (general purpose input)
- · Alternate input for on-chip peripherals
- · Analog input for ADC module

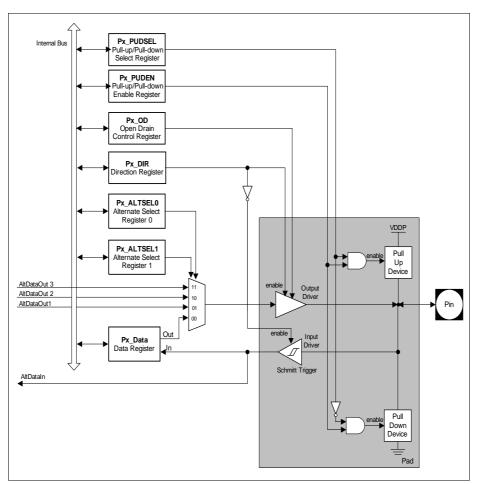


Figure 20 General Structure of Bidirectional Port

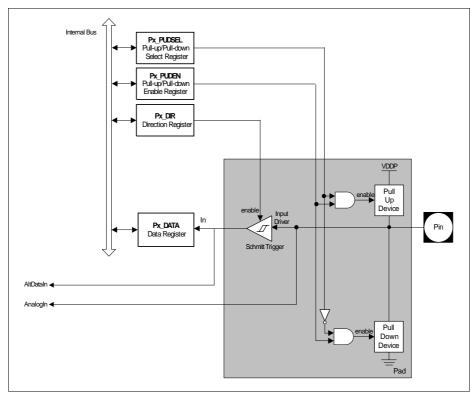


Figure 21 General Structure of Input Port

3.6 Power Supply System with Embedded Voltage Regulator

The XC886/888 microcontroller requires two different levels of power supply:

- 3.3 V or 5.0 V for the Embedded Voltage Regulator (EVR) and Ports
- 2.5 V for the core, memory, on-chip oscillator, and peripherals

Figure 22 shows the XC886/888 power supply system. A power supply of 3.3 V or 5.0 V must be provided from the external power supply pin. The 2.5 V power supply for the logic is generated by the EVR. The EVR helps to reduce the power consumption of the whole chip and the complexity of the application board design.

The EVR consists of a main voltage regulator and a low power voltage regulator. In active mode, both voltage regulators are enabled. In power-down mode, the main voltage regulator is switched off, while the low power voltage regulator continues to function and provide power supply to the system with low power consumption.

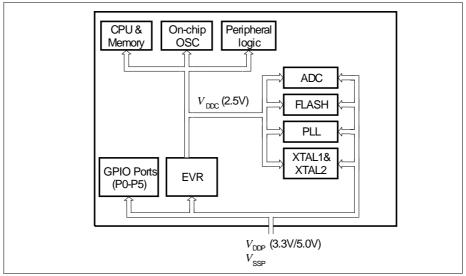


Figure 22 XC886/888 Power Supply System

EVR Features:

- Input voltage (V_{DDP}): 3.3 V/5.0 V
- Output voltage (V_{DDC}): 2.5 V ± 7.5%
- Low power voltage regulator provided in power-down mode
- V_{DDC} and V_{DDP} prewarning detection
- V_{DDC} brownout detection

3.7 Reset Control

The XC886/888 has five types of reset: power-on reset, hardware reset, watchdog timer reset, power-down wake-up reset, and brownout reset.

When the XC886/888 is first powered up, the status of certain pins (see **Table 23**) must be defined to ensure proper start operation of the device. At the end of a reset sequence, the sampled values are latched to select the desired boot option, which cannot be modified until the next power-on reset or hardware reset. This guarantees stable conditions during the normal operation of the device.

In order to power up the system properly, the external reset pin $\overline{\text{RESET}}$ must be asserted until V_{DDC} reaches $0.9*V_{DDC}$. The delay of external reset can be realized by an external capacitor at $\overline{\text{RESET}}$ pin. This capacitor value must be selected so that V_{RESET} reaches 0.4 V, but not before V_{DDC} reaches 0.9* V_{DDC} .

A typical application example is shown in Figure 23. For a voltage regulator with IDD $_{max}$ = 100 mA, the V $_{DDP}$ capacitor value is 10 μ F. V $_{DDC}$ capacitor value is 220 nF. The capacitor connected to RESET pin is 100 nF.

Typically, the time taken for V_{DDC} to reach $0.9*V_{DDC}$ is less than 50 μ s once V_{DDP} reaches 2.3V. Hence, based on the condition that 10% to 90% V_{DDP} (slew rate) is less than 500 μ s, the RESET pin should be held low for 500 μ s typically. See Figure 24.

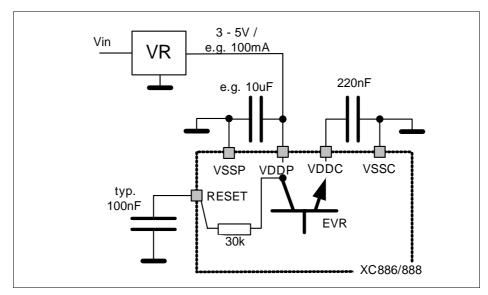


Figure 23 Reset Circuitry

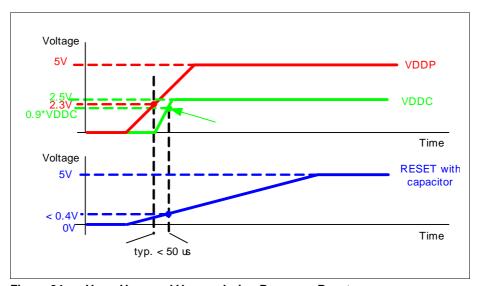


Figure 24 V_{DDP} , V_{DDC} and V_{RESET} during Power-on Reset

The second type of reset in XC886/888 is the hardware reset. This reset function can be used during normal operation or when the chip is in power-down mode. A reset input pin RESET is provided for the hardware reset.

The Watchdog Timer (WDT) module is also capable of resetting the device if it detects a malfunction in the system.

Another type of reset that needs to be detected is a reset while the device is in power-down mode (wake-up reset). While the contents of the static RAM are undefined after a power-on reset, they are well defined after a wake-up reset from power-down mode.

3.7.1 Module Reset Behavior

Table 22 shows how the functions of the XC886/888 are affected by the various reset types. A "■" means that this function is reset to its default state.

Table 22 Effect of Reset on Device Functions

Module/ Function	Wake-Up Reset	Watchdog Reset	Hardware Reset	Power-On Reset	Brownout Reset
CPU Core					
Peripherals					
On-Chip Static RAM	Not affected, reliable	Not affected, reliable	Not affected, reliable	Affected, un- reliable	Affected, un- reliable
Oscillator, PLL		Not affected			
Port Pins					
EVR	The voltage regulator is switched on	Not affected	-	•	
FLASH					
NMI	Disabled	Disabled			

3.7.2 Booting Scheme

When the XC886/888 is reset, it must identify the type of configuration with which to start the different modes once the reset sequence is complete. Thus, boot configuration information that is required for activation of special modes and conditions needs to be applied by the external world through input pins. After power-on reset or hardware reset, the pins MBC, TMS and P0.0 collectively select the different boot options. **Table 23** shows the available boot options in the XC886/888.

Table 23 XC886/888 Boot Selection

MBC	TMS	P0.0	Type of Mode	PC Start Value
1	0	х	User Mode; on-chip OSC/PLL non-bypassed	0000 _H
0	0	х	BSL Mode; on-chip OSC/PLL non-bypassed	0000 _H
0	1	0	OCDS Mode; on-chip OSC/PLL non- bypassed	0000 _H
1	1	0	User (JTAG) Mode ¹⁾ ; on-chip OSC/PLL non-bypassed (normal)	0000 _H

¹⁾ Normal user mode with standard JTAG (TCK,TDI,TDO) pins for hot-attach purpose.

3.8 Clock Generation Unit

The Clock Generation Unit (CGU) allows great flexibility in the clock generation for the XC886/888. The power consumption is indirectly proportional to the frequency, whereas the performance of the microcontroller is directly proportional to the frequency. During user program execution, the frequency can be programmed for an optimal ratio between performance and power consumption. Therefore the power consumption can be adapted to the actual application state.

Features:

- · Phase-Locked Loop (PLL) for multiplying clock source by different factors
- PLL Base Mode
- Prescaler Mode
- PLL Mode
- · Power-down mode support

The CGU consists of an oscillator circuit and a PLL. In the XC886/888, the oscillator can be from either of these two sources: the on-chip oscillator (9.6 MHz) or the external oscillator (3 MHz to 12 MHz). The term "oscillator" is used to refer to both on-chip oscillator and external oscillator, unless otherwise stated. After the reset, the on-chip oscillator will be used by default. The external oscillator can be selected via software. In addition, the PLL provides a fail-safe logic to perform oscillator run and loss-of-lock detection. This allows emergency routines to be executed for system recovery or to perform system shut down.

