NEC

User’s Manual

RA78K4 Ver. 1.50 or Later

Assembler Package

Language

Target Devices
78KI/IV Series

Document No. U15255EJ1VOUMOO (1st edition)
Date Published September 2001 N CP(K)

© NEC Corporation 2001
Printed in Japan

[MEMO]

2 User's Manual U15255EJ1VOUM

Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

HP-UX is a trademark of Hewlett-Packard Company.

SunOS is a trademark of Sun Microsystems, Inc.

¢ The information in this document is current as of July, 2001. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.

* No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.

* NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.

® Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.

* While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.

* NEC semiconductor products are classified into the following three quality grades:

"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products

developed based on a customer-designated "quality assurance program" for a specific application. The

recommended applications of a semiconductor product depend on its quality grade, as indicated below.

Customers must check the quality grade of each semiconductor product before using it in a particular

application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.

(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).

M8E 00.4

User's Manual U15255EJ1VOUM 3

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

» Device availability
« Ordering information

« Product release schedule

« Availability of related technical literature

« Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

« Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France

Tel: 01-3067-5800

Fax: 01-3067-5899

NEC Electronics (France) S.A.
Madrid Office

Madrid, Spain

Tel: 091-504-2787

Fax: 091-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388

User's Manual U15255EJ1VOUM

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore

Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-2719-2377

Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810

Fax: 11-6462-6829

Jo1.2

INTRODUCTION

This manual is designed to facilitate correct understanding of the basic functions of each program in the RA78K4
Assembler Package (hereafter called RA78K4) and the methods of describing source programs.

This manual does not cover how to operate the respective programs of the RA78K4. Therefore, after you have
comprehended the contents of this manual, read the RA78K4 Assembler Package User’s Manual Operation
(U15254E) (hereafter called Operation) to operate each program in the assembler package.

Descriptions related to the RA78K4 in this manual apply to Ver. 1.50 or later.

[Target Readers]

This manual is intended for user engineers who understand the functions and instructions of the microcontroller
(78K/IV Series) subject to development.

[Organization]

This manual consists of the following six chapters and appendices.

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

APPENDICES

GENERAL

Ouitlines all of the basic functions of the RA78K4.

HOW TO DESCRIBE SOURCE PROGRAMS

Outlines how to describe source programs, and explains the operators of the assembler.
DIRECTIVES

Explains how to write and use directives, including application examples.

CONTROL INSTRUCTIONS

Explains how to write and use control instructions, including application examples.
MACROS

Explains all macro functions, including macro definition, macro reference, and macro expansion.
Macro directives are explained in CHAPTER 3 DIRECTIVES.

PRODUCT UTILIZATION

Introduces some measures recommended for describing a source program.

These contain a list of reserved words, a list of directives, the maximum performance,
characteristics, and an index.

The instruction sets are not detailed in this manual. For these instructions, refer to the user’'s manual of the
microcontroller for which software is being developed.

Also, for instructions on architecture, refer to the user's manual (hardware version) of each microcontroller for
which software is being developed.

User's Manual U15255EJ1VOUM 5

[How to Read This Manual]

Those using an assembler for the first time are encouraged to read from CHAPTER 1 GENERAL of this manual.
Those who have a general knowledge of assembler programs may skip CHAPTER 1 GENERAL of this manual.
However, be sure to read 1.2 Reminders Before Program Development and CHAPTER 2 HOW TO DESCRIBE
SOURCE PROGRAMS.

Those who wish to know the directives and control instructions of the assembler are encouraged to read
CHAPTER 3 DIRECTIVES and CHAPTER 4 CONTROL INSTRUCTIONS, respectively. The format, function, use,
and application examples of each directive or control instruction are detailed in these chapters.

[Conventions]
The following symbols and abbreviations are used throughout this manual.

[]:
{k

“ o,

A:
/:

Same format is repeated.

Characters enclosed in these brackets can be omitted.

One of the items in { } is selected.

Characters enclosed in “ ”(quotation marks) are a character string.
Characters enclosed in ‘’ (single quotation marks) are a character string.
Characters between parentheses are a character string.

Characters (mainly title) enclosed in these brackets are a character string.
An underline is used to indicate an important point or, in an application example, an input character
string.

Indicates one or more blank characters or tabs.

Character delimiter

Continuity

Boldface: Characters in boldface are used to indicate an important point or reference point.

User's Manual U15255EJ1VOUM

[Related Documents]
The documents (user's manuals) related to this manual are listed below.
The related documents indicated in this publication may include preliminary versions.
However, preliminary versions are not marked as such.

Document Name Document No.

RA78K4 Assembler Package Operation U15254E
Language This manual
Structured Assembler Preprocessor U11743E

CC78K4 C Compiler Operation To be prepared
Language To be prepared

SM78K4 System Simulator Reference (Windows™ Based U10093E
Operation)

SM78K Series System Simulator V1.40 or later External Part User Open Interface U10092E
Specifications

ID78K Series Integrated Debugger Ver.2.30 or Operation (Windows Based) U15185E

later

ID78K4 Integrated Debugger Reference (Windows Based U10440E
Operation)

78K/IV Series Real-Time OS Fundamental U10603E

RX78K/IV Installation U10604E

User's Manual U15255EJ1VOUM

CONTENTS

CHAPTER 1 GENERALcoiieeceierecerrsssscesssssssensssssmesessssmssessssmsssessamsssessanssnessanmenesssnmenesssnmenessannnnassannens 13

1.1 ASSEMDIET OVEIVIEW ...oiueeiiuerrimrrismsrasrrssmsrasssrssm s s s e sm s e s s s s s Ee s e EEa e R Re R AR ER AR R ERRER AR ERRRRER AR R RRRERRE R RRERRREE 13

1.1.1 What is @n @SSEMDIEIT ...ttt e e e e e e e e e e e e e e e e s e nnneeeeeaaeeaaannees 14

1.1.2 What is a relocatable assembIEr?............ocei i e e 16

1.2 Reminders Before Program Developmentccccvuimmminiimimiisssimsessmnsssnsss s sssssss s s ssnsas 18

1.2.1 Maximum performance characteristics of RA78K4ooooiiiiiiiiiiei et 18

1.3 Features Of RATBKA ... s s s s £ r s e R R a e £ R R R e R e e R R e R R R e R R R R e R e an 20

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS ... oerrerecerrnsssmeressssmessssssmessesssmesssssamenes 21

2.1 Basic Configuration of SOUrce Program...........ccccuceemmiiimsmmnisssmnnssnissssssssss s s sssssssssssass ssssss s sassssssnas 21

P2 O B |V Yo [C= 1= = o Y PR 22

2.1.2 MOGUIE DOAY ...ttt e bt e b et bt e b e e e b et e ae e b et e e nar e e enne e 23

P2 G T |V Yo L1 L= = T PR 24

2.1.4 Overall configuration Of SOUICE PrOGIAMccccuueiiiiurieeeitiieeeeiiee et ee e st e e e etee e e saeee e s sbee e e sanreeessaneeas 24

2.1.5 Description example Of SOUICE PrOGIAMcccuuiiiiiureee et e e e e e e e e e s eneees 25

2.2 Description Format of SOUrce Programccccccceeemiisssmmissssmssssssisssssssssssssssssssssssssssssasssssssssssassssssnas 28

2.2.1 Configuration of STAEMENTSoiiiiiii et 28

2.2.2 CRAraCLEI SBLeiiiiiitieiiie ettt a e e b e r e e e e e e e e e e 29

2.2.3 Fields that make up a statement........ .o s 32

2.3 EXpressions and OPEratorscccccccvrreericssmmerrrsssssssssmsssresssssssssssssessssssssmmsssseesssssassmssssssssssasnmsnseesasssssnnes 44

2.3.1 FUNCLONS Of OPEIATOrS ...t e e n e e e e e nnnees 45

P2NC P2 S T=Y g ox 1To] g E-To] o o] 0 =T = o] o LT 61

2.4 Bit POSItion SPECIfIerciiiiiiiiiiiiriis it 67

2.5 Characteristics Of OPErandsccccccerrierrirssmmrrrrrrssssssseerrresssssssmeerrresssssssmmsssseesssssanmsesseesssssanmnnseeeasssssnnns 70

2.5.1 Size and address range of Operand VAIUEcoocuiiiiiiiiiiiiie ettt saee e 70

2.5.2 Size of operands required for INSIIUCHIONScooiiiiiiiiiii e e e ee s 73

2.5.3 Symbol attributes and relocation attributes of operands...........c.cccooieiiiiiiiienic e 75

CHAPTER 3 DIRECTIVES......ccccoceirrccerrssmceressssseresssssesssssssessssssmenssssmsssssssmssssssmensassamensassamensessanmnnsssannens 80

3.1 OVervieW Of Dir€CtiVeS....cccuuvierimrrieerimn s s s me s mer s m e e an e e n e e m e e m e e nenaan 80

3.2 Segment Definition DIreCtivesccccciiiminisimniniiss s s s s e 81

L I =1 = (e T === o Ty =T o 83

(P I =] = (e E= = ET= o 43 =T o 87

L) T = 157 = (oL A= =T 14 T=T 4 91

Ly T 15 1€ (o 4 11) 96

3.3 Symbol Definition DIreCtiVeS.......cccuiiemriiimririrs s s s s s n e e n e e nn e e s 929

L) T =0 LU (=T« U= = 100

(72 T =T =S - 104

3.4 Memory Initialization and Area Reservation Directives.........c.ccconiimmminmnmnin e, 106

L I 0.1 2 (e L= 118 L=+ 3V =) N 107

[T L (L= 114 T e) 109

[T L€ I (o[) 111

(4) DS (define STOrage)coceucmrrssurssnriissrssnsisssssnssss s s s s s s s s s s s sas e s e s sas e s e s an e s e e an e an e e nnnan 113

(G L= 1L I (e T3 11 L= o1 115

BRI IR =T T= N = o Y= 116
8 User’'s Manual U15255EJ1VOUM

(1) EXTRN (EXEErNAI) ..cccccecceeeieesscsmmcenrressssssssce s s ressssssssmsnsseesssssssmssseesasssassmnnsseeesssasnmmsnseessssssannnsnnnnsssssnnn 117

(2) EXTBIT (eXternal Dit)cccceicriiernseiisirs s st sas e s s s sms s s s s s sms s s ms s m s sn e e s s s 119

<3 T o V=TI o (o T o 121

3.6 Object Module Name Declaration DireCtivVe.........ccuceeirsmminsemismsinssisssinssssss s s s s sssnssans 123
(1) NAME (NAME) «eoeeieiiiiriencemrrrrasssssmmserrrassssssmmsssseesssssanmsssseesssssansmnssseesssssasmssssssessssssmnnsneeessssssannnnnnnesssssnn 124

3.7 Automatic Branch Instruction Selection Directive........c.ccccuviminimiissinsninsisssss e 125
L) T 13 3o T2 T o) 126

7 T 07 Y I (T 1 128

3.8 General-Purpose Register Selection Directive..........cccuuceiminimminninnnnsninss s s s snsaens 130
(1) RSS (register set SEIECE)ccuiiimiiiiiiiriirir s 131

BT T (1 F= To o I T = o 134
LT 2 10 B (11 F= Uo7 o) 135

7 T 0 T 0 Y R (oY | 137

L T T =L (= T=T L) 140

(4) IRP (indefinite repeat)....cccccueccececmrrrrrsssssscesrrrssssssscs s e s e essssssms s e s e esssssssmmse s e eessssssmmmenseesssssnmmnennennssssnnn 142

(5) EXITM (eXit frOm MACKO)....cicsuriimriiersimniisrssss s s sss s sss s sas s s s s sss s sas s an e sann e s e a s easan e an e s snnnans 144

(6) ENDM (€N MACKO)....uuuuceerrrrarssssmmmrrrrassssssmmsesseesssssanmsssseesssssasmsssseesssssasmssssseessssssmnnsneesssssssnnnnsnneesssssnn 147

3.10 Assembly Termination Dir€CliVeccccuiiimiimemiinmiiis s s an e e anes 149
L0 T =1 1 (=T T) 150
CHAPTER 4 CONTROL INSTRUCTIONScociiiiiemrriiemnsisssmssssssmsssssssmss s ssass s ssssass s ssssams s snssamsssassnns 151
4.1 Overview of Control INSIrUCHIONScccicciiiiiiiiiiir e s 151
4.2 Processor Type Specification Control INStruction...........ccccvvcemriiiicmninnssssnnsr e 152
(1) PROCESSOR (PrOCESSON) ..cuutiasusissssasasisssssssssssssssssssissssssssssssssasassssssssssssasassssnssasassssss sasassssnssassnnsssns 153

4.3 Debug Information Output Control INStrUCHONScccviiiiiiiicrr . 154
(1) DEBUG/NODEBUG (debug/nodebug)cccrremriimrnsninssisssssmsssssssssssssssssssssssssss s sssssssssssssssnsans 155

(2) DEBUGA/NODEBUGA (debuga/nodebuga)cccerursrmmissmsmmssssmsssmssssssssssssssssssssnsssssssssssssassssssas 156

4.4 Cross-Reference List Output Specification Control Instructions...........ccueciviniiicninscninscnnnninnscens 157
(1) XREF/NOXREF (Xref/NOXIEf) ...ceeceerirrsrsinmcmesrressssssmmmssresssssssmmnsssesssssssmssesseessssssmmsssseesssssnnmsssnnesssssnns 158

(2) SYMLIST/NOSYMLIST (Symlist/NOSYMIist)......cccurcmmirsmissmmiismmsismnis s nsssssss s s s s sssansnsnns 159

4.5 Inclusion Control INSTFUCIONccceeiiiiiiic s e e nan 160
(1) INCLUDE (INCIUAE) ...ciiuutiiieniisusiamsissssnsmsssssssssmssnsssams ssss s ms s msssms s sn s s sm s e a s s am s s n e s am e b n e nsan e s snnnnns 161

4.6 Assembly List Control INStruCtioNScoccciiiiimiiiir s s e 164
L T =81 =T I (=1 1= T 165

(2) LIST/NOLIST (liSt/NOIISt)..uessurssersserssrsanrsnssnsssssssssssssnsssasenansssns 167

(3) GEN/NOGEN (generate/N0 geNErate)cccuierrrssmsrssemsssmsisssnssnsssssssssssssssssssssssssssssnssssssssanssssnsssans 169

(4) COND/NOCOND (condition/no coNdition)cccceccerrrrssssssmmerrrssssssmsserresssssssmmsesseesssssssssssseesssssnns 171

) T IL I LT 173

LIRS LN L= I T o) 176

(7) FORMFEED/NOFORMFEED (formfeed/noformfeed).........cccorirmmnsmmnsmmnssnssssnsssses s s ssensnes 179

L3 T L1 I T Lo 180

L) T =L el o (=T 4T o 181
0TI = 2) T 182

4.7 Conditional Assembly Control INStrUCtiONScccciiciiiiiinisi i ———— 183
(1) IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIFcoisirssissmsssrsssrsssasssssssssasesssssns 184

(2) SET/RESET (Set/reSet)...iisciiiseiiiriiiniiniiisisms s ssms s s s ss s s s s as s sm s s s am s s s nsama s snnnnnns 188

4.8 SFR Area Change Control INStrUCHONS........ccciiiimmiiiimr s s e e 190
(1) CHGSFR/CHGSFRA (change sfr area/change Sfr area).........ccuecervvminsmsrnsssssssnnsssssssssssssssssssssssnns 191

User's Manual U15255EJ1VOUM 9

4.9 Other Control INSTFUCHIONSccccciciricsssnsnsssnsssssnnsnnsnnnnnnnn 192

CHAPTER 5 IMAGCROSccoeiiiitiiieeeeesiiirrrsssemsssssee e sansssssssee s asanssssssseenesnnsnssssssssssnsnnsssssseesssnnnnnnsnssnnnes 193
5.1 OVEIVIEW Of IVIACIOSceeeveeeeeeeeeeereterseeseseeesessssserssesssssesssnsnsnsnsnsnns 193

LT UL (][22 Y1 ToT o o3 1 Tt o Y- N 194

L3 2 B Y, = Vod o X (=Y i1 011 1] o N 194

oI R Y - Tol (ol =1 (= (=T ot YRS 195

5.2.3 MAaCIO EXPANSION....ceiiiutreiiiireie ettt e sereeeesree e e e et e e ssse e e s asreeesaasre e e aane e e e s nneeeeaanreesannneesannneesannreeenanne 196

5.3 Symbols Within MacCroOS.......c.cucceiiiiimiiiiisrins s s s s n s e an s s s san s s e an e e mnnnnas 197

LI S 11 F- Vo o T 0 oY= 1 o T 200
CHAPTER 6 PRODUCT UTILIZATIONciiiiieieeiiiiiiisssmssssssiissssssssssssssssssssssssssssemsssnssssssssssssssnnssssssnnns 202
APPENDIX A LIST OF RESERVED WORDSccooeeiiiiiiiisssmesssiisisssssssssssssssssssssnssssssssessssnsnnsssssssssnnns 204
APPENDIX B LIST OF DIRECTIVESccceeeeeiiiiiiiiessmsssssiieisssssssssssssisssssssssssssssssssssnssssssssessssnsnnssssssssannen 205
APPENDIX C MAXIMUM PERFORMANCE CHARACTERISTICS........eeeeeeeeeeeeneennnennennnnnnnnnnnnnnnnnnnes 207
APPENDIX D INDEX ...iiceuiiteeuuiimmmsuirrsmsssisssnssssssnsssssssssssssssssssssssssssssnsssssssssssssssssssssnssssssnsssssssnsssssnnsssssnnnns 208

10 User's Manual U15255EJ1VOUM

LIST OF FIGURES

Figure No. Title Page
1-1 RAT8K4 ASSEMDIET PACKAGEccii ittt ettt e et e e e e e e st e e e e e e e e st b aseeeeeessssbeeeeeaeeesnnssnees 13
12 FIOW OF ASSEIMDIE ...ttt e oottt e e e e e e e a b teeeeeae e e e e s aeeeeeeaaeeasbeeeaaaeeeaannnsnseeaaaesaannnnnn 14
1-3 Development Process of Products Employing MiCroCONTrOIIErS...........coociiiiiiiiee e 15
L S oY1 Y=Y o g o] NV o gl T o TW o o 1 o TSP UUUUPRURRRIN 17
1-5 Program Development Using EXiStiNg MOAUIE.............cuuviiiiiie it e e 17
2-1 Configuration of SOUICE MOAUIE............ooiiiiiiiieie et e e e e e e e e e e st e e e e e s e s snsbaaeeeaeeesennnnnees 21
2-2 Overall Configuration of SOUICE MOUIEcoouiiiiiiii e e 24
2-3 Examples of Source Module ConfigUrationSoooiuiiiiiiee e e e e e e e e e e e e e e enrnees 24
2-4 Configuration of SAmMPIE Programouoiiiiiiiiiee ettt e e e et e s 25
2-5 Fields That Make Up @ STat@mMeNt.........cooooiiiiiiiiiieee e e e e e e e e e e e e e e e snnanees 28
3-1 Memory LOCation Of SEOMENTSuiiiiiiiiii et e e e e e et e e e e e e st s ee e e e e s nnsbaeeeaaeeeannsneees 82
3-2 Relocation of COUE SEIMENT.........oi et e e s et sat e e aer e e e anr e e s aneeas 83
3-3 Relocation of Data SEGMENT........cooii et e e e e e e e e e e e e s st a e e e e e eabraaeaaeeeaeannraes 87
3-4 Relocation of Bit SEgMENT ..ot 91
3-5 Location of ADSOIULE SEGMENT..........uiiiiiiiii et e e et e e e e e e s et b e e e e e e satbaaeeaaeeeseennnrees 96
3-6 Relationship of Symbols Between TWO MOAUIEScocuiiiiiiiiiiiiiceee e 116

User's Manual U15255EJ1VOUM 1

LIST OF TABLES

Table No. Title Page
1-1 Maximum Performance CharacteristiCs Of ASSEMDIET.........coi i iiiiiieee et 18
1-2 Maximum Performance Characteristics Of LINKET..........ccuiiiiiiiiiiiie e 19
2-1 Instructions That Can Be Described in Module HEAdErcociiiiiiiiiiiiiiii et 22
P 14 oTo] B Y/ o= S SO TOUUOURTOPRTOPROTRNt 32
2-3 Names of Segments Automatically Generated by ASSEMDIET..........coociiiiiiiiiiiii e 34
2-4 Symbol AHDULES @GN VAIUESeeeiiiiiiieeiee ettt ettt b et et b e et e e s et e e sae e e sbeeesan e e snneenanee e 35
2-5 Methods of Representing NUMENC CONSIANTS.......cuuiiiiiiiiieiieee e e e 38
2-6 Special Characters That Can Be Described in Operand Field...........ccooiiiiiiiiiiiiiicee e 40
P2 A B o 1T o) @] o 1= = | (o] = J PSSP PRSP 44
2-8 Order of Precedence Of OPEIAtOrSooiuiiiiiiiiieiiee ettt ettt ettt et e sbe e st e e sbe e e sate e shbeesaneesbeeensneesbneesaneee 45
2-9 Types Of RelOCAtION ATIIDULEScoiiiiiiii it e e e e e s st ee e e s ane e e s naneeeean 61
2-10 Combinations of Terms and Operators by Relocation AtHDULEcooeeiiiiiiiiiiie e 62
2-11 Combinations of Terms and Operators by Relocation Attribute (External Reference Terms)ccccceeviuveennn. 64
2-12 Types of Symbol Attributes in OPEIratioNSooeiiiiiiiiiie et sie e saeeesane e 65
2-13 Combinations of Terms and Operators by Symbol AftrDULEoooriiiii e 66
2-14 Combinations of 1st and 2nd Terms by Relocation AttribULe...........coiiiiiii i 69
2-15 Values Of Bit SYMDOIS ...ttt sttt et e e e st et e s e bt e e e s b bt e e e anbbe e e snneeeeanneeeean 69
2-16 Ranges of Operand Values of INSTIUCHIONSocuiiiiiiiiiiii et 71
2-17 Ranges of Operand Values Of DIrECHVES.uiiiiiiiii e 72
2-18 Attributes Of INSTrUCHION OPEIANGScoiuiiiiiie ettt et ettt e st e sa b e e sae e e sbeeesaneesbneesanee e 76
2-19 Properties of Described Symbols as Operands Of DIr€CHVEScoiiiuieiiiiiieiiiiiee e 78
I I I o) B =T V= TP PP P TP URTOPRPPROTR 80
3-2 Segment Definition Methods and Memory Address LOCAtIONcccueiiierriiiierieeiieesiee e 81
3-3 Relocation AHNDULES OFf CSEGi.......ccuoiiiiiice e e sre e e 84
3-4 Default Segment Names Of CSEGcc.eiiiiiiiiiiiiieiee ettt sttt et e e bt e s beeesbe e e beeesaeeesbeeenanee e 85
3-5 Relocation AHNDULES OF DSEGi........c.eiiiiiiiiii e et sae e 88
3-6 Default Segment Names Of DSEGc.coiuiiiiiiiiiieiee ittt ettt e bt e st e e bt e e s beeesbe e e beeenseeesbneenanee e 89
3-7 Relocation AHNDUIES Of BSEGciiiiiiiiieiiie ettt sttt st e e sreeesaee e 92
3-8 Default Segment Names of BSEGooiiiiiiiiiiii ettt sneeesae e e 94
3-9 Representation Formats of Operands Indicating Bit ValUEscoooiiiiiiiiiiiiiiiice e 101
3-10 Absolute Names and Function Names of General-Purpose RegiSters.ccociriiiaiiiiniiieniee e 130
4-1 List Of CONIOl INSIIUCHIONS.eiiiieiieeeiiiie et ee e e e et e e ee e e st e e e e ante e e e e neeeesasseeeeanseeeesnseeeeanseeeesansenennnn 151
4-2 Control Instructions and ASSEMDIEr OPtIONSccciiiiiiiiiiie et e e e e e e e e e s e e e e e e s seanseeeeeas 152
12 User's Manual U15255EJ1VOUM

CHAPTER 1 GENERAL

This chapter describes the role of the RA78K4 in microcontroller software development and the features of the
RA78K4.

1.1 Assembler Overview

The RA78K4 Assembler Package is a generic term for a series of programs designed to translate source
programs coded in the assembly language for 78K/IV Series microcontrollers into machine language coding.

The RA78K4 contains six programs: a structured assembler preprocessor, assembler, linker, object converter,
librarian, and list converter.

In addition, a project manager that helps perform a series of operations including editing, compiling/assembling,
linking, and debugging programs on Windows is also supplied with the RA78K4.

This project manager is supplied with an editor (idea-L editor).

Figure 1-1. RA78K4 Assembler Package

Structured assembler preprocessor

Assembler

Linker

Object converter

RA78K4 assembler package

Librarian

List converter

Project manager

idea-L editor

User's Manual U15255EJ1VOUM 13

CHAPTER 1 GENERAL

1.1.1 What is an assembler?

(1

14

Assembly language and machine language

An assembly language is the most fundamental programming language for a microcontroller.

For a microcontroller to do its job, programs and data are required. These programs and data must be written by
people (i.e., programmers) and stored in the memory section of the microcontroller. The programs and data
handled by the microcontroller are collections of binary numbers called machine language. For programmers,
however, machine language code is difficult to remember, causing errors to occur frequently. Fortunately,
methods exist whereby English abbreviations or mnemonics are used to represent the meanings of the original
machine language codes in a way that is easy for people to comprehend. A programming language system that
uses this symbolic coding is called an assembly language.

Since the microcontroller must handle programs in machine language form, another program is required that
translates programs created in assembly language into machine language. This program is called an

assembler.
Figure 1-2. Flow of Assembler
Program written in Program coded in
assembly language sets of binary

—>

(Source module file) (Assembler) (Object module file)

User's Manual U15255EJ1VOUM

CHAPTER 1 GENERAL

(2) Development of products employing microcontrollers and role of RA78K4

Figure 1-3 Development Process of Products Employing Microcontrollers illustrates the position of
assembly-language programming in the (software) product development process.

Figure 1-3. Development Process of Products Employing Microcontrollers

C Product planning)

Hardware System design Software
development development

Logic design Software design
Manufacturing Program coding in

assembly language

Inspection A bl = Position of
ssemby RA78K4
NO
OK NO
YES YES
Debugging
NO
> YES

System evaluation

C Product marketing)

User's Manual U15255EJ1VOUM 15

CHAPTER 1 GENERAL

1.1.2 What is a relocatable assembler?

The machine language translated from a source language by the assembler is stored in the memory of the
microcontroller before use. To do this, the location in memory where each machine language instruction is to be
stored must already be determined. Therefore, information is added to the machine language assembled by the
assembler, stating where in memory each machine language instruction is to be located.

Depending on the method of allocating addresses to machine language instructions, assemblers can be broadly
divided into absolute assemblers and relocatable assemblers.

e Absolute assembler
An absolute assembler allocates machine language instructions assembled from the assembly language to
absolute addresses.

¢ Relocatable assembler
In a relocatable assembler, the addresses determined for the machine language instructions assembled from
the assembly language are tentative. Absolute addresses are determined subsequently by a program called
the linker.

In the past, when a program was created with an absolute assembler, programmers generally had to complete
programming at the same time. However, if all the components of a large program are created at the same time, the
program becomes complicated, making analysis and maintenance of the program troublesome. To avoid this, such
large programs are developed by dividing them into several subprograms, called modules, for each functional unit.
This programming technique is called modular programming.

A relocatable assembler is an assembler suitable for modular programming.

The following advantages can be derived from modular programming with a relocatable assembler:

(1) Increase in development efficiency
It is difficult to write a large program all at the same time. In such cases, dividing the program into modules for
each function enables two or more programmers to develop subprograms in parallel to increase development
efficiency.
Furthermore, if any bugs are found in the program, it is not necessary to assemble the entire program just to
correct one part of the program; the bug can be corrected by assembling only the module that must be
corrected. This shortens debugging time.

16 User's Manual U15255EJ1VOUM

CHAPTER 1 GENERAL

Bugs
are
found!

Program consisting of a

single module

Figure 1-4. Reassembly for Debugging

more modules

Module

XXXX

Module
Entire Module
program EI%QS
must be found!
assembled HXXXX
again. Module
Module

(2) Utilization of resources
Highly reliable, highly versatile modules that have been previously created can be utilized for the creation of
another program. By accumulating such highly versatile modules as software resources, considerable time and

labor can be saved in developing a new program.

Module A |

Program consisting of two or

Only this
module needs
to be
assembled
again.

Figure 1-5. Program Development Using Existing Module

| Module B | | Module C
| New module |
=I Module A |
| New module |
| Module D l:

| Module D

New program

User's Manual U15255EJ1VOUM

17

CHAPTER 1 GENERAL

1.2 Reminders Before Program Development

Before beginning to develop a program, keep the following points in mind.

1.2.1 Maximum performance characteristics of RA78K4

(1) Maximum performance characteristics of assembler

Table 1-1. Maximum Performance Characteristics of Assembler

Item

Maximum Performance Characteristics

PC Version

WS Version

Number of symbols (local + public)

65,535 symbols"®*®’

65,535 symbols"®*®’

Number of symbols for which cross-reference list can be output

65,534 symbols"°®2

65,534 symbols"°®2

Maximum size of macro body for one macro reference

1 MB

1 MB

Total size of all macro bodies

10 MB

10 MB

Number of segments in one file

256 segments

256 segments

Macro and include specifications in one file 10,000 10,000
Macro and include specifications in one include file 10,000 10,000
Relocation data"*'®* 65,535 items 65,535 items
Line number data 65,535 items 65,535 items

Number of BR directives in one file

32,767 directives

32,767 directives

Number of characters per line

2,048 characters™*

2,048 characters™®**

Symbol length

256 characters

256 characters

Number of definitions of switch name"°*®

1,000

1,000

Character length of switch name™**®®

31 characters

31 characters

Number of nesting levels on include file in one file

8 levels

8 levels

Notes 1.
2.
3.

