11-VM148

Version : A.001

Issue Date : 2009-05-19

File Name : SP-VM148-A.001.doc

Total Page : 17

130mA, 10Bit Current Sinking VCM Driver with I²C Interface

11-VM148

130mA, 10-Bit Current Sinking VCM Driver with I²C Interface

General Specifications

The 11-VM148 is a VCM(Voice Coil Motor) driver IC with I²C interface control that is capable of programmable sinking output current. It has a built-in internal voltage reference and operates with a supply voltage range from 2.4V to 5.5V. The DAC is controlled by a signal transmit through a 2-wire I²C serial interface which operates in an I²C fast mode (400 kHz). The 11-VM148 is designed for applications such as image stabilization, auto-focus, optical zoom in camera phones, and other portable module devices.

Features and Benefits

- Programmable sinking output current
- I²C serial interface
- DAC with 10-BIT resolution
- 2.4V 5.5V power source
- Low voltage control for digital pin PD, SDA, and SCL(i.e., V_{IH} = 1.54V @ VDD = 2.8V)
- Power off operation
- Automatic power on reset
- Small package: DFN10 (3*3*0.8 mm), WLCSP(0.99*1.87*0.5 mm)

Ordering Information

Part Number	Package	Marking		
11-VM148 WLCSP	WLCSP, 8Pin	GXX* or HXX*		
11-VM148 DFN	DFN, 10Pin	XXXX**G		

^{*}XX reserved for a data code

^{**}XXXX reserved for a date code

Terminology

Resolution

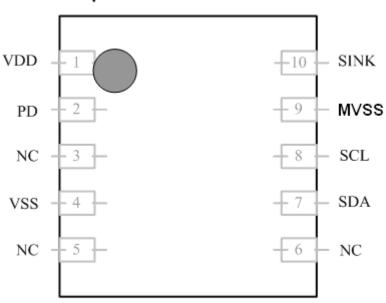
The DAC resolution is defined by the power factor of 2, which defines the number of distinct analog levels.

N-bit resolution -> 2^N distinct analog levels

Differential Nonlinearity (DNL) error

The variation in analog step sizes away from 1 LSB by any two adjacent codes. Usually, gain and offset errors have been removed.

Integral Nonlinearity (INL)

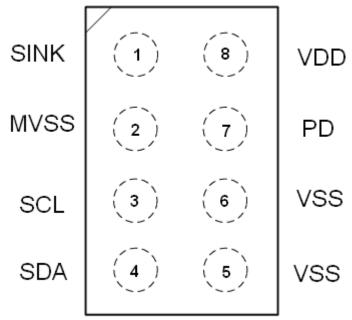

It is the deviation of actual transfer response from a straight line. Usually, INL error is referred to as the maximum INL error.

Pin Assignment

Pin Assignment of DFN10 (3*3*0.8 mm)

Top View

Pin Descriptions


Pin NO.	Pin Name	Description
1	VDD	Input Power Pin
2	PD	Digital Input: Power off Mode
		(When PD=High ,chip disable)
		(When PD=Low ,chip enable)
3	NC	
4	VSS	Input Ground Pin
5	NC	
6	NC	
7	SDA	I ² C Interface Data(Serial Data Line)
8	SCL	I ² C Interface Data(Serial Clock Line)
9	MVSS	Input Motor driver GND Pin
10	SINK	Analog Output : Output current Sink Pin

1. The 7 address bits of 11-VM148 for I²C slave true port is <u>0001-1xx</u>.

Pin Assignment of WLCSP (0.99*1.87*0.5mm)

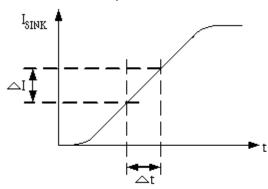
TOP View

Pin Number	Pin Name	Description
1	SINK	Analog Output : Output Current Sink Pin
2	MVSS	Input Motor Driver GND Pin
3	SCL	I ² C Interface Data(Serial Clock Line)
4	SDA	I ² C Interface Data(Serial Data Line)
5	VSS	Input Ground Pin
6	VSS	Input Ground Pin
7	PD	Digital Input: Power off Mode
		(When PD=High ,chip disable)
		(When PD=Low ,chip enable)
8	VDD	Input Power Pin

Absolute Maximum Ratings

Unless otherwise noted, T_A= 25°C

Characteristic	Symbol	Rating	Unit
Supply Input Voltage	V_{DD}	5.5	V
Input Voltage	V _{IN}	V _{DD} +0.4	V
Maximum Sink Current	I _{SINK}	150	mA
Operating Temperature Range	T _{OPR}	-40 ~ 125	°C
Storage Temperature Range	T _{STG}	-65 ~ 150	°C