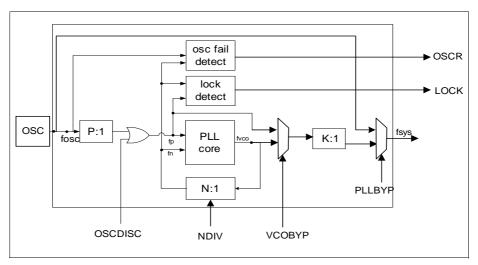


Figure 25 CGU Block Diagram

Direct Drive (PLL Bypass Operation)

During PLL bypass operation, the system clock has the same frequency as the external clock source. For the XC886/888, the PLL bypass cannot be set active. Hence, the direct drive mode is not available for use.

$$f_{SYS} = f_{OSC}$$

PLL Base Mode

The system clock is derived from the VCO base frequency clock divided by the K factor. Both VCO bypass and PLL bypass must be inactive for this PLL mode.

$$f_{SYS} = f_{VCObase} \times \frac{1}{K}$$

Prescaler Mode (VCO Bypass Operation)

In VCO bypass operation, the system clock is derived from the oscillator clock, divided by the P and K factors.

$$f_{SYS} = f_{OSC} \times \frac{1}{P \times K}$$

PLL Mode

The system clock is derived from the oscillator clock, multiplied by the N factor, and divided by the P and K factors. Both VCO bypass and PLL bypass must be inactive for this PLL mode. The PLL mode is used during normal system operation. .

$$f_{SYS} = f_{OSC} \times \frac{N}{P \times K}$$

System Frequency Selection

For the XC886/888, the value of P is fixed to 1. In order to obtain the required fsys, the value of N and K can be selected by bits NDIV and KDIV respectively for different oscillator inputs. The output frequency must always be configured for 96 MHz. Table 24 provides examples on how $f_{sys} = 96$ MHz can be obtained for the different oscillator sources.

Table 24 System frequency (f_{svs} = 96 MHz)

Oscillator	fosc	N	Р	K	fsys		
On-chip	9.6 MHz	20	1	2	96 MHz		
External	8 MHz	24	1	2	96 MHz		
	6 MHz	32	1	2	96 MHz		
	4 MHz	48	1	2	96 MHz		

Table 25 shows the VCO range for the XC886/888.

Table 25 VCO Range

f _{VCOmin}	f _{VCOmax}	f _{VCOFREEmin}	f _{VCOFREEmax}	Unit
150	200	20	80	MHz
100	150	10	80	MHz

3.8.1 Resonator Circuitry

Figure 26 shows the recommended ceramic resonator circuitry. When using an external resonator, its frequency can be within the range of 3 MHz to 12 MHz. A resonator load circuitry must be used, connected to both pins, XTAL1 and XTAL2. It normally consists of two load capacitances C_1 and C_2 , and in some cases, a feedback (R_f) and/or damp (R_d) resistor might be necessary.

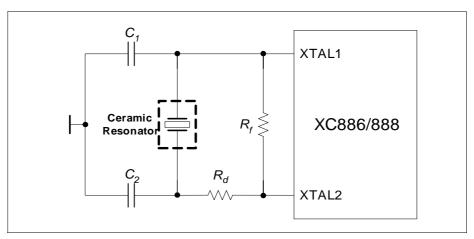


Figure 26 External Ceramic Resonator Circuitry

Note: The manufacturer of the ceramic resonator should check the resonator circuitry and make recommendations for the C_1 , C_2 , R_f and R_d values to be used for stable start-up behavior.

3.8.2 Clock Management

The CGU generates all clock signals required within the microcontroller from a single clock, f_{sys} . During normal system operation, the typical frequencies of the different modules are as follow:

- CPU clock: CCLK, SCLK = 24 MHz
- Fast clock (used by MCAN): FCLK = 24 or 48 MHz
- Peripheral clock: PCLK = 24 MHz
- Flash Interface clock: CCLK2 = 96 MHz and CCLK = 24 MHz

In addition, different clock frequency can output to pin CLKOUT(P0.0 or P0.7). The clock output frequency can further be divided by 2 using toggle latch (bit TLEN is set to 1), the resulting output frequency has 50% duty cycle. **Figure 27** shows the clock distribution of the XC886/888.

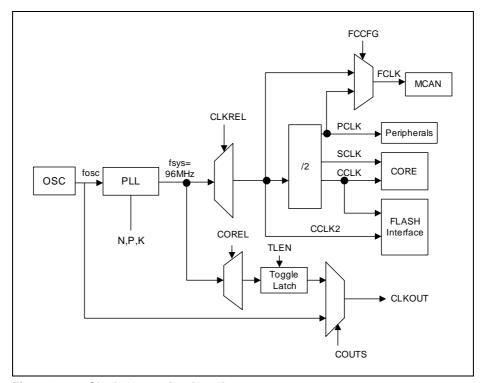


Figure 27 Clock Generation from f_{sys}

For power saving purposes, the clocks may be disabled or slowed down according to **Table 26**.

Table 26 System frequency (f_{sys} = 96 MHz)

Power Saving Mode	Action
Idle	Clock to the CPU is disabled.
Slow-down	Clocks to the CPU and all the peripherals are divided by a common programmable factor defined by bit field CMCON.CLKREL.
Power-down	Oscillator and PLL are switched off.

3.9 Power Saving Modes

The power saving modes of the XC886/888 provide flexible power consumption through a combination of techniques, including:

- · Stopping the CPU clock
- Stopping the clocks of individual system components
- · Reducing clock speed of some peripheral components
- Power-down of the entire system with fast restart capability

After a reset, the active mode (normal operating mode) is selected by default (see **Figure 28**) and the system runs in the main system clock frequency. From active mode, different power saving modes can be selected by software. They are:

- Idle mode
- Slow-down mode
- Power-down mode

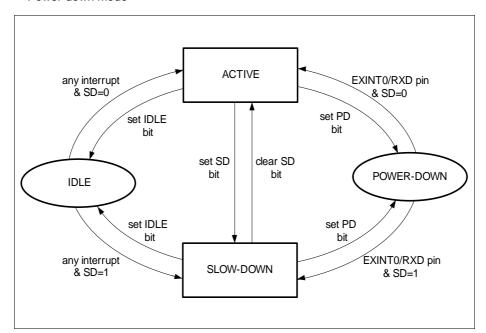


Figure 28 Transition between Power Saving Modes

3.10 Watchdog Timer

The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and recover from software or hardware failures. The WDT is reset at a regular interval that is predefined by the user. The CPU must service the WDT within this interval to prevent the WDT from causing an XC886/888 system reset. Hence, routine service of the WDT confirms that the system is functioning properly. This ensures that an accidental malfunction of the XC886/888 will be aborted in a user-specified time period. In debug mode, the WDT is suspended and stops counting. Therefore, there is no need to refresh the WDT during debugging.

Features:

- 16-bit Watchdog Timer
- Programmable reload value for upper 8 bits of timer
- · Programmable window boundary
- Selectable input frequency of f_{PCLK}/2 or f_{PCLK}/128
- Time-out detection with NMI generation and reset prewarning activation (after which a system reset will be performed)

The WDT is a 16-bit timer incremented by a count rate of $f_{PCLK}/2$ or $f_{PCLK}/128$. This 16-bit timer is realized as two concatenated 8-bit timers. The upper 8 bits of the WDT can be preset to a user-programmable value via a watchdog service access in order to modify the watchdog expire time period. The lower 8 bits are reset on each service access. Figure 29 shows the block diagram of the WDT unit.

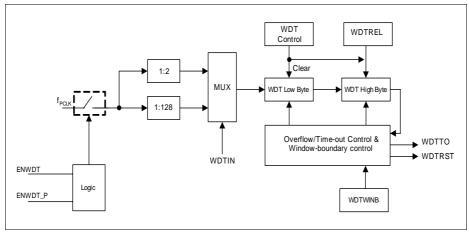


Figure 29 WDT Block Diagram

If the WDT is not serviced before the timer overflow, a system malfunction is assumed. As a result, the WDT NMI is triggered (assert WDTTO) and the reset prewarning is entered. The prewarning period lasts for $30_{\rm H}$ count, after which the system is reset (assert WDTRST).

The WDT has a "programmable window boundary" which disallows any refresh during the WDT's count-up. A refresh during this window boundary constitutes an invalid access to the WDT, causing the reset prewarning to be entered but without triggering the WDT NMI. The system will still be reset after the prewarning period is over. The window boundary is from $0000_{\rm H}$ to the value obtained from the concatenation of WDTWINB and $00_{\rm H}$.