18

XMS is used. If there is no XMS, a file is used.

Memory is used. If there is no memory, a file is used.

"Relocation data" is the data transferred to the linker when the assembler cannot decide the symbol
values.

For example, when referring to an external reference symbol by a MOV instruction, two items of
relocation data are generated in the .rel file.

This includes the carriage return and feed codes. If 2,049 characters or more are described on a line,
a warning message is output and the 2,049th and subsequent characters are ignored.

The switch name is set to true or false by SET/RESET directives and used with $IF, etc.

User's Manual U15255EJ1VOUM

CHAPTER 1 GENERAL

(2) Maximum performance characteristics of linker

Table 1-2. Maximum Performance Characteristics of Linker

Item Maximum Performance Characteristics
PC Version WS Version
Number of symbols (local + public) 65,535 symbols 65,535 symbols
Line number data of same segment 65,535 items 65,535 items

Number of segments

65,535 segments

65,535 segments

Number of input modules

1,024 modules

1,024 modules

User's Manual U15255EJ1VOUM

19

CHAPTER 1 GENERAL

1.3 Features of RA78K4

(1

()

3)

(4)

20

The RA78K4 has the following features.

Macro function

When the same group of instructions must be described in a source program over and over again, a macro can
be defined by giving a single macro name to the group of instructions.

By using this macro function, the coding efficiency and readability of the program can be increased.

Optimize function of branch instructions

The RA78K4 has a directive to automatically select a branch instruction (BR directive).

To create a program with high memory efficiency, a byte branch instruction must be described according to the
branch destination range of the branch instruction. However, it is troublesome for the programmer to describe a
branch instruction by paying attention to the branch destination range for each branching. By describing the BR
directive, the assembler generates the appropriate branch instruction according to the branch destination range.
This is called the optimize function of branch instructions.

Conditional assembly function

With this function, a part of a source program can be specified for assembly or non-assembly according to a
predetermined condition.

If a debug statement is described in a source program, whether or not the debug statement should be translated
into machine language can be selected by setting a switch for conditional assembly. When the debug statement
is no longer required, the source program can be assembled without major modifications to the program.

General-purpose register name selection function

General-purpose registers can be described in terms of absolute names (RO, R1, RPO, etc.) and function names
(X, A, AX, etc.). When describing function names in a source program, always describe the general-purpose
register selection directive (RSS directive).

The RSS directive makes it possible to describe function names as general-purpose register identifiers in a
source program.

User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

This chapter describes the description methods, description formats, expressions and operators of the source
program.

2.1 Basic Configuration of Source Program

When a source program is described by dividing it into several modules, each module that becomes the unit of
input to the assembler is called a source module (if a source program consists of a single module, “source program”
means the same as “source module”).

Each source module that becomes the unit of input to the assembler consists mainly of the following three parts.

<1> Module header
<2> Module body

<3> Module tail

Figure 2-1. Configuration of Source Module

Module header

Module body

Module tail

User's Manual U15255EJ1VOUM 21

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.1.1 Module header

In the module header, the control instructions shown in Table 2-1 Instructions That Can Be Described in
Module Header below can be described. Note that these control instructions can only be described in the module
header.

Also, the module header can be omitted.

Table 2-1. Instructions That Can Be Described in Module Header

Item That Can Be Described Explanation Chapter/Section in This
Manual
Control instructions that have the Control instructions that have the same functions as CHAPTER 4 CONTROL
same functions as assembler assembler options are as follows: INSTRUCTIONS
options ¢ PROCESSOR

o XREF/NOXREF

o DEBUG/NODEBUG/DEBUGA/NODEBUGA
e TITLE

e SYMLIST/NOSYMLIST

¢ FORMFEED/NOFORMFEED

e WIDTH

e LENGTH

e TAB

¢ CHGSFR/CHGSFRA

Special control instructions output | Special control instructions output by high-level programs
by high-level programs such as C | such as C compiler and structured assembler preprocessor

compiler and structured are as follows:
assembler preprocessor e TOL_INF

e DGS

e DGL

22 User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.1.2 Module body

In the module body, the following instructions cannot be described.
¢ Control instructions that have the same functions as assembler options
All other directives, control instructions, and instructions can be described in the module body.

The module body must be described by dividing it into units, called “segments”.
The user may define the following four segments with a directive corresponding to each segment.

<1> Code segment............ Must be defined with the CSEG directive.
<2> Data segment............. Must be defined with the DSEG directive.
<3> Bitsegment................ Must be defined with the BSEG directive.

<4> Absolute segment....... Must be defined by specifying a location address for the relocation attribute (AT
location address) with the CSEG, DSEG, or BSEG directive. This segment may also
be defined with the ORG directive.

The module body may be configured with any combination of segments.
However, a data segment and a bit segment should be defined before a code segment.

User's Manual U15255EJ1VOUM 23

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.1.3 Module tail

The module tail indicates the end of the source module. The END directive must be described in this part.
If anything other than a comment, a blank, a tab, or a line feed code is described following the END directive, the
assembler will output a warning message and ignore the characters described after the END directive.

2.1.4 Overall configuration of source program

The overall configuration of a source module (source program) is as shown below.

Figure 2-2. Overall Configuration of Source Module

Control instruction(s) that have the
same function(s) as assembler Module header
option(s)

Directive(s)

Control instruction(s) Module body
Instruction(s)
END directive Module tail

Examples of simple source module configurations are shown in Figure 2-3.

Figure 2-3. Examples of Source Module Configurations

Module header $ PROCESSOR (4038) $ PROCESSOR (4038)
VECT CSEG AT OH FLAG BSEG
Module body MAIN CSEG WORK DSEG
SUB CSEG
Module tail END END

24 User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.1.5 Description example of source program
In this section, a description example of a source module (source program) is shown as a sample program.
The configuration of the sample program can be illustrated simply as follows.
Figure 2-4. Configuration of Sample Program

<Module name SAMPM>

NAME SAMPM

DATA DSEG AT OFFD20H
Variable definition

<Module name SAMPS>
CODE CSEG AT OH
MAIN: DW START NAME SAMPS

CSEG

START: CSEG

CONVAH :

CALL !CONVAH

CALL !SASC

END RET

END

This sample program was created by dividing a single source program into two modules. The module “SAMPM” is
the main routine of this program and the module “SAMPS” is a subroutine to be called within the main routine.

User's Manual U15255EJ1VOUM 25

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

<Main routine>

NAME SAMPM ; (1)
;**
i * *
;* HEX -> ASCII Conversion Program *
i * *
;* main-routine *
* *

;**

PUBLIC MAIN, START ; (2)
EXTRN CONVAH ; (3)
DATA DSEG AT OFFD20H ; (4)
HDTSA: DS 1
STASC: DS 2
CODE CSEG AT OH ; (5)
MAIN: DW START
CSEG ;i (6)
LOCATION 15
START: MOV RFM, #00
MOVG SP, #0FFE0OOH
MOV MM, #00
MOV STBC, #08H
MOV HDTSA, #1AH
MOVG WHL, #HDTSA ;set hex 2-code data in WHL register
CALL CONVAH ;convert ASCII <- HEX
;output BC-register <- ASCII code
MOVG TDE, #STASC ;set DE <- store ASCII code table
MOV A,B
MOV [TDE+] ,A
MOV A,C
MOV [TDE+] ,A
BR SS
END i (7)

(1) Declaration of module name

(2) Declaration of symbol referenced from another module as an external definition symbol

(3) Definition of a symbol defined in another module as an external reference symbol

(4) Declaration of the start of a data segment (to be located as an absolute segment starting from address
OFFD20H)

(5) Declaration of the start of a code segment (to be located as an absolute segment starting from address OH)
(6) Declaration of the start of the code segment (meaning the end of the absolute segment)

(7) Declaration of the end of the module

26 User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

<Subroutine>

NAME SAMPS ;(8)
;**
;* *
i HEX -> ASCII Conversion Program *
;* *
P sub-routine *
;* *
;* input condition : (HL) <- hex 2 code *
;* *
i * output condition ; BC-register <-ASCII 2 code *
;* *
;**
PUBLIC CONVAH i (9)
CSEG ; (10)
CONVAH: MOV A, #0
ROL4 [WHL] ;hex upper code load
CALL S ISASC
MOV B,A ;store result
MOV A, #0
ROL4 [WHL] ;hex lower code load
CALL $1SASC
MOV C,A ;store result
RET
;**
;* subroutine convert ASCII code *
P input Acc (lower 4bits) <- hex code *
i * output Acc <- ASCII code *
;**
SASC: CMP A, #0AH ;jcheck hex code > 9
BC $SASC1
ADD A, #07H ;bias (+7)
SASC1l: ADD A, #30H ;bias (+30)
RET
END ; (11)
8) Declaration of module name

)
) Declaration of symbol referenced from another module as an external definition symbol
0) Declaration of the start of the code segment

1) Declaration of the end of the module

User's Manual U15255EJ1VOUM

27

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.2 Description Format of Source Program

2.2.1 Configuration of statements

A source program consists of statements.
Each statement consists of the four fields shown in Figure 2-5 Fields That Make Up a Statement.

Figure 2-5. Fields That Make Up a Statement

Statement & Symbol field Mnemonic field Operand field Comment field [CR] LF

<1>

<2>

<3>

<4>

T |

<1> <2> <3> <4>

The symbol field and the mnemonic field must be separated from each other with a colon (:) or one or more
blanks or tabs (it depends on the instruction described in the mnemonic field whether colons or blanks are
used).

The mnemonic field and the operand field must be separated from each other with one or more blanks or
tabs. Depending on the instruction described in the mnemonic field, the operand field may not be required.
The comment field if used must be preceded with a semicolon (;).

Each line must be delimited with an LF code (one CR code may exist immediately before the LF code).

A statement must be described within a line. A maximum of 2,048 characters (including CR and LF) can be
described per line.

Each TAB or independent CR is counted as a single character. If 2,049 or more characters are described, a
warning message is output and the 2,049th and subsequent characters are ignored. However, 2,049 or more
characters will be output to the assembly list.

An independent CR will not be output to the assembly list.

The following lines may also be described.

e Dummy line (line without statement description)
e Line consisting of the symbol field alone
¢ Line consisting of the comment field alone

28

User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.2.2 Character set
Characters that can be described in a source file are classified into the following three types.
e Language characters

e Character data
e Comment characters

(1) Language characters
Language characters are characters used to describe instructions in a source program. The language character

set includes alphabetic, numeric, and special characters.

[Alphanumeric Characters]

Name Characters
Numeric characters 0 1 2 3 4 5 6 7 8 9
Alphabetic Uppercase A B CDEFGHI J KL MNOPQRSTWU
characters letters vV WX Y Z
Lowercase a b c de f ghi j kI mnopggr s t u
letters w X Yy

User's Manual U15255EJ1VOUM 29

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

[Special Characters]

Character Name Main Use
? Question mark Symbol equivalent to alphabetic characters
@ Circa Symbol equivalent to alphabetic characters
_ Underscore Symbol equivalent to alphabetic characters
Blank Delimiter Delimiter of each field
HT (09H) Tab code symbols Character equivalent to blank
, Comma Delimiter of operands
Colon Delimiter of labels
; Semicolon Symbol indicating the start of the Comment field
CR (ODH) Carriage return code Symbol indicating the end of a line (ignored in the assembler)
LF (OAH) Line-feed code Symbol indicating the end of a line
+ Plus sign Assem- ADD operator or positive sign
- Minus sign bler SUBTRACT operator or negative sign
* Asterisk operators MULTIPLY operator
/ Slash ¢ DIVIDE operator
e Symbol indicating that operands with / are operated after
reversing 0 and 1 to 1 and 0.
. Period Bit position specifier
(,) Left and right parentheses Symbols specifying the order of arithmetic operations to be
performed
<,> Not Equal sign Relational operators
= Equal sign Relational operator
! Single quotation mark e Symbol indicating the start or end of a character constant
e Symbol indicating a complete macro parameter
$ Dollar sign e Symbol indicating the location counter
e Symbol indicating the start of a control instruction equivalent to an assembler
option
e Symbol specifying relative addressing
$! Dollar sign and Symbol specifying relative (16-bit expression) addressing
exclamation point
& Ampersand Concatenating symbol (used in macro body)
Sharp sign Symbol specifying immediate addressing
! Exclamation point Symbol specifying absolute addressing
1 Two exclamation points Symbol indicating the start of absolute addressing in a 16-bit space range
[%] Brackets and percent sign | Symbol indicating an indirect 3-byte operation
[] Brackets Symbol specifying indirect addressing
30 User's Manual U15255EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

(2) Character data

3)

“Character data” refers to characters used to describe string constants, character strings, and control
instructions (TITLE, SUBTITLE, INCLUDE).

[Character set for character data]

o All characters except “00H” can be used, codes may be different depending on the operating system. If “00H”
has been described, an error will result and subsequent characters before the closing single quotation mark
() will be ignored.

o [f any illegal character has been described, the assembler will replace the illegal character with “I” for output
to the assembly list (an independent CR (ODH) code will not be output to the assembly list).

o With Windows, the assembler interprets the code “1AH” as the end of the file (EOF) and thus the code cannot
be a part of the input data.

Comment characters
“Comment characters” refers to characters used to describe a comment statement.

[Character set for comments]

e Characters that can be used in a comment statement are the same as those in the character set for character
data. However, no error will result even if the code “00H” has been described. Instead, the assembler will
output the illegal character to the assembly list replacing it with “!”.

User's Manual U15255EJ1VOUM 31

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.2.3 Fields that make up a statement

This subsection details the respective fields that make up a statement.

(1) Symbol field

Statement &) Symbol field Mnemonic field Operand field Comment field

A symbol is described in the symbol field. The term “symbol” refers to a name given to numerical data or an
address.
By using symbols, the contents of a source program can be understood more easily.

[Symbol types]
Symbols are classified into the types shown in Table 2-2, depending on their use and method of definition.

Table 2-2. Symbol Types

Symbol Type Use Method of Definition

Name Used as numerical data or an address in a This type is described in the symbol field of the
source program. EQU, SET, or DBIT directive.

Label Used as address data in a source program. This type is defined by suffixing a colon (:) to a

symbol.

External reference name Used to reference a symbol defined by a This type is described in the operand field of the
module by another module. EXTRN or EXTBIT directive.

Segment name Symbol used during linker operation This type is defined in the symbol field of the

CSEG, DSEG, BSEG or ORG directive.

Module name Used during symbolic debugging This type is described in the operand field of the
NAME directive.
Macro name Used for macro reference in a source This type is described in the symbol field of the
program. MACRO directive.

32 User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

[Conventions of symbol description]

All symbols must be described according to the following rules.

<1> A symbol must be made up of alphanumeric characters and special characters (?, @, and _) that can be
used as characters equivalent to alphabetic characters.
None of the numerals 0 to 9 can be used as the first character of a symbol.

<2> A symbol must be made up of not more than 31 characters. Characters in excess of the maximum symbol
length will be ignored.

<3> No reserved word can be used as a symbol. Reserved words are indicated in APPENDIX A LIST OF
RESERVED WORDS.

<4> The same symbol cannot be defined more than once (however, a name defined with the SET directive can
be redefined with the SET directive).

<56> The assembler distinguishes between lowercase and uppercase characters.

<6> When describing a label in the Symbol field, “:” (colon) must be described immediately after the label.

(Examples of correct symbol descriptions)

CODEO1 CSEG ; “CODEO01” is a segment name.
VARO1 EQU 10H ; “VARO1” is a name.
LABO1: DW 0 ; “LABO1” is a label.

NAME SAMPLE ; “SAMPLE” is a module name.

MAC1 MACRO ; “MAC1” is a macro name.

(Examples of incorrect symbol descriptions)

1ABC EQU 3 ; A numeral cannot be used as the 1st character of a
symbol.
LAB MOV A, RO ; “LAB” is a label and must be separated from the Mnemonic

field with a colon (:).
FLAG: EQU 10H ; A colon (:) is not necessary in a name.

(Example of a symbol that is too long)

Al123456789B12 ~Y1234567890123456 EQU 70H

250 ; Character “6”, which is in excess of the maximum symbol length (256

characters) is ignored. The symbol will be defined as
“A123456789B12 ~ Y123456789012345".

(Example of a statement composed of a symbol only)
ABCD: ; “ABCD” will be defined as a label.

[Cautions about symbols]

The symbol “??RAnnnn (n = 0000 to FFFF)” is a symbol that is automatically replaced by the assembler every
time a local symbol is expanded inside a macro body. Be careful not to define this symbol twice.

When a segment name is not specified by a segment definition directive, the assembler generates a segment
name automatically. These segments are shown in Table 2-3 Names of Segments Automatically Generated
by Assembler.

Duplicate segment name definition causes an error.

User's Manual U15255EJ1VOUM 33

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Table 2-3. Names of Segments Automatically Generated by Assembler

Segment name Directive Relocation Attribute
?An ORG directive n = 000000 to FFFFFF
?CSEG CSEG directive UNIT
?CSEGTO CALLTO
?CSEGFX FIXED
?CSEGFXA FIXEDA
?CSEGB BASE
?CSEGP PAGE
?CSEGP64 PAGE64K
?DSEG DSEG directive UNIT
?DSEGS SADDR
?DSEGSP SADDRP
?DSEGS2 SADDR2
?DSEGSP2 SADDRP2
?DSEGSA SADDRA
?DSEGDT DTABLE
?DSEGDTP DTABLEP
?DSEGP PAGE
?DSEGP64 PAGE64K
?DSEGG GRAM
?BSEG BSEG directive UNIT
?BSEGUP UNITP
?BSEGS SADDR
?BSEGSP SADDRP
?BSEGS2 SADDR2
?BSEGSP2 SADDRP2
?BSEGSA SADDRA
?BSEGG GRAM

[Symbol attributes]

All names and labels have both a value and an attribute.

The value refers to the value of defined numerical data or address data itself.

Segment names, module names, and macro names do not have a value.
The attribute of a symbol is called a symbol attribute and must be one of the eight types indicated in Table 2-4

Symbol Attributes and Values.

34

User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Table 2-4. Symbol Attributes and Values

Attribute Type Classification Value
NUMBER ¢ Names to which numeric constants are assigned Decimal representation:
¢ Symbols defined with the EXTRN directive 0 to 65535
¢ Numeric constants Hexadecimal
ADDRESS « Symbols defined as labels representation: OH to FFFFH
¢ Names defined as labels with EQU and SET directives
BIT ¢ Names defined as bit values saddr area
¢ Names within BSEG
¢ Symbols defined with the EXTBIT directive
CSEG Segment names defined with the CSEG directive These attribute types have no
DSEG Segment names defined with the DSEG directive value.
BSEG Segment names defined with the BSEG directive
MODULE Module names defined with the NAME directive (a module name if
not defined is created from the primary name of the input source
filename)
MACRO Macro names defined with the MACRO directive
Examples
TEN EQU 10H ; Name “TEN” has attribute “NUMBER” and value “10H”.
ORG 80H
START: MOV A, #10H ; Label “START” has attribute “ADDRESS” and value “80H”.
BIT1 EQU OFE20H.0 ; Name “BIT1” has attribute “BIT” and value “OFE20H.0”.

User's Manual U15255EJ1VOUM

35

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

(2) Mnemonic field

Statement & Symbol field Mnemonic field Operand field Comment field

In the mnemonic field, a mnemonic instruction, a directive, or a macro reference is described.

For an instruction or directive requiring an operand or operands, the mnemonic field must be separated from the
operand field with one or more blanks or tabs.

However, for the first operand of an instruction that begins with “#”, “$” ,“I”, “”, “[%", “&”, “II", or “$!”, assembly will
be executed properly even if nothing exists between the mnemonic field and the first operand field.

(Examples of correct descriptions)

MOV A, #0H
CALL ! CONVAH
RET

(Examples of incorrect descriptions)

MOVA #0H ; No blank exists between the mnemonic and operand fields.
C ALL ! CONVAH ; A blank exists within the mnemonic field.
727 ; The 78K/IV Series has no such instruction as “ZZZ".

36 User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

(3) Operand field

Statement = Symbol field Mnemonic field Operand field Comment field

In the operand field, the data (operands) required for executing the instruction, directive, or macro reference is
described.

Depending on the instruction or directive, no operand is required in the operand field or two or more operands
must be described in the operand field.

When describing two or more operands, delimit each operand with a comma (,).

The following types of data can be described in the operand field.

¢ Constants

e Character strings

o Register names

e Special characters

* Relocation attribute names of segment definition directives
e Symbols

e Expressions

e Bit terms

e Macro service control word

The size and attribute of the required operand may differ depending on the instruction or directive. Refer to 2.5
Characteristics of Operands for the sizes and attributes of operands.

For the operand representation formats and description methods in the instruction set, see the user’'s manual of
the microcontroller for which software is being developed.

Each of the data types that can be described in the operand field is detailed below.

[Constants]

A constant is a fixed value or data item and is also referred to as immediate data.

Constants are divided into numeric constants and character-string constants.

e Numeric constants
A binary, octal, decimal, or hexadecimal number can be described as a numeric constant. The method of
representing each numeric constant type is shown in Table 2-5 below.
A numeric constant will be processed as unsigned 24-bit data.

Value range: 0 <n < 16,777,215 (OFFFFFFH)

When describing a negative value, use the minus sign of the operator.

User's Manual U15255EJ1VOUM 37

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Table 2-5. Methods of Representing Numeric Constants

Constant Method of Representation Example
Binary constant e Character “B” or “Y” is suffixed to a numerical value. 1101B
1101Y
Octal constant e Character “O” or “Q” is suffixed to a numerical value. 740
74Q
Decimal constant e A numerical value is described as is, or character “D” or “T” is suffixed to a 128
numerical value. 128D
128T
Hexadecimal e Character “H” is suffixed to a numerical value. 8CH
constant o |f the first character begins with “A”, “B”, “C”, “D”, “E”, or “F”, “0” must be 0A6H
prefixed to the constant.

e Character-string constants
A character-string constant is expressed by enclosing a string of characters from those shown in 2.2.2
Character set in a pair of single quotation marks (’).
As a result of an assembly process, the character-string constant is converted into 7-bit ASCII code with the
parity bit (MSB) set as “0”.
The length of a string constant is 0 to 3 characters.
To use the single quotation mark itself as a string constant, the single quotation mark must be input twice in
succession.

Examples of character-string constant descriptions:
‘A’ ; Represents “41H”
v ; Represents “20H”
e ; Represents “27H”
VTR ; Represents “2741H”
"'AA! ; Represents “274141H”

38 User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

[Character strings]

A character string is expressed by enclosing a string of characters from those shown in 2.2.2 Character set in a
pair of single quotation marks ('). Character strings are mainly used for operands in the DB directive and TITLE
or SUBTITLE control instruction.

e Application examples of character strings

CSEG
MAS1: DB 'YES' ; Initializes with character string “YES”.
MAS?2 : DB 'NO' ; Initializes with character string “NO”.

[Register names]
The following registers can be described in the operand field.

General-purpose registers
General-purpose register pairs
3-byte registers

Special function registers

General-purpose registers and general-purpose register pairs can be described with their absolute names (R0 to
R15 and RPO to RP7), as well as with their function names (X, A, B, C, D, E, H, L, AX, BC, DE, HL, VP, UP).

The register names that can be described in the operand field may be different depending on the type of
instruction. For details of the method of describing each register name, see the users manual of the
microcontroller for which software is being developed.

User's Manual U15255EJ1VOUM 39

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

[Special characters]
Special characters that can be described in the operand field are shown in Table 2-6 Special Characters That
Can Be Described in Operand Field.

Table 2-6. Special Characters That Can Be Described in Operand Field

Special Character Function

$ * Indicates the location address of the instruction having this operand (or the 1st byte of this address, in
the case of addresses with a multiple-byte instruction).
« Indicates a relative (8-bit) addressing mode for a Branch instruction or a Call instruction.

$! « Indicates a relative (16-bit) addressing mode for a Branch instruction or a Call instruction.

! * Indicates an absolute (16-bit) addressing mode for a Branch instruction or a Call instruction.
« Indicates the specification of addr16 which allows all memory space to be specified with an MOV
instruction.

! « Indicates a 24/20 absolute addressing mode for a Branch instruction or a Call instruction.
« Indicates the specification of addr24/addr20 which allows all memory space to be specified with an
MOV instruction.

Indicates immediate data.

[1] « Indicates indirect addressing mode.

[% 1] * Indicates indirect addressing mode and 3-byte instruction.

o Application examples of special characters
Address Source program

100 ADD R15, R1

101 LOOP: INC R1

103 BR $$-2 L<1>
106 BR 1$+100H ...<2>

<1> The second $ in the operand indicates address 103H. Describing “BR $LOOP” results in the same
operation.
<2> The second $ in the operand indicates address 106H.

[Relocation attributes of segment definition directives]
Relocation attributes can be described in the operand field.
For details of relocation attributes, refer to 3.2 Segment Definition Directives.

[Symbols]
If a symbol is described in the operand field, an address (or value) allocated to that symbol becomes the
operand value.

o Application examples of symbols

VALUE EQU 12345678H
MOVD RP0O,VALUE ; This description means the same as “MOV D RPO, 12345678H".

User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

[Expressions]

An expression is a constant, $ (which indicates a location address), or symbol connected with an operator.
An expression can be described where numeric values can be expressed as instruction operands.

For details of expressions and operators, refer to 2.3 Expressions and Operators.

o Examples of expressions
TEN EQU 10H
MOV A, #TEN-5H

In this example, “TEN-5H" is an expression.

In this expression, the name and numeric constant are connected with a — (minus) operator. The value of the
expression is BH.

Therefore, this description can be rewritten as “MOV A, #0BH”.

[Bit terms]
A bit term can be obtained by the bit position specifier. For details of bit terms, refer to 2.4 Bit Position
Specifier.

e Examples of bit terms
CLR1 A.5
SET1 1+0FE30H.3 ; The operand value is OFE31H.3.
CLR1 OFE40H.4+2 ; The operand value is OFE40H.6.

[Macro Service Control Word]
Refer to the user's manual of each device for the macro service control word which can be described in an
operand.

Caution The macro service control word is processed as an absolute value. Therefore, when the SFR
area change option (-CSA) or the SFR area change control instruction ($CHGSFRA) is
specified, it may not be possible to access the macro service control word using the direct
addressing instruction specified in the operand.

User's Manual U15255EJ1VOUM 41

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

(4)

Statement =) Symbol field Mnemonic field Operand field Comment field

42

Comment field

In the comment field, comments or remarks may be described following the input of a semicolon (;). The
comment field is from a semicolon to the line-feed code of that line or EOF. By describing a comment statement
in the comment field, an easy-to-understand source program can be created. The comment statement in the
comment field is not subject to assembler operation (i.e., conversion into machine language) but will be output
without change on an assembly list.

Characters that can be described in the comment field are those shown in 2.2.2 Character set.

User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

(Examples of comments)

NAME

.k
7

EXTRN

DATA DSEG
HDTSA: DS
STASC: DS

CODE CSEG
MAIN: DwW

CSEG

START: MOV
MOVG
MOV
MOV
MOV
MOVG

CALL

MOVG

MOV
MOV
MOV
MOV
BR

END

SAMPM

PR b R R R Sk kS A R R R R Sk S R S S R R R
7

*

P x HEX -> ASCII Conversion Program *

*

main-routine *

*

PR b R R R Ak kS A kS R S R Rk R R Rk R I
7

PUBLIC MAIN, START

CONVAH

AT OFFD20H
1
2

AT OH
START

LOCATION 15

RFM, #00

SP, #0FFEOOH

MM, #00

STBC, #08H

HDTSA, #1AH

WHL, #HDTSA ;jset hex 2-code data in WHL
register

CONVAH ;jconvert ASCITI <- HEX
;output BC-register <- ASCII
code

TDE, #STASC ;set DE <- store ASCII code
table

A,B

[TDE+],A

A,C

[TDE+],A

$$

User's Manual U15255EJ1VOUM

Lines consisting of
comment field only

Lines in which
comments are
described in

comment field

43

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.3 Expressions and Operators

An expression is a symbol, constant, location address (indicated by $) or bit term with an operator attached, or
combined by one or more operators.

Elements of an expression other than the operators are called terms, and are referred to as the 1st term, 2nd term,
and so forth from left to right, in the order of their description.

Operators are available in the types shown in Table 2-7 Types of Operators, and the order of their precedence
in calculation has been predetermined as shown in Table 2-8 Order of Precedence of Operators.

Parentheses “()" are used to change the order in which calculations are performed.

Example: MOV A, #5* (SYM+1) ;<1>

In <1> above, “s5* (SYM+1)” is an expression. “5” is the 1st term of the expression and “syM” and “1” are the 2nd
and 3rd terms respectively. “*”,“+”, and “()” are operators.

Table 2-7. Types of Operators

Type of Operator Operators
Arithmetic operators + sign, - sign, +, —, *, /, MOD
Logical operators NOT, AND, OR, XOR
Relational operators EQor=,NEor<> GTor> GEor>= LT or<, LE or <=
Shift operators SHR, SHL
Byte-separating operators HIGH, LOW
Word-separating operators HIGHW, LOWW
Special operators DATAPQS, BITPOS, MASK
Other operators ()

The above operators can also be divided into unary operators, special unary operators, binary operators, N-ary
operators, and other operators.

Unary operators: + sign, — sign, NOT, HIGH, LOW, HIGHW, LOWW

Special unary operators: DATAPOS, BITPOS

Binary operators: +, —, %, /, MOD, AND, OR, XOR, EQor=, NEor<>, GT or >, GE or >=, LT or <, LE or
<=, SHR, SHL

N-ary operators: MASK

Other operators: ()

44 User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Table 2-8. Order of Precedence of Operators

Lower

Priority Priority Operators
Level
Higher 1 + sign, — sign, NOT, HIGH, LOW, DATAPOS, BITPOS, MASK
2 * 1/, MOD, SHR, SHL
3 +, =
4 AND
5 OR, XOR
6

EQor=,NEor<>,GTor>, GEor>=, LT or <, LE or <=

Operations on expressions are performed according to the following rules.