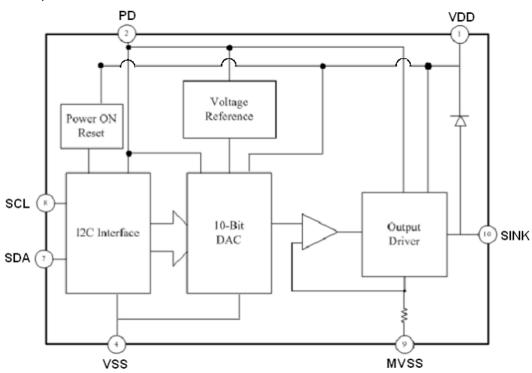

Electrical Characteristic

Unless otherwise noted, T_A = 25°C , V_{DD} = 2.8 V and VCM ≈ 18Ω, 460uH.

Item	Sym.	Condition		Limit			
ROTT	Oyiii.	Condition	Min.	Тур.	Max.	Unit	
Power Supply							
Supply Voltage	V_{DD}		2.4	2.8	5	V	
Supply Current	I _{PD}	PD = High (chip disable)	-	-	0.5	uA	
Supply Current	I _{DD}	PD = Low, SPD= High	-	-	0.1	mA	
(I _{DD})	I _{DD1}	PD = Low, SPD= Low			0.5	mA	
PD, SDA, SCL digital co	ontrol p	oin					
Input Voltage High	V _{IH}	-	0.55*V _{DD}	-	V _{DD} +0.4	V	
Input Voltage Low	V_{IL}	-	-0.4	-	0.2*V _{DD}	V	
Parameters							
DAC Resolution				10		Bits	
DNL				+/-0.8	+/-1	LSB	
INL				+/-1	+/-5	LSB	
Output Offset Current	Ios	PD = L, SPD= logic H			5	uA	
Current Slew Rate	SR	$SR = \Delta I / \Delta t $ (*1)		3		mA/us	
Output Constant Current Settling Time	t _s	VDD = 2.8V, I _{SINK} = 100mA		40	80	us	
Voltage Drop	ΔV	$\Delta V = V_{SINK} - V_{MVSS} (*2)$ $(@I_{SINK} = 80 \text{ mA})$	-	0.32	0.35	V	

Note:

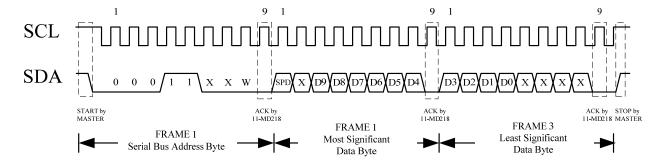
(*1) $SR = \Delta I / \Delta t$, I_{SINK} is the current of sink pin



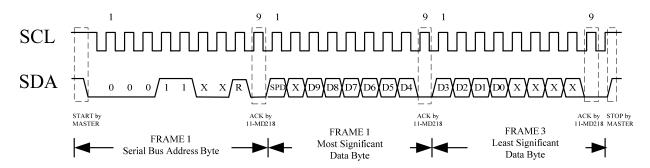
(*2): $V_{\it SINK}$ is the voltage of sink pin and $V_{\it MVSS}$ is the voltage of motor driver GND pin

Block Diagram

(DFN10)



Data Format


11-VM148 Write Mode

When in the write mode, data is written to the 11-VM148 and shifted byte-by-byte into a 16-bit input register. After all 16 bits of data have been shifted in, a STOP condition is transmit by master and the loaded data in the input register is transferred to the DAC.

11-VM148 Read Mode

When 11-VM148 is in the read mode, data is read from IC to a master controller in the same bit order.

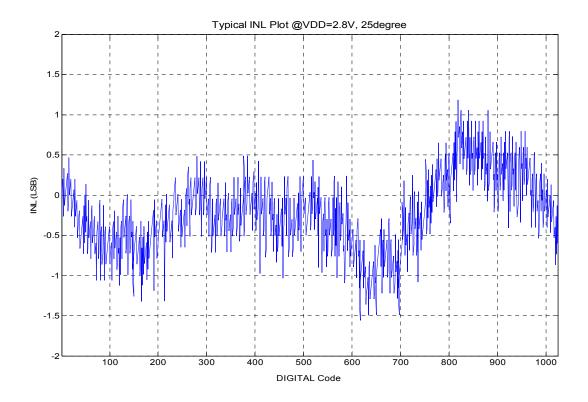
Table

	MSB						LSB									
Serial Data Bits	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Input Register	R15	R14	R13	R12	R11	R10	R09	R08	R07	R06	R05	R04	R03	R02	R01	R00
Function	SPD	Χ	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Х	Χ	Χ	Х

- SPD (Soft Power off, 2nd standby mode): IC power off controlled by software.
- X denotes "Don't care/Unused".
- Regarding to all kinds of IC operation situations please refers to following table.