After being serviced, the WDT continues counting up from the value (<WDTREL> * 2⁸). The time period for an overflow of the WDT is programmable in two ways:

- the input frequency to the WDT can be selected to be either $f_{PCLK}/2$ or $f_{PCLK}/128$
- the reload value WDTREL for the high byte of WDT can be programmed in register WDTREL

The period, P_{WDT} , between servicing the WDT and the next overflow can be determined by the following formula:

$$P_{WDT} = \frac{2^{(1 + WDTIN \times 6)} \times (2^{16} - WDTREL \times 2^{8})}{f_{PCLK}}$$

If the Window-Boundary Refresh feature of the WDT is enabled, the period P_{WDT} between servicing the WDT and the next overflow is shortened if WDTWINB is greater than WDTREL, see **Figure 30**. This period can be calculated using the same formula by replacing WDTREL with WDTWINB. For this feature to be useful, WDTWINB should not be smaller than WDTREL.

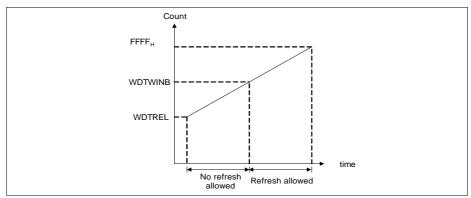


Figure 30 WDT Timing Diagram

V0.1, 2006-02

Functional Description

Table 27 lists the possible watchdog time range that can be achieved for different module clock frequencies . Some numbers are rounded to 3 significant digits.

Table 27 Watchdog Time Ranges

Reload value in WDTREL	Prescaler for f _{PCLK}	Prescaler for f _{PCLK}				
	2 (WDTIN = 0)	128 (WDTIN = 1)				
	24 MHz	24 MHz				
FF _H	21.3 μs	1.37 ms				
7F _H	2.75 ms	176 ms				
00 _H	5.46 ms	350 ms				

3.11 UART and UART1

The XC886/888 provides two Universal Asynchronous Receiver/Transmitter (UART and UART1) modules for full-duplex asynchronous reception/transmission. Both are also receive-buffered, i.e., they can commence reception of a second byte before a previously received byte has been read from the receive register. However, if the first byte still has not been read by the time reception of the second byte is complete, one of the bytes will be lost.

Features:

- Full-duplex asynchronous modes
 - 8-bit or 9-bit data frames, LSB first
 - fixed or variable baud rate
- Receive buffered
- · Multiprocessor communication
- Interrupt generation on the completion of a data transmission or reception

The UART modules can operate in four asynchronous modes as shown in **Table 28**. Data is transmitted on TXD and received on RXD.

Table 28 UART Modes

Operating Mode	Baud Rate
Mode 0: 8-bit shift register	f _{PCLK} /2
Mode 1: 8-bit shift UART	Variable
Mode 2: 9-bit shift UART	f _{PCLK} /32 or f _{PCLK} /64 ¹⁾
Mode 3: 9-bit shift UART	Variable

 $^{^{\}rm 1)}~$ For UART1 module, the baud rate is fixed at $\rm f_{\rm PCLK}/64.$

There are several ways to generate the baud rate clock for the serial port, depending on the mode in which it is operating. In mode 0, the baud rate for the transfer is fixed at $f_{PCLK}/2$. In mode 2, the baud rate is generated internally based on the UART input clock and can be configured to either $f_{PCLK}/32$ or $f_{PCLK}/64$. For UART1 module, only $f_{PCLK}/64$ is available. The variable baud rate is set by the underflow rate on the dedicated baudrate generator. For UART module, the variable baud rate alternatively can be set by the overflow rate on Timer 1.

3.11.1 **Baud-Rate Generator**

Both UART modules have their own dedicated baud-rate generator, which is based on a programmable 8-bit reload value, and includes divider stages (i.e., prescaler and fractional divider) for generating a wide range of baud rates based on its input clock f_{PCLK}, see Figure 31.

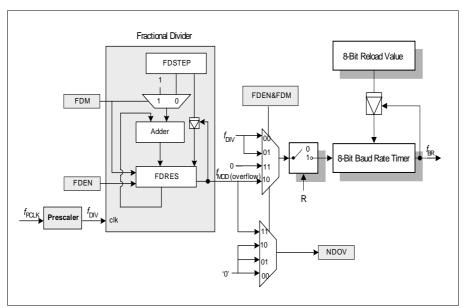


Figure 31 **Baud-rate Generator Circuitry**

The baud rate timer is a count-down timer and is clocked by either the output of the fractional divider (f_{MOD}) if the fractional divider is enabled (FDCON.FDEN = 1), or the output of the prescaler (f_{DIV}) if the fractional divider is disabled (FDEN = 0). For baud rate generation, the fractional divider must be configured to fractional divider mode (FDCON.FDM = 0). This allows the baud rate control run bit BCON.R to be used to start or stop the baud rate timer. At each timer underflow, the timer is reloaded with the 8-bit reload value in register BG and one clock pulse is generated for the serial channel.

Enabling the fractional divider in normal divider mode (FDEN = 1 and FDM = 1) stops the baud rate timer and nullifies the effect of bit BCON.R. See Section 3.12.

The baud rate (f_{BR}) value is dependent on the following parameters:

- Input clock f_{PCLK}
 Prescaling factor (2^{BRPRE}) defined by bit field BRPRE in register BCON

- Fractional divider (STEP/256) defined by register FDSTEP (to be considered only if fractional divider is enabled and operating in fractional divider mode)
- 8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG

The following formulas calculate the final baud rate without and with the fractional divider respectively:

baud rate =
$$\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR_VALUE + 1)}$$
 where $2^{BRPRE} \times (BR_VALUE + 1) > 1$

$$\text{baud rate } = \frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR_VALUE + 1)} \times \frac{STEP}{256}$$

The maximum baud rate that can be generated is limited to $f_{PCLK}/32$. Hence, for a module clock of 24 MHz, the maximum achievable baud rate is 0.75 MBaud.

Standard LIN protocal can support a maximum baud rate of 20kHz, the baud rate accuracy is not critical and the fractional divider can be disabled. Only the prescaler is used for auto baud rate calculation. For LIN fast mode, which supports the baud rate of 20kHz to 115.2kHz, the higher baud rates require the use of the fractional divider for greater accuracy.

Table 29 lists the various commonly used baud rates with their corresponding parameter settings and deviation errors. The fractional divider is disabled and a module clock of 24 MHz is used.

Table 29 Typical Baud rates for UART with Fractional Divider disabled

Baud rate	Prescaling Factor (2 ^{BRPRE})	Reload Value (BR_VALUE + 1)	Deviation Error
19.2 kBaud	1 (BRPRE=000 _B)	78 (4E _H)	0.17 %
9600 Baud	1 (BRPRE=000 _B)	156 (9C _H)	0.17 %
4800 Baud	2 (BRPRE=001 _B)	156 (9C _H)	0.17 %
2400 Baud	4 (BRPRE=010 _B)	156 (9C _H)	0.17 %

The fractional divider allows baud rates of higher accuracy (lower deviation error) to be generated. **Table 30** lists the resulting deviation errors from generating a baud rate of 115.2 kHz, using different module clock frequencies. The fractional divider is enabled (fractional divider mode) and the corresponding parameter settings are shown.

Table 30 Deviation Error for UART with Fractional Divider enabled

f _{PCLK}	Prescaling Factor (2 ^{BRPRE})	Reload Value (BR_VALUE + 1)	STEP	Deviation Error
24 MHz	1	10 (A _H)	197 (C5 _H)	+0.20 %
12 MHz	1	6 (6 _H)	236 (EC _H)	+0.03 %
6.67 MHz	1	3 (3 _H)	236 (EC _H)	+0.03 %

3.11.2 Baud Rate Generation using Timer 1

In UART modes 1 and 3 of UART module, Timer 1 can be used for generating the variable baud rates. In theory, this timer could be used in any of its modes. But in practice, it should be set into auto-reload mode (Timer 1 mode 2), with its high byte set to the appropriate value for the required baud rate. The baud rate is determined by the Timer 1 overflow rate and the value of SMOD as follows:

$$Mode 1, 3 baud rate = \frac{2^{SMOD} \times f_{PCLK}}{32 \times 2 \times (256 - TH1)}$$
[3.1]

3.12 Normal Divider Mode (8-bit Auto-reload Timer)

Setting bit FDM in register FDCON to 1 configures the fractional divider to normal divider mode, while at the same time disables baud rate generation (see **Figure 31**). Once the fractional divider is enabled (FDEN = 1), it functions as an 8-bit auto-reload timer (with no relation to baud rate generation) and counts up from the reload value with each input clock pulse. Bit field RESULT in register FDRES represents the timer value, while bit field STEP in register FDSTEP defines the reload value. At each timer overflow, an overflow flag (FDCON.NDOV) will be set and an interrupt request generated. This gives an output clock $f_{\rm MOD}$ that is 1/n of the input clock $f_{\rm DIV}$, where n is defined by 256 - STEP.