<1>

<2>

<3>

<4>

<5>

<6>

Operations are performed according to the order of precedence given to each operator. If two or more
operators of the same order of precedence exist in an expression, the operation designated by the leftmost
operator will be carried out. In the case of unary operators, the operation will be performed from right to left.
An expression in parentheses is carried out before expressions outside the parentheses.

Operations between two or more unary operators are allowed.

Examples: 1=——1==
—1=—+1=-1

Expressions are calculated within 32 bits, without signs. If an overflow occurs in operation due to an
expression exceeding 32 bits, the overflowed value is ignored.

If a constant exceeds 24 bits (OFFFFFFH), an error will result and the value of the result will be regarded as
0 for calculation.

In division, the decimal fraction part of the result will be truncated. If the divisor is 0, an error will occur, and
the result will be 0.

2.3.1 Functions of operators

The functions of the respective operators are described in this section.

User's Manual U15255EJ1VOUM 45

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Arithmetic Operators Arithmetic Operators

(1) + (ADD) operator

[Function]
Returns the sum of the values of the 1st and 2nd terms of an expression.

[Application example]

ORG 100H
START: BR 1546 i (a)

[Explanation]
The BR instruction causes a jump to “current location address plus 6”, namely, to address “100H+6H=106H".
Therefore, (a) in the above example can also be described as: START: BR 1106H

(2) - (SUBTRACT) operator

[Function]
Returns the result of subtraction of the 2nd-term value from the 1st-term value.

[Application example]

ORG 100H
BACK: BR BACK-6H ;i (b)

[Explanation]

The BR instruction causes a jump to “address assigned to BACK minus 6”, namely, to address “100H-
6H=0FAH".

Therefore, (b) in the above example can also be described as: BACK: BR |0FAH

46 User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Arithmetic Operators

Arithmetic Operators

(3) *(MULTIPLY) operator

[Function]

Returns the result of multiplication (product) between the values of the 1st and 2nd terms of an expression.

[Application example]

TEN

EQU 10H

MOV A, #TEN*3

i (c)

[Explanation]

With the EQU directive, the value “10H” is defined in the name “TEN”".

“#” indicates immediate data. The expression “TEN*3” is the same as “10H*3” and returns the value “30H".

Therefore, (c) in the above expression can also be described as: MOV A,#30H

(4) / (DIVIDE) operator

[Function]

Divides the value of the 1st term of an expression by the value of its 2nd term and returns the integer part of the
result. The decimal fraction part of the result will be truncated. If the divisor (2nd term) of a division operation is

0, an error will result.

[Application example]

MOV

A,#256/50

I

[Explanation]

The result of the division “256/50” is 5 with remainder 6.

The operator returns the value “5” that is the integer part of the result of the division.
Therefore, (d) in the above expression can also be described as: MOV A,#5

User's Manual U15255EJ1VOUM

47

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Arithmetic Operators

Arithmetic Operators

®)

(6)

@

48

MOD (Remainder) operator

[Function]

Obtains the remainder in the result of dividing the value of the 1st term of an expression by the value of its 2nd

term.
An error will result if the divisor (2nd term) is 0.
A blank is required before and after the MOD operator.

[Application example]

MOV A,#256 MOD 50 ; (e)

[Explanation]

The result of the division “256/50” is 5 with remainder 6.

The MOD operator returns the remainder 6.

Therefore, (e) in the above expression can also be described as: MOV A #6.

+ sign

[Function]
Returns the value of the term of an expression without change.

[Application example]

FIVE EQU +5

[Explanation]
The value “5” of the term is returned without change.
The value “5” is defined in name “FIVE” with the EQU directive.

- sign

[Function]
Returns the value of the term of an expression by the two’s complement.

[Application example]

NO EQU -1

[Explanation]

—1 becomes the two’s complement of 1.

The two’s complement of binary 0000 0000 0000 0001
becomes: 1111 1111 1111 1111

Therefore, with the EQU directive, the value “OFFFFH” is defined in the name “NO”.

User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Logical Operators Logical Operators

(1)

)

NOT operator (negation)
[Function]
Negates the value of the term of an expression on a bit-by-bit basis and returns the result.

A blank is required between the NOT operator and the term.

[Application example]

MOVW AX, #NOT 3H ;i (a)

[Explanation]
Logical negation is performed on “3H” as follows:
NOT) 0000 0000 0000 0000 0000 0011

1111 1111 1111 1111 1111 1100
OFFFCH is returned.
Therefore, (a) can also be described as: MOVW AX, #0FFFCH

AND operator (logical product)

[Function]

Performs an AND (logical product) operation between the value of the 1st term of an expression and the value of
its 2nd term on a bit-by-bit basis and returns the result.

A blank is required before and after the AND operator.

[Application example]

MOV A,#6FAH AND OFH ; (b)

[Explanation]
AND operation is performed between the two values “6FAH” and “OFH” as follows:
0000 0000 0000 0110 1111 1010
AND) 0000 0000 0000 0000 0000 1111

0000 0000 0000 1010 0000 1010
The result 0AH is returned. Therefore, (b) in the above expression can also be described as: MOV A, #0AH

User's Manual U15255EJ1VOUM 49

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Logical Operators Logical Operators

)

4

50

OR operator (logical sum)

[Function]

Performs an OR (logical sum) operation between the value of the 1st term of an expression and the value of its
2nd term on a bit-by-bit basis and returns the result.

A blank is required before and after the OR operator.

[Application example]

MOV A,#0AH OR 1101B ; (c)

[Explanation]
OR operation is performed between the two values “0AH” and “1101B” as follows:
0000 0000 0000 0000 0000 1010
OR) 0000 0000 0000 0000 0000 1101

0000 0000 0000 0000 0000 1111
The result OFH is returned. Therefore, (c) in the above expression can also be described as: MOV A, #0FH

XOR operator (exclusive logical sum)

[Function]

Performs an exclusive-OR operation between the value of the 1st term of an expression and the value of its 2nd
term on a bit-by-bit basis and returns the result.

A blank is required before and after the XOR operator.

[Application example]

MOV A,#9AH XOR 9DH ; (d)

[Explanation]
XOR operation is performed between the two values “9AH” and “9DH” as follows:
0000 0000 0000 0000 1001 1010
XOR) 0000 0000 0000 0000 1001 1101

0000 0000 0000 0000 0000 0111
The result 7H is returned. Therefore, (d) in the above expression can also be described as: MOV A, #7H

User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Relational Operators Relational Operators

(1) EQ or = (equal) operator

[Function]

Returns OFFH (true) if the value of the 1st term of an expression is equal to the value of its 2nd term, and 00H
(false) if both values are not equal.

A blank is required before and after the EQ operator.

[Application example]

Al EQU 12C4H
A2 EQU 12C0H
MOV A,#A1 EQ (A2+4H) ; (a)
MOV X,#A1 EQ A2 ; (b)

[Explanation]

In (a) above, the expression “A1 EQ (A2+4H)” becomes “12C4H EQ (12COH+4H)”.

The operator returns OFFH because the value of the 1st term is equal to the value of the 2nd term.
In (b) above, the expression “A1 EQ A2” becomes “12C4H EQ 12COH".

The operator returns 00H because the value of the 1st term is not equal to the value of the 2nd term.

(2) NE or < > (not equal) operator
[Function]
Returns OFFH (true) if the value of the 1st term of an expression is not equal to the value of its 2nd term, and
OOH (false) if both values are equal.

A blank is required before and after the NE operator.

[Application example]

Al EQU 5678H

A2 EQU 5670H
MOV A,#Al NE A2 i (c)
MOV A, #Al NE (A2+8H) ;o (d)

[Explanation]

In (c) above, the expression “A1 NE A2” becomes “5678H NE 5670H".

The operator returns OFFH because the value of the 1st term is not equal to the value of the 2nd term.
In (d) above, the expression “A1 NE (A2+8H)” becomes “5678H NE (5670H+8H)”.

The operator returns O0H because the value of the 1st term is equal to the value of the 2nd term.

User's Manual U15255EJ1VOUM 51

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Relational Operators Relational Operators

)

4)

52

GT or > (greater than) operator

[Function]

Returns OFFH (true) if the value of the 1st term of an expression is greater than the value of its 2nd term, and
OOH (false) if the value of the 1st term is equal to or less than the value of the 2nd term.

A blank is required before and after the GT operator.

[Application example]

Al EQU 1023H
A2 EQU 1013H
MOV A,#A1 GT A2 ; (e)
MOV X,#A1 GT (A2+10H) ; (£)

[Explanation]

In (e) above, the expression “A1 GT A2” becomes “1023H GT 1013H".

The operator returns OFFH because the value of the 1st term is greater than the value of the 2nd term.
In (f) above, the expression “A1 GT (A2+10H)” becomes “1023H GT (1013H+10H)".

The operator returns O0H because the value of the 1st term is equal to the value of the 2nd term.

GE or >= (greater-than or equal) operator

[Function]

Returns OFFH (true) if the value of the 1st term of an expression is greater than or equal to the value of its 2nd
term, and O0OH (false) if the value of the 1st term is less than the value of the 2nd term.

A blank is required before and after the GE operator.

[Application example]

Al EQU 2037H
A2 EQU 2015H
MOV A,#Al1 GE A2 i (9)
MOV X,#A1 GE (A2+23H) ; (h)

[Explanation]

In (g) above, the expression “A1 GE A2” becomes “2037H GE 2015H".

The operator returns OFFH because the value of the 1st term is greater than the value of the 2nd term.
In (h) above, the expression “A1 GE (A2+23H)” becomes “2037H GE (2015H+23H)".

The operator returns O0H because the value of the 1st term is less than the value of the 2nd term.

User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Relational Operators Relational Operators

(5) LT or < (less than) operator

[Function]

Returns OFFH (true) if the value of the 1st term of an expression is less than the value of its 2nd term, and 00H
(false) if the value of the 1st term is equal to or greater than the value of the 2nd term.

A blank is required before and after the LT operator.

[Application example]

Al EQU 1000H

A2 EQU 1020H
MOV A,#A1 LT A2 ; (1)
MOV X,#(A1+20H) LT A2 ;(3)

[Explanation]

In (i) above, the expression “A1 LT A2” becomes “1000H LT 1020H".

The operator returns OFFH because the value of the 1st term is less than the value of the 2nd term.
In (j) above, the expression “(A1+20H) LT A2” becomes “(1000H+20H) LT 1020H".

The operator returns O0H because the value of the 1st term is equal to the value of the 2nd term.

(6) LE or <= (less than or equal) operator
[Function]
Returns OFFH (true) if the value of the 1st term of an expression is less than or equal to the value of its 2nd
term, and O0OH (false) if the value of the 1st term is greater than the value of the 2nd term.

A blank is required before and after the LE operator.

[Application example]

Al EQU 103AH
A2 EQU 1040H
MOV A,#A1 LE A2 7 (k)
MOV X,#(A1+7H) LE A2 ; (1)

[Explanation]

In (k) above, the expression “A1 LE A2” becomes “103AH LE 1040H".

The operator returns OFFH because the value of the 1st term is less than the value of the 2nd term.
In (I) above, the expression “(A1+7H) LE A2” becomes “(103AH+7H) LE 1040H".

The operator returns 00H because the value of the 1st term is greater than the value of the 2nd term.

User's Manual U15255EJ1VOUM 53

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Shift Operators Shift Operators

(1) SHR (shift right) operator

[Function]

Returns a value obtained by shifting the value of the 1st term of an expression to the right the number of bits
specified by the value of the 2nd term. Zeros equivalent to the specified number of bits shifted move into the
higher bits.

A blank is required before and after the SHR operator.

[Application example]

MOVW RP1,#0003BFH SHR 2 i (a)

[Explanation]
This operator shifts the value "0003BFH" to the right by 2 bits.

|0000 0000 0000 0000 0000 0011 1011 1111 |

N ™~

|OOOO 0000 0000 0000 0000 0000 1110 1111 |1 1
> >
0's are inserted. Right-shifted by 2 bits.

The value "0000EFH" is returned.
Therefore, (a) in the above example can also be described as: MOV A, #0EFH

54 User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Shift Operators Shift Operators

()

SHL (shift left) operator

[Function]

Returns a value obtained by shifting the value of the 1st term of an expression to the left the number of bits
specified by the value of the 2nd term. Zeros equivalent to the specified number of bits shifted move into the
higher bits.

A blank is required before and after the SHL operator.

[Application example]

MOV A, #800021H SHL 2 ;7 (b)

[Explanation]
This operator shifts the value "800021H" to the left by 2 bits.

|0000 0000 1000 0000 0000 0000 0010 0001 |

— /

|0000 0010 0000 0000 0000 0000 1000 0100 |

00
> >
Left-shifted by 2 bits. 0's are inserted.

The value "000084H" is returned.
Therefore, (b) in the above example can also be described as: MOV A, #84H

User's Manual U15255EJ1VOUM 55

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Byte-Separating Operators Byte-Separating Operators

(1)

()

56

HIGH operator
[Function]
Returns the higher 8-bit value of the lowest 16 bits of a term.

A blank is required between the HIGH operator and the term.

[Application example]

MOV A,#HIGH 123456H ; (a)

[Explanation]
By executing a MOV instruction, this operator returns the higher 8-bit value "34H" of the lower 16 bits of the
expression "123456H".
Therefore, (a) in the above example can also be described as: MOV A, #34H

LOW operator
[Function]
Returns the lower 8-bit value of the lowest 16 bits of a term.

A blank is required between the LOW operator and the term.

[Application example]

MOV A,#LOW 123456H ; (b)

[Explanation]
By executing a MOV instruction, this operator returns the lower 8-bit value "56H" of the lower 16 bits of the
expression "123456H".
Therefore, (b) in the above example can also be described as: MOV A, #56H

User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Word-Separating Operators Word-Separating Operators

(1)

()

HIGHW
[Function]
Returns the higher 8-bit value of a 32-bit term.

A blank is required between the HIGHW operator and the term.

[Application example]

MOVW AX,#HIGHW 12345678H ; (a)

[Explanation]

By executing a MOVW instruction, this operator returns the higher 8-bit value "12H" of the 32-bit term
"12345678H".

Therefore, (a) in the above example can also be described as: MOVW AX, #12H

LOww
[Function]
Returns the lower 16-bit value of a 32-bit term.

A blank is required between the LOWW operator and the term.

[Application example]

MOVW AX,#LOWW 12345678H ; (b)

[Explanation]

By executing a MOVW instruction, this operator returns the lower 16-bit value "5678H" of the 32-bit term
"12345678H".

Therefore, (b) in the above example can also be described as: MOVW AX, #5678H

User's Manual U15255EJ1VOUM 57

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Special Operators Special Operators

1

()

58

DATAPOS

[Function]
Returns the address portion (byte address) of a bit symbol.

[Application example]

SYM EQU OFE68H.6

MOV A, !DATAPOS SYM i (a)

[Explanation]

The EQU directive defines the name “SYM” with the value OFE68H.6.
“DATAPOS SYM’ represents “DATAPOS OFE68H.6”, and “OFE68H” is returned.
Therefore, (a) in the above example can also be described as: MOV A, |0FE68H

BITPOS

[Function]
Returns the bit portion (bit position) of a bit symbol.

[Application example]

SYM EQU OFE68H.6

CLR1 [HL] .BITPOS SYM ; (b)

[Explanation]

The EQU directive defines the name “SYM” with the value OFE68H.6.
“BITPOS.SYM” represents “BITPOS OFE68H.6”, and “6” is returned.
The CLR1 instruction clears [HL].6 to 0.

User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Special Operators Special Operators

(3) MASK

[Function]
Returns a 16-bit value in which the specified bit position is 1 and all others are set to 0.

[Application example]

MOVW AX, #MASK(0, 3, OFEOOH.7, 15)

[Explanation]
The MOVW instruction returns the value “8089H”.

F E D C B A 9 8 7 6 5 4 3 2 1 0
l1loloJololoflofo[1fofofof1fofo]1]

MASK(0, 3, OFEOOH.7, 15)

User's Manual U15255EJ1VOUM 59

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Other Operators Other Operators

(1)

60

()

[Function]

Causes an operation in parentheses to be performed prior to operations outside the parentheses.

This operator is used to change the order of precedence of other operators.

If parentheses are nested at multiple levels, the expression in the innermost parentheses will be calculated first.

[Application example]

MOV A, #(4+3)*2

[Explanation]
(4+43) * 2

[
<1>
<2>

Calculations are performed in the order of expressions <1> and <2> and value “14” is returned as a result.

If parentheses are not used,

<2>

Calculations are performed in the order <1> <2> shown above, and the value “10” is returned as a result.
See Table 2-8 Order of Precedence of Operators, for the order of precedence of operators.

User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.3.2 Restrictions on operations

The operation of an expression is performed by connecting terms with operator(s). Elements that can be
described as terms include constants, $, names, and labels. Each term has a relocation attribute and a symbol
attribute.

Depending on the types of relocation attribute and symbol attribute inherent in each term, operators that can work
on the term are limited. Therefore, when describing an expression, it is important to pay attention to the relocation
attribute and symbol attribute of each of the terms constituting the expression.

(1) Operators and relocation attributes
As previously mentioned, each of the terms that constitute an expression has a relocation attribute and symbol
attribute.
Terms can be divided into three types when classified by their relocation attributes: Absolute terms, relocatable
terms, and external reference terms.
Types of relocation attributes in operations, the nature of each attribute, and terms applicable to each attribute
are shown in Table 2-9 Types of Relocation Attributes.

Table 2-9. Types of Relocation Attributes

Type Nature Applicable Terms
Absolute term Term whose value and constant are ¢ Constants
determined at assembly time o Labels defined within an absolute segment
¢ $ indicating the location address defined within an absolute
segment

o Names defined with constants, the above labels, the above
$, or absolute values

Relocatable term Term whose value is not determined | e Labels defined within a relocatable segment

at assembly time ¢ $ indicating the location address defined within a
relocatable segment

* Names defined with a relocatable symbol

External reference Term that externally references the o Labels defined with the EXTRN directive
termmJte symbol of another module ¢ Names defined with the EXTBIT directive
Note The following six operators can work on external reference terms: ‘+’, ', ‘HIGH’, ‘LOW’, ‘HIGHW’, and

‘LOWW’. Only one external reference symbol can be described in an expression. In this case, the

external reference symbol must be connected with a “+” operator.

User's Manual U15255EJ1VOUM 61

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Combinations of the type of operator and terms on which each operator can work are shown in Table 2-10
Combinations of Terms and Operators by Relocation Attribute.

Table 2-10. Combinations of Terms and Operators by Relocation Attribute (1/2)

Relocation Attribute of Term X:ABS X:ABS X:REL X:REL

Type of Operator Y:ABS Y:REL Y:ABS Y:REL
X+Y A R R —
X-Y A — ANete
X*Y A — — —
X/Y A — — —
X MOD Y A — — —
X SHLY A — — —
XSHRY A — — —
XEQY A — — ANete
XLTY A — — ANt
XLEY A — — ANete
XGTY A — — ANt
XGEY A — — ANete
XNEY A — — ANt
X AND Y A — — —
X ORY A — — —
X XOR Y A — — —
NOT X A A — —
+X A A R R
-X A A — —

<Explanation>
ABS: Absolute term
REL: Relocatable term
A: The result of the operation becomes an absolute term.
R: The result of the operation becomes a relocatable term.
— The operation cannot be performed.

Note The operation can only be performed if X and Y are defined within the same segment, and not relocatable
terms on which HIGH, LOW, HIGHW, LOWW, and DATAPQOS are operated.

62 User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Table 2-10. Combinations of Terms and Operators by Relocation Attribute (2/2)

Relocation Attribute of Term X:ABS X:ABS X:REL X:REL
Type of Operator Y:ABS Y:REL Y:ABS Y:REL
HIGH X A A Rote Rote
LOW X A A RNote RNote
HIGHW X A A Rete Rote
LOWW X A A RNote RNote
MASK (X) A A _ _
DATAPOS X.Y A — _ _
BITPOS X.Y A — — _
MASK (X.Y) A — — —
DATAPOS X A A R R
BITPOS X A A A A
MASK (X) A A _ _

<Explanation>
ABS: Absolute term
REL: Relocatable term
A: The result of the operation becomes an absolute term.
R: The result of the operation becomes a relocatable term.
— The operation cannot be performed.

Note The operation can only be performed if X and Y are not relocatable terms on which HIGH, LOW, HIGHW,
LOWW, and DATAPOS are operated.

The following six operators can work on external reference terms: ‘+’, ‘-, ‘HIGH’, ‘LOW’, ‘HIGHW’, and ‘LOWW’
(however, note that only one external reference term can be described in an expression).

Combinations of the types of operators and external reference terms on which each operator can work are
classified according to relocation attributes in Table 2-11 Combinations of Terms and Operators by
Relocation Attribute (External Reference Terms).

User's Manual U15255EJ1VOUM 63

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Table 2-11. Combinations of Terms and Operators by Relocation Attribute (External Reference Terms)

Relocation Attribute of Term X:ABS X:EXT X:REL X:EXT X:EXT
Type of Operator Y:EXT Y:ABS Y:EXT Y:REL Y:EXT
X+Y E E — — _
X-Y — E — — —
+X A E R E E
HIGH X A ghote 1 RNote 2 ghote 1 Note 1
LOW X A gNote 1 RNote 2 gNote 1 gNote 1
HIGHW X A ENote 1 RNote 2 ENote 1 gNote 1
LOWW X A gNote 1 RNote 2 gNote 1 gNote 1
MASK (X) A — — — —
DATAPOS X.Y — —_ — — —
BITPOS X.Y — - _ _ _
MASK (X.Y) — —_ — — —
DATAPOS X A E R E E
BITPOS X A E A E E

<Explanation>
ABS: Absolute term
REL: Relocatable term
A: The result of the operation becomes an absolute term.
E: The result of the operation becomes an external reference term.
R: The result of the operation becomes a relocatable term.
— The operation cannot be performed.

Notes 1. The operation can only be performed if X and Y are not external reference terms on which HIGH,
LOW, HIGHW, LOWW, DATAPQOS, and BITPOS are operated.
2. The operation can only be performed if X and Y are not relocatable terms on which HIGH, LOW,
HIGHW, LOWW, and DATAPOS are operated.

64 User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

(2) Operators and symbol attributes
As previously mentioned, each of the terms that constitute an expression has a symbol attribute in addition to a
relocation attribute. Terms can be divided into two types when classified by their symbol attributes: NUMBER
terms and ADDRESS terms.
Types of symbol attributes in operations and terms applicable to each attribute are shown in Table 2-12 Types
of Symbol Attributes in Operations.

Table 2-12. Types of Symbol Attributes in Operations

Type of Symbol Attribute Applicable Terms

NUMBER term

Symbols that have NUMBER attribute
e Constants

ADDRESS term e Symbols that have ADDRESS attribute
¢ $ indicating the location counter

Combinations of the type of operator and terms on which each operator can work when classified by their
symbol attributes are shown in Table 2-13 Combinations of Terms and Operators by Symbol Attribute.

User's Manual U15255EJ1VOUM 65

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Table 2-13. Combinations of Terms and Operators by Symbol Attribute

Type of Operator

Symbol Attribute of Term X:ADDRESS
Y:ADDRESS

X:ADDRESS
Y:NUMBER

X:NUMBER
Y:ADDRESS

X:NUMBER
Y:NUMBER

X+Y

A

X-Y

X*Y

XY

XMODY

X SHLY

XSHRY

XEQY

XLTY

XLEY

XGTY

XGEY

XNEY

Z|1Z2|Z2|1Z2|2 |2

X AND Y

XORY

XXORY

NOT X

+ X

-X

HIGH X

LOW X

HIGHW X

LOWW X

DATAPOS X

MASK X

Z|> (> (> |>|>

Z > (> > |>|>

2|l Z2|Z2|1Z2|1Z2|2|2|2|Z2

Z|1Z2|lZz|1Z2|Z2|z2|(2|Z2|(2|2|2|2|2|2|2|2|Z2|2|Z2|2|Z2 |2 |2 |2 |Z

<Explanation>
ADDRESS:
NUMBER:
A:
N:

66

ADDRESS term
NUMBER term

The result of the operation becomes an ADDRESS term.
The result of the operation becomes a NUMBER term.

The operation cannot be performed.

User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

(3) How to check restrictions on the operation
An example of an operation by the relocation attribute and symbol attribute of each term is shown here.
Example BR $TABLE+5H
Here, assume that “TABLE” is a label defined in a relocatable code segment.

<1> Operator and relocation attribute
Because “TABLE+5H” is “relocatable term+absolute term”, this operation is applied to Table 2-10
Combinations of Terms and Operators by Relocation Attribute.
Type of operator X+Y
Relocation attribute of term X:REL, Y:ABS
From the table, it can be seen that the result is R (namely, a relocatable term).

<2> Operator and symbol attribute
Because “TABLE+5H” is “ADDRESS term+NUMBER term”, this operation is applied to Table 2-13
Combinations of Terms and Operators by Symbol Attribute.
Type of operator X+Y
Symbol attribute of term X:ADDRESS, Y:NUMBER
From the table, it can be seen that the result is A (namely, an ADDRESS term).

2.4 Bit Position Specifier

Bits can be accessed by using the bit position specifier (.).

User's Manual U15255EJ1VOUM 67

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Bit Position Specifier Bit Position Specifier

(1) Period (.) (bit position specifier)

68

[Description format]

X [A].[A]Y
L |

Bit term

Combinations of X (1st Term) and Y (2nd Term)

X (1st Term) Y (2nd Term)
General-purpose A Expression (0 to 7)
register X Expression (0 to 7)
Control PSWL Expression (0 to 7)
register PSWH Expression (0 to 7)
Special function | sfyN°te Expression (0 to 7)
register
Memory [DEJNte Expression (0 to 7)

[HLJNot Expression (0 to 7)

Note For details on the specific description, see the user’s manual of each device.

[Function]
e The bit position specifier specifies a byte address with its 1st term and the position of a bit by its 2nd term. A
specific bit can be accessed by this bit position specifier.

[Explanation]
o A bit term refers to an expression that uses a bit position specifier.
e The bit position specifier is not affected by the precedence order of operators. The left side of the bit position
specifier is recognized as the 1st term and its right side as the 2nd term.
e The following restrictions apply to the 1st term.
<1> An expression with the NUMBER or ADDRESS attribute, an SFR name capable of 8-bit access, or
register name (A) can be described.
<2> When an absolute expression is described in the 1st term, it must be within the range of OFE20H to
OFF1FH.
However, the range varies according to the CHGSFR control instruction or by specifying an assembler
option (-CS).
<3> An external reference symbol can be described.
e The following restrictions apply to the 2nd term:
<1> The value of an expression must be in the range of 0 to 7. If this value range is exceeded, an error will
result.
<2> Only an absolute expression with the NUMBER attribute can be described.
<3> No external reference symbol can be described.

User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

[Operations and relocation attributes]
e Combinations of the 1st and 2nd terms by relocation attribute are shown in Table 2-14 Combinations of 1st
and 2nd Terms by Relocation Attribute.

Table 2-14. Combinations of 1st and 2nd Terms by Relocation Attribute

Combination of Terms ABS ABS REL REL ABS EXT REL EXT EXT
ABS REL ABS REL EXT ABS EXT REL EXT
XY A — R — — E — — —
<Explanation>
ABS: Absolute term A: The result of the operation becomes an absolute term.
REL: Relocatable term R: The result of the operation becomes a relocatable term.
EXT: External reference term E: The result of the operation becomes an external reference term.

—: The operation cannot be performed.

[Values of Bit Symbols]
o When a bit symbol is defined by describing a bit term using the bit position specifier in the operand field of the
EQU directive, the value that the bit symbol will have is shown in Table 2-15 Values of Bit Symbols, below.

Table 2-15. Values of Bit Symbols

Operand Type Symbol Value
A.bit1"oe? 1H.bit1
X.bit1"oe? OH.bit1
PSWL.bit1"e*? 1FEH.bit1
PSWH.bit1"°"? 1FFH.bit1
sfroe pit1Nete? OxxxxxxH.bit1Ne3
expression.bit1"°*2 OxxxxH.bit1N°te
Notes 1. For a detailed description, refer to the user's manual of each device.
2. bit1=0to7
3. OxxxxxxH denotes the address of an sfr.
4. OxxxxH denotes the value of an expression.

[Application example]

MOV1 CY,OFFD20H.3

AND1 CY,A.5

CLR1 Pl1.2

SET1 1+0FFD30H.3 ; Equals OFFD31H.3
SET1 OFFD40H.4+2 ; Equals OFFD40H.6

User's Manual U15255EJ1VOUM

69

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.5 Characteristics of Operands

Instructions and directives requiring an operand or operands differ from one type of instruction to another in the
size and address range of the required operand value and in the symbol attribute of the operand.

For example, the instruction “MOV r, #byte” functions to transfer the value indicated by “byte” to register “r". In this
case, because r is an 8-bit register, the size of the data “byte” to be transferred must be 8 bits or less.

If an instruction is described as “MOV RO, #100H”, an assembly error occurs, because the size of the 2nd operand
“100H” of the instruction exceeds the capacity of the 8-bit register RO.

When describing an operand, therefore, attention must be paid to the following points.

¢ Is the size of the operand value or its address range suitable for the operand (numerical data, name, or label) of

the instruction?
¢ Is the symbol attribute suitable for the operand (name or label) of the instruction?

2.5.1 Size and address range of operand value

Certain conditions are set for the size and address range of the value of the numerical data, name, or label that
can be described as the operand of an instruction.