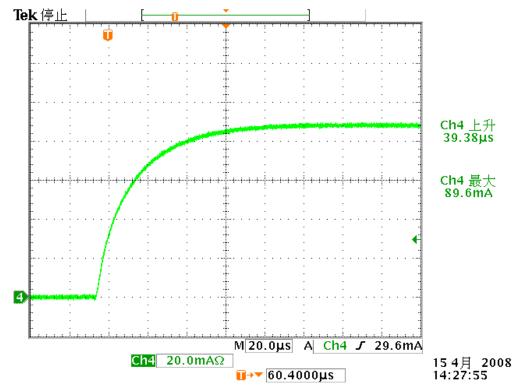
PD	SPD	IC status
High	-	Power off
Low	Low	IC Active
Low	High	Soft power off

The PD pin is the power off pin of 11-VM148. Logic low level (PD = Low) is for IC operation. On the other hand, its logic high level (PD = High) puts the chip into power off mode for power saving. It is recommended to keep PD at high level (PD = H) before while the chip is no operation to save power, especially for applications in portable devices.

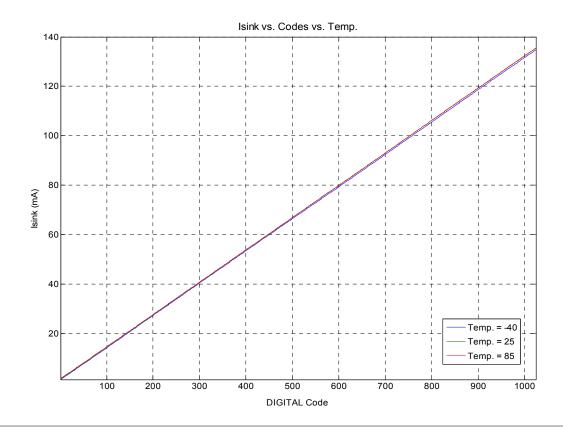


Performance Characteristics

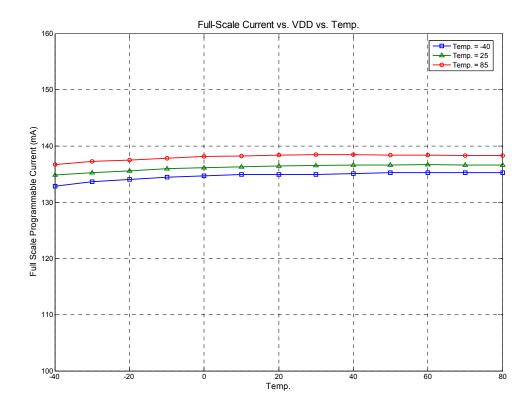
1. DNL Plot



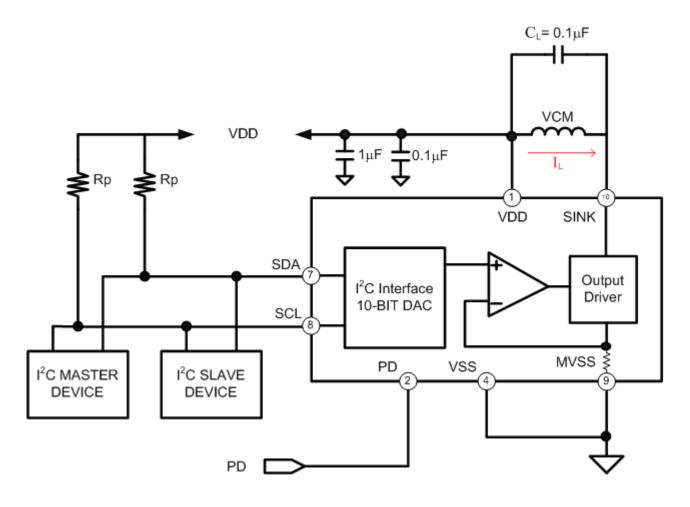
2. INL Plot



3. Settling Time (VDD = 2.8V, VCM = 270hm with 430uH@500Hz, 550uH@1kHz, respectively, $C_L = 0.1uF$ @Temp. = 25)

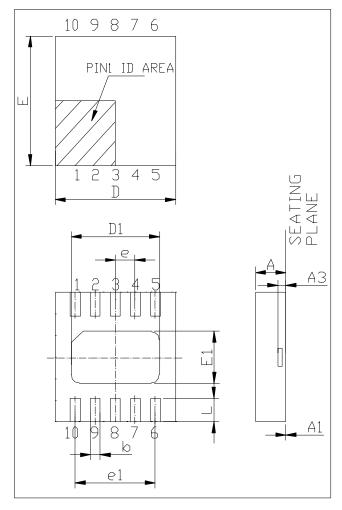


4. Sink Current vs. Codes vs. Temp.



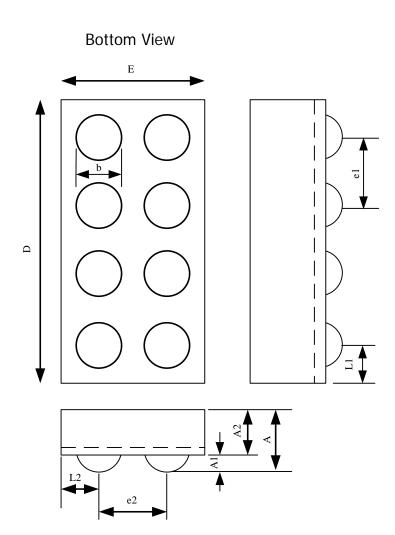
5. Full-Scale Programmable Current vs. Temp. vs. VDD

Application Circuit



Application Notes

- The 11-VM148 is a constant current driving IC for applications in Auto-Focus. The supply voltage range VDD of 11-VM148 is from 2.4V to 5.5V. The input range of digital control pin PD, and digital I/O pins SCL and SDA, are defined such that logic "High" is from 0.55*VDD to VDD+0.4V and logic "Low" is from -0.4V to 0.2*VDD. Therefore, the three digital pins are suitable controlled by 1.8V ISP.
- The PD pin is the power off pin of 11-VM148. Logic low level (PD = Low) is for IC operation. On the other hand, its logic high level (PD = High) puts the chip into power off mode for power saving. It is recommended to keep PD at high level (PD = H) before while the chip is no operation to save power, especially for applications in portable devices.
- In order to ensure the stability of output current, a compensation capacitance C_L is suggested placing across the two terminals of VCM. The suggested value of C_L is about 0.1~0.22uF and could be fine tuned for different VCM.