The output frequency in normal divider mode is derived as follows:

$$f_{\text{MOD}} = f_{\text{DIV}} \times \frac{1}{256 - \text{STEP}}$$
 [3.2]

3.13 LIN Protocol

The UART module can be used to support the Local Interconnect Network (LIN) protocol for both master and slave operations. This option is not available with UART1 module. The LIN baud rate detection feature provides the capability to detect the baud rate within LIN protocol using Timer 2. This allows the UART to be synchronized to the LIN baud rate for data transmission and reception.

LIN is a holistic communication concept for local interconnected networks in vehicles. The communication is based on the SCI (UART) data format, a single-master/multiple-slave concept, a clock synchronization for nodes without stabilized time base. An attractive feature of LIN is self-synchronization of the slave nodes without a crystal or ceramic resonator, which significantly reduces the cost of hardware platform. Hence, the baud rate must be calculated and returned with every message frame.

The structure of a LIN frame is shown in Figure 32. The frame consists of the:

- header, which comprises a Break (13-bit time low), Synch Byte (55_H), and ID field
- response time
- data bytes (according to UART protocol)
- checksum

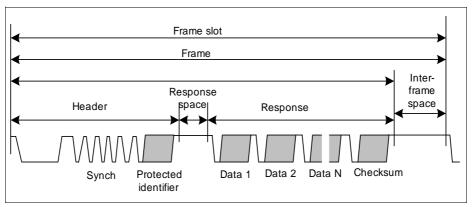


Figure 32 Structure of LIN Frame

3.13.1 LIN Header Transmission

LIN header transmission is only applicable in master mode. In the LIN communication, a master task decides when and which frame is to be transferred on the bus. It also identifies a slave task to provide the data transported by each frame. The information needed for the handshaking between the master and slave tasks is provided by the master task through the header portion of the frame.

The header consists of a break and synch pattern followed by an identifier. Among these three fields, only the break pattern cannot be transmitted as a normal 8-bit UART data. The break must contain a dominant value of 13 bits or more to ensure proper synchronization of slave nodes.

In the LIN communication, a slave task is required to be synchronized at the beginning of the protected identifier field of frame. For this purpose, every frame starts with a sequence consisting of a break field followed by a synch byte field. This sequence is unique and provides enough information for any slave task to detect the beginning of a new frame and be synchronized at the start of the identifier field.

Upon entering LIN communication, a connection is established and the transfer speed (baud rate) of the serial communication partner (host) is automatically synchronized in the following steps:

- STEP 1: Initialize interface for reception and timer for baud rate measurement
- STEP 2: Wait for an incoming LIN frame from host
- STEP 3: Synchronize the baud rate to the host
- STEP 4: Enter for Master Request Frame or for Slave Response Frame

Note: Re-synchronization and setup of baud rate are always done for **every** Master Request Header or Slave Response Header LIN frame.

3.14 High-Speed Synchronous Serial Interface

The High-Speed Synchronous Serial Interface (SSC) supports full-duplex and half-duplex synchronous communication. The serial clock signal can be generated by the SSC internally (master mode), using its own 16-bit baud-rate generator, or can be received from an external master (slave mode). Data width, shift direction, clock polarity and phase are programmable. This allows communication with SPI-compatible devices or devices using other synchronous serial interfaces.

Features:

- · Master and slave mode operation
 - Full-duplex or half-duplex operation
- Transmit and receive buffered
- · Flexible data format
 - Programmable number of data bits: 2 to 8 bits
 - Programmable shift direction: LSB or MSB shift first
 - Programmable clock polarity: idle low or high state for the shift clock
 - Programmable clock/data phase: data shift with leading or trailing edge of the shift clock
- · Variable baud rate
- Compatible with Serial Peripheral Interface (SPI)
- · Interrupt generation
 - On a transmitter empty condition
 - On a receiver full condition
 - On an error condition (receive, phase, baud rate, transmit error)

Data is transmitted or received on lines TXD and RXD, which are normally connected to the pins MTSR (Master Transmit/Slave Receive) and MRST (Master Receive/Slave Transmit). The clock signal is output via line MS_CLK (Master Serial Shift Clock) or input via line SS_CLK (Slave Serial Shift Clock). Both lines are normally connected to the pin SCLK. Transmission and reception of data are double-buffered.

Figure 33 shows the block diagram of the SSC.

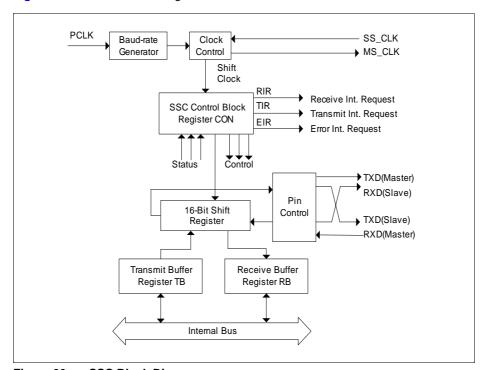


Figure 33 SSC Block Diagram

3.15 Timer 0 and Timer 1

Timer 0 and Timer 1 can function as both timers or counters. When functioning as a timer, Timer 0 and Timer 1 are incremented every machine cycle, i.e. every 2 input clocks (or 2 PCLKs). When functioning as a counter, Timer 0 and Timer 1 are incremented in response to a 1-to-0 transition (falling edge) at their respective external input pins, T0 or T1.

Timer 0 and 1 are fully compatible and can be configured in four different operating modes for use in a variety of applications, see **Table 31**. In modes 0, 1 and 2, the two timers operate independently, but in mode 3, their functions are specialized.

Table 31 Timer 0 and Timer 1 Modes

Mode	Operation					
0	The timer is essentially an 8-bit counter with a divide-by-32 prescaler. This mode is included solely for compatibility with Intel 8048 devices.					
1	16-bit timer The timer registers, TLx and THx, are concatenated to form a 16-bit counter.					
2	8-bit timer with auto-reload The timer register TLx is reloaded with a user-defined 8-bit value in THx upon overflow.					
3	Timer 0 operates as two 8-bit timers The timer registers, TL0 and TH0, operate as two separate 8-bit counters. Timer 1 is halted and retains its count even if enabled.					

3.16 Timer 2 and Timer 21

Timer 2 and Timer 21 are 16-bit general purpose timers (THL2) that are fully compatible and have two modes of operation, a 16-bit auto-reload mode and a 16-bit one channel capture mode. As a timer, the timers count with an input clock of PCLK/12 (if prescaler is disabled). As a counter, they count 1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for the count is PCLK/24 (if prescaler is disabled).

Table 32	Timer 2 Modes
Mode	Description
Auto-reload	Up/Down Count Disabled Count up only Start counting from 16-bit reload value, overflow at FFFH Reload event configurable for trigger by overflow condition only, or by negative/positive edge at input pin T2EX as well Programmble reload value in register RC2 Interrupt is generated with reload event
	 Up/Down Count Enabled Count up or down, direction determined by level at input pin T2EX No interrupt is generated Count up Start counting from 16-bit reload value, overflow at FFFFH Reload event triggered by overflow condition Programmble reload value in register RC2 Count down Start counting from FFFFH, underflow at value defined in register RC2 Reload event triggered by underflow condition Reload value fixed at FFFFH
Channel capture	 Count up only Start counting from 0000_H, overflow at FFFF_H Reload event triggered by overflow condition Reload value fixed at 0000_H Capture event triggered by falling/rising edge at pin T2EX Captured timer value stored in register RC2 Interrupt is generated with reload or capture event

3.17 Capture/Compare Unit 6

The Capture/Compare Unit 6 (CCU6) provides two independent timers (T12, T13), which can be used for Pulse Width Modulation (PWM) generation, especially for AC-motor control. The CCU6 also supports special control modes for block commutation and multi-phase machines.

The timer T12 can function in capture and/or compare mode for its three channels. The timer T13 can work in compare mode only.

The multi-channel control unit generates output patterns, which can be modulated by T12 and/or T13. The modulation sources can be selected and combined for the signal modulation.