With instructions, conditions for the size and address range of an operand value are governed by the operand
representation format of each instruction. With directives, conditions for the size and address range of an operand
value are governed by the type of instructions.

These conditions are shown in Tables 2-16 Ranges of Operand Values of Instructions and 2-17 Ranges of
Operand Values of Directives, below.

70 User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Table 2-16. Ranges of Operand Values of Instructions

Operand Representation Format Range of Value
byte 8-bit value OH to OFFH
word 16-bit value OH to OFFFFH
imm24 24-bit value OH to OFFFFFFH
saddr1 XFEOOH to xFEFFHNete?
saddrg1 XxFEOOH to xFEFDH"*® "
saddrp1 Even value of XFEOOH to xFEFFH"**®"
saddr2"'¢? xFD20H to xFDFFHN""

XFFOOH to xFF1FH"t"

saddrg2 XxFD20H to xFDFFHMNte"!

saddrp2 Even value of XFD20H to xFDFFHNete !

XFFOOH to xFF1FH"t"

sfr XFF20H to xFFFFHNe*!

sfrp Even value of xFF20H to xFFFFH""*®"

addr24 OH to OFFFFFFH

addra2oMo*e3 OH to OFCFFH, 10000H to FFFFFH

addrig°e? MOVTBLW XFEOOH to xFEFFHN'®"
Other instructions OH to OFCFFH

addr16 of MOVTBLW Note3 nFEOOH to nFEFFH

addri1 800H to OFFFH

addr5 Even value of 40H to 7EH

bit 3-bit value 0 to 7

n 3-bit value 0to 7

n8 of MOVTBLW, MACW 8-bit (OH to FFH)

locaddr OH, OFH

Notes 1. The range varies depending on the part number of each target device. The default value of x is F.
The range of x can be changed by the SFR area change control instruction (CHGSFR).
2. The range xFFOOH to xFF1FH is not available in the case of saddrp2.
3. Symbols may be odd-numbered addresses.

User's Manual U15255EJ1VOUM 71

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Table 2-17. Ranges of Operand Values of Directives

Type of Directive Directive Range of Values
Segment definition directives CSEG AT OH to OFCFFH, 10000H to FFFFFHN""
DSEG AT OH to OFFFFFFH
BSEG AT OH to OFFFFFFH"**2
ORG OH to OFFFFFFH
Symbol definition directives EQU 24-bit value OH to OFFFFFFH
SET 24-bit value OH to OFFFFFFH
Memory initialization and area DB 8-bit value OH to OFFH
reservation directives DW 16-bit value OH to OFFFFH
DG 24-bit value OH to OFFFFFFH
DS 24-bit value OH to OFFFFFFH
Automatic branch instruction BR OH to OFFEFFH
selection directives CALL OH to OFFEFFH
General-purpose register selection directive RSS 1-bit value 0, 1

Notes 1. This shows the default value range. The range can be changed by the SFR area change control
instruction (CHGSFR). For details, see 4.8 SFR Area Change Control Instructions.
2. OH to OFFFFFFH does not include the SFR area.

72 User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.5.2 Size of operands required for instructions

Instructions can be classified into machine instructions and directives. For instructions that require immediate
data and symbols as operands, the size of the operand required varies for each instruction.

Therefore, when data in excess of the size of the operand required for the instruction is described, an error occurs.
The operations of expressions are carried out with unsigned 32 bits. If the evaluation result exceeds OFFFFFFH (24
bits), a warning message is output.

However, when relocatable or external-reference symbols are described in an operand, the values are not
determined within the assembler. Instead, the linker determines the values and checks the value range.

In this case as well, as shown in the "Value Appropriateness Check" column of Table 2-19 Properties of
Symbols Describable as Operands of Directives, a value range check is not performed for some of the operands.
Note that only the necessary parts are retrieved and embedded in the object.

¢ Cautions about the saddr field
When a mnemonic can reference the SADDR field forward for absolute description, and backward or forward for
relocatable description and has both the saddri and saddr2 operand description formats (or saddrgl and
saddrg2, to which the discussion of saddr1 and saddr2 below also applies), the assembler outputs the object
size of the longest of the two formats saddr1 and saddr2 (if they are the same size, there is no problem).

[Example 1]

MOV saddrl, #byte —T—> 4 bytes :I_

MOV saddr2, #byte —T—> 3bytes 4 bytes output
[Example 2]

MOV rl,saddrl —T—> 3 bytes :I_

MOV rl,saddr2 —— 3 bytes 3 bytes output

In the case of forward reference of an absolute description, the decision whether the symbol output is saddr1 or
saddr2 can be made as soon as pass 1 is finished. When the object code is output at pass 2, the appropriate
object code, either saddr1 or saddr2, is output.

At this time, if the object size is different from that determined at pass 1, "00" is output as a nop to complement
the difference in object sizes (usually 1 byte), and a warning error message (W714) is output.

User's Manual U15255EJ1VOUM 73

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

74

[Example]

DESG AT ?7?2°?°?
SYM: DB 1
MOV SYM, #10H

If SYM is saddr1, the assembler outputs XXXXXXXX (4 bytes) for the object code [MOV saddr1, #byte]. If SYM
is saddr2, the assembler outputs YYYYYYO0O (3 bytes+00) for the object code [MOV saddr2, #byte].

In the case of a relocatable backward or forward reference, it is impossible to determine whether the symbol is
saddr1 or saddr2. Therefore, the assembler outputs to the list file (and the object file) the object code of the
longest of the two description formats saddr1 and saddr2, which is saddr1.

The linker determines the address for the symbol and whether the symbol is saddr1 or saddr2, and corrects the
object code to whichever of saddr1 and saddr2 is appropriate. At this point, if the object size is different from the
size determined by the assembiler, the difference in object sizes (usually 1 byte) is output as "00" for nop, and a
warning error message (W714) is output.

[Example]
DESG
SYM: DB 1
MOV SYM, #10H

If the object code is saddr1, the linker does not correct the object code XXXXXXXX output by the assembler. If it
is saddr2, the linker corrects the object code by adding "00" to YYYYYY to output YYYYYYO0O (4 bytes) for the
object code [MOV saddr2, #byte].

e Supporting functions for users of 78K/Il, 78K/IIl source programs
For customers using 78K/IV for 78K/Il, 78K/IIl source programs, a function is available to support stack
operation instructions.
When 78K/IV reads "MOV SP, #WORD", which was the description function for 78K/Il, 78K/Ill, a warning
message (W713) and the object code "MOVG SP, #imm24" are output.

User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.5.3 Symbol attributes and relocation attributes of operands

When names, labels, and $ (which indicates the location counter) are described as instruction operands, they may
or may not be describable as operands. This depends on the symbol attributes and relocation attributes (see 2.3.2
Restrictions on operations) that serve as the terms of their expressions, as well as on the direction of reference in
the case of names and labels.

The reference direction for names and labels can be backward reference or forward reference.

e Backward reference ... A name or label referenced as an operand, which is defined in a line above (before) the
name or label

e Forward reference ... A name or label referenced as an operand, which is defined in a line below (after) the
name or label

[Example]
NAME TEST
CSEG
Ll: 4—:| Backward reference
BR L1
BR 1L2 —:I Forward reference
L2 -
END

These symbol attributes and relocation attributes, as well as direction of reference for names and labels, are
shown in Table 2-18 Attributes of Instruction Operands, and Table 2-19 Properties of Symbols Describable as
Operands of Directives.

User's Manual U15255EJ1VOUM 75

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Table 2-18. Attributes of Instruction Operands

Abso- | Defined | Relocation Attributes of CSEG/DSEG Segments for Which Labels Exist or SFR

lute by SET, | Relocation Attributes Specified by EXTRN Directive Rese-

Expres | EQU saddr™ saddr2™ |saddra™ |fixed callto Other? None 3 |7ved

-sion Directive / Words

/ /]
saddrp saddrp2 fixeda
Reference - Back-| For- |Back-| For- |Back-| For- |Back-| For- |Back-| For- |Back-| For- |Back-| For- |Back-| For-
pattern ward | ward | ward | ward | ward | ward | ward | ward | ward | ward | ward | ward | ward | ward | ward | ward
Description
format
byte (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] X
word O e} O O O o O O O O O O O O o O O X
imm24 (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] X
saddr1 e} (e} e} e} e} X X O e} (e} (e} e} e} e} e} e} e} X
saddrg1 o) olo|o®|o®| x| x|o|lo|o|l]o|]o|]o|]o|]o]oOo]|oO X
saddrp1 o o|lo|o®%|o®| - | -]o|l]o|]o|]o|]o|]oOo|]O|]O]O]|oO X
saddr2”® 7 o o|o®| x| x [o%|o®®| oo™ - | - | - | - | - | -] -| - -
‘8 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 0*11
saddrg2 o®| x | x |o®|o®|o™|o™| - | - | - | -|-|-1]-]|- -
saddrp2 7 o x | x |o | o |o™®o™ - | - -] -|-|-]|-]- -
*8 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ o*12

sfr o™ |o™| x x | x X X x | x X X x | x X X x | x o™
sfrp X X X X X X X X X X X X X X X X X o"
addr24 O o o O O O o O O o @) O O o O O O X
addr20 O (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] X
addr16 O o o O O O o O O o O O O o O O O X
addr16 of O e} e} X X X X X X X X X X X X X X X
MOVTBLW
addr11 e} e} (e} X X X X X X (e} e} X X X X X X X
addr5 O e} e} X X X X X X X X O O X X X X X
bit (@) o (e} X X X X X X X X X X X X X X X
n [0))) X X X X X X X X X X X X X X X
n8 of MOVTBLW, e} e} e} X X X X X X X X X X X X X X X
MACW
locaddr O X X X X X X X X X X X X X X X X X
76 User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

<Explanation>
Forward:

Backward:

o:

X:

Notes (*)

© e NGO R DN

11.
12.
13.
14.

This means forward reference.

This means backward reference.

This means that description is possible.
This means an error.

This means that description is not possible.

This is performed by specification of relocation attributes using the extern directive.

Relocation attributes other than those in the columns at, gram, unit, unitp, base, etc.

Only sfr reserved words for which 16-bit access is possible

Relocation attributes are not specified by the "extrn sym" format.

Symbols can be odd-number address.

In the case of saddr2, this does not include nFFOOH to nFF1FH

nFD20H to nFDFFH

nFFOOH to nFF1FH

The assembler may append a nop "00" to the object code. For details, see 2.5.2 Size of
operands required for instructions.

. The assembler outputs the object code for saddri/saddrg1. In some cases, the linker may

append a nop "00". For details, see 2.5.2 Size of operands required for instructions.
8-bit accessible sfr-reserved words for the area accessible by saddr2 in the sfr field.
16-bit accessible sfr-reserved words for the area accessible by saddr2 in the sfr field.
Only absolute expressions are possible in the external access area range.

Only sfr reserved words for which 8-bit access is possible

User's Manual U15255EJ1VOUM 77

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Table 2-19. Properties of Described Symbols as Operands of Directives

Symbol Attributes | NUMBER ADDRESS, SADDR1, SADDR2 BIT Value
Relocation Absolute Absolute | Relocatable | External Absolute | Relocatable | External Appro-
Attributes Terms Terms Terms Reference Terms Terms Reference | Priate-

Terms Terms ness
Check
Reference |Back-| For- |Back-| For- |Back-| For- |Back-| For- |Back-| For- |Back-| For- (Back-| For-
direction | ward | ward | ward | ward | ward | ward | ward | ward | ward | ward | ward | ward | ward | ward
Directive
ORG ONoteI _ _ _ _ _ _ _ _ _ _ _ _ _
EQUNote 2 o _ 0 _ ONote 3 _ _ _ 0 _ oNote 3 _ _ _ o
SET ONoteI _ _ _ _ _ _ _ _ _ _ _ _ _ _
DB Size oNetet| _ - - - - - - - - - - - - -
Initial value | ©]) @) @)] o) o - - - - - -
DW Size oNetet| _ - - - - - - - - - - - - -
Initial value | © o o o) o) o o) o - - - - - - X (16)
DG Size oNetet| _ - - - - - - - - - - - - -
Initial value | © o o o) o) o o) o - - - - - - x (24)
DS e} - - - - - - - - - - - - - -
BR/CALL [e) - - - - - - - - - - - - - -
RSS oNo!e1 _ _ _ _ _ _ _ _ _ _ _ _ _

O: Description possible

<Explanation>

—: Description impossible

The "Value Appropriateness Check" column refers to a check of the appropriateness of the value derived by the
assembler if it is an absolute expression, and by the linker if it is a relocatable or external reference expression.

o: Check is carried out according to the value range.
o: Check is carried out according to the value range of saddr1.bit/saddr2.bit/external access field.bit, for
an absolute BIT in the assembler only

x (16):
X (24):

- No value range

78

Lower 16 bits are embedded in the object as a result of calculation.
Lower 24 bits are embedded in the object as a result of calculation.

User's Manual U15255EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Notes 1. Only an absolute expression can be described.
2. An error will result if an expression that includes one of the following 8 patterns and that produces
a result that is affected by optimization is described.
The SADDR1 and SADDR2 attributes are included in these ADDRESS attributes.

ADDRESS attribute - ADDRESS attribute

ADDRESS attribute relational operator ADDRESS attribute
HIGH absolute ADDRESS attribute

LOW absolute ADDRESS attribute

HIGHW absolute ADDRESS attribute

LOWW absolute ADDRESS attribute

DATAPOS absolute ADDRESS attribute

MASK absolute ADDRESS attribute

3. A term created by the HIGH/LOW/HIGHW/LOWW/DATAPOS/BITPOS/MASK operator which has
a relocatable term is not allowed.

User's Manual U15255EJ1VOUM 79

CHAPTER 3 DIRECTIVES

This chapter explains the directives. Directives are instructions that direct all types of instructions necessary for

the RA78K4 to perform a series of processes.

3.1 Overview of Directives

Instructions are translated into object codes (machine language) as a result of assembling, but directives are not
converted into object codes in principle. Directives have the following main functions.

e To facilitate description of source programs
e To initialize memory and reserve memory areas
e To provide the information required for assemblers and linkers to perform their intended processing

Table 3-1 List of Directives shows the types of directives.

Table 3-1. List of Directives

No. Type of Directive Directive
1 Segment definition directives CSEG, DSEG, BSEG, ORG
2 Symbol definition directives EQU, SET
3 Memory initialization/area reservation directives DB, DW, DG, DS, DBIT
4 Linkage directives PUBLIC, EXTRN, EXTBIT
5 Object module name declaration directive NAME
6 Automatic selection directive BR, CALL
7 General-purpose register selection directive RSS
8 Macro directives MACRO, LOCAL, REPT, IRP, EXITM, ENDM
9 Assembly termination directive END

The following sections explain the details of each directive.
In the description format of each directive, “[]” indicates that the parameter in square brackets may be omitted
from specification, and “...” indicates the repetition of description in the same format.

80 User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

3.2 Segment Definition Directives

A source module must be described in units of segments.
Segment definition directives are used to define these segments. Segments are divided into the following four

types.

Bit segments

Code segments
Data segments

Absolute segments

The type of segment determines the address range in memory in which each segment will be located.
Table 3-2 Segment Definition Methods and Memory Address Location shows the method of defining each
segment and the memory address at which each segment is located.

Table 3-2. Segment Definition Methods and Memory Address Location

Type of Segment

Method of Definition

Memory Address at Which Each Segment Is Located

Code segment

CSEG directive

Within the internal or external ROM address

Data segment

DSEG directive

Within the internal or external RAM address

Bit segment

BSEG directive

Within the saddr area in the internal RAM

Absolute segment

Specifies location address (AT location
address) for relocation attribute with CSEG,
DSEG, or BSEG directive

Specified address

To determine the memory location of a segment, describe the segment as an absolute segment. An area in the
data segment must be reserved for the stack area, in which the stack pointer must be set.

An example of segment location is shown in Figure 3-1 Memory Location of Segments.

User's Manual U15255EJ1VOUM 81

CHAPTER 3 DIRECTIVES

Figure 3-1. Memory Location of Segments

Source module

Source module

Source module

<One source module >

Data segment

Absolute segment that
belongs to data segment

Bit segment

Code segment

Absolute segment that
belongs to code segment

82

<Memory>
OFFFFFH
saddr
RAM
ROM
OH

User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

CSEG code segment CSEG

(1) CSEG (code segment)

[Description format]

Symbol field Mnemonic field Operand field Comment field
[segment-name] CSEG [relocation-attribute] [;comment]
[Function]

e The CSEG directive indicates to the assembler the start of a code segment.

o All instructions described following the CSEG directive belong to the code segment until a segment definition
directive (CSEG, DSEG, BSEG, or ORG) or the END directive appears, and finally those instructions are
located within a ROM address after being converted into machine language.

Figure 3-2. Relocation of Code Segment

<Source module> <Memory>
NAME T1
DSEG
ROM
CSEG
Code
segment
END
RAM

[Use]

e The CSEG directive is used to describe instructions, and the DB, DW directives, etc. in the code segment
defined by the CSEG directive.
(However, to relocate the code segment from a fixed address, “AT absolute-expression” must be described as
its relocation attribute in the operand field.)

e Description of one functional unit such as a subroutine should be defined as a single code segment. If the
unit is relatively large or if the subroutine is highly versatile (i.e. can be utilized for development of other
programs), the subroutine should be defined as a single module.

User's Manual U15255EJ1VOUM 83

CHAPTER 3 DIRECTIVES

CSEG code segment CSEG

[Explanation]

e The start address of a code segment can be specified with the ORG directive. It can also be specified by
describing the relocation attribute “AT absolute-expression”.

« A relocation attribute defines a range of location addresses for a code segment. Relocation attributes are
shown in Table 3-3 Relocation Attributes of CSEG.

Table 3-3. Relocation Attributes of CSEG

Relocation Attribute Description Format Explanation

CALLTO CALLTO Tells the assembler to locate the specified segment so that the start
address of the segment becomes a multiple of 2 within the address range
0040H to 007FH. Specify this relocation attribute for a code segment that
defines the entry address of a subroutine to be called with the 1-byte
instruction "CALLT".

FIXED FIXED Tells the assembler to locate the beginning of the specified segment
within the address range 0800H to OFFFH. Specify this relocation
attribute for a code segment that defines a subroutine to be called with the
2-byte instruction "CALLF".

FIXEDA FIXEDA Tells the assembiler to locate the beginning of the specified segment
within the address range 0800H to OFFFH, and the end at OFCFFHN"®.
Specify this relocation attribute for a code segment that defines a
subroutine to be called with the 2-byte instruction "CALLF".

AT AT Absolute- Tells the assembler to locate the specified segment to the absolute
expression address (within 0000H to OFCFFH or 10000H to OFFFFFH)N°'.
UNIT UNIT Tells the assembler to locate the specified segment to any address (within

0080H to OFCFFH or 10000H to OFFFFFH)"e'®.

UNITP UNITP Tells the assembler to locate the specified segment to any address, so
that the start of the address may be an even number (within 0080H to
OFCFFH or 10000H to OFFFFFH)"",

BASE BASE Tells the assembler to locate the specified segment to an address within
80H to OFCFFH">",

PAGE PAGE Tells the assembler to locate the specified segment to an address within
xxx00H to xxxFFH (no higher than OFFFFFH).

PAGEB4K PAGE64K Tells the assembler to locate the specified segment so that it may not
straddle the 64K boundary (within OH to OFCFFH and 10000H to
FFFFFH) ",

Note This area may be changed by the SFR area change control instruction (CHGSFR).

« If no relocation attribute is specified for the code segment, the assembler will assume that “UNIT” has been
specified.

o If a relocation attribute other than those listed in Table 3-3 Relocation Attributes of CSEG is specified, the
assembler will output an error message and assume that “UNIT” has been specified. An error will result if the
size of each code segment exceeds that of the area specified by its relocation attribute.

o |If the absolute expression specified with the relocation attribute “AT” is illegal, the assembler will output an
error message and continue processing by assuming the value of the expression to be “0”.

84 User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

CSEG

code segment CSEG

The code segment can be named by describing a segment name in the symbol field of the CSEG directive. If no
segment name is specified for a code segment, the assembler will automatically give a default segment name to
the code segment. The default segment names of the code segments are shown in Table 3-4 Default

Segment Names of CSEG.

Table 3-4. Default Segment Names of CSEG

Relocation Attribute Default Segment Name

CALLTO ?CSEGTO

FIXED ?CSEGFX

FIXEDA ?CSEGFXA

BASE ?CSEGB

PAGE ?CSEGP

PAGEG64K ?CSEGP64

UNIT (or omitted) ?CSEG

UNITP ?CSEGUP

AT Segment name cannot be omitted.
If the segment name is omitted, it is assumed that the relocation
attribute is UNIT and the segment name becomes ?CSEG.

o An error will result if the segment name is omitted when the relocation attribute is AT.
« If two or more code segments have the same relocation attribute (except AT), these code segments may have
the same segment name. These same-named code segments are processed as a single code segment

within the assembler.

An error will result if the same-named segments differ in their relocation attributes. Therefore, the number of

the same-named segments for each relocation attribute is one.

e« The same-named code segments in two or more different modules are combined into a single code segment

at linkage.

« No segment name can be referenced as a symbol.

o The total number of segments that can be output by the assembler is up to 255 different name segments,
including those defined with the ORG directive. The same-named segments are counted as one.

e The maximum number of characters recognizable as a segment name is 8.

« Segment names are case sensitive.

User's Manual U15255EJ1VOUM 85

CHAPTER 3 DIRECTIVES

CSEG code segment CSEG

[Application examples]

NAME SAMP1

Cc1 CSEG i (1)

c2 CSEG CALLTO ;i (2)
CSEG FIXED ; (3)

c1 CSEG CALLTO ;(4)
CSEG i (5)
END

<Explanation>

1) The assembler interprets the segment name as “C1”, and the relocation attribute as “UNIT”.

) The assembler interprets the segment name as “C2”, and the relocation attribute as “CALLTO”.

) The assembler interprets the segment name as “?CSEGFX”, and the relocation attribute as “FIXED”.
4) Because the segment name “C1” was defined as the relocation attribute “UNIT” in (1), an error occurs.
) The assembler interprets the segment name as “?CSEG”, and the relocation attribute as “UNIT”.

86 User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

DSEG data segment DSEG

(2) DSEG (data segment)

[Description format]

Symbol field Mnemonic field Operand field Comment field
[segment-name] DSEG [relocation-attribute] [;comment]
[Function]

o The DSEG directive indicates to the assembler the start of a data segment.

« A memory defined by the DS directive following the DSEG directive belongs to the data segment until a
segment definition directive (CSEG, DSEG, BSEG, or ORG) or the END directive appears, and finally it is
reserved within the RAM address.

Figure 3-3. Relocation of Data Segment

<Source module> <Memory>

NAME T1

DSEG
Data : ROM
segment

CSEG

END

RAM

[Use]

e The DS directive is mainly described in data segments defined by the DSEG directive. Data segments are
located within the RAM area. Therefore, no instructions can be described in any data segment.

e In a data segment, a RAM work area used in a program is reserved by the DS directive and a label is
attached to each work area. Use this label when describing a source program.
Each area reserved as a data segment is located by the linker so that it does not overlap with any other work
areas on the RAM (stack area, general-purpose register area, and work areas defined by other modules).

User's Manual U15255EJ1VOUM 87

CHAPTER 3 DIRECTIVES

DSEG

data segment DSEG

[Explanation]

e The start address of a data segment can be specified with the ORG directive. It can also be specified by
describing the relocation attribute “AT” followed by an absolute expression in the operand field of the DSEG
directive.

« A relocation attribute defines a range of location addresses for a data segment. The relocation attributes
available for data segments are shown in Table 3-5 Relocation Attributes of DSEG.

Table 3-5. Relocation Attributes of DSEG

Relocation Description Explanation
Attribute Format
SADDR SADDR Tells the assembler to locate the specified segment in the saddr1 area (saddr1 area:
OFEOOH to OFEFFHMN"").
SADDR2 SADDR2 Tells the assembler to locate the specified segment in the saddr2 area (saddr2 area:
OFD20H to OFDFFHN"*s":2),
SADDRP SADDRP Tells the assembiler to locate the specified segment from an even-numbered address of the
saddr1 area (saddr1 area: OFEOOH to OFEFFH"'").
SADDRP2 SADDRP2 Tells the assembler to locate the specified segment from an even-numbered address of the
saddr2 area (saddr2 area: OFD20H to OFDFFHNe's"-2),
SADDRA SADDRA Tells the assembler to locate the specified segment in an optionally specified area of the
saddr area (saddr area: OFD20H to OFEFFH (saddri/saddr2 areas)"**s " 2.
AT AT absolute- Tells the assembler to locate the specified segment at an absolute address.
expression
UNIT UNIT or no Tells the assembler to locate the specified segment at an optionally selected location (within
specification the memory area name "RAM""° 1),
UNITP UNITP Tells the assembler to locate the specified segment at an optionally selected location from
an even-numbered address (within the memory area name "RAM"™N' "),
DTABLE DTABLE Tells the assembler to locate the specified segment within the macro service control area
(macro service control area: OFEOOH to OFEFFHN°" s *-2),
DTABLEP DTABLEP Tells the assembler to locate the specified segment within the macro service control area
from an even-numbered address (macro service control area: OFEQOOH to OFEFFHNe's *-2),
LRAM LRAM Tells the assembler to locate the specified segment within the peripheral RAM area (in the
low-speed RAM)."""
GRAM GRAM Tells the assembler to locate the specified segment within the general static RAM area (in
the high-speed RAM)(general static RAM area: OFDOOH to OFEFFH).
PAGE PAGE Tells the assembler to locate the specified segment at an optionally selected location from
XXXXO00H to XXXXFFH (within OFFFFFH).
PAGEG64K PAGE64K Tells the assembiler to locate the specified segment so that it does not straddle the 64K
boundary (OH to OFCFFH and 10000H to FFFFFH"®"?),
Notes 1. The address may vary depending on the type of device for which the program is written.
2. This shows the default range. The range can be changed by the SFR area change control instruction
(CHGSFR).
88 User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

DSEG

data segment DSEG

If no relocation attribute is specified for the data segment, the assembler will assume that “UNIT” has been
specified.

If a relocation attribute other than those listed in Table 3-5 Relocation Attributes of DSEG is specified, the
assembler will output an error message and assume that “UNIT” has been specified. An error will result if the
size of each data segment exceeds that of the area specified by its relocation attribute.

If the absolute expression specified with the relocation attribute “AT” is illegal, the assembler will output an
error message and continue processing by assuming the value of the expression to be “0”.

By describing a segment name in the symbol field of the DSEG directive, the data segment can be named.

If no segment name is specified for a data segment, the assembler automatically gives a default segment
name. The default segment names of the data segments are shown in Table 3-6 Default Segment Names
of DSEG.

Table 3-6. Default Segment Names of DSEG

Relocation Attribute Default Segment Name

SADDR ?DSEGS

SADDRP ?DSEGSP

SADDR2 ?DSEGS2

SADDRP2 ?DSEGSP2

SADDRA ?DSEGA

UNIT (or no specification) ?DSEG

UNITP ?DSEGUP

DTABLE ?DSEGDT

DTABLEP ?DSEGDTP

PAGE ?DSEGP

PAGE64K ?DSEGP64

LRAM ?DSEGL

GRAM ?DSEGG

AT Segment name cannot be omitted.
If the segment name is omitted, it is assumed that the relocation
attribute is UNIT and the segment name becomes ?DSEG.

If two or more data segments have the same relocation attribute (except AT), these data segments may have
the same segment name. These segments are processed as a single data segment within the assembler.

If the relocation attribute is SADDRP, the specified segment is located so that the address immediately after
the DSEG directive is described becomes a multiple of 2.

An error occurs if the same-named segments differ in their relocation attributes. Therefore, the number of the
same-named segments for each relocation attribute is one.

The same-named data segments in two or more different modules are combined into a single data segment at
linkage time.

No segment name can be referenced as a symbol.

The total number of segments that can be output by the assembler is up to 255 different-name segments
including those defined with the ORG directive. The same-named segments are counted as one.

The maximum number of characters recognizable as a segment name is 8.

Segment names are case sensitive.

User's Manual U15255EJ1VOUM 89

CHAPTER 3 DIRECTIVES

DSEG data segment DSEG
[Application examples]

NAME SAMP1
LOCATION OH
DSEG ; (1)

WORK1: DS 1

WORK2: DS 2
CSEG
MOV A, IWORK1 7 (2)
MOV A, WORK1 7 (3)
MOVW DE, #WORK2 7 (4)
MOVW AX, [DE]
MOVW AX, WORK2 7 (5)
END

90

<Explanation>

(1)

(2)
)

c

The start of a data segment is defined with the DSEG directive. Because its relocation attribute is omitted,

“UNIT” is assumed. The default segment name is “?DSEG”.

This description corresponds to “MOV A, laddr16”.
This description corresponds to “MOV A, saddr’. Relocatable label “WORK1” cannot be described as

“saddr’. Therefore, an error occurs as a result of this description.

This description corresponds to “MOVW rp, #word”.

This description corresponds to “MOVW AX, saddrp”.
Relocatable label “WORK2” cannot be described as “saddrp”. Therefore, an error occurs as a result of this

description.

User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

BSEG bit segment BSEG

(3) BSEG (bit segment)

[Description format]

Symbol field Mnemonic field Operand field Comment field
[segment-name] BSEG [relocation-attribute] [;comment]
[Function]

o The BSEG directive indicates to the assembler the start of a bit segment.

« A bit segment is a segment that defines the RAM addresses to be used in the source module.

* A memory area that is defined by the DBIT directive following the BSEG directive belongs to the bit segment
until a segment definition directive (CSEG, DSEG, or BSEG) or the END directive appears.