Package Specification (DFN-10)

SYMBOL		DIMENSION (mm)		DIMENSION (mil)			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А	0.70	0.75	0.80	28	30	32	
A1	0.00	0.02	0.05	0	0.8	2	
A3		0.203 REF		8 REF			
b	0.18	0.25	0.30	7	10	12	
D	2.90	3.00	3.10	114	118	122	
D1	2.10	2.20	2.30	83	87	91	
E	2.90	3.00	3.10	114	118	122	
E1	1.10	1.20	1.30	86	87	91	
L	0.45	0.55	0.65	18	22	26	
е		0.50 BASIC		20 BASIC			
e1		2.00 BASIC		80 BASIC			

Package Specifications (WLCSP)

SYMBOL	DIMENSION (mm)						
	MIN.	NOM.	MAX.				
Α	0.445	0.5	0.555				
A1	0.17	0.20	0.23				
A2	0.275	0.30	0.325				
b	0.24	0.26	0.28				
D	1.83	1.87	1.91				
E	0.95	0.99	1.03				
e1		0.50					
e2		0.50					
L1	0.160	0.185	0.210				
L2	0.220	0.245	0.270				

The products listed herein are designed for ordinary electronic applications, such as electrical appliances, audio-visual equipment, communications devices and so on. Hence, it is advisable that the devices should not be used in medical instruments, surgical implants, aerospace machinery, nuclear power control systems, disaster/crime-prevention equipment and the like. Misusing those products may directly or indirectly endanger human life, or cause injury and property loss.

Silicon Touch Technology, Inc. will not take any responsibilities regarding the misusage of the products mentioned above. Anyone who purchases any products described herein with the above-mentioned intention or with such misused applications should accept full responsibility and indemnify. Silicon Touch Technology, Inc. and its distributors and all their officers and employees shall defend jointly and severally against any and all claims and litigation and all damages, cost and expenses associated with such intention and manipulation.