Timer T12 Features:

- Three capture/compare channels, each channel can be used either as a capture or as a compare channel
- Supports generation of a three-phase PWM (six outputs, individual signals for highside and lowside switches)
- 16-bit resolution, maximum count frequency = peripheral clock frequency
- · Dead-time control for each channel to avoid short-circuits in the power stage
- Concurrent update of the required T12/13 registers
- · Generation of center-aligned and edge-aligned PWM
- Supports single-shot mode
- · Supports many interrupt request sources
- · Hysteresis-like control mode

Timer T13 Features:

- · One independent compare channel with one output
- 16-bit resolution, maximum count frequency = peripheral clock frequency
- Can be synchronized to T12
- · Interrupt generation at period-match and compare-match
- · Supports single-shot mode

Additional Features:

- Implements block commutation for Brushless DC-drives
- · Position detection via Hall-sensor pattern
- Automatic rotational speed measurement for block commutation
- Integrated error handling
- Fast emergency stop without CPU load via external signal (CTRAP)
- · Control modes for multi-channel AC-drives
- Output levels can be selected and adapted to the power stage

The block diagram of the CCU6 module is shown in Figure 34.

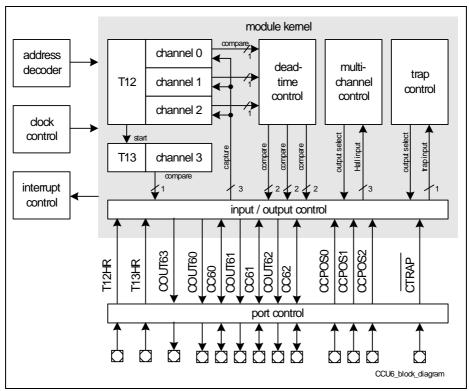


Figure 34 CCU6 Block Diagram

3.18 Analog-to-Digital Converter

The XC886/888 includes a high-performance 10-bit Analog-to-Digital Converter (ADC) with eight multiplexed analog input channels. The ADC uses a successive approximation technique to convert the analog voltage levels from up to eight different sources. The analog input channels of the ADC are available at Port 2.

Features:

- · Successive approximation
- 8-bit or 10-bit resolution (TUE of ± 1 LSB and ± 2 LSB, respectively)
- · Eight analog channels
- · Four independent result registers
- Result data protection for slow CPU access (wait-for-read mode)
- Single conversion mode
- · Autoscan functionality
- · Limit checking for conversion results
- Data reduction filter (accumulation of up to 2 conversion results)
- Two independent conversion request sources with programmable priority
- Selectable conversion request trigger
- · Flexible interrupt generation with configurable service nodes
- Programmable sample time
- · Programmable clock divider
- Cancel/restart feature for running conversions
- · Integrated sample and hold circuitry
- Compensation of offset errors
- · Low power modes

3.18.1 ADC Clocking Scheme

A common module clock $f_{\mbox{ADC}}$ generates the various clock signals used by the analog and digital parts of the ADC module:

- $f_{\mbox{\scriptsize ADCA}}$ is input clock for the analog part.
- f_{ADCI} is internal clock for the analog part (defines the time base for conversion length and the sample time). This clock is generated internally in the analog part, based on the input clock f_{ADCA} to generate a correct duty cycle for the analog components.
- f_{ADCD} is input clock for the digital part.

The internal clock for the analog part f_{ADCI} is limited to a maximum frequency of 10 MHz. Therefore, the ADC clock prescaler must be programmed to a value that ensures f_{ADCI} does not exceed 10 MHz. The prescaler ratio is selected by bit field CTC in register GLOBCTR. A prescaling ratio of 32 can be selected when the maximum performance of the ADC is not required.

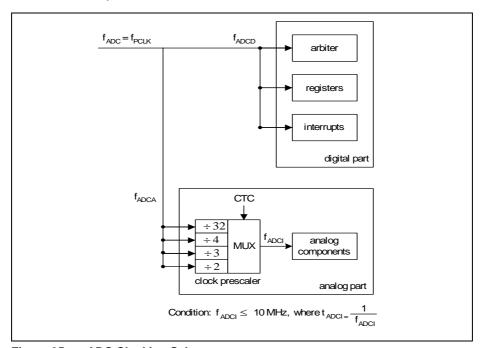


Figure 35 ADC Clocking Scheme

For module clock f_{ADC} = 24 MHz, the analog clock f_{ADCI} frequency can be selected as shown in **Table 33**.

Table 33 f_{ADCI} Frequency Selection

Module Clock f _{ADC}	СТС	Prescaling Ratio	Analog Clock f _{ADCI}			
24 MHz	00 _B	÷ 2	12 MHz (N.A)			
	01 _B	÷ 3	8 MHz			
	10 _B	÷ 4	6 MHz			
	11 _B (default)	÷ 32	750 kHz			

As f_{ADCI} cannot exceed 10 MHz, bit field CTC should not be set to 00_B when f_{ADC} is 24 MHz. During slow-down mode where f_{ADC} may be reduced to 12 MHz, 6 MHz etc., CTC can be set to 00_B as long as the divided analog clock f_{ADCI} does not exceed 10 MHz. However, it is important to note that the conversion error could increase due to loss of charges on the capacitors, if f_{ADC} becomes too low during slow-down mode.

3.18.2 ADC Conversion Sequence

The analog-to-digital conversion procedure consists of the following phases:

- Synchronization phase (t_{SYN})
- Sample phase (t_S)
- Conversion phase
- Write result phase (t_{WR})

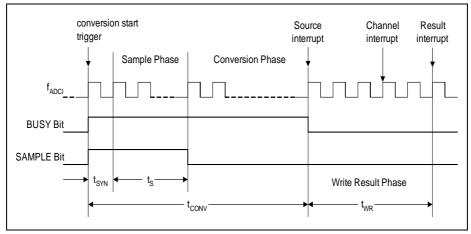


Figure 36 ADC Conversion Timing

3.19 On-Chip Debug Support

The On-Chip Debug Support (OCDS) provides the basic functionality required for the software development and debugging of XC800-based systems.

The OCDS design is based on these principles:

- use the built-in debug functionality of the XC800 Core
- · add a minimum of hardware overhead
- provide support for most of the operations by a Monitor Program
- use standard interfaces to communicate with the Host (a Debugger)

Features:

- Set breakpoints on instruction address and on address range within the Program Memory
- Set breakpoints on internal RAM address range
- · Support unlimited software breakpoints in Flash/RAM code region
- Process external breaks via JTAG and upon activating a dedicated pin
- Step through the program code

The OCDS functional blocks are shown in **Figure 37**. The Monitor Mode Control (MMC) block at the center of OCDS system brings together control signals and supports the overall functionality. The MMC communicates with the XC800 Core, primarily via the Debug Interface, and also receives reset and clock signals.

After processing memory address and control signals from the core, the MMC provides proper access to the dedicated extra-memories: a Monitor ROM (holding the code) and a Monitor RAM (for work-data and Monitor-stack).

The OCDS system is accessed through the JTAG¹⁾, which is an interface dedicated exclusively for testing and debugging activities and is not normally used in an application. The dedicated MBC pin is used for external configuration and debugging control.

Note: All the debug functionality described here can normally be used only after XC886/888 has been started in OCDS mode.

¹⁾ The pins of the JTAG port can be assigned to either the primary port (Port 0) or either of the secondary ports (Ports 1 and 2/Port 5).

User must set the JTAG pins (TCK and TDI) as input during connection with the OCDS system.

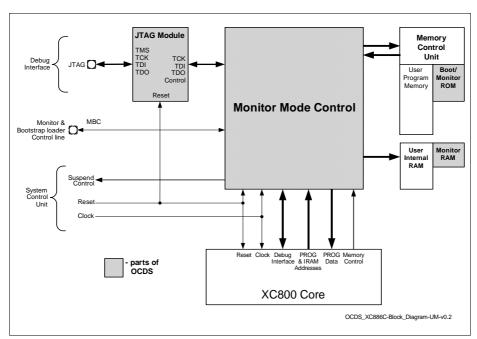


Figure 37 OCDS Block Diagram

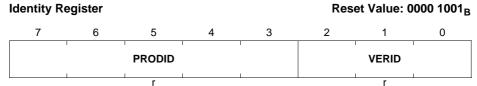
3.19.1 JTAG ID Register

This is a read-only register located inside the JTAG module, and is used to recognize the device(s) connected to the JTAG interface. Its content is shifted out when INSTRUCTION register contains the IDCODE command (opcode $04_{\rm H}$), and the same is also true immediately after reset.

The JTAG ID register contents for the XC886/888 Flash devices are given in Table 34.

Table 34 JTAG ID Summary

Device Type	Device Name	JTAG ID
Flash	XC886/888*-8FF	1012 0083 _H
	XC886/888*-6FF	1012 5083 _H


Note: The asterisk (*) above denotes all possible device configurations.