Figure 3-4. Relocation of Bit Segment

<Source module> <Memory>
NAME T1
BSEG
Bit
segment
DSEG ROM
CSEG
END RAM

[Use]
o Describe the DBIT directive in the bit segment defined by the BSEG directive (see Application Example).
« No instructions can be described in any bit segment.

User's Manual U15255EJ1VOUM 91

CHAPTER 3 DIRECTIVES

BSEG bit segment BSEG

[Explanation]

e The start address of a bit segment can be specified by describing “AT absolute-expression” in the relocation
attribute field.

* A relocation attribute defines a range of location addresses for a bit segment. Relocation attributes available
for bit segments are shown in Table 3-7 Relocation Attributes of BSEG.

Table 3-7. Relocation Attributes of BSEG

Relocation Description Explanation
Attribute Format
AT AT absolute- Tells the assembler to locate the starting address of the specified segment in the
expression 0Oth bit of an absolute address. Specification in bit units is prohibited (OH to

OFFFFFFH other than the addresses for SFR area).

SADDR SADDR Tells the assembler to locate the specified segment in any location in the saddr1
area (saddr1 area: OFEOOH to OFEFFH"'")

SADDR2 SADDR2 Tells the assembler to locate the specified segment in any location in the saddr2
area (saddr2 area: OFD20H to OFDFFHN'*s "2
SADDRA SADDRA Tells the assembler to locate the specified segment in any location in the saddr
area (saddr area: OFD20H to OFEFFHN°"®":2),
UNIT UNIT (or no Tells the assembler to locate the specified segment in any location in the saddr1
specification) area (saddr1 area: OFEOOH to OFEFFH"®" "),
GRAM GRAM Tells the assembler to locate the specified segment within the general static RAM

area (internal high-speed RAM: OFDOOH to OFEFFH"'® "),

ARAM ARAM Tells the assembler to locate the specified segment in any location of the entire
space (OH to OFFFFFH other than the addresses for SFR area).

Notes 1. The address may vary depending on the part number of each target device for which the program is
written.
2. This shows the default range. The range can be changed by the SFR area change control instruction
(CHGSFR).

« If no relocation attribute is specified for the bit segment, the assembler assumes that “UNIT” is specified.

o If a relocation attribute other than those listed in Table 3-7 Relocation Attributes of BSEG is specified, the
assembler outputs an error message and assumes that “UNIT” is specified. An error occurs if the size of
each bit segment exceeds that of the area specified by its relocation attribute.

¢ In both the assembler and the linker, the location counter in a bit segment is displayed in the form “00xxxx.b”
(The byte address is hexadecimal 6 digits and the bit position is hexadecimal 1 digit (0 to 7)).

92 User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

BSEG

bit segment

BSEG

With absolute bit segment

Byte address 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 Bit position
| | |
OFE20H ();(2) (3) (4) 5) 16)! (7)) (8)
! L \ \ \ L | Location counter
! | ! ! ! | | (1) OFE20H.0 (9)OFE21H.
OFE21H [(9) 1(10):(11):1(12), (13)‘()~(15) (16)| (2)0FE20H.1(10) OFE21H.
1 : 1 T 1 : T (3)OFE20H.2(11) OFE21H.
S (4) OFE20H.3(12) OFE21H.
(5) OFE20H.4 (13) OFE21H.
(6)OFE20H.5(14) OFE21H.
(7) OFE20H.6 (15) OFE21H.
(8) OFE20H.7(16) OFE21H.
With relocatable bit segment
Byte address 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 Bit position
| | | | | |
OH (1):(2):(3):(4)‘(5):():(7):(8)
! ! ! ! ! ! ! Location counter
‘ ‘ ‘ ‘ ‘ ‘ : (1)0H.O (9)1H.O0
TH | (9)1(10)1(11)1(12)1 (13) (14) (15) 1 (16) (2)0H.1 (10)1H.1
! (3)0H.2 (11)1H.2
l (l l l (((4)0H.3 (12)1H.3
| \ | ! I ' (5)0H.4 (13)1H.4
(6)0H.5 (14)1H.5
(7)0H.6 (15)1H.6
(8)0H.7 (16)1H.7

<N o0 Uk WN B O

Remark Within a relocatable bit segment, the byte address specifies an offset value in byte units from the
beginning of the segment.

A bit offset from the beginning of an area where a bit is defined is displayed and output in a symbol

table output by the object converter.

Symbol Value Bit Offset
00FE20H.0 0000
00FE20H.1 0001
00FE20H.2 0002
O0OFE20H.7 0007
00FE21H.0 0008
O00OFE21H.1 0009
OOFES80H.0 0300

User's Manual U15255EJ1VOUM

93

CHAPTER 3 DIRECTIVES

BSEG

bit segment BSEG

If the absolute expression specified with the relocation attribute “AT” is illegal, the assembler outputs an error
message and continues processing while assuming the value of the expression to be “0”.

e By describing a segment name in the symbol field of the BSEG directive, the bit segment can be named.

If no segment name is specified for a bit segment, the assembler automatically gives a default segment
name. The following table shows the default segment names.

Table 3-8. Default Segment Names of BSEG

Relocation Attribute Default Segment Name

UNIT (or no specification) ?BSEG

UNITP ?BSEGUP

AT Segment name cannot be omitted.
If the segment name is omitted, it is assumed that the relocation
attribute is UNIT and the segment name becomes ?BSEG.

SADDR ?BSEGS

SADDRP ?BSEGSP

SADDR2 ?BSEGS2

SADDRP2 ?BSEGSP2

SADDRA ?BSEGSA

GRAM ?BSEGG

ARAM ?BSEGA

94

If the relocation attribute is “UNIT”, two or more data segments can have the same segment name (except
AT). These segments are processed as a single segment within the assembler.

Therefore, the number of same-named segments for each relocation attribute is one.

The same-named bit segments in two or more different modules will be combined into a single bit segment at
linkage.

No segment name can be referenced as a symbol.

The only instructions that can be described in the bit segments are the DBIT, EQU, SET, PUBLIC, EXTBIT,
EXTRN, MACRO, REPT, IRP, ENDM directive, macro definition and macro reference. Description of
instructions other than these causes in an error.

The total number of segments that the assembler outputs is up to 255 different-name segments, with
segments defined by the ORG directive. The segments having the same name are counted as one.

The maximum number of characters recognizable as a segment name is 8.

Segment names are case sensitive.

User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

BSEG bit segment BSEG

[Application examples]

NAME SAMP1

FLAG EQU OFE20H

FLAGO EQU FLAG.O 7 (1)
FLAG1 EQU FLAG.1 5 (1)
BSEG ;i (2)

FLAG2 DBIT

CSEG
MOV1 CY, FLAGO 7 (3)
MOV1 CY,FLAG2 7 (4)
END

<Explanation>

(1) Bit addresses (bits 0 and 1 of OFE20H) are defined with consideration given to byte address boundaries.

(2) A bit segment is defined with the BSEG directive.
Because its relocation attribute is omitted, the relocation attribute “UNIT” and the segment name “?BSEG”
are assumed. In each bit segment, a bit work area is defined for each bit with the DBIT directive. A bit
segment should be described at the early part of the module body. Bit address FLAG2 defined within the bit
segment is located without considering the byte address boundary.

(3) This description can be replaced with “MOV1 CY, FLAG.0”. This FLAG indicates a byte address.

(4) In this description, no consideration is given to byte address boundaries.

User's Manual U15255EJ1VOUM 95

CHAPTER 3 DIRECTIVES

ORG origin ORG

(4) ORG (origin)

[Description format]

Symbol field Mnemonic field Operand field Comment field
[segment name] ORG Absolute expression [;comment]
[Function]

« The ORG directive sets the value of the expression specified by its operand of the location counter.

« After the ORG directive, described instructions or reserved memory area belong to an absolute segment until
a segment definition directive (CSEG, DSEG, BSEG, or ORG) or the END directive appears, and they are
located from the address specified by an operand.

Figure 3-5. Location of Absolute Segment

<Source module> <Memory>
NAME T1
DSEG
BSEG AT OFE20H 1000H
Absolute
segment
ROM
CSEG
ORG 1000H
Absolute
segment
END
RAM
OFE20H
[Use]

« Specify the ORG directive to locate a code segment or data segment from a specific address.

96 User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

ORG

origin ORG

[Explanation]

The absolute segment defined with the ORG directive belongs to the code segment or data segment defined
with the CSEG or DSEG directive immediately before this ORG directive.

No instructions can be described within an absolute segment that belongs to a data segment.

An absolute segment that belongs to a bit segment cannot be described with the ORG directive.

A code segment or data segment defined with the ORG directive is interpreted as a code segment or data
segment of the relocation attribute “AT".

By describing a segment name in the symbol field of the ORG directive, the absolute segment can be named.
The maximum number of characters that can be recognized as a segment name is 8.

If no segment name is specified for an absolute segment, the assembler will automatically assign the default
segment name “?Axxxxxx’, where “xxxxxx” indicates the six-digit hexadecimal start address (000000 to
FFFFFF) of the segment specified.

If neither CSEG nor DSEG directive has been described before the ORG directive, the absolute segment
defined by the ORG directive is interpreted as an absolute segment in a code segment.

If a name or label is described as the operand of the ORG directive, the name or label must be an absolute
term that has already been defined in the source module.

No segment name can be referenced as a symbol.

The total number of segments that the assembler outputs is up to 255 different-name segments, with
segments defined by the segment definition directive. The segments having the same name are counted as
one.

The maximum number of characters recognizable as a segment name is 8.

Segment names are case sensitive.

User's Manual U15255EJ1VOUM 97

CHAPTER 3 DIRECTIVES

ORG origin ORG

98

[Application examples]

NAME SAMP1
LOCATION 0H
DSEG
ORG OFE20H ; (1)
SADR1: DS 1
SADR2: DS 1
SADR3: DS 2
MAINO ORG 100H
MOV A, SADR1 i (2)
CSEG i (3)
MAIN1 ORG 1000H ;(4)
MOV A, SADR2
MOVW AX, SADR3
END

<Explanation>

(1) An absolute segment that belongs to a data segment is defined. This absolute segment will be located from
the short direct addressing area that starts from address “FE20H”.
Because specification of the segment name is omitted, the assembler automatically assigns the name
“?A00FE20".

(2) Because no instruction can be described within an absolute segment that belongs to a data segment, an
error occurs.

(3) This directive declares the start of a code segment.

(4) This absolute segment is located in an area that starts from address “1000H”.

User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

3.3 Symbol Definition Directives

Symbol definition directives assign names to numerical data to be used for describing a source module. These
names clarify the meaning of each data value and make the contents of the source module easy to understand.

Symbol definition directives inform the assembler of the value of each name to be used in the source module.

Two directives EQU and SET are available for symbol definition.

User's Manual U15255EJ1VOUM 99

CHAPTER 3 DIRECTIVES

EQU equate EQU

(1) EQU (equate)

[Description format]

Symbol field Mnemonic field Operand field Comment field
name EQU expression [;comment]
[Function]

o The EQU directive defines a name that has the value and attributes (symbol attribute and relocation attribute)
of the expression specified in the operand field.

[Use]

o Define numerical data to be used in the source module as a name with the EQU directive and describe the
name in the operand of an instruction in place of the numerical data.
Numerical data to be frequently used in the source module is recommended to be defined as a name. If you
must change a data value in the source module, all you need to do is to change the operand value of the
name (see Application example).

[Explanation]
« When a name or label is to be described in the operand of the EQU directive, use the name or label that has
already been defined in the source module.
No external reference term can be described as the operand of this directive.
e An expression including a term created by a HIGH/LOW/HIGHW/LOWW/DATAPOS/BITPOS operator that
has a relocatable term in its operand cannot be described.
o If an expression with any of the following patterns of operands is described, an error will result.
(a) Expression 1 with ADDRESS attribute — expression 2 with ADDRESS attribute
(b) Expression 1 with ADDRESS attribute Relational operator Expression 2 with ADDRESS attribute
(c) Either of the following conditions <1> and <2> is fulfilled in the above expression (a) or (b).
<1> If label 1 in the expression 1 with ADDRESS attribute and label 2 in the expression 2 with
ADDRESS attribute belong to the same segment and if a BR directive for which the number of
bytes of the object code cannot be determined is described between the two labels
<2> If label 1 and label 2 differ in segment and if a BR directive for which the number of bytes of the
object code cannot be determined is described between the beginning of the segment and label
d) HIGH absolute expression with ADDRESS attribute
LOW absolute expression with ADDRESS attribute
HIGHW absolute expression with ADDRESS attribute
LOWW absolute expression with ADDRESS attribute
h) DATAPOS absolute expression with ADDRESS attribute
) BITPOS absolute expression with ADDRESS attribute
j) The <3> below is fulfilled in the expression (d), (e), (f), (9), (h), or (i)
<3> If a BR directive for which the number of bytes of the object code cannot be determined instantly is
described between the label in the expression with ADDRESS attribute and the beginning of the
segment to which the label belongs

—~ ~ o~ o~ o~ o~ —~
Q = o
= -

100 User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

EQU

equate EQU

o If an error exists in the description format of the operand, the assembler will output an error message, but will

attempt to store the value of the operand as the value of the name described in the symbol field to the extent
that it can analyze.

¢ A name defined with the EQU directive cannot be redefined within the same source module.

¢ A name that has defined a bit value with the EQU directive will have an address and bit position as value.

« Table 3-9 Representation Formats of Operands Indicating Bit Values shows the bit values that can be
described as the operand of the EQU directive and the range in which these bit values can be referenced.

Table 3-9. Representation Formats of Operands Indicating Bit Values

Operand Type Symbol Value Reference Range
AbittNore 1.bit1 Can be referenced within the same
X bit{Note 1 0.bit1 module only.
PSWL.bit1"*e" 1FEH.bit1

PSWH.bit1"ete !

1FFH.bit1

sfr

Note 2 bit1 Note 1

00FFxxHN** 3 bit1

saddr.bit1Vete

onnnnnnH"°* 4 bit1 Can be referenced from another

expression.bit

1 Note 1

module.

OxxxxH"*® 3 pit1

Notes 1.
2.
3.

bit1 =0to 7

For a detailed description, refer to the user's manual of each device.

"OxFFxxH" denotes the address of an sfr (depending on the LOCATION instruction) and "0xxxxH"
denotes the value of an expression.

"OnnnnnnH" denotes the saddr area.

User's Manual U15255EJ1VOUM 101

CHAPTER 3 DIRECTIVES

EQU equate EQU
[Application example]
NAME SAMP1
LOCATION OFH
WORK1 EQU OFFE20H ; (1)
WORK10 EQU WORKL1.0 ; (2)
P02 EQU P0.2 i (3)
A4 EQU A.4 ; (4)
X5 EQU X.5 ; (5)
PSWL5 EQU PSWL.5 ; (6)
PSWH6 EQU PSWH. 6 ; (7)
MOV1 CY,WORK10 ; (8)
MOV1 P0.2,CY 7 (9)
OR1 CY, A4 ; (10)
XOR1 CY, X5 ;(11)
SET1 PSWL5 ; (12)
CLR1 PSWH6 ; (13)
END

102

<Explanation>

(1)

N o o AW
—_ = = = =

9)

10)
11)
12)
13)

AAAAAAAAAAA
~

The name "WORK1" has the value "OFFE20H", symbol attribute "NUMBER", and relocation attribute
"ABSOLUTE".

The name "WORK10" is assigned to bit value "WORK1.0", which is in the operand format "saddr.bit".
"WORK1", which is described in an operand, is already defined at the value "OFFE20H", in (1) above.

The name "P02" is assigned to the bit value "P0.2" which is in the operand format "sfr.bit".

The name "A4" is assigned to the bit value "A.4" which is in the operand format "A.bit".

The name "X5" is assigned to the bit value "X.5" which is in the operand format "X.bit".

The name "PSWL5" is assigned to the bit value "PSWL.5" which is in the operand format "PSWL.bit".

The name "PSWHS6" is assigned to the bit value "PSWH.6" which is in the operand format "PSWH.bit".
This description corresponds to "MOV1 CY, saddr.bit".

This description corresponds to "MOV1 sfr.bit, CY".

This description corresponds to "OR1 CY, A.bit".

This description corresponds to "XOR1 CY, X.bit".

This description corresponds to "SET1 PSWL.bit".

This description corresponds to "CLR1 PSWH.bit".

Names in which "sfr.bit", "A.bit", "X.bit", "PSWL.bit", and "PSWH.bit" are defined as in (3) through (7) can be
referenced only within the same module.

A name in which "saddr.bit" is defined can also be referenced from another module as an external definition
symbol (see 3.5 (2) EXTBIT).
As a result of assembling the source module in example, the following assemble list is generated.

User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

EQU

equate

EQU

ALNO

o g 0 U W N R

11
12
13
14
15
16
17
18
19

Assemble list

STNO ADRS

g 0 U W N R

11
12
13
14
15
16
17
18
19

000000

000004
000008
00000B
00000D
000O0OQF
000011

OBJECT

09C1FFO00

(000FFE20)
(0FFE20.0)
(00FF00.2)
(000001
(000000
(0001FE

-4)
.5)
.5)
(0001FE.6)
3C080020
081200
034cC
0365
0285

0296

WORK1
WORK10
P02

A4

X5
PSWL5
PSWH6

NAME

M I SOURCE STATEMENT

SAMP2

LOCATION OFH

EQU
EQU
EQU
EQU
EQU
EQU
EQU

MOV1
MOV1
OR1

XOR1
SET1
CLR1

END

OFFE20H
WORK1.0
P0.2
A.4

X.5
PSWL.5
PSWH. 6

CY,WORK10
P02,CY
CY,A4

CY, X5
PSWL5
PSWH6

<Explanation>

On lines (2) through (7) of the assemble list, the bit address values of the bit values defined as names are

indicated in the object code field.

User's Manual U15255EJ1VOUM

103

CHAPTER 3 DIRECTIVES

SET set SET
(2) SET (set)
[Description format]
Symbol field Mnemonic field Operand field Comment field
name SET absolute-expression [;comment]

104

[Function]

The SET directive defines a name that has the value and attributes (symbol attribute and relocation attribute)
of the expression specified in the operand field.

The value and attribute of a name defined with the SET directive can be redefined within the same module.
These values and attribute are valid until the same name is redefined.

[Use]

Define numerical data (a variable) to be used in the source module as a name and describe it in the operand
of an instruction in place of the numerical data (a variable).

To change the value of a name in the source module, a different value can be defined for the same name
using the SET directive again.

[Explanation]

An absolute expression must be described in the operand field of the SET directive.

The SET directive may be described anywhere in a source program. However, a name that has been defined
with the SET directive cannot be forward-referenced.

If an error is detected in the statement in which a name is defined with the SET directive, the assembler
outputs an error message but will attempt to store the value of the operand as the value of the name
described in the symbol field to the extent that it can analyze.

A symbol defined with the EQU directive cannot be redefined with the SET directive.

A symbol defined with the SET directive cannot be redefined with the EQU directive.

A bit symbol cannot be defined.

User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

SET set SET

[Application example]

NAME SAMP1
LOCATION OFH

COUNT SET 10H ; (1)
CSEG
MOV B, #COUNT 7 (2)

LOOP:
DEC B
BNZ $SLOOP

COUNT SET 20H ; (3)
MOV B, #COUNT ; (4)
END

<Explanation>

(1) The name “COUNT” has the value “10H”, the symbol attribute “NUMBER”, and relocation attribute
“ABSOLUTE”. The value and attributes are valid until they are redefined by the SET directive in (3) below.
The value “10H” of the name “COUNT” is transferred to register B.

The value of the name “COUNT” is changed to “20H".

The value “20H” of the name “COUNT” is transferred to register B.

CRCES

User's Manual U15255EJ1VOUM 105

CHAPTER 3 DIRECTIVES

3.4 Memory Initialization and Area Reservation Directives
Memory initialization directives define the constant data to be used in a source program.

The values of the defined constant data are generated as object codes.
Area reservation directives reserve memory areas to be used in a program.

106 User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

DB define byte DB

(1) DB (define byte)

[Description format]

Symbol field Mnemonic field Operand field Comment field
[label:] DB {(size) initial-value [,...]} [;comment]
[Function]

o The DB directive tells the assembler to initialize a byte area. The number of bytes to be initialized can be
specified as “size”.

e The DB directive also tells the assembler to initialize a memory area in byte units with the initial value(s)
specified in the operand field.

[Use]
« Use the DB directive when defining an expression or character string used in the program.

[Explanation]

o If a value in the operand field is parenthesized, the assembler assumes that a size is specified. Otherwise,
an initial value is assumed.

« The DB directive cannot be described in a bit segment.

With size specification:

o |f a size is specified in the operand field, the assembler initializes an area equivalent to the specified number
of bytes with the value “00H”.

e An absolute expression must be described as a size. If the size description is illegal, the assembler outputs
an error message and will not execute initialization.

With initial value specification:
e The following two parameters can be specified as initial values:
<1> Expression
The value of an expression must be 8-bit data. Therefore, the value of the operand must be in the
range of OH to OFFH. If the value exceeds 8 bits, the assembler will use only the lower 8 bits of the
value as valid data and output an error message.
<2> Character string
If a character string is described as the operand, an 8-bit ASCII code will be reserved for each character
in the string.
e Two or more initial values may be specified within a statement line of the DB directive.
e As an initial value, an expression that includes a relocatable symbol or external reference symbol may be
described.

User's Manual U15255EJ1VOUM 107

CHAPTER 3 DIRECTIVES

DB define byte DB

[Application example]

NAME SAMP1
LOCATION OFH
CSEG
WORK1: DB (1) ; (1)
WORK2: DB (2) i (1)
CSEG
MASSAG: DB ' ABCDEF' ; (2)
DATAl: DB OAH, OBH, OCH ;(3)
DATA2: DB (3+1) ;i (4)
DATA3: DB '"AB'+1 ; (5)
END

<Explanation>
1) Because the size is specified, the assembler will initialize each byte area with the value “00H”.

(

(2) A 6-byte area is initialized with character string ‘ABCDEF’.

(3) A 3-byte area is initialized with “OAH, 0BH, OCH".

(4) A 4-byte area is initialized with “00H”.

(5) Because the value of expression ‘AB’ +1 is 4143H (4142H+1) and exceeds the range of 0 to OFFH, this

description will result in an error.

108 User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

DW define word DW

(2) DW (define word)

[Description format]

Symbol field Mnemonic field Operand field Comment field
[label:] DW {(size) initial-value [,...]} [;comment]
[Function]

e The DW directive tells the assembler to initialize a word area. The number of words to be initialized can be
specified as “size”.

o The DW directive also tells the assembler to initialize a memory area in word units (2 bytes) with the initial
value(s) specified in the operand field.

[Use]
e Use the DW directive when defining a 16-bit numeric constant such as an address or data used in the
program.

[Explanation]

« If a value in the operand field is parenthesized, the assembler assumes that a size is specified; otherwise an
initial value is assumed.

 The DW directive cannot be described in a bit segment.

With size specification:

o If a size is specified in the operand field, the assembler will initialize an area equivalent to the specified
number of words with the value “00H”.

e An absolute expression must be described as a size. If the size description is illegal, the assembler outputs
an error message and will not execute initialization.

With initial value specification:
« The following two parameters can be specified as initial values:
<1> Constant
16 bits or less.
<2> Expression
The value of an expression must be stored as a 16-bit data.
No character string can be described as an initial value.
e The upper 2 digits of the specified initial value are stored in the HIGH address and the lower 2 digits of the
value in the LOW address.
e Two or more initial values may be specified within a statement line of the DW directive.
e As an initial value, an expression that includes a relocatable symbol or external reference symbol may be
described.

User's Manual U15255EJ1VOUM 109

CHAPTER 3 DIRECTIVES

DW define word DW

[Application example]

NAME SAMP1
LOCATION OFH
CSEG
WORK1: DW (10) i (1)
WORK2: DW (128) i (1)
CSEG
ORG 10H
DW MAIN i (2)
DW SUB1 i (2)
CSEG
MAIN:
CSEG
SUB1:
DATA: DW 1234H,5678H ;(3)
END

<Explanation>

(1) Because the size is specified, the assembler will initialize each word with the value “00H".
(2) Vector entry addresses are defined with the DW directives.

(8) A 2-word area is initialized with value “34127856".

Caution The HIGH address of memory is initialized with the upper 2 digits of the word value. The LOW
address of memory is initialized with the lower 2 digits of the word value.

Example:
Source module Memor
y HIGH
A
NAME SAMPLE
CSEG
ORG 1 0 0 0 H
DW 1 23 4H
Upper 2 digits o 1 2
3 4
Lower 2 digits
END
\)
LOW

110 User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

DG dg DG
(3) DG (dg)
[Description format]
Symbol field Mnemonic field Operand field Comment field
[label:] DG {(size) initial-value [,...]} [;comment]

[Function]
o The DG directive tells the assembler to initialize a 3-byte area. The initial value or size can be specified as

the operand.
o The DG directive also tells the assembler to initialize a memory area in units of 3 bytes with the initial value(s)

specified in the Operand field.

[Use]
e Use the DG directive when defining a 24-bit numeric constant such as an address or a data used in the

program.

[Explanation]
« |f a value in the operand field is parenthesized, the assembler assumes that a size is specified. Otherwise, an

initial value is assumed.
e The DG directive cannot be described in a bit segment.

With size specification:

If a size is specified in the operand field, the assembler will initialize an area equivalent to the specified
number x 3 bytes with the value "00H".

An absolute expression must be described as a size. If the size description is illegal, the assembler will
output an error message and will not execute initialization.

With initial value specification:

The following two parameters can be specified as initial values:
1) Constant

24 bits or less.
2) Expression

The value of an expression must be stored as a 24-bit data.

No character string can be described as an initial value.
The most significant byte of the initial value is stored in the HIGH WORD address
significant byte of the value in the LOW address. The highest byte of the lowest 2 bytes is reserved in the
HIGH address.
Two or more initial values may be specified within one statement line of the DG directive.
As an initial value, an expression which includes a relocatable symbol or external reference symbol is
described.

Note and the least

Note HIGH WORD is a 1-byte address.

User's Manual U15255EJ1VOUM 111

CHAPTER 3 DIRECTIVES

DG dg DG
[Application example]
NAME SAMP1
LOCATION OFH
DATAl: DG 123456H,567890H ; (1)
DATA2: DG (10) i (2)
END

<Explanation>

(1) A 3-byte area is initialized with value "563412907856".
(2) A 30-byte area (10 x 3 bytes) is initialized with "O0H".
Caution The HIGH WORD address of memory is initialized with the most significant byte of 3-byte

value. The LOW address and the HIGH address of memory are initialized with the least
significant byte and the highest byte of the 2-byte value, respectively.

Example:
Source module Memory HIGH
NAME SAMP1 HW 56 Il
CSEG H 78
DATA1 :DG 123456H, 567890H L 90
HW 12
H 34
END L 56
v

HW: HIGH WORD
H: HIGH LOW
L: LOW

112 User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

DS define storage DS
(4) DS (define storage)
[Description format]
Symbol field Mnemonic field Operand field Comment field
[label:] DS absolute-expression [;comment]

[Function]

The DS directive tells the assembler to reserve a memory area for the number of bytes specified in the
operand field.

[Use]

The DS directive is mainly used to reserve a memory (RAM) area to be used in the program. If a label is
specified, the value of the first address of the reserved memory area is assigned to the label. In the source
module, this label is used for description to manipulate the memory.

[Explanation]

The contents of an area to be reserved with this DS directive are unknown (indefinite).
The specified absolute expression will be evaluated with unsigned 16 bits.
When the operand value is “0”, no area can be reserved.
The DS directive cannot be described within a bit segment.
The symbol (label) defined with the DS directive can be referenced only in the backward direction.
Only the following parameters extended from an absolute expression can be described in the operand field.
<1> A constant
<2> An expression with constants in which an operation is to be performed (constant expression)
<3> EQU symbol or SET symbol defined with a constant or constant expression
<4> Expression 1 with ADDRESS attribute — expression 2 with ADDRESS attribute
If both label 1 in “expression 1 with ADDRESS attribute” and label 2 in “expression 2 with ADDRESS
attribute” are relocatable, both labels must be defined in the same segment.
However, an error will result in either of the following two cases:
(a) If label 1 and label 2 belong to the same segment and if a BR directive for which the number of
bytes of the object code cannot be determined is described between the two labels
(b) If label 1 and label 2 differ in segment and if a BR directive for which the number of bytes of the
object code cannot be determined is described between either label and the beginning of the
segment to which the label belongs
<56> Any of the expressions <1> through <4> above on which an operation is to be performed.
The following parameters cannot be described in the operand field.
<1> External reference symbol
<2> Symbol that has defined “expression 1 with ADDRESS attribute — expression 2 with ADDRESS
attribute” with the EQU directive
<3> Location counter ($) is described in either expression 1 or expression 2 in the form of “expression 1 with
ADDRESS attribute — expression 2 with ADDRESS attribute”
<4> Symbol that defines with the EQU directive an expression with the ADDRESS attribute on which the
HIGH/LOW/DATAPQOS/BITPOS operator is to be operated

User's Manual U15255EJ1VOUM 113

CHAPTER 3 DIRECTIVES

DS define storage DS

[Application example]

NAME SAMPLE

DSEG
TABLE1: DS 10 ; (1)
WORK1: DS 1 i (2)
WORK2: DS 2 ; (3)

CSEG

MOVW HL, #TABLE1

MOV A, !WORK1

MOVW BC, #WORK2

END

<Explanation>

(1) A 10-byte working area is reserved, but the contents of the area are unknown (indefinite). Label “TABLE1”
is allocated to the start of the address.

(2) A 1-byte working area is reserved.

(3) A 2-byte working area is reserved.