3.20 **Identification Register**

The XC886/888 identity register is located at Page 1 of address ${\rm B3}_{\rm H}.$

Field	Bits	Туре	Description
VERID	[2:0]	r	Version ID 001 _B
PRODID	[7:3]	r	Product ID 00001 _B

4 Electrical Parameters

4.1 General Parameters

4.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XC886/888 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• CC

These parameters indicate Controller Characteristics, which are distinctive features of the XC886/888 and must be regarded for a system design.

SR

These parameters indicate System Requirements, which must be provided by the microcontroller system in which the XC886/888 designed in.

4.1.2 Absolute Maximum Rating

Maximum ratings are the extreme limits to which the XC886/888 can be subjected to without permanent damage.

Table 35 Absolute Maximum Rating Parameters

Parameter	Symbol	Limit Values		Unit	Notes
		min.	max.		
Ambient temperature	T_{A}	-40	125	°C	under bias
Storage temperature	T_{ST}	-65	150	°C	
Junction temperature	T_{J}	-40	150	°C	under bias
Voltage on power supply pin with respect to V_{SS}	V_{DDP}	-0.5	6	V	
Input current on any pin during overload condition	I _{IN}	-10	10	mA	
Absolute sum of all input currents during overload condition	$\Sigma I_{IN} $	_	tbd	mA	

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{\rm IN} > V_{\rm DDP}$ or $V_{\rm IN} < V_{\rm SS}$) the voltage on $V_{\rm DDP}$ pin with respect to ground ($V_{\rm SS}$) must not exceed the values defined by the absolute maximum ratings.

4.1.3 Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation of the XC886/888. All parameters mentioned in the following table refer to these operating conditions, unless otherwise noted.

Table 36 Operating Condition Parameters

Parameter	Symbol	Limit Values		Unit	Notes/
		min.	max.		Conditions
Digital power supply voltage	V_{DDP}	4.5	5.5	V	5V range
		3.0	3.6	V	3.3V range
Digital ground voltage	V_{SS}		0	V	
Digital core supply voltage	V_{DDC}	2.3	2.7	V	
System Clock Frequency ¹⁾	f_{SYS}	88.8	103.2	MHz	
Ambient temperature	T_{A}	-40	85	°C	SAF-XC886/ 888
		-40	125	°C	SAK-XC886/ 888

¹⁾ f_{SYS} is the PLL output clock. During normal operating mode, CPU clock is f_{SYS} / 4. Please refer to Figure 27 for detailed description.

4.2 DC Parameters

4.2.1 Input/Output Characteristics

Table 37 Input/Output Characteristics (Operating Conditions apply)

Parameter	Symbol		Limit	Values	Unit	Test Conditions
			min.	max.	2	
V_{DDP} = 5V Range						7
Output low voltage	V_{OL}	CC	_	1.0	V	$I_{OL} = 15 \text{ mA}$
			_	0.4	V	I_{OL} = 5 mA
Output high voltage	V_{OH}	CC	V _{DDP} - 1.0		V	I _{OH} = -15 mA
			V _{DDP} - 0.4		V	I _{OH} = -5 mA
nput low voltage on oort pins all except P0.0 & P0.1)	V_{ILP}	SR	-	$0.3 \times V_{DDP}$	V	CMOS Mode
nput low voltage on 20.0 & P0.1	V _{ILP0}	SR	-0.2	$0.3 imes V_{DDP}$	V	CMOS Mode
nput high voltage on ort pins all except P0.0 & P0.1)	V_{IHP}	SR	$0.7 \times V_{ m DDP}$	-	V	CMOS Mode
nput high voltage on 0.0 & P0.1	V_{IHP0}	SR	$0.7 imes V_{DDP}$	V_{DDP}	V	CMOS Mode
put Hysteresis ¹⁾	HYS	CC	$0.08 imes V_{ m DDP}$	-	V	CMOS Mode
ull-up current	I_{PU}	SR	_	-10	μΑ	$V_{IH,min}$
			-150	_	μΑ	$V_{IL,max}$
ull-down current	I_{PD}	SR	_	10	μΑ	$V_{IL,max}$
			150		μΑ	$V_{IH,min}$
put leakage current ²⁾	I _{OZ1}	CC	-1	1	μΑ	$0 < V_{\text{IN}} < V_{\text{DDP}},$ $T_{\text{A}} \le 125^{\circ}\text{C}$
overload current on any in	I_{OV}	SR	-5	5	mA	
bsolute sum of verload currents	$\Sigma I_{\sf OV}$	SR	_	tbd	mA	3)

Table 37 Input/Output Characteristics (Operating Conditions apply)

Parameter	Symbol		Limit	Values	Unit	Test Conditions
			min.	max.		
V _{DDP} = 3.3V Range					•	
Output low voltage	V_{OL}	CC	_	1.0	V	I_{OL} = 8 mA
			_	0.4	V	$I_{OL} = 2.5 \text{ mA}$
Output high voltage	V_{OH}	CC	V _{DDP} - 1.0	-	V	I _{OH} = -8 mA
			V _{DDP} - 0.4	- ([٧	I_{OH} = -2.5 mA
Input low voltage on port pins (all except P0.0 & P0.1)	V_{ILP}	SR	-	$0.3 \times V_{DDP}$	V	CMOS Mode
Input low voltage on P0.0 & P0.1	V_{ILP0}	SR	-0.2	$0.3 imes V_{DDP}$	V	CMOS Mode
Input high voltage on port pins (all except P0.0 & P0.1)	V_{IHP}	SR	$0.7 \times V_{ m DDP}$	-	V	CMOS Mode
Input high voltage on P0.0 & P0.1	V_{IHP0}	SR	$0.7 imes V_{DDP}$	V_{DDP}	V	CMOS Mode
Input Hysteresis ¹⁾	HYS	CC	$0.03 imes V_{ m DDP}$	-	V	CMOS Mode
Pull-up current	I_{PU}	SR	_	-5	μΑ	$V_{IH,min}$
			-50	_	μΑ	$V_{IL,max}$
Pull-down current	I_{PD}	SR	_	5	μΑ	$V_{IL,max}$
			50	_	μΑ	$V_{IH,min}$
nput leakage current ²⁾	I _{OZ1}	CC	-1	1	μΑ	$0 < V_{\text{IN}} < V_{\text{DDP}},$ $T_{\text{A}} \le 125^{\circ}\text{C}$
Overload current on any pin	I _{OV}	SR	-5	5	mA	
Absolute sum of overload currents	$\Sigma I_{\sf OV}$	SR	-	tbd	mA	3)

Not subjected to production test, verified by design/characterization. Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise.

²⁾ An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin. TMS pin and RESET pin have internal pull devices and are not included in the input leakage current characteristic.

3) Not subjected to production test, verified by design/characterization.

4.2.2 Supply Threshold Characteristics

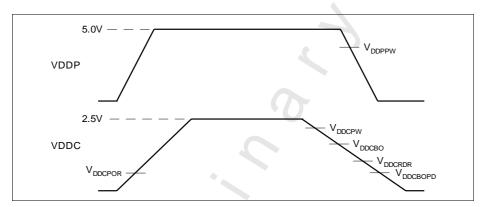


Figure 38 Supply Threshold Parameters

Table 38 Supply Threshold Parameters (Operating Conditions apply)

Parameters	Symbol		ı	Unit		
			min.	typ.	max.	
V _{DDC} prewarning voltage ¹⁾	V_{DDCPW}	CC	2.2	2.3	2.4	V
V _{DDC} brownout voltage in active mode ¹⁾	V _{DDCBO}	CC	2.0	2.1	2.2	V
RAM data retention voltage	V_{DDCRDR}	CC	0.9	1.0	1.1	V
V _{DDC} brownout voltage in power-down mode ²⁾	V _{DDCBOPE}	CC	1.3	1.5	1.7	V
V _{DDP} prewarning voltage ³⁾	V_{DDPPW}	CC	3.4	4.0	4.6	V
Power-on reset voltage ²⁾⁴⁾	V _{DDCPOR}	CC	1.3	1.5	1.7	V

¹⁾ Detection is disabled in power-down mode.

²⁾ Detection is enabled in both active and power-down mode.

³⁾ Detection is enabled for external power supply of 5.0V. Detection must be disabled for external power supply of 3.3V.

 $^{^{4)}}$ The reset of EVR is extended by 300 μ s typically after the VDDC reaches the power-on reset voltage.

4.2.3 ADC Characteristics

The values in the table below are given for an analog power supply between 4.5 V to 5.5 V. The ADC can be used with an analog power supply down to 3 V. But in this case, the analog parameters may show a reduced performance. All ground pins (V_{SS}) must be externally connected to one single star point in the system. The voltage difference between the ground pins must not exceed 200mV.

Table 39 ADC Characteristics (Operating Conditions apply; $V_{\rm DDP}$ = 5V Range)

Parameter	Symbol	Li	mit Valu	es	Unit	Test Conditions/
		min.	typ.	max.	y	Remarks
Analog reference voltage	V_{AREF} SR	V _{AGND} + 1	V_{DDP}	V _{DDP} + 0.05	V	
Analog reference ground	V_{AGND} SR	V _{SS} - 0.05	V_{SS}	V _{AREF}	V	
Analog input voltage range	V _{AIN} SR	V _{AGND}		V _{AREF}	V	
ADC clocks	f _{ADC}	-	24	25.8	MHz	module clock
	f _{ADCI}	1	_	10	MHz	internal analog clock See Figure 35
Sample time	t _S CC	(2 + INF	PCR0.S	TC) ×	μs	
Conversion time	t _C CC	See Se	ction 4.	2.3.1	μs	
Total unadjusted	TUE ¹⁾ CC	_	_	±1	LSB	8-bit conversion. ²⁾
error	(7)	_	_	±2	LSB	10-bit conversion.
Switched capacitance at the reference voltage input	C _{AREFSW} CC	_	10	20	pF	2)3)
Switched capacitance at the analog voltage inputs	C _{AINSW} CC	_	5	7	pF	2)4)
Input resistance of the reference input	R _{AREF} CC	_	1	2	kΩ	2)
Input resistance of the selected analog channel	R _{AIN} CC	_	1	1.5	kΩ	2)

99

- 1) TUE is tested at $V_{\rm AREF}$ = 5.0 V, $V_{\rm AGND}$ = 0 V , $V_{\rm DDP}$ = 5.0 V.
- $^{2)}\,\,$ Not subject to production test, verified by design/characterization
- 3) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead of this, smaller capacitances are successively switched to the reference voltage.
- The sampling capacity of the conversion C-Network is pre-charged to $V_{AREF}/2$ before connecting the input to the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than $V_{AREF}/2$.

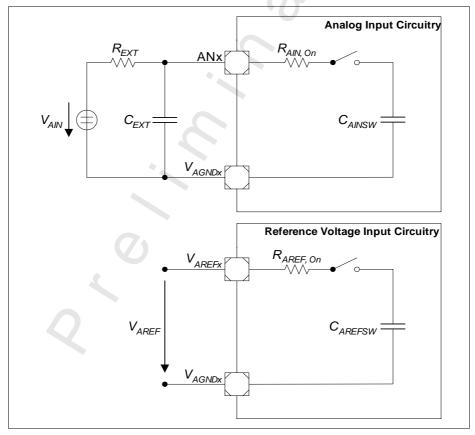


Figure 39 ADC Input Circuits

4.2.3.1 ADC Conversion Timing

Conversion time, $t_C = t_{ADC} \times (1 + r \times (3 + n + STC))$, where r = CTC + 2 for $CTC = 00_B$, 01_B or 10_B , r = 32 for $CTC = 11_B$, CTC = Conversion Time Control (GLOBCTR.CTC), <math>STC = Sample Time Control (INPCR0.STC),

n = 8 or 10 (for 8-bit and 10-bit conversion respectively), t_{ADC} = 1 / t_{ADC}

4.2.4 Power Supply Current

Table 40 Power Supply Current Parameters (Operating Conditions apply; $V_{\rm DDP}$ = 5V range)

Parameter	Symbol	Limit	Values	Unit	Test Condition
		typ. ¹⁾	max. ²⁾		
V_{DDP} = 5V Range					
Active Mode	I_{DDP}	29	tbd	mA	3)
Idle Mode	I_{DDP}	21.1	tbd	mA	4)
Active Mode with slow-down enabled	I_{DDP}	tbd	tbd	mA	5)
Idle Mode with slow-down enabled	I_{DDP}	tbd	tbd	mA	6)
Power-Down Mode	I_{PDP}	10	tbd	μΑ	7)

¹⁾ The typical $I_{\rm DDP}$ values are based on prelimary measurements and are to be used as reference only. These values are periodically measured at $T_{\rm A}$ = + 25 °C and $V_{\rm DDP}$ = 5.0 V.

²⁾ The maximum $I_{\rm DDP}$ values are measured under worst case conditions ($T_{\rm A}$ = + 125 °C and $V_{\rm DDP}$ = 5.5 V).

IDDP (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz(set by on-chip oscillator of 9.6 MHz and NDIV in PLL_CON to 1001_B), RESET = VDDP.

 $^{^{4)}}$ I_{DDP} (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, $\overline{\text{RESET}} = V_{\text{DDP}}$.

⁵⁾ I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 8 MHz by setting CLKREL in CMCON to 0110_B, RESET = V_{DDP}.

 $^{^{6)}}$ I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 8 MHz by setting CLKREL in CMCON to 0110_B, $\overline{\text{RESET}} = V_{\text{DDP}}.$

⁷⁾ I_{PDP} (power-down mode) is measured with: $\overline{\text{RESET}} = V_{\text{DDP}}, V_{\text{AGND}} = V_{\text{SS}}, \text{RXD/INT0} = V_{\text{DDP}};$ rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs.

Table 41 Power Supply Current Parameters (Operating Conditions apply; $V_{\rm DDP}$ = 3.3V range)

Parameter	Symbol	Limit	Values	Unit	Test Condition	
		typ. ¹⁾	max. ²⁾			
V _{DDP} = 3.3V Range						
Active Mode	I_{DDP}	tbd	tbd	mΑ	3)	
Idle Mode	I_{DDP}	tbd	tbd	mA	4)	
Active Mode with slow-down enabled	I_{DDP}	tbd	tbd	mA	5)	
Idle Mode with slow-down enabled	I_{DDP}	tbd	tbd	mA	6)	
Power-Down Mode	I_{PDP}	tbd	tbd	μΑ	7)	

 $^{^{1)}~}$ The typical $I_{\rm DDP}$ values are periodically measured at $T_{\rm A}$ = + 25 °C and $V_{\rm DDP}$ = 3.3 V.

²⁾ The maximum $I_{\rm DDP}$ values are measured under worst case conditions ($T_{\rm A}$ = + 125 °C and $V_{\rm DDP}$ = 3.6 V).

³⁾ I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz(set by on-chip oscillator of 9.6 MHz and NDIV in PLL_CON to 1001_B), RESET = V_{DDP}.

 $^{^{4)}}$ I_{DDP} (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, $\overline{\text{RESET}} = V_{\text{DDP}}$.

⁵⁾ $I_{\rm DDP}$ (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 8 MHz by setting CLKREL in CMCON to 0110_B, $\overline{\rm RESET} = V_{\rm DDP}$.

 $^{^{6)}}$ I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input $\frac{\text{clock to}}{\text{RESET}} = V_{\text{DDP}}$.

⁷⁾ I_{PDP} (power-down mode) is measured with: RESET = V_{DDP}, V_{AGND}= V_{SS}, RXD/INT0= V_{DDP}; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs

V0.1, 2006-02

Electrical Parameters

4.3 AC Parameters

4.3.1 Testing Waveforms

The testing waveforms for rise/fall time, output delay and output high impedance are shown in Figure 40, Figure 41 and Figure 42.

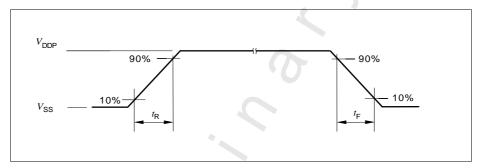


Figure 40 Rise/Fall Time Parameters

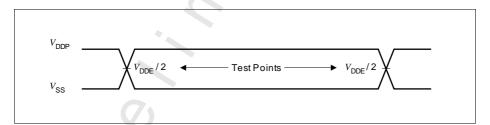


Figure 41 Testing Waveform, Output Delay

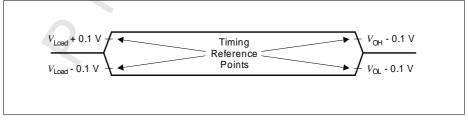


Figure 42 Testing Waveform, Output High Impedance

4.3.2 Output Rise/Fall Times

Table 42 Output Rise/Fall Times Parameters (Operating Conditions apply)

Parameter	Symbol	Symbol Li Va		Unit	Test Conditions	
		min.	min. max.			
V_{DDP} = 5V Range		'		1		
Rise/fall times 1) 2)	t _R , t _F	_	10	ns	20 pF. ³⁾	
$V_{\rm DDP}$ = 3.3V Range		'			1	
Rise/fall times 1) 2)	t _R , t _F	_	10	ns	20 pF. ⁴⁾	

 $^{^{1)}\,}$ Rise/Fall time measurements are taken with 10% - 90% of the pad supply.