114 User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

DBIT define bit DBIT

(5) DBIT (define bit)

[Description format]

Symbol field Mnemonic field Operand field Comment field
[name] DBIT None [;comment]
[Function]

« The DBIT directive tells the assembler to reserve a 1-bit memory area within a bit segment.

[Use]
« Use the DBIT directive to reserve a bit area within a bit segment.

[Explanation]

« The DBIT directive is described only in a bit segment.

e The contents of a 1-bit area reserved with the DBIT directive are unknown (indefinite).

o If a name is specified in the symbol field, the name has an address and a bit position as its value.

[Application Example]

NAME SAMPLE
BSEG
BIT1 DBIT 7 (1)
BIT2 DBIT ; (1)
BIT3 DBIT 7 (1)
CSEG
MOV1 CY,BIT1 i (2)
OR1 CY,BIT2 i (3)
END

<Explanation>

(1) By these three DBIT directives, the assembler will reserve three 1-bit areas and define names (BIT1, BIT2,
and BIT3) each having an address and a bit position as its value.

(2) This description corresponds to “MOV1 CY,saddr.bit” and describes the name “BIT1” of the bit area
reserved in (1) above as operand “saddr.bit”.

(8) This description corresponds to “OR1 CY, saddr.bit” and describes name “BIT2” as “saddr.bit”.

User's Manual U15255EJ1VOUM 115

CHAPTER 3 DIRECTIVES

3.5 Linkage Directives

Linkage directives clarify the relativity to reference a symbol defined in the other modules.

Consider a case where a program is created by being divided into two modules: module 1 and module 2. If a
symbol defined in module 2 is to be referenced in module 1, the symbol cannot be used without declaration in each
module. For this reason, some sort of signal or indication such as “l want to use the symbol” or “You may use the
symbol” is required to be issued between the two modules.

In module 1, the external reference of a symbol to indicate “I want to reference a symbol defined in another
module” must be declared. In module 2, the external definition of a symbol to indicate “You may reference the
defined symbol in another module” must be declared.

The symbol can be referenced for the first time when both the external reference and the external definition are
effectively declared.

Linkage directives function to establish this interrelationship and are available in the following two types.

e To declare external definition of a symbol: PUBLIC directive

o To declare external reference of a symbol: EXTRN and EXTBIT directives

Figure 3-6. Relationship of Symbols Between Two Modules

<Module 1> <Module 2>
NAME MODUL1 NAME MODUL?2
EXTRN MDL2 ; (1) —> PUBLIC MDL2 ; (3)
CSEG CSEG
BR IMDL2 ; (2) MDL2 :
END END

In module 1 in Figure 3-6, the symbol “MDL2” defined in module 2 is referenced in (2). Therefore, the symbol is
declared as an external reference with the EXTRN directive in (1).

In module 2, the symbol “MDL2” to be referenced from module 1 is declared as an external definition with the
PUBLIC directive in (3).

The linker checks whether or not the external reference of the symbol corresponds to the external definition of the
symbol.

116 User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

EXTRN external EXTRN

(1) EXTRN (external)

[Description format]

Symbol field Mnemonic field Operand field Comment field
[label:] EXTRN {symbol-name [,...] [;comment]

SADDR2 (symbol-name [,...])
BASE (symbol-name [,...])}

[Function]

The EXTRN directive declares to the linker that a symbol (other than a bit symbol) in another module is to be
referenced in this module.

[Use]

When referencing a symbol defined in another module, the EXTRN directive must be used to declare the
symbol as an external reference.
There are following differences depending on the description format of the operand.

SADDR2 (symbol-name [,...]) The symbol can be referenced as saddr2 area.

BASE (symbol-name [,...]) The symbol can be referenced as that of an area within 64 KB
(OH to OFFFFH).

No relocation attribute The symbol can be referenced after the segment has been

relocated by the link to match the area of the symbol declared
with PUBLIC.

[Explanation]

The EXTRN directive may be described anywhere in a source program (see 2.1 Basic Configuration of
Source Program).

Up to 20 symbols can be specified in the operand field by delimiting each symbol name with a comma (,).
When referencing a symbol having a bit value, the symbol must be declared as an external reference with the
EXTBIT directive.

The symbol declared with the EXTRN directive must be declared in another module with a PUBLIC directive.
No macro name can be described as the operand of EXTRN directive (see CHAPTER 5 MACROS for the
macro name).

The EXTRN directive enables only one EXTRN declaration for a symbol in an entire module. For the second
and subsequent EXTRN declarations for the symbol, the linker will output a warning message.

A symbol that has been declared cannot be described as the operand of the EXTRN directive. Conversely, a
symbol that has been declared as EXTRN cannot be re-defined or declared with any other directive.

A symbol defined by the EXTRN directive can be used to reference saddr area.

User's Manual U15255EJ1VOUM 117

CHAPTER 3 DIRECTIVES

EXTRN external EXTRN
[Application example]
<Module 1>
NAME SAMP1
LOCATION OFH
EXTRN SYM1,SYM2, SADDR2 (SYM3) , BASE (SYM4) ; (1)
CSEG
S1: DW SYM1 ; (2)
MOV A, SYM2 i (3)
MOV A, SYM3 ; (4)
BR 1 SYM4 ; (5)
END
<Module 2>
NAME SAMP2
PUBLIC SYM1,SYM2,SYM3, SYM4 ; (5)
CSEG
SYM1 EQU OFFH ; (6)
DATAl1l DSEG SADDR
SYM2: DB 012H ; (7)
DATA2 DSEG SADDR2
SYM3: DB 034H ; (8)
c1 CSEG BASE
SYM4: MOV A, #20H 7 (9)
END

118

<Explanation>

(1)

GGG
xde

©
=t

This EXTRN directive declares the symbols "SYM1", "SYM2", "SYM3", and "SYM4" to be referenced in
(2) and (3) as external references. Two or more symbols may be described in the operand field.

This DW instruction references the symbol "SYM1".

This MOV instruction references the symbol "SYM2" and outputs a code that references saddr2 area.
This MOV instruction references the symbol "SYM3" and outputs a code that references an area within 64
KB (OH to OFFFFH).

The symbols "SYM1", "SYM2", "SYM3", and "SYM4" are declared as external definitions.

The symbol "SYM1" is defined.

The symbol "SYM2" is defined.

The symbol "SYM3" is defined.

The symbol "SYM4" is defined.

User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

EXTBIT external bit EXTBIT

(2) EXTBIT (external bit)

[Description format]

Symbol field Mnemonic field Operand field Comment field
[label:] EXTBIT bit-symbol-name [,...] [;comment]

SADDR2 (symbol-name [,...])
SADDRA (symbol-name [,...])

[Function]
o The EXTBIT directive declares to the linker that a bit symbol that has a value of saddr.bit in another module is
to be referenced in this module.

[Use]
o When referencing a symbol that has a bit value and has been defined in another module, the EXTBIT
directive must be used to declare the symbol as an external reference.

[Explanation]

o The EXTBIT directive may be described anywhere in a source program.

» Up to 20 symbols can be specified in the operand field by delimiting each symbol with a comma (,).

¢ A symbol declared with the EXTBIT directive must be declared with a PUBLIC directive in another module.

o The EXTBIT directive enables only one EXTBIT declaration for a symbol in an entire module. For the second
and subsequent EXTBIT declarations for the symbol, the linker will output a warning message.

User's Manual U15255EJ1VOUM 119

CHAPTER 3 DIRECTIVES

EXTBIT external bit EXTBIT
[Application example]
<Module 1>
NAME SAMP1
EXTBIT FLAG1l,SADDR2 (FLAG2,FLAG3),FLAG4 ; (1)
CSEG
MOV1 FLAG1,CY i (2)
AND1 CY, FLAG2 7 (3)
SET1 FLAG3 ; (4)
NOT1 FLAG4 ; (5)
END
<Module 2>
NAME SAMP2
PUBLIC FLAG1,FLAG2,FLAG3,FLAG4 ; (6)
Bl BSEG SADDR
FLAG1 DBIT ; (7)
FLAG4 DBIT ; (8)
B2 BSEG SADDR2
FLAG2 DBIT ; (9)
FLAG3 DBIT ; (10)
CSEG
END

120

<Explanation>

(1)

@)

(3)

(4)

This EXTBIT directive declares the symbols "FLAG1", "FLAG2", "FLAG3", and "FLAG4" to be referenced
as external references. Two or more symbols may be described in the operand field.

This MOV1 instruction references the symbol "FLAG1". This description corresponds to "MOV1
saddr1.bit, CY".

This AND1 instruction references the symbol "FLAG2". This description corresponds to "AND1 CY,
saddr2.bit".

This SET1 instruction references the symbol "FLAGS3". This description corresponds to "SET1
saddr2.bit".

This NOT1 instruction references the symbol "FLAG4". This description corresponds to "NOT1
saddr1.bit".

This PUBLIC directive defines the symbols "FLAG1", "FLAG2", "FLAG3" and "FLAG4".

This DBIT directive defines the symbol "FLAG1" as a bit symbol of SADDR1 area

This DBIT directive defines the symbol "FLAG4" as a bit symbol of SADDR1 area.

This DBIT directive defines the symbol "FLAG2" as a bit symbol of SADDR2 area

10) This DBIT directive defines the symbol "FLAG3" as a bit symbol of SADDR2 area.

User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

PUBLIC public PUBLIC

(3) PUBLIC (public)

[Description format]

Symbol field Mnemonic field Operand field Comment field
[label:] PUBLIC symbol-name [,...] [;comment]
[Function]

The PUBLIC directive declares to the linker that the symbol described in the operand field is a symbol to be
referenced from another module.

[Use]

When defining a symbol (including bit symbol) to be referenced from another module, the PUBLIC directive
must be used to declare the symbol as an external definition.

[Explanation]

The PUBLIC directive may be described anywhere in a source program.

Up to 20 symbols can be specified in the operand field by delimiting each symbol name with a comma (,).

Symbol(s) to be described in the operand field must be defined within the same module.

The PUBLIC directive enables only one PUBLIC declaration for a symbol in an entire module. The second

and subsequent PUBLIC declarations for the symbol will be ignored by the linker.

The following symbols cannot be used as the operand of the PUBLIC directive.

+ Name defined with the SET directive

¢ Symbol defined with the EXTRN or EXTBIT directive within the same module

e Segment name

+ Module name

e Macro name

¢ Symbol not defined within the module

« Symbol defining an operand with a bit attribute with the EQU directive

¢ Symbol defining an sfr with the EQU directive (however, the place where sfr area and saddr area are
overlapped is excluded)

User's Manual U15255EJ1VOUM 121

CHAPTER 3 DIRECTIVES

PUBLIC

public

PUBLIC

122

[Application example]
Example of program consisting of three modules

<Module 1>
NAME SAMP1
PUBLIC Al,A2 ; (1)
EXTRN Bl
EXTBIT C1
Al EQU 10H
A2 EQU OFFE20H.1
CSEG
BR Bl
XOR1 cY,C1
END
<Module 2>
NAME SAMP2
PUBLIC Bl i (2)
EXTRN Al
CSEG
Bl:
MOV C, #LOW (A1)
END
<Module 3>
NAME SAMP3
PUBLIC C1 7 (3)
EXTBIT A2
c1 EQU OFFE21H.0
CSEG
MOV1 CY, A2
END

<Explanation>

(1) This PUBLIC directive declares that the symbols “A1” and “A2” are to be referenced from other modules.

(2) This PUBLIC directive declares that the symbol “B1” is to be referenced from another module.
(3) This PUBLIC directive declares that the symbol “C1” is to be referenced from another module.

User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

3.6 Object Module Name Declaration Directive

The object module name declaration directive gives a module name to an object module to be created by the
RA78K4 assembler.

User's Manual U15255EJ1VOUM 123

CHAPTER 3 DIRECTIVES

NAME name NAME
(1) NAME (name)
[Description format]
Symbol field Mnemonic field Operand field Comment field
[label:] NAME object-module-name [;comment]

124

[Function]

The NAME directive assigns the object module name described in the operand field to an object module to be
output by the assembiler.

[Use]

A module name is required for each object module in symbolic debugging with a debugger.

[Explanation]

The NAME directive may be described anywhere in a source program.

For the conventions of module name description, see the conventions on symbol description in 2.2.3 Fields
that make up a statement.

Characters that can be specified as a module name are those characters permitted by the operating system
of the assembler software other than “ (",“ (28H)”, “)” or “ (29H)”.

No module name can be described as the operand of any directive other than NAME or of any instruction.

If the NAME directive is omitted, the assembler will assume the primary name (first 8 characters) of the input
source module file as the module name. In the Windows version, the primary name is converted to capital
letters for retrieval. If two or more module names are specified, the assembler will output a warning message
and ignore the second and subsequent module name declarations.

A module name to be described in the operand field must not exceed eight characters.

Symbol names are case sensitive.

[Application example]

NAME SAMPLE 7 (1)
DSEG
BIT1: DBIT

CSEG
MOV A,B

END

<Explanation>
(1) This NAME directive declares “SAMPLE” as a module name.

User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

3.7 Automatic Branch Instruction Selection Directive

Unconditional branch instructions directly describe a branch destination address as their operand. Four such
instructions, “BR l!addr16”, “BR $addr20”, “BR $!addr20”, and “BR !laddr20”, are available. Also, three such
instructions, “CALL !laddr20”, “CALL $!addr20”, and “CALL !addr16”, are available for the CALL instruction. These
instructions select and use the most appropriate operand according to the address range of the branch destination.
Since the number of bytes is different for each directive, in order to create a program with high memory utilization
efficiency, it is necessary to use the instruction with the smallest number of bytes. However, it is quite troublesome to
take this address range into account when describing the branch instruction.

For this reason, there was a need for a directive that directs the assembler to automatically select the two-byte or
three-byte branch instruction according to the address range of the branch destination. This is called automatic
branch instruction selection directive.

User's Manual U15255EJ1VOUM 125

CHAPTER 3 DIRECTIVES

BR branch BR
(1) BR (branch)
[Description format]
Symbol field Mnemonic field Operand field Comment field
[label:] BR expression [;comment]

126

[Function]

« The BR directive tells the assembler to automatically select a 2- or 3-byte BR branch instruction according to
the value range of the expression specified in the operand field and to generate the object code applicable to
the selected instruction.

[Use]

« The BR directive judges the address range of the branch destination and automatically selects the smallest
possible branch instruction from among the four branch instructions below. Use the BR directive if it is
unclear whether or not a 2-byte branch instruction can describe the address range of the branch destination.

"BR $addr20" (2 bytes) ... This instruction can be used within a range of between -80H and +7FH from the
next address of the BR directive.

"BR $addr16" (3 bytes) ... This instruction can be used within 64 KB.

"BR $!addr20" (3 bytes) ... This instruction calculates the displacement between source and destination
addresses. The displacement must be between -8000H and +7FFFH.

"BR !laddr20" (4 bytes) ... Use this instruction in cases other than the above.

If the operand (branch destination) is allocated outside the BASE area within a relocatable segment that is
different from the directive, the BR branch instruction is replaced with a 4-byte instruction and output.
When the directive and operand (branch destination) are different segments, allocated outside the BASE

area, and are separate types"°*®

, the BR branch instruction is replaced with a 4-byte instruction even if the
operand is allocated within an absolute segment.
If the directive and operand (branch destination) are in separate segments within the BASE area, the BR

branch instruction is replaced with a 3-byte instruction (BR !addr16).

Note "Separate type" indicates a separate relocatable segment if the BR directive is within an absolute
segment, and an absolute segment if the BR directive is a relocatable segment.

o If it is definite that you can describe a 2-byte to 4-byte instruction, describe the applicable instruction. This
shortens the assembly time in comparison with describing the BR directive.

User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

BR

branch BR

[Explanation]

e The

BR directive can only be used within a code segment.

e The direct jump destination is described as the operand of the BR directive. “$” indicating the current location
counter at the beginning of an expression cannot be described.

o For optimization, the following conditions must be satisfied.

<1>
<2>

<3>

<4>

No more than 1 label or forward-reference symbol in the expression.

Do not describe an EQU symbol with the ADDRESS attribute.

Do not describe an EQU defined symbol for “expression 1 with ADDRESS attribute — expression 2 with
ADDRESS attribute”.

Do not describe an expression with ADDRESS attribute on which the
HIGH/LOW/HIGHW/LOWW/DATAPOS/BITPOS operator has been operated.

If these conditions are not met, the 4-byte BR instruction will be selected.

[Application example]

ADDRESS NAME SAMPLE
C1l CSEG AT 50H

000050H BR L1 ;7 (1)
000052H BR L2 ;7 (2)
000055H BR L3 ;7 (3)
000058H BR L4 ;o (4)
00007DH Ll:

007FFFH L2:

OOFFFFH L3:

010000H L4:

END

<Explanation>

(1) This BR directive generates a 2-byte branch instruction (BR $addr20) because the displacement between
this line and the branch destination is within the range of -80H and +7FH.

(2) This BR directive will be replaced with a 3-byte branch instruction (BR $!addr20) because the
displacement between this line and the branch destination is within the range of -8000H and +7FFFH.

(3) This BR directive will be replaced with a 3-byte branching instruction (BR !addr16) because the branch
destination is within 64 KB.

(4) This BR directive will be replaced with a 4-byte branch instruction (BR !laddr20).

User's Manual U15255EJ1VOUM 127

CHAPTER 3 DIRECTIVES

CALL call CALL
(2) CALL (call)
[Description format]
Symbol field Mnemonic field Operand field Comment field
[label:] CALL expression [;comment]

[Function]

The CALL directive tells the assembler to automatically select a 3- or 4-byte CALL instruction according to the
value range of the expression specified in the operand field and to generate the object code applicable to the
selected instruction.

[Use]

128

The CALL directive judges the address range of the branch destination and automatically selects the smallest
possible branch instruction from among the three branch instructions below. Use the CALL directive if it is
unclear whether or not a 3-byte branch instruction can describe the address range of the branch destination.

"CALL !addr16" (3 bytes) ... This instruction can be used within 64 KB.

"CALL $'addr20" (3 bytes) ... This instruction calculates the displacement between source and destination
addresses. The displacement must be between -8000H and +7FFFH.

"CALL !laddr20" (4 bytes) ... Use this instruction in cases other than the above.

If the operand (branch destination) is allocated within a relocatable segment different from the directive
outside the BASE area, the CALL instruction is replaced with a 4-byte instruction and output.

When the directive and operand (branch destination) are not in a single segment, allocated outside the BASE
area, and are separate types', the CALL instruction is replaced with a 4-byte instruction even if the operand
is allocated within an absolute segment.

If the directive and operand (branch destination) are in separate segments within the BASE area, the CALL
instruction is replaced with a 3-byte instruction (CALL !addr16).

Note "Separate type" indicates a separate relocatable segment if the CALL directive is within an absolute
segment, and an absolute segment if the CALL directive is a relocatable segment.

User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

CALL call CALL

[Explanation]
e The CALL directive can only be used within a code segment.
e The direct call destination is described as the operand of the CALL directive.
« For optimization, the following conditions must be satisfied.
1) No more than 1 label or forward-reference symbol in the expression.
2) Do not describe an EQU symbol with the ADDRESS attribute.
3) Do not describe an EQU defined symbol for "expression 1 with ADDRESS attribute - expression 2 with
ADDRESS attribute".
4) Do not describe an expression with ADDRESS attribute on which the HIGH/LOW/HIGHW/LOWW/
DATAPOS/BITPOS operator has been operated.
If these conditions are not met, a 4-byte instruction is selected.

[Application example]

ADDRESS NAME SAMPLE
C1 CSEG AT 50H

000050H CALL L1 ; (1)
000053H CALL L2 7 (2)
000056H CALL L3 7 (3)
008052H Ll:

OOFFFFH L2:

010000H L3:

END

<Explanation>

(1) This CALL directive will be replaced with a 3-byte branch instruction (CALL $!addr20) because the
displacement between this line and the branch destination is within the range of -8000H and +7FFFH.

(2) This CALL directive will be replaced with a 3-byte branching instruction (CALL !addr16) because the
branching destination is within 64 KB.

(3) This CALL directive will be substituted with a 4-byte branching instruction (CALL !laddr20).

User's Manual U15255EJ1VOUM 129

CHAPTER 3 DIRECTIVES

3.8 General-Purpose Register Selection Directive

With the general-purpose registers of the 78K/IV, the correspondence of their function names to their absolute
names is different depending on the value of the Register Set Select (RSS) flag in the PSW (see Table 3-10, below).

This means that when you describe the function name of a register in a program in place of its absolute name, the
register to be actually accessed differs depending on the value of the RSS flag and that the object code to be
generated also differs depending on the value of the RSS flag.

The general-purpose register selection directive informs the assembler of the value set in the RSS flag to generate
the object code corresponding to the value of the RSS flag.

Table 3-10. Absolute Names and Function Names of General-Purpose Registers

(a) 8-bit registers (b) 16-bit registers

Absolute Function Name Absolute Function name
Name RSS =0 RSS = 1Note Name RSS = 0 RSS = 1Note
RO X RPO AX
R1 A RP1 BC
R2 C RP2 AX
R3 B RP3 BC
R4 X RP4 VP VP
R5 A RP5 UP uP
R6 C RP6 DE DE
R7 B RP7 HL HL
R8
R9 (c) 24-bit registers
R10 Absolute Function name
R11 Name
R12 E E RG4 VVP
R13 D D RG5 UuP
R14 L L RG6 TDE
R15 H H RG7 WHL

Note RSS should only be set to 1 when a 78K/Ill Series program is used.
Remarks 1. A blank column in the table indicates that, by describing an absolute name, the register

corresponding to the absolute name can be accessed.
2. R8 to R11 have no function name.

130 User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

RSS register set select RSS
(1) RSS (register set select)
[Description format]
Symbol field Mnemonic field Operand field Comment field
[label:] RSS absolute-value-with-evaluated- [;comment]
value-of-0-or-1

[Function]

The RSS directive tells the assembler to generate object codes by replacing the general-purpose registers of
the function names described in the source program with those of the corresponding absolute names, based
on the value of the Register Set Select (RSS) flag specified in the operand field.

See Table 3-10 Absolute Names and Function Names of General Registers, for correspondence of the
function names of the general-purpose registers to their absolute names.

[Use]

When addressing is to be performed by using the function name of a general-purpose register instead of its
absolute name to make the best use of its inherent function, use the RSS directive.

When describing a general-purpose register with its function name, the value then set in the RSS flag must be
declared with the RSS directive.

[Explanation]

The Register Set Select (RSS) flag is bit 5 of the PSWL register.

7 6 5 4 3 2 1 0
pswe| s | z |mss| ac | E [Pv | o | cv |
T
RSS flag

The RSS directive informs the assembler of the value (0, 1) of the RSS flag. Based on the value of the
operand of the RSS directive, the assembler generates object codes by substituting the general registers of
the function names with those of the corresponding absolute names.

When setting, resetting, or switching the value of the RSS flag with an instruction, the RSS directive must be
described immediately before or after the instruction to inform the assembler of the value of the RSS flag.
Even after the RSS flag is set or reset by the instruction, the expected object code is not generated unless the
RSS directive is described.

The RSS directive is valid until the next RSS directive, segment definition directive (CSEG, DSEG, BSEG, or
ORG), or END directive appears in the source program. Therefore, the RSS directive must be described for
each segment.

The RSS directive can be described only within a code segment.

If an RSS directive appears while no segment is being created, then the assembler will create a relocatable
code segment as a default segment. The default segment name of the created segment is 7?CSEG and its
default relocation attribute is UNIT.

The default value of the RSS directive is 0 (RSS = 0).

User's Manual U15255EJ1VOUM 131

CHAPTER 3 DIRECTIVES

RSS register set select RSS

[Application example]

NAME SAMPLE
LOCATION OFH

RSS 1 i (1)
MOV B,A i (2)
SEG1 CSEG
SUBl: MOV B,A i (3)
MOV A, C i (4)
RET

SEG2 CSEG

SUB2: RSS 1 ; (5)
SET1 PSWL.5 ; (6)
MOV B,A i (7)
RET

SUB3: RSS 0 ; (8)
SWRS i (9)
MOV B,A ; (10)
RET

SUB4: MOV B,A ; (11)
RET

SEG4 DSEG
VAR: DW 0

SEG3 CSEG
SUB5: MOV B, A ; (12)
RET
END

<Explanation>

(1) A segmentis generated.

(2) This description corresponds to "MOV R7, R5".

(8) The RSS default value in the assembiler is "0". Because there is no description for the RSS directive, this
description corresponds to "MOV R3, R1".

(4) This description corresponds to "MOV R1, R2".

(6) The RSS directive must be described immediately before (or after) the instruction which sets the RSS flag
in (6).

(7) This description corresponds to "MOV R7, R5".

(8) The RSS directive must be described immediately before (or after) the instruction which resets the RSS
flag in (9).

(10) This description corresponds to "MOV R3, R1".

(11) This description corresponds to "MOV R3, R1".

(12) This description corresponds to "MOV R3, R1".

132 User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

RSS register set select RSS
See the following assemble list for the object codes to be generated.
Assemble list
ALNO STNO ADRS OBJECT M I SOURCE STATEMENT
1 1 NAME SAMPLE
2 2 000000 O09C1FF00 LOCATION OFH
3 3 RSS 1 i (1)
4 4 000004 2475 MOV B,A ;(2)
5 5 ------ SEG1 CSEG
6 6 000000 2431 SUBL: MOV , ; (3)
7 7 000002 D2 MOV , i (4)
8 8 000003 56 RET
9 9
10 10 ------ SEG2 CSEG
11 11 000000 SUB2: RSS 1 i (5)
12 12 000000 0285 SET1 PSWL.5 ; (6)
13 13 000002 2475 MOV B,A i (7)
14 14 000004 56 RET
15 15 000005 SUB3 : RSS 0 i (8)
16 16 000005 OSFC SWRS ; (9)
17 17 000007 2431 MOV B,A ; (10)
18 18 000009 56 RET
19 19 00000A 2431 SUB4 : MOV B,A ; (11)
20 20 00000C 56 RET
21 21
22 22 ------ SEG4 DSEG
23 23 000000 0000 VAR: DW 0
24 24
25 25 ------ SEG3 CSEG
26 26 000000 2431 SUBS : MOV B,A ; (12)
27 27 000002 56 RET
28 28 END
User's Manual U15255EJ1VOUM 133

CHAPTER 3 DIRECTIVES

3.9 Macro Directives

When describing a source program, it is not only troublesome to describe a series of frequently used instruction
groups over and over again, but this may also cause an increase in the number of description or coding errors.

By using the macro function with macro directives, the need to repeatedly describe the same group of instructions
can be eliminated, thereby increasing coding efficiency of the program. The basic function of a macro is the
replacement of a series of statements with a name.

Macro directives include MACRO, LOCAL, REPT, IRP, EXITM, and ENDM.

In this section, each of these macro directives is detailed. For details of the macro function, sce CHAPTER 5
MACROS.

134 User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

MACRO macro MACRO

(1) MACRO (macro)

[Description format]

Symbol field Mnemonic field Operand field Comment field
macro-name MACRO [formal-parameter [,...]] [;comment]
Macro body
ENDM [;comment]
[Function]

The MACRO directive executes a macro definition by assigning the macro name specified in the symbol field
to a series of statements (called a macro body) described between this directive and the ENDM directive.

[Use]

Define a series of frequently used statements in the source program with a macro name. After this definition
the macro body corresponding to the macro name is expanded by only describing the defined macro name
(for macro reference).

[Explanation]

The MACRO directive must be paired with the ENDM directive.

For the macro name to be described in the symbol field, see the conventions of symbol description in 2.2.3
Fields that make up a statement.

To reference a macro, describe the defined macro name in the mnemonic field (see Application example).
For the formal parameter(s) to be described in the operand field, the same rules as the conventions of symbol
description will apply.

Up to 16 formal parameters can be described per macro directive.

Formal parameters are valid only within the macro body.

An error will result if a reserved word is described as a formal parameter. However, if a user-defined symbol
is described, its recognition as a formal parameter will take precedence.

The number of formal parameters must be the same as the number of actual parameters.

A name or label defined within the macro body if declared with the LOCAL directive becomes valid with
respect to one-time macro expansion.

Nesting of macros (i.e., referencing other macros within the macro body) is allowed up to eight levels
including the REPT and IRP directives.

The number of macros that can be defined within a single source module is not specifically limited. In other
words, macros may be defined as long as there is memory space available.

Formal parameter definition lines, reference lines, and symbol names are not output to a cross-reference list.
Two or more segments must not be defined in a macro body. If defined, an error will be output.

User's Manual U15255EJ1VOUM 135

CHAPTER 3 DIRECTIVES

MACRO macro MACRO

[Application example]

NAME SAMPLE
ADMAC MACRO PARA1, PARA2 ; (1)

MOV A, #PARA1

ADD A, #PARA2

ENDM i (2)

ADMAC 10H, 20H 7 (3)

END

<Explanation>

(1) A macro is defined by specifying macro name “ADMAC” and two formal parameters “PARA1” and “PARA2".
(2) This directive indicates the end of the macro definition.

(3) Macro “ADMAC” is referenced.

136 User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

LOCAL local LOCAL

(2) LOCAL (local)

[Description format]

Symbol field Mnemonic field Operand field Comment field
None LOCAL symbol-name [,...] [;comment]
[Function]

The LOCAL directive declares that the symbol name specified in the operand field is a local symbol that is
valid only within the macro body.

[Use]

If a macro that defines a symbol within the macro body is referenced more than once, the assembler will
output a double definition error for the symbol. By using the LOCAL directive, you can reference (or call) a
macro that defines symbol(s) within the macro body more than once.

[Explanation]

For the conventions on symbol names to be described in the operand field, see the conventions on symbol
description in 2.2.3 Fields that make up a statement.

A symbol declared as LOCAL will be replaced with the symbol “??RAn” (where n = 0000 to FFFF) at each
macro expansion. The symbol “??RAn” after the macro replacement will be handled in the same way as a
global symbol and will be stored in the symbol table, and can thus be referenced under the symbol name
“??RAN”.

If a symbol is described within a macro body and the macro is referenced more than once, it means that the
symbol would be defined more than once in the source module. For this reason, it is necessary to declare
that the symbol is a local symbol that is valid only within the macro body.

The LOCAL directive can be used only within a macro definition.

The LOCAL directive must be described before using the symbol specified in the operand field (in other
words, the LOCAL directive must be described at the beginning of the macro body).

Symbol names to be defined with the LOCAL directive within a source module must be all different (in other
words, the same name cannot be used for local symbols to be used in each macro).

The number of local symbols that can be specified in the operand field is not limited as long as they are all
within a line. However, the number of symbols within a macro body is limited to 64. If 65 or more local
symbols are declared, the assembler will output an error message and store the macro definition as an empty
macro body. Nothing will be expanded even if the macro is called.

Macros defined with the LOCAL directive cannot be nested.

Symbols defined with the LOCAL directive cannot be called (referenced) from outside the macro.

No reserved word can be described as a symbol name in the operand field. However, if a symbol same as
the user-defined symbol is described, its recognition as a local symbol will take precedence.

A symbol declared as the operand of the LOCAL directive will not be output to a cross-reference list and
symbol table list.

The statement line of the LOCAL directive will not be output at the time of the macro expansion.

If a LOCAL declaration is made within a macro definition for which a symbol has the same name as a formal
parameter of that macro definition, an error will be output.

User's Manual U15255EJ1VOUM 137

CHAPTER 3 DIRECTIVES

LOCAL local LOCAL

[Application example]

<Source Program>

NAME SAMPLE
MAC1 MACRO
LOCAL LLAB ; (1)
LLAB: Macro definition
BR SLLAB ; (2)
ENDM
REF1: MAC1 i (3)
BR ILLAB i (4) -4—— This description is erroneous.
REF2: MAC1 i (5)
END

<Explanation>

(1) This LOCAL directive defines the symbol name “LLAB” as a local symbol.

(2) This BR instruction references the local symbol “LLAB” within the macro MAC1.

(3) This macro reference calls the macro MAC1.

(4) Because the local symbol “LLAB” is referenced outside the definition of the macro MACH1, this description
results in an error.

(5) This macro reference calls the macro MAC1.

138 User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

LOCAL local LOCAL

The assemble list of the above application example is shown below.

Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT
1 1 NAME SAMPLE
2 2 M MAC1 MACRO
3 3 M LOCAL LLAB ; (1)
4 4 M LLAB:
5 5 M BR $LLAB i (2)
6 6 M ENDM
7 7
8 8 000000 REF1: MAC1 ; (3)
9 #1 H
10 000000 #1 ??RA0000:
11 000000 14FE #1 BR $??RA0000 ;(2)
9 12
10 13 000002 2C0000 BR LLAB ; (4)
* ok ERROR F407, STNO 13 (0) Undefined symbol reference 'LLAB'
* kK ERROR F303, STNO 13 (13) Illegal expression
11 14
12 15 000005 REF2: MAC1 ; (5)
16 #1 H
17 000005 #1 ??RA0001:
18 000005 14FE #1 BR $??RA0001 ; (2)
13 19
14 20 END

User's Manual U15255EJ1VOUM 139

CHAPTER 3 DIRECTIVES

REPT repeat REPT
(3) REPT (repeat)
[Description format]
Symbol field Mnemonic field Operand field Comment field
[label:] REPT absolute-expression [;comment]
ENDM [;comment]

140

[Function]

The REPT directive tells the assembler to repeatedly expand a series of statements described between this
directive and the ENDM directive (called the REPT-ENDM block) the number of times equivalent to the value
of the expression specified in the operand field.

[Use]

Use the REPT and ENDM directives to describe a series of statements repeatedly in a source program.

[Explanation]

An error occurs if the REPT directive is not paired with the ENDM directive.

In the REPT-ENDM block, macro references, REPT directives, and IRP directives can be nested up to eight
levels.

If the EXITM directive appears in the REPT-ENDM block, subsequent expansion of the REPT-ENDM block by
the assembler is terminated.

Assembly control instructions may be described in the REPT-ENDM block.

Macro definitions cannot be described in the REPT-ENDM block.

The absolute expression described in the operand field is evaluated with unsigned 24 bits. If the value of the
expression is 0, nothing is expanded.

User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

REPT repeat REPT

[Application example]

<Source program>

NAME SAMP1
CSEG

REPT 3 i (1) <— REPT-ENDM block
INC

DEC

ENDM i (2)
END

<Explanation>
(1) This REPT directive tells the assembler to expand the REPT-ENDM block three consecutive times.
(2) This directive indicates the end of the REPT-ENDM block.

When the above source program is assembled, the REPT-ENDM block is expanded as shown in the following
assemble list.

<Assemble list>

NAME SAMP1
CSEG
REPT
INC
DEC
ENDM
INC
DEC
INC
DEC
INC
DEC
END

(@]

N W N ©w Q w

The REPT-ENDM block defined by statements (1) and (2) has been expanded three times. On the assemble
list, the definition statements (1) and (2) by the REPT directive in the source module is not displayed.

User's Manual U15255EJ1VOUM 141

CHAPTER 3 DIRECTIVES

IRP indefinite repeat IRP
(4) IRP (indefinite repeat)
[Description format]
Symbol field Mnemonic field Operand field Comment field
[label:] IRP formal-parameter, <[actual- [;comment]

142

parameter [,...]]>

ENDM [;comment]

[Function]

The IRP directive tells the assembler to repeatedly expand a series of statements described between this
directive and the ENDM directive (called the IRP-ENDM block) the number of times equivalent to the number
of actual parameters while replacing the formal parameter with the actual parameters specified in the operand
field.

[Use]

Use the IRP and ENDM directives to describe a series of statements, only some of which become variables,
repeatedly in a source program.

[Explanation]

The IRP directive must be paired with the ENDM directive.

Up to 16 actual parameters may be described in the operand field.

In the IRP-ENDM block, macro references, REPT and IRP directives can be nested up to eight levels.

If the EXITM directive appears in the IRP-ENDM block, subsequent expansion of the IRP-ENDM block by the
assembler is terminated.

Macro definitions cannot be described in the IRP-ENDM block.

Assembly control instructions may be described in the IRP-ENDM block.

User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

IRP indefinite repeat IRP

[Application example]

<Source program>

NAME SAMP1
CSEG
IRP PARA, <OAH, 0BH, 0CH> ; (1)
ADD A, #PARA
<&— |RP-ENDM block
MOV [DE+] ,A
ENDM ;7 (2)
END

<Explanation>

(1) The formal parameter is “PARA” and the actual parameters are the following three: “0AH”, “OBH”, and
“OCH”. This IRP directive tells the assembler to expand the IRP-ENDM block three times (i.e., the number
of actual parameters) while replacing the formal parameter “PARA” with the actual parameters “0AH”, “OBH”,
and “OCH”.

(2) This directive indicates the end of the IRP-ENDM block.

When the above source program is assembled, the IRP-ENDM block is expanded as shown in the following
assemble list.

<Assemble list>

NAME SAMP1

CSEG

ADD A, #0AH i (3)
MOV [DE+] ,A

ADD A, #0BH ;o (4)
MOV [DE+] ,A

ADD A, #0CH ;i (5)
MOV [DE+],A

END

The IRP-ENDM block defined by statements (1) and (2) has been expanded three times (equivalent to the
number of actual parameters).

(3) Inthis ADD instruction, PARA is replaced with 0AH.

(4) Inthis ADD instruction, PARA is replaced with OBH.

(5) Inthis ADD instruction, PARA is replaced with OCH.

User's Manual U15255EJ1VOUM 143

CHAPTER 3 DIRECTIVES

EXITM exit from macro EXITM

(5) EXITM (exit from macro)

144

[Description format]

Symbol field Mnemonic field Operand field Comment field
[label:] EXITM None [;comment]
[Function]

The EXITM directive forcibly terminates the expansion of the macro body defined by the MACRO directive
and the repetition by the REPT-ENDM or IRP-ENDM block.

[Use]

This function is mainly used when a conditional assembly function (see 4.7 Conditional Assembly Control
Instructions) is used in the macro body defined with the MACRO directive.

If conditional assembly functions are used in combination with other instructions in the macro body, part of the
source program that must not be assembled is likely to be assembled unless control is returned from the
macro by force using this EXITM directive. In such cases, be sure to use the EXITM directive.

[Explanation]

If the EXITM directive is described in a macro body, instructions up to the ENDM directive will be stored as
the macro body.

The EXITM directive indicates the end of a macro only during the macro expansion.

If something is described in the operand field of the EXITM directive, the assembler will output an error
message but will execute the EXITM processing.

If the EXITM directive appears in a macro body, the assembler will return by force the nesting level of
IF/_IF/ELSE/ELSEIF/_ELSEIF/ENDIF blocks to the level when the assembler entered the macro body.

If the EXITM directive appears in an INCLUDE file resulting from expanding the INCLUDE control instruction
described in a macro body, the assembler will accept the EXITM directive as valid and terminate the macro
expansion at that level.

User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

EXITM

exit from macro

EXITM

[Application example]
¢ In the example here, conditional assembly control instructions are used. See 4.7 Conditional Assembly

Control Instructions.

e See CHAPTER 5 MACROS for the macro body and macro expansion.

<Source program>

NAME SAMP1

MAC1 MACRO ;o (1)
NOT1 A.l

$ IF (SW1) ;o (2)
BT A.1,8L1
EXITM i (3)

$ ELSE i (4)
MOV1 CY,A.1
MOV A, #0

$ ENDIF ;i (5)

$ IF (SW2) i (6)
BR [HL]

$ ELSE i (7)
BR [DE]

S ENDIF i (8)
ENDM i (9)
CSEG

$ SET (SW1) ; (10)
MAC1 ;o (11)
NOP

Ll: NOP
END

User's Manual U15255EJ1VOUM

Macro body

IF block

ELSE block

IF block

ELSE block

Macro reference

145

CHAPTER 3 DIRECTIVES

EXITM

exit from macro EXITM

146

<Explanation>

(1)
)

®)

)
©)
0

The macro “MAC1” uses conditional assembly functions (2) and (4) through (8) within the macro body.

An IF block for conditional assembly is defined here. If the switch name “SW1” is true (not “0”), the ELSE
block is assembled.

This directive terminates by force the expansion of the macro body in (4) and thereafter.

If this EXITM directive is omitted, the assembler proceeds to the assembly process in (6) and thereafter
when the macro is expanded.

An ELSE block for conditional assembly is defined here. If the switch name “SW1” is false (“0”), the ELSE
block is assembled.

This ENDIF control instruction indicates the end of the conditional assembly.

Another IF block for conditional assembly is defined here. If the switch name “SW2” is true (not “0”), the
following IF block is assembled.

Another ELSE block for conditional assembly is defined. If the switch name “SW2” is false (“0”), the ELSE
block is assembled.

This ENDIF instruction indicates the end of the conditional assembly processes in (6) and (7).

This directive indicates the end of the macro body.

(10) This SET control instruction gives true value (not “0”) to the switch name “SW1” and sets the condition of

the conditional assembly.

(11) This macro reference calls the macro “MAC1”.

When the source program in the above example is assembled, macro expansion occurs as shown below.

NAME SAMP1
MAC1 MACRO ;7 (1)

ENDM i (9)
CSEG

$ SET (SW1) ; (10)
MAC1 ; (11)

NOT1 CY

S IF(SW1) Macro-expanded part
BT A.1,SL1

Ll: NOP
NOP
END

The macro body of the macro “MAC1” is expanded by referring to the macro in (11). Because true value is set in
the switch name “SW1” in (10), the first IF block in the macro body is assembled. Because the EXITM directive
is described at the end of the IF block, the subsequent macro expansion is not executed.

User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

ENDM end macro ENDM

(6) ENDM (end macro)

[Description format]

Symbol field Mnemonic field Operand field Comment field
None ENDM None [;comment]
[Function]

e The ENDM directive instructs the assembler to terminate the execution of a series of statements defined as
the functions of the macro.

[Use]
e The ENDM directive must always be described at the end of a series of statements following the MACRO,
REPT, and/or the IRP directives.

[Explanation]

o A series of statements described between the MACRO directive and ENDM directive becomes a macro body.

e A series of statements described between the REPT directive and ENDM directive becomes a REPT-ENDM
block.

e A series of statements described between the IRP directive and ENDM directive becomes an IRP-ENDM
block.

[Application examples]

Example 1 <MACRO-ENDM>

NAME SAMP1
ADMAC MACRO PARA1, PARA2
MOV A, #PARAl1
ADD A, #PARA2
ENDM
.END

User's Manual U15255EJ1VOUM 147

CHAPTER 3 DIRECTIVES

ENDM end macro ENDM

Example 2 <REPT-ENDM>

NAME SAMP2
CSEG

éEPT
INC B
DEC C
ENDM

END

Example 3 <IRP-ENDM>

NAME SAMP3

CSEG

IRP PARA,<1,2,3>
ADD A, #PARA

MOV [DE+] ,A
ENDM

END

148 User's Manual U15255EJ1VOUM

CHAPTER 3 DIRECTIVES

3.10 Assembly Termination Directive

The assembly termination directive informs the assembler of the end of a source module. This assembly
termination directive must always be described at the end of each source module.

The assembler processes a series of statements up to the assembly termination directive as a source module.
Therefore, if the assembly termination directive exists before the ENDM in a REPT block or an IRP block, the REPT
block or IRP block becomes invalid.

User's Manual U15255EJ1VOUM 149

CHAPTER 3 DIRECTIVES

END end END

(1)

150

END (end)

[Description format]

Symbol field Mnemonic field Operand field Comment field
None END None [;comment]
[Function]

e The END directive indicates to the assembler the end of a source module.

[Use]
e The END directive must always be described at the end of each source module.

[Explanation]

e The assembler continues to assemble a source module until the END directive appears in the source module.
Therefore, the END directive is required at the end of each source module.

¢ Always input a line-feed (LF) code after the END directive.

e If any statement other than blank, tab, LF, or comments appears after the END directive, the assembler
outputs a warning message.

[Application Example]

NAME SAMPLE
DSEG

CSEG

END ;7 (1)

<Explanation>
(1) Always describe the END directive at the end of each source module.

User's Manual U15255EJ1VOUM

CHAPTER 4 CONTROL INSTRUCTIONS

This chapter explains the control instructions. Control instructions provide detailed directions on the operation of
the assembler.

4.1 Overview of Control Instructions

Control instructions are described in a source program to provide detailed directions on the operation of the
assembler.

These instructions are not subject to object code generation.

Control instructions are available in the following types.

Table 4-1. List of Control Instructions

No. Type of Control Instruction Control Instruction

1 Processor type specification control instruction PROCESSOR

2 Debug information output control instructions DEBUG/NODEBUG, DEBUGA/NODEBUGA

3 Cross-reference list output specification control XREF/NOXREF, SYMLIST/NOSYMLIST

instructions

4 Inclusion control instruction INCLUDE

5 Assembly list control instructions EJECT, TITLE, SUBTITLE,
LIST/NOLIST,
GEN/NOGEN,
COND/NOCOND,
FORMFEED/NOFORMFEED,
WIDTH, LENGTH, TAB

6 Conditional assembly control instructions SET/RESET,
IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF

7 SFR area change control instructions CHGSFR/CHGSFRA

8 Other control instructions DGL, DGS, TOL_INF

Control instructions are described in a source program in the same way as the assembler directives.

Of the control instructions listed in Table 4-1 List of Control Instructions, the following instructions have the
same functions as assembler options that can be specified in the start-up command line of the assembler.

The correspondence between the control instructions and the command line assembler options is given in Table
4-2 Control Instructions and Assembler Options.

User's Manual U15255EJ1VOUM 151

CHAPTER 4 CONTROL INSTRUCTIONS

Table 4-2. Control Instructions and Assembler Options

Control Instruction Assembler Option
PROCESSOR -C
DEBUG/NODEBUG -G/-NG
DEBUGA/NODEBUGA -GA/-NGA
XREF/NOXREF -KX/-NKX
SYMLIST/NOSYMLIST -KS/-NKS
FORMFEED/NOFORMFEED -LF/-NLF
TITLE -LH
WIDTH -Lw
LENGTH -LL
TAB -LT
CHGSFR/CHGSFRA -CS/-CSA

For the method of specifying the control instructions and assembler options by command line, see the RA78K0

Assembler Package Operation.

4.2 Processor Type Specification Control Instruction

The processor type specification control instruction specifies in a source module file the type of device subject to

assembly.

152

User's Manual U15255EJ1VOUM

CHAPTER 4 CONTROL INSTRUCTIONS

PROCESSOR processor PROCESSOR

(1) PROCESSOR (processor)

[Description format]

[A] $ [A] PROCESSOR [A] ([A] processor-type [A])
[A]$ [A]PC[A] ([A] processor-type [A]) ; Abbreviated format

[Function]

The PROCESSOR control instruction specifies in a source module file the processor type of the device
subject to assembly.

[Use]

The processor type of the device subject to assembly must always be specified in the source module file or in
the start-up command line of the assembler.

If the processor type specification for the device subject to assembly is omitted in each source module file,
the processor type must be specified at each assembly operation. Therefore, by specifying the target device
subject to assembly in each source module file, you can save time and trouble when starting up the
assembler.

[Explanation]

The PROCESSOR control instruction can be described only in the header section of a source module file. If
the control instruction is described elsewhere, the assembler will be aborted.

If the specified processor type differs from the actual target device subject to assembly, the assembler will be
aborted.

Only one PROCESSOR control instruction can be specified in the module header.

The processor type of the target device subject to assembly may also be specified with the assembler option
(-C) in the start-up command line of the assembler. If the specified processor type differs between the source
module file and the start-up command line, the assembler will output a warning message and give
precedence to the processor type specification in the start-up command line.

Even when the assembler option (-C) has been specified in the start-up command line, the assembler
performs a syntax check on the PROCESSOR control instruction.

If the processor type is not specified in either the source module file or the start-up command line, the
assembler will be aborted.

[Application example]

S PROCESSOR (4038)

$ DEBUG

$ XREF
NAME TEST
CSEG

User's Manual U15255EJ1VOUM 153

CHAPTER 4 CONTROL INSTRUCTIONS

4.3 Debug Information Output Control Instructions

The debug information output control instructions are used to specify in a source module file the output or non-
output of debugging information to an object module file created from the source module file.

154 User's Manual U15255EJ1VOUM

CHAPTER 4 CONTROL INSTRUCTIONS

DEBUG/NODEBUG debug/nodebug DEBUG/NODEBUG

(1) DEBUG/NODEBUG (debug/nodebug)

[Description format]

[A]$ [A] DEBUG ; Default assumption
[A] $ [A] NODEBUG

[Function]

The DEBUG control instruction tells the assembler to add local symbol information to an object module file.
The NODEBUG control instruction tells the assembler not to add local symbol information to an object module
file. However, in this case as well, the segment name is output to an object module file.

“Local symbol information” refers to symbols other than module names and PUBLIC, EXTRN, and EXTBIT
symbols.

[Use]

Use the DEBUG control instruction when symbolic debugging including local symbols is to be performed.
Use the NODEBUG control instruction when:

1. Symbolic debugging is to be performed for global symbols only

2. Debugging is to be performed without symbols

3. Only objects are required (as for evaluation with PROM)

[Explanation]

The DEBUG or NODEBUG control instruction can be described only in the header section of a source module
file.

If the DEBUG or NODEBUG control instruction is omitted, the assembler will assume that the DEBUG control
instruction has been specified.

The addition of local symbol information can be specified using the assembler option (-G/-NG) in the start-up
command line.

If the control instruction specification in the source module file differs from the specification in the start-up
command line, the specification in the command line takes precedence.

Even when the assembler option (-NG) has been specified, the assembler performs a syntax check on the
DEBUG or NODEBUG control instruction.

User's Manual U15255EJ1VOUM 155

CHAPTER 4 CONTROL INSTRUCTIONS

DEBUGA/NODEBUGA debuga/nodebuga DEBUGA/NODEBUGA

(2) DEBUGA/NODEBUGA (debuga/nodebuga)

156

[Description format]

[A]$ [A] DEBUGA ; Default assumption
[A] $ [A] NODEBUGA

[Function]

The DEBUGA control instruction tells the assembler to add assembler source debugging information to an
object module file.

The NODEBUGA control instruction tells the assembler not to add assembler source debugging information to
an object module file.

[Use]

Use the DEBUGA control instruction when debugging is to be performed at the assembler or structured
assembler source level. An integrated debugger will be necessary for debugging at the source level.

Use the NODEBUGA control instruction when:

1. Debugging is to be performed without the assembler source

2. Only objects are required (as for evaluation with PROM)

[Explanation]

The DEBUGA or NODEBUGA control instruction can be described only in the header section of a source
module file.

If the DEBUGA or NODEBUGA control instruction is omitted, the assembler will assume that the DEBUGA
control instruction has been specified.

If two or more of these control instructions are specified, the last specified control instruction takes
precedence over the others.

The addition of assembler source debugging information can be specified using the assembler option (-GA/-
NGA) in the start-up command line.

If the control instruction specification in the source module file differs from the specification in the start-up
command line, the specification in the command line takes precedence.

Even when the assembler option (-NGA) has been specified, the assembler performs a syntax check on the
DEBUGA or NODEBUGA control instruction.

If compiling or structure-assembling the debug information output by the C compiler or structured assembler
preprocessor, do not describe the debug information output control instructions when assembling the output
assemble source. The control instructions necessary at assembly are output to assembler source as control
statements by the C compiler or structured assembler preprocessor.

User's Manual U15255EJ1VOUM

CHAPTER 4 CONTROL INSTRUCTIONS

4.4 Cross-Reference List Output Specification Control Instructions

The cross-reference list output specification control instructions are used in a source module file to specify the
output or non-output of a cross-reference list.

User's Manual U15255EJ1VOUM 157

CHAPTER 4 CONTROL INSTRUCTIONS

XREF/NOXREF xref/noxref XREF/NOXREF

(1) XREF/NOXREF (xref/noxref)

158

[Description format]

[A] $ [A] XREF

[A]1$ [A]lXR ; Abbreviated format

[A]$ [A] NOXREF ; Default assumption

[A] $ [A] NOXR ; Abbreviated format
[Function]

The XREF control instruction tells the assembler to output a cross-reference list to an assembily list file.
The NOXREF control instruction tells the assembler not to output a cross-reference list to an assembly list
file.

[Use]

Use the XREF control instruction to output a cross-reference list when you want information on where each of
the symbols defined in the source module file is referenced or how many such symbols are referenced in the
source module file.

If you must specify the output or non-output of a cross-reference list at each assembly operation, you may
save time and labor by specifying the XREF and NOXREF control instruction in the source module file.

[Explanation]

The XREF or NOXREF control instruction can be described only in the header section of a source module file.
If two or more of these control instructions are specified, the last specified control instruction takes
precedence over the others.

Output or non-output of a cross-reference list can also be specified by the assembler option (-KX/-NKX) in the
start-up command line.

If the control instruction specification in the source module file differs from the assembler option specification
in the start-up command line, the specification in the command line will take precedence over that in the
source module.

Even when the assembler option (-NP) has been specified in the start-up command line, the assembler
performs a syntax check on the XREF/NOXREF control instruction.

User's Manual U15255EJ1VOUM

CHAPTER 4 CONTROL INSTRUCTIONS

SYMLIST/NOSYMLIST symlist/nosymlist SYMLIST/NOSYMLIST

(2) SYMLIST/NOSYMLIST (symlist/nosymlist)

[Description format]

[A]1$[A] SYMLIST
[A] $ [AINOSYMLIST ; Default assumption

[Function]

The SYMLIST control instruction tells the assembler to output a symbol list to a list file.
The NOSYMLIST control instruction tells the assembler not to output a symbol list to a list file.

[Use]

Use the SYMLIST control instruction to output a symbol list.

[Explanation]

The SYMLIST or NOSYMLIST control instruction can be described only in the header section of a source
module file.

If two or more of these control instructions are specified, the last specified control instruction takes
precedence over the others.

Output of a symbol list can also be specified by the assembler option (-KS/-NKS) in the start-up command
line.

If the control instruction specification in the source module file differs from the assembler option specification
in the start-up command line, the specification in the command line will take precedence over that in the
source module.

Even when the assembler option (-NP) has been specified in the start-up command line, the assembler
performs a syntax check on the SYMLIST/NOSYMLIST control instruction.

User's Manual U15255EJ1VOUM 159

CHAPTER 4 CONTROL INSTRUCTIONS

4.5 Inclusion Control Instruction
The inclusion control instruction is used in a source module file to specify the inclusion of another module file in

the source module file.
By making effective use of this control instruction, you can save time and labor in describing a source program.

160 User's Manual U15255EJ1VOUM

CHAPTER 4 CONTROL INSTRUCTIONS

INCLUDE

include INCLUDE

(1) INCLUDE (include)

[Description Format]

[A] $ [A] INCLUDE [A] ([A]filename [A])
[A] $ [ATICI[A] ([A]lfilename [A]) ; Abbreviated format

[Function]
o The INCLUDE control instruction tells the assembler to insert and expand the contents of a specified file

[Use]

beginning on a specified line in the source program for assembly.

e A relatively large group of statements that may be shared by two or more source modules should be
combined into a single file as an INCLUDE file. If the group of statements must be used in each source
module, specify the filename of the required INCLUDE file with the INCLUDE control instruction. With this
control instruction, you can greatly reduce time and labor in describing source modules.

[Explanation]

e The INCLUDE control instruction can only be described in ordinary source programs.

The pathname or drive name of an INCLUDE file can be specified with the assembler option (-1).
The assembler searches INCLUDE file read paths in the following sequence.

(a)

When an INCLUDE file is specified without pathname specification

<1> Path in which the source file exists

<2> Path specified by the assembler option (-1)

<3> Path specified by the environment variable INC78K4

When an INCLUDE file is specified with a pathname

If the INCLUDE file is specified with a drive name or a pathname beginning with (\), the path specified
with the INCLUDE file will be prefixed to the INCLUDE filename. If the INCLUDE file is specified with a
relative path (which does not begin with (\)), a pathname will be prefixed to the INCLUDE filename in the
order described in (a) above.

Nesting of INCLUDE files is allowed up to seven levels. In other words, the nesting level display of INCLUDE
files in the assembly list is up to 8 (the term “nesting” here refers to the specification of one or more other
INCLUDE files in an INCLUDE file).

The END directive need not be described in an INCLUDE file.

If the specified INCLUDE file cannot be opened, the assembler will abort operation.

User's Manual U15255EJ1VOUM 161

CHAPTER 4 CONTROL INSTRUCTIONS

INCLUDE include INCLUDE

162

¢ An INCLUDE file must be closed with an IF or _IF control instruction that is properly paired with an ENDIF
control instruction within the INCLUDE file. If the IF level at the entry of the INCLUDE file expansion does not
correspond with the IF level immediately after the INCLUDE file expansion, the assembler will output an error
message and force the IF level to return to that level at the entry of the INCLUDE file expansion.

¢ When defining a macro in an INCLUDE file, the macro definition must be closed in the INCLUDE file. If an
ENDM directive appears unexpectedly (without the corresponding MACRO directive) in the INCLUDE file, an
error message will be output and the ENDM directive will be ignored. If an ENDM directive is missing for the
MACRO directive described in the INCLUDE file, the assembler will output an error message but will process
the macro definition by assuming that the corresponding ENDM directive has been described.

[Application example]

<SET1.INC>""*

<Source program>""*" <EQU.INC>""* /lSYMl SET 10H
NAME SAMPLE SYMA EQU 10H
EXTRN L1,L2 $ INCLUDE (SET1.INC) ; (2)
PUBLIC L3 SYMB EQU 20H Mo
| <SET2.INC>""
$ INCLUDE (EQU.INC) ; (1) $ INCLUDE (SET2.INC) ; (3)
] |SYM1 SET 20H |
CSEG
<SET3.INC>""**
$ INCLUDE (SET3.INC) ;(4[:: |SYM1 SET 30H |
END SYMZ EQU 100H

Notes 1. Two or more $IC control instructions can be specified in the source file. The same INCLUDE file
may also be specified more than once.
2. Two or more $IC control instructions may be specified for INCLUDE file “EQU.INC”.
3. No $IC control instruction can be specified in any of the INCLUDE files “SET1.INC”, “SET2.INC”,
and “SET3.INC”.

<Explanation>
(1) This control instruction specifies “EQU.INC” as the INCLUDE file.
(2), (3), (4) These control instructions specify “SET1.INC”, “SET2.INC”, and “SET3.INC” as the INCLUDE file.

When this source program is assembled, the contents of the INCLUDE file will be expanded as follows.

User's Manual U15255EJ1VOUM

CHAPTER 4 CONTROL INSTRUCTIONS

INCLUDE include INCLUDE
NAME SAMPLE
EXTRN Ll,L2
PUBLIC L3
$ INCLUDE (EQU. INC) ; (1)
The contents of INCLUDE file
4—— “EQU.INC” have been
SYMA EQU 10H expanded.
& INCLUDE (SET1.INC) i (2)
The contents of INCLUDE file
SYM1 SET 10H “SET1.INC” have been
expanded.
SYMB EQU 20H
& INCLUDE (SET2 . INC) ; (3)
The contents of INCLUDE file
SYM1 SET 20H “SET2.INC” have been
expanded.
& INCLUDE (SET3 . INC) ; (4)
The contents of INCLUDE file
SYM1 SET 30H “SET3.INC” have been
expanded.
SYMZ EQU 100H
CSEG
END
User's Manual U15255EJ1VOUM 163

CHAPTER 4 CONTROL INSTRUCTIONS

4.6 Assembly List Control Instructions

The assembly list control instructions are used in a source module file to control the output format of an assembly
list such as page ejection, suppression of list output, and subtitle output.
The assembly list control instructions include:

o EJECT

e LIST and NOLIST

e GEN and NOGEN

e COND and NOCOND

e TITLE

e SUBTITLE

e FORMFEED and NOFORMFEED
e WIDTH

e LENGTH

e TAB

164 User's Manual U15255EJ1VOUM

CHAPTER 4 CONTROL INSTRUCTIONS

EJECT eject EJECT

(1) EJECT (eject)

[Description format]

[A] $ [A] EJECT
[A]S[AIET ; Abbreviated format

[Default assumption]
e EJECT control instruction is not specified.