 $^{^{4)}\,}$ Additional rise/fall time valid for C_L = 20pF - 100pF @ 0.225 ns/pF.

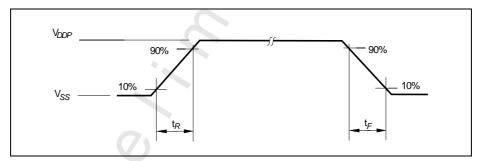


Figure 43 Rise/Fall Times Parameters

 $^{^{2)}}$ Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

 $^{^{3)}}$ Additional rise/fall time valid for C $_{L}$ = 20pF - 100pF @ 0.125 ns/pF.

4.3.3 Power-on Reset and PLL Timing

Table 43 Power-On Reset and PLL Timing (Operating Conditions apply)

Parameter	Symbol	Lir	nit Val	ues	Unit	Test Conditions
		min.	typ.	max.		
Pad operating voltage	V_{PAD} CC	2.3	_	- &	V	7
On-Chip Oscillator start-up time	t _{OSCST} CC	_	-	500	ns	
Flash initialization time	t _{FINIT} CC	_	160	9	μs	
RESET hold time ¹⁾	t _{RST} SR	_	500		μs	V_{DDP} rise time $(10\% - 90\%) \le 500 \mu \text{s}$
PLL lock-in in time	$t_{LOCK}CC$	_	1	200	μs	
PLL accumulated jitter	D_{P}	→	-	tbd	ns	2)

¹⁾ $\overline{\rm RESET}$ signal has to be active (low) until $V_{\rm DDC}$ has reached 90% of its maximum value (typ. 2.5V).

 $^{^{2)}}$ PLL lock at 96 MHz using a 4 MHz external oscillator. The PLL Divider settings are K = 2, N = 48 and P = 1.

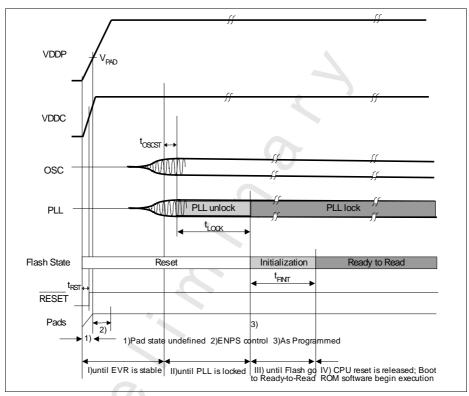


Figure 4-1 Power-on Reset Timing

4.3.4 On-Chip Oscillator Characteristics

Table 44 On-chip Oscillator Characteristics (Operating Conditions apply)

Parameter	Symbol	Lin	nit Va	lues	Unit	Test Conditions
		min.	typ.	max.	4	
Nominal frequency	f _{NOM} CC	_	9.6	_	MHz	under nominal conditions ¹⁾ after IFX-backend trimming
Chip-to-chip frequency deviation	$\Delta f_{\rm CC}$ CC	-2.5	-	2.5	%	with respect to f _{NOM}
Long term frequency deviation	Δf _{LT} CC	-5.0	- <	5.0	%	with respect to f_{NOM} , over lifetime and temperature, for one given device after trimming
Short term frequency deviation	Δf_{ST} CC	-1.0		1.0	%	with respect to f_{NOM} , within one LIN message (<10 ms 100 ms)

¹⁾ Nominal condition: $V_{DDC} = 2.5 \text{ V}$, $T_A = +25 ^{\circ}\text{C}$.

4.3.5 JTAG Timing

Table 45 TCK Clock Timing (Operating Conditions apply; $C_L = 50 \text{ pF}$)

Parameter	Symbol	Lir	Unit	
		min	max	
TCK clock period	$t_{TCK}SR$	50	_	ns
TCK high time	t_1 SR	tbd	_	ns
TCK low time	t_2 SR	tbd	_	ns
TCK clock rise time	t ₃ SR	_	tbd	ns
TCK clock fall time	t_4 SR	_	tbd	ns

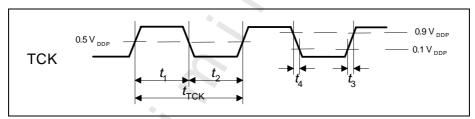
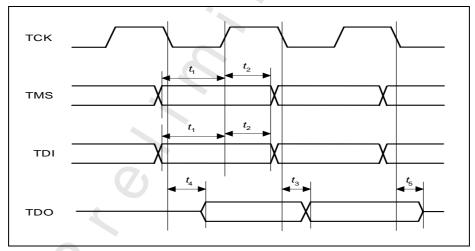


Figure 44 TCK Clock Timing


V0.1, 2006-02

Electrical Parameters

Table 46 JTAG Timing (Operating Conditions apply; $C_L = 50 \text{ pF}$)

Parameter		mbol	Lir	Unit	
			min	max	
TMS setup to TCK _/	t_1	SR	tbd	_	ns
TMS hold to TCK _r	t_2	SR	tbd	_	ns
TDI setup to TCK _r	<i>t</i> ₁	SR	tbd	_	ns
TDI hold to TCK _r	t_2	SR	tbd	_	ns
TDO valid output from TCK ¬_	t_3	CC	_	tbd	ns
TDO high impedance to valid output from TCK -	t_4	CC	_	tbd	ns
TDO valid output to high impedance from TCK ٦_	<i>t</i> ₅	CC	_	tbd	ns

110

Figure 45 JTAG Timing

4.3.6 SSC Master Mode Timing

Table 47 SSC Master Mode Timing (Operating Conditions apply; $C_L = 50 \text{ pF}$)

Parameter	Syn	nbol	Limit	Unit	
			min.	max.	
SCLK clock period	t_0	CC	2*T _{SSC} 1)	_	ns
MTSR delay from SCLK _r	<i>t</i> ₁	CC	0	tbd	ns
MRST setup to SCLK ¬	t_2	SR	tbd	_	ns
MRST hold from SCLK ٦_	t_3	SR	tbd	_	ns

 $[\]overline{}^{(1)}$ T_{SSCmin} = T_{CPU} = 1/f_{CPU}. When f_{CPU} = 24MHz, t_0 = 83.3ns. T_{CPU} is the CPU clock period.

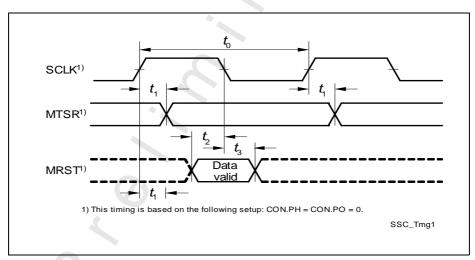


Figure 46 SSC Master Mode Timing

Package and Quality Declaration

5 Package and Quality Declaration

5.1 Package Outline

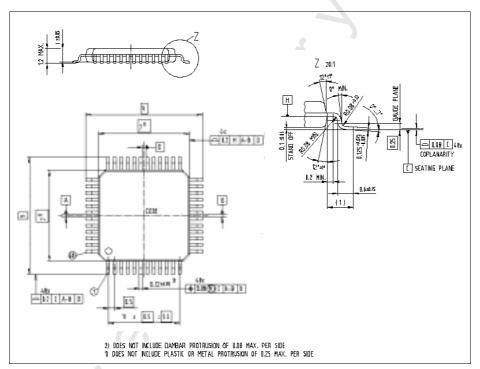


Figure 47 PG-TQFP-48-4 Package Outline

Package and Quality Declaration

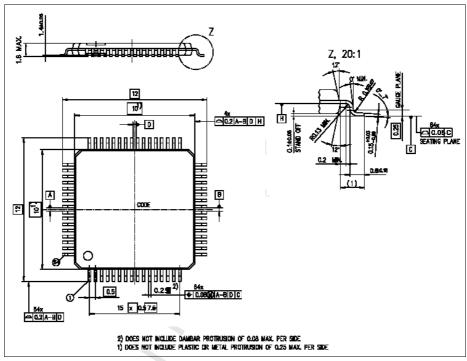


Figure 48 PG-TQFP-64-8 Package Outline

Package and Quality Declaration

5.2 Quality Declaration

Table 48 shows the characteristics of the quality parameters in the XC886/888.

Table 48 Quality Parameters

Parameter	Symbol	Limit Values		Unit	Notes
		Min.	Max.		
ESD susceptibility according to Human Body Model (HBM)	V_{HBM}	-	2000	V	Conforming to EIA/JESD22- A114-B
ESD susceptibility according to Charged Device Model (CDM) pins	V_{CDM}	-	500	V	Conforming to JESD22-C101-C

http://www.infineon.com Published by Infineon Technologies AG