[Function]
e The EJECT control instruction causes the assembler to execute page ejection (formfeed) of an assembly list.

[Use]
e Describe the EJECT control instruction in a line of the source module at which page ejection of the assembly
list is required.

[Explanation]

The EJECT control instruction can only be described in ordinary source programs.

Page ejection of the assembly list is executed after the image of the EJECT control instruction itself is output.
If the assembler option (-NP) or (-LLO) is specified in the start-up command line or if the assembly list output
is disabled by another control instruction, the EJECT control instruction becomes invalid. See the RA78K4
Assembler Package Operation for those assembler options.

If an illegal description follows the EJECT control instruction, the assembler will output an error message.

User's Manual U15255EJ1VOUM 165

CHAPTER 4 CONTROL INSTRUCTIONS

EJECT eject EJECT

[Application example]

<Source module>

MOV [DE+] ,A
BR $$

S EJECT ;o (1)
CSEG
END

<Explanation>
(1) When page ejection is executed with the EJECT control instruction, the output assembly list will look like
this.
MoV [DE+], A
BR $S
$ EJECT o
Page ejection
CSEG
END

166 User's Manual U15255EJ1VOUM

CHAPTER 4 CONTROL INSTRUCTIONS

LIST/NOLIST list/nolist LIST/NOLIST

(2) LIST/NOLIST (list/nolist)

[Description format]

[A] S [A]LIST ; Default assumption

[AlS[A]LI ; Abbreviated format

[A] $ [A]NOLIST

[A] $ [AINOLI ; Abbreviated format
[Function]

The LIST control instruction indicates to the assembler the line at which assembly list output must start.

The NOLIST control instruction indicates to the assembler the line at which assembly list output must be
suppressed.

All source statements described after the NOLIST control instruction specification will be assembled, but will
not be output on the assembly list until the LIST control instruction appears in the source program.

[Use]

Use the NOLIST control instruction to limit the amount of assembly list output.

Use the LIST control instruction to cancel the assembly list output suppression specified by the NOLIST
control instruction.

By using a combination of NOLIST and LIST control instructions, you can control the amount of assembly list
output as well as the contents of the list.

[Explanation]

The LIST/NOLIST control instruction can only be described in ordinary source programs.

The NOLIST control instruction functions to suppress assembly list output and is not intended to stop the
assembly process.

If the LIST control instruction is specified after the NOLIST control instruction, statements described after the
LIST control instruction will be output again on the assembly list. The image of the LIST or NOLIST control
instruction will also be output on the assembly list.

If neither the LIST nor NOLIST control instruction is specified, all statements in the source module will be
output to an assembly list.

User's Manual U15255EJ1VOUM 167

CHAPTER 4 CONTROL INSTRUCTIONS

LIST/NOLIST list/nolist LIST/NOLIST

168

[Application example]

NAME SAMP1
S NOLIST ;7 (1)
DATA1 EQU 10H ?
DATAZ EQU 11H Statements in this part will
: not be output to the
DATAX EQU 20H assembly list.
DATAY EQU 20H
S LIST i (2)
CSEG
END

<Explanation>

(1

)

Because the NOLIST control instruction is specified here, statements after “6 NOLIST” and up to the LIST
control instruction in (2) will not be output on the assembly list. The image of the NOLIST control instruction
itself will be output on the assembly list.

Because the LIST control instruction is specified here, statements after this control instruction will be output
again on the assembly list. The image of the LIST control instruction itself will also be output on the
assembly list.

User's Manual U15255EJ1VOUM

CHAPTER 4 CONTROL INSTRUCTIONS

GEN/NOGEN generate/no generate GEN/NOGEN

(3) GEN/NOGEN (generate/no generate)

[Description format]

[A] s [A] GEN ; Default assumption
[A]$ [A]NOGEN

[Function]

o The GEN control instruction tells the assembler to output macro definition lines, macro reference lines, and
macro-expanded lines to an assembly list.

o The NOGEN control instruction tells the assembler to output macro definition lines and macro reference lines
but to suppress macro-expanded lines.

[Use]
o Use the GEN/NOGEN control instruction to limit the amount of assembly list output.

[Explanation]

e The GEN/NOGEN control instruction can only be described in ordinary source programs.

o |[f neither the GEN nor NOGEN control instruction is specified, macro definition lines, macro reference lines,
and macro-expanded lines will be output to an assembly list.

e The specified list control takes place after the image of the GEN or NOGEN control instruction itself has been
printed on the assembly list.

e The assembler continues its processing and increments the statement number (STNO) count even after the
list output control by the NOGEN control instruction.

o |f the GEN control instruction is specified after the NOGEN control instruction, the assembler will resume the
output of macro-expanded lines.

User's Manual U15255EJ1VOUM 169

CHAPTER 4 CONTROL INSTRUCTIONS

GEN/NOGEN generate/no generate GEN/NOGEN

[Application example]

<Source program>

NAME SAMP

S NOGEN

ADMAC MACRO PARA1, PARA2
MOV A, #PARAL
ADD A, #PARA2
ENDM
CSEG
ADMAC 10H, 20H
END

When the above source program is assembled, the output assembly list will ook like this.

NAME SAMP
S NOGEN
ADMAC MACRO PARA1l, PARA2
MOV A, #PARAL
ADD A, #PARA2
ENDM
CSEG
ADMAC 10H, 20H
MOV A, #10H Macro-expanded
AUD A, #20H part will not be
output.
END

<Explanation>
(1) Because the NOGEN control instruction is specified, the macro-expanded lines will not be output to the
assembly list.

170 User's Manual U15255EJ1VOUM

CHAPTER 4 CONTROL INSTRUCTIONS

COND/NOCOND condition/no condition COND/NOCOND

(4) COND/NOCOND (condition/no condition)

[Description format]

[A] $ [A] COND ; Default assumption
[A]$ [A] NOCOND

[Function]

The COND control instruction tells the assembler to output lines that have satisfied the conditional assembly
condition as well as those which have not satisfied the conditional assembly condition to an assembly list.
The NOCOND control instruction tells the assembler to output only lines that have satisfied the conditional
assembly condition to an assembly list. The output of lines that have not satisfied the conditional assembly
condition and lines in which IF/_IF, ELSEIF/_ELSEIF, ELSE, and ENDIF have been described will be
suppressed.

[Use]

Use the COND/NOCOND control instruction to limit the amount of assembly list output.

[Explanation]

The COND/NOCOND control instruction can only be described in ordinary source programs.

If neither the COND nor NOCOND control instruction is specified, the assembler will output lines that have
satisfied the conditional assembly condition as well as those which have not satisfied the conditional
assembly condition to an assembly list.

The specified list control takes place after the image of the COND or NOCOND control instruction itself has
been printed on the assembly list.

The assembler increments the ALNO and STNO counts even after the list output control by the NOCOND
control instruction.

If the COND control instruction is specified after the NOCOND control instruction, the assembler will resume
the output of lines that have not satisfied the conditional assembly condition and lines in which IF/_IF,
ELSEIF/_ELSEIF, ELSE, and ENDIF have been described.

User's Manual U15255EJ1VOUM 171

CHAPTER 4 CONTROL INSTRUCTIONS

COND/NOCOND condition/no condition COND/NOCOND

[Application example]

<Source program>

NAME SAMP

$ NOCOND
$ SET (SW1)

$ IF (SW1)

This part, though
MOV A, #1H assembled, will not
be output to the
S ELSE assembly list.
MOV A, #0H
ENDIF

END

172 User's Manual U15255EJ1VOUM

CHAPTER 4 CONTROL INSTRUCTIONS

TITLE

title TITLE

(5) TITLE (title)

[Description format]

[A] S [A]TITLE [A] ([A] 'title-string' [A])
[A]1 S [AITT [A] ([A] 'title-string' [A]) ; Abbreviated format

[Default assumption]
e When the TITLE control instruction is not specified, the TITLE column of the assembly list header is left blank.

[Function]
e The TITLE control instruction specifies the character string to be printed in the TITLE column at each page

header of an assembly list, symbol table list, or cross-reference list.

[Use]
e Use the TITLE control instruction to print a title on each page of a list so that the contents of the list can be

easily identified.

o [f you need to specify a title with the assembler option at each assembly time, you can save time and labor in

starting the assembler by describing this control instruction in the source module file.

[Explanation]

The TITLE control instruction can be described only in the header section of a source module file.

If two or more TITLE control instructions are specified at the same time, the assembler will accept only the
last specified TITLE control instruction as valid.

Up to 60 characters can be specified as the title string. If the specified title string consists of 61 or more
characters, the assembler will accept only the first 60 characters of the string as valid.

However, if the character length specification per line of an assembly list file (a quantity “X”) is 119 characters
or less, “X — 60 characters” will be acceptable.

If a single quotation mark (') is to be used as part of the title string, describe the single quotation mark twice in
succession.

If no title string is specified (the number of characters in the title string = 0), the assembler will leave the
TITLE column blank.

If any character not included in 2.2.2 Character set is found in the specified title string, the assembler will
output “I” in place of the illegal character in the TITLE column.

A title for an assembily list can also be specified with the assembler option (-LH) in the start-up command line
of the assembler.

User's Manual U15255EJ1VOUM 173

CHAPTER 4 CONTROL INSTRUCTIONS

TITLE title TITLE

[Application example]

<Source module>

S PROCESSOR (4038)
S TITLE('THIS IS TITLE')
NAME SAMPLE
S EJECT
CSEG
END

When the above source program is assembled, the output assembly list will appear as shown on the next page
(with the number of lines per page specified as 72).

174 User's Manual U15255EJ1VOUM

CHAPTER 4 CONTROL INSTRUCTIONS

TITLE title TITLE
78K/IV Series Assembler Vx.xx THIS IS TITLE Date:xx XXX XxXx Page: 1
Command: sample.asm
Para-file:

In-file: SAMPLE.ASM
Obj-file: SAMPLE.REL
Prn-file: SAMPLE.PRN
Assemble list
ALNO STNO ADRS OBJECT M I SOURCE STATEMENT
1 1 S PROCESSOR (4038)
2 2 S TITLE ('THIS IS TITLE')
3 3
4 4 NAME SAMP
5 5
6 6 S EJECT
78K/IV Series Assembler Vx.xx THIS IS TITLE Date:Xx XXX XxXXxX Page: 2
ALNO STNO ADRS OBJECT M I SOURCE STATEMENT
7 7 ----=- CSEG
8 8
9 9 END
10 10
Target chip uPD784038
Device file VX .xxX
Assembly complete, 0 error(s) and 0 warning(s) found. (0)
User's Manual U15255EJ1VOUM 175

CHAPTER 4 CONTROL INSTRUCTIONS

SUBTITLE subtitle SUBTITLE

(6) SUBTITLE (subtitle)

176

[Description format]

[A] $ [A] SUBTITLE [A] ([A] 'character-string' [A])
[A]1$ [A]ST[A] ([A] 'character-string' [A]) ; Abbreviated format

[Default assumption]
¢ When the SUBTITLE control instruction is not specified, the SUBTITLE section of the assembly list header is

left blank.

[Function]
e The SUBTITLE control instruction specifies the character string to be printed in the SUBTITLE section at each

page header of an assembly list.

[Use]
¢ Use the SUBTITLE control instruction to print a subtitle on each page of an assembly list so that the contents

of the assembly list can be easily identified. The character string of a subtitle may be changed for each page.

[Explanation]

The SUBTITLE control instruction can only be described in ordinary source programs.

Up to 72 characters can be specified as the subtitle string.

If the specified title string consists of 73 or more characters, the assembler will accept only the first 72
characters of the string as valid. A 2-byte character is counted as two characters, and tab is counted as one
character.

The character string specified with the SUBTITLE control instruction will be printed in the SUBTITLE section
on the page after the page on which the SUBTITLE control instruction has been specified. However, if the
control instruction is specified at the top (first line) of a page, the subtitle will be printed on that page.

If the SUBTITLE control instruction has not been specified, the assembler will leave the SUBTITLE section
blank.

If a single quotation mark (’) is to be used as part of the character string, describe the single quotation mark
twice in succession.

If the character string in the SUBTITLE section is 0, the SUBTITLE column will be left blank.

If any character not included in 2.2.2 Character set is found in the specified subtitle string, the assembler
will output “!” in place of the illegal character in the SUBTITLE column. If CR (ODH) is described, an error will
result and nothing will be output in the assembly list. If O0OH is described, nothing from that point to the
closing single quotation mark (’) will be output.

User's Manual U15255EJ1VOUM

CHAPTER 4 CONTROL INSTRUCTIONS

SUBTITLE subtitle SUBTITLE

[Application example]

<Source module>

NAME SAMP
CSEG
$ SUBTITLE ('THIS IS SUBTITLE 1') ; (1)
$ EJECT i (2)
CSEG
SUBTITLE ('THIS IS SUBTITLE 2') ;(3)
EJECT i (4)
$ SUBTITLE ('THIS IS SUBTITLE 3') ;i (5)
END

<Explanation>
1) This control instruction specifies the character string ‘THIS IS SUBTITLE 1°.

(

(2) This control instruction specifies a page ejection.

(3) This control instruction specifies the character string ‘THIS IS SUBTITLE 2’.
(4) This control instruction specifies a page ejection.

(5) This control instruction specifies the character string ‘THIS IS SUBTITLE 3'.

User's Manual U15255EJ1VOUM 177

CHAPTER 4 CONTROL INSTRUCTIONS

SUBTITLE subtitle SUBTITLE

The assembly list for this example appears as follows (with the number of lines per page specified as 80).

78K/IV Series Assembler Vx.xx Date:xx xxx xxxxX Page: 1

Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

1 1 NAME SAMP

2

3 3 ----=-- CSEG

4 4

5 5 S SUBTITLE ('THIS IS SUBTITLE 1') ; (1)

6 6 S EJECT 7 (2)
78K/IV Series Assembler Vx.xX Date:xx XXX XxxxX Page: 2

THIS IS SUBTITLE 1

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT
7 7
8 8 ------ CSEG
9 9
10 10 S SUBTITLE ('THIS IS SUBTITLE 2') ; (3)
11 11 $ EJECT i (4)
78K/IV Series Assembler Vx.xxX Date:xx XXX XxxX Page: 3

THIS IS SUBTITLE 2

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT
12 12
13 13 S SUBTITLE ('THIS IS SUBTITLE 3') ; (5)
14 14 END

Target chip : uPD784038
Device file : Vx.xx

Assembly complete, 0 error(s) and 0 warning(s) found. (0)

178 User's Manual U15255EJ1VOUM

CHAPTER 4 CONTROL INSTRUCTIONS

FORMFEED/NOFORMFEED formfeed/noformfeed FORMFEED/NOFORMFEED

(7) FORMFEED/NOFORMFEED (formfeed/noformfeed)

[Description format]

[A]$ [A] FORMFEED
[A] $ [A] NOFORMFEED ; Default assumption

[Function]

The FORMFEED control instruction tells the assembler to output a FORMFEED code at the end of an
assembly list file.
The NOFORMFEED control instruction tells the assembler not to output a FORMFEED code at the end of an
assembly list file.

[Use]

Use the FORMFEED control instruction when you want to start a new page after printing the contents of an
assembly list file.

[Explanation]

The FORMFEED or NOFORMFEED control instruction can be described only in the header section of a
source module file.

At the time of printing an assembly list, the last page of the list may not come out if printing ends in the middle
of a page. In such a case, add a FORMFEED code to the end of the assembly list using the FORMFEED
control instruction or assembler option (-LF).

In many cases, a FORMFEED code will be output at the end of a file. For this reason, if a FORMFEED code
exists at the end of a list file, an unwanted white page may be ejected. To prevent this, the NOFORMFEED
control instruction or assembler option (-NLF) has been set as a default value.

If two or more FORMFEED/NOFORMFEED control instructions are specified at the same time, only the last
specified control instruction will become valid.

The output or non-output of a formfeed code may also be specified with the assembler option (-LF) or (-NLF)
in the start-up command line of the assembler.

If the control instruction specification (FORMFEED/NOFORMFEED) in the source module differs from the
specification (-LF/-NLF) in the start-up command line, the specification in the start-up command line will take
precedence over that in the source module.

Even when the assembler option (-NP) has been specified in the start-up command line, the assembler
performs a syntax check on the FORMFEED or NOFORMFEED control instruction.

User's Manual U15255EJ1VOUM 179

CHAPTER 4 CONTROL INSTRUCTIONS

WIDTH width WIDTH

(8) WIDTH (width)

[Description format]

[A] S [A]IWIDTH [A] ([A] columns-per-line [A])

[Default assumption]
$SWIDTH (132)

[Function]
e The WIDTH control instruction specifies the number of columns (characters) per line of a list file. “columns-
per-line” must be a value in the range of 72 to 250.

[Use]
e Use the WIDTH control instruction when you want to change the number of columns per line of a list file.

[Explanation]

e The WIDTH control instruction can be described only in the header section of a source module file.

e |f two or more WIDTH control instructions are specified at the same time, only the last specified control
instruction will become valid.

e The number of columns per line of a list file may also be specified with the assembler option (-LW) in the
start-up command line of the assembler.

¢ If the control instruction specification (WIDTH) in the source module differs from the specification (-LW) in the
start-up command line, the specification in the command line will take precedence over that in the source
module.

e Even when the assembler option (-NP) has been specified in the start-up command line, the assembler
performs a syntax check on the WIDTH control instruction.

180 User's Manual U15255EJ1VOUM

CHAPTER 4 CONTROL INSTRUCTIONS

LENGTH length LENGTH

(9) LENGTH (length)

[Description format]

[A] $ [A] LENGTH [A] ([A]lines-per-page [A])

[Default assumption]

$LENGTH (66)

[Function]

The LENGTH control instruction specifies the number of lines per page of a list file. “lines-per-page” may be
“0” or a value in the range of 20 to 32767.

[Use]

Use the LENGTH control instruction when you want to change the number of lines per page of a list file.

[Explanation]

The LENGTH control instruction can be described only in the header section of a source module file.

If two or more LENGTH control instructions are specified at the same time, only the last specified control
instruction will become valid.

The number of columns per line of a list file may also be specified with the assembler option (-LL) in the start-
up command line of the assembler.

If the control instruction specification (LENGTH) in the source module differs from the specification (-LL) in the
start-up command line, the specification in the command line will take precedence over that in the source
module.

Even when the assembler option (-NP) has been specified in the start-up command line, the assembler
performs a syntax check on the LENGTH control instruction.

User's Manual U15255EJ1VOUM 181

CHAPTER 4 CONTROL INSTRUCTIONS

TAB

tab TAB

(10) TAB (tab)

182

[Description format]

[A]1$ [A]l TAB[A] ([Al number-of-columns [A])

[Default assumption]

$TAB (8)

[Function]

The TAB control instruction specifies the number of columns as tab stops on a list file. “number-of-columns”
may be a value in the range of 0 to 8.

The TAB control instruction specifies the number of columns that becomes the basis of tabulation processing
to output any list by replacing a HT (Horizontal Tabulation) code in a source module with several blank
characters on the list.

[Use]

Use HT code to reduce the number of blanks when the number of characters per line of any list is reduced
using the TAB control instruction.

[Explanation]

The TAB control instruction can be described only in the header section of a source module file.

If two or more TAB control instructions are specified at the same time, only the last specified control
instruction will become valid.

The number of tab stops may also be specified with the assembler option (-LT) in the start-up command line
of the assembler.

If the control instruction specification (TAB) in the source module differs from the specification (-LT) in the
start-up command line, the specification in the command line will take precedence over that in the source
module.

Even when the assembler option (-NP) has been specified in the start-up command line, the assembler
performs a syntax check on the TAB control instruction.

User's Manual U15255EJ1VOUM

CHAPTER 4 CONTROL INSTRUCTIONS

4.7 Conditional Assembly Control Instructions

The conditional assembly control instructions are used to select a series of statements in a source module as
those subject to assembly or not subject to assembly, by setting switches for conditional assembly.

These control instructions consist of the IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF control instructions and the
SET/RESET control instructions.

By making effective use of these control instructions, you can assemble a source module that excludes unwanted
statements, with little or no change to the source module.

User's Manual U15255EJ1VOUM 183

CHAPTER 4 CONTROL INSTRUCTIONS

IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF

(1) IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF

184

[Description format]

[A]1 S [A] IF [A] ([A]lswitch-name [[A] : [A] switch-name] --- [A])
or [A]l $ [A] _IFAconditional-expression

[A]$ [A]ELSEIF [A] ([A]lswitch-name [[A] : [A] switch-name] --- [A])
or [A] $ [A] _ELSEIFAconditional-expression

[A] $ [A] ELSE

[A] $ [A] ENDIF

[Function]
e The control instructions set the conditions to limit source statements subject to assembly.

Source statements described between the IF or _IF control instruction and the ENDIF control instruction are
subject to conditional assembly.
If the evaluated value of the conditional expression or the switch name specified by the IF or _IF control

instruction (i.e., IF or _IF condition) is true (other than 0000H), source statements described after this IF or

_IF control instruction until the appearance of the next conditional assembly control instruction
(ELSEIF/_ELSEIF, ELSE, or ENDIF) in the source program will be assembled. For subsequent assembly
processing, the assembler will proceed to the statement next to the ENDIF control instruction.

If the IF or _IF condition is false (0000H), source statements described after this IF or _IF control instruction
until the appearance of the next conditional assembly control instruction (ELSEIF/_ELSEIF, ELSE, or ENDIF)
in the source program will not be assembled.

The ELSEIF or _ELSEIF control instruction is checked for true/false status only when the conditions of all the

conditional assembly control instructions described before this ELSEIF or _ELSEIF control instruction are not
satisfied (i.e. the evaluated values are false).

If the evaluated value of the conditional expression or the switch name specified by the ELSEIF or _ELSEIF
control instruction (i.e. ELSEIF or _ELSEIF condition) is true, source statements described after this ELSEIF
or _ELSEIF control instruction until the appearance of the next conditional assembly control instruction
(ELSEIF/_ELSEIF, ELSE, or ENDIF) in the source program will be assembled. For subsequent assembly
processing, the assembler will proceed to the statement next to the ENDIF control instruction.

If the ELSEIF or _ELSEIF condition is false, source statements described after this ELSEIF or _ELSEIF
control instruction until the appearance of the next conditional assembly control instruction (ELSEIF/_ELSEIF,
ELSE, or ENDIF) in the source program will not be assembled.

If the conditions of all the IF/_IF and ELSEIF/_ELSEIF control instructions described before the ELSE control
instruction are not satisfied (i.e., all the switch names are false), source statements described after this ELSE
control instruction until the appearance of the ENDIF control instruction in the source program will be
assembled.

The ENDIF control instruction indicates to the assembler the termination of source statements subject to
conditional assembly.

User's Manual U15255EJ1VOUM

CHAPTER 4 CONTROL INSTRUCTIONS

IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF

[Use]

With these conditional assembly control instructions, source statements subject to assembly can be changed
without major modifications to the source program.

If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine
language) can be specified by setting switches for conditional assembly.

[Explanation]

The IF and ELSEIF control instructions are used for true/false condition judgment with switch name(s),
whereas the _IF and _ELSEIF control instructions are used for true/false condition judgment with a
conditional expression.

Both IF/ELSEIF and _IF/_ELSEIF may be used in combination. In other words, ELSEIF/_ELSEIF may be
used in a pair with IF or _IF and ENDIF.

Describe absolute expression for a conditional expression.

The rules of describing switch names are the same as the conventions of symbol description (for details, see
2.2.3 Fields that make up a statement). However, the maximum number of characters that can be
recognized as a switch name is always 8.

If the two or more switch names are to be specified with the IF or ELSEIF control instruction, delimit each
switch name with a colon (:). Up to five switch names can be used per module.

When two or more switch names have been specified with the IF or ELSEIF control instruction, the IF or
ELSEIF condition is judged to be satisfied if one of the switch name values is true.

The value of each switch name to be specified with the IF or ELSEIF control instruction must be defined with
the SET or RESET control instruction (see 4.7 (2) SET/RESET). Therefore, if the value of the switch name
specified with the IF or ELSEIF control instruction is not set in the source module with the SET or RESET
control instruction in advance, it is assumed to be reset.

If the specified switch name or conditional expression contains an illegal description, the assembler will output
an error message and determine that the evaluated value is false.

When describing the IF or _IF control instruction, the IF or _IF control instruction must always be paired with
the ENDIF control instruction.

If an IF-ENDIF block is described in a macro body and control is transferred back from the macro at that level
by EXITM processing, the assembler will force the IF level to return to that level at the entry of the macro
body. In this case, no error will result.

Description of an IF-ENDIF block in another IF-ENDIF block is referred to as nesting of IF control instructions.
Nesting of IF control instructions is allowed up to 8 levels.

In conditional assembly, object codes will not be generated for statements not assembled, but these
statements will be output without change on the assembly list. If you do not wish to output these statements,
use the $NOCOND control instruction.

User's Manual U15255EJ1VOUM 185

CHAPTER 4 CONTROL INSTRUCTIONS

IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF

IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF

[Application Examples]

Example 1

$ IF (SW1)

S ENDIF

END

<Explanation>

(1) If the value of switch name “SW1” is true, statements in “text1” will be assembled.

If the value of switch name “SW1” is false, statements in “text1” will not be assembled.
The value of switch name “SW1” has been set to true or false with the SET or RESET control instruction

described in “text0”.

(2) This instruction indicates the end of the source statement range for conditional assembly.

Example 2

$ IF (SW1)

S ELSE

S ENDIF

END

<Explanation>

(1) The value of switch name “SW1” has been set to true or false with the SET or RESET control instruction

described in “text0”.

If the value of switch name “SW1” is true, statements in “text1” will be assembled and statements in "text2"

will not be assembled.

(2) If the value of switch name “SW1” in (1) is false, statements in “text1” will not be assembled and statements

in “text2” will be assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly.

186

User's Manual U15255EJ1VOUM

CHAPTER 4 CONTROL INSTRUCTIONS

IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF

Example 3

textO0

$ IF (SW1
textl

$ ELSEIF (SW2) i (2)
text2

$ ELSEIF (SW3) i (3)
text3

$ ELSE i (4)
text4

$ ENDIF i (5)

=

END

<Explanation>

(1)

@)

(3)

(4)

(5)

The values of the switch names "SW1", "SW2", and "SW3" have been set to true or false with the SET or
RESET control instruction described in "text0".

If the value of the switch name "SW1" is true, statements in "text1" will be assembled and statements in
"text2", "text3", and "text4" will not be assembled.

If the value of the switch name "SW1" is false, statements in "text1" will not be assembled and statements
after (2) will be conditionally assembled.

If the value of the switch name "SW1" in (1) is false and the value of the switch name "SW2" is true,
statements in "text2" will be assembled and statements in "text1", "text3", and "text4" will not be
assembled.

If the values of both switch names "SW1" in (1) and "SW2" in (2) are false and the value of the switch
name "SW3" is true, statements in "text3" will be assembled and statements in "text1", "text2", and
"text4" will not be assembled.

If the values of switch names "SW1" in (1), "SW2" in (2), and "SW3" in (3) are all false, statements in
"text4" will be assembled and statements in "text1", "text2", and "text3" will not be assembled.

This instruction indicates the end of the source statement range for conditional assembly.

Example 4

$ IF (SWA=SWB) i (1)

$ ENDIF i (2)

<Explanation>

(1)

@)

The values of the switch names "SWA" and "SWB" has been set to true or false with the SET or RESET
control instruction described in "text0".

If the value of the switch name "SWA" or "SWB" is true, statements in "text1" will be assembled.

If the values of both switch names "SWA" and "SWB" are false, statements in "text1" will not be
assembled.

This instruction indicates the end of the source statement range for conditional assembly.

User's Manual U15255EJ1VOUM 187

CHAPTER 4 CONTROL INSTRUCTIONS

SET/RESET set/reset SET/RESET

(2) SET/RESET (set/reset)

188

[Description format]

[A]1 $[A] SET[A] ([A]lswitch-name [[A] : [A] switch-name] --- [A])
[A] $ [AIRESET [A] ([A]lswitch-name [[A] : [A]l switch-name] --- [A])

[Function]

The SET and RESET control instructions give a value to each switch name to be specified with the IF or
ELSEIF control instruction.

The SET control instruction gives a true value (00FFH) to each switch name specified in its operand.

The RESET control instruction gives a false value (0000H) to each switch name specified in its operand.

[Use]

Describe the SET control instruction to give a true value (OOFFH) to each switch name to be specified with the
IF or ELSEIF control instruction.

Describe the RESET control instruction to give a false value (0000H) to each switch name to be specified with
the IF or ELSEIF control instruction.

[Explanation]

With the SET and RESET control instructions, at least one switch name must be described.

The conventions for describing switch names are the same as the conventions for describing symbols (see
2.2.3 Fields that make up a statement). However, the maximum number of characters that can be
recognized as a switch name is always 31.

The specified switch name(s) may be the same as user-defined symbol(s) other than reserved words and
other switch names.

If two or more switch names are to be specified with the SET or RESET control instruction, delimit each
switch name with a colon (:). Up to 1,000 switch names can be used per module.

A switch name once set to “true” with the SET control instruction can be changed to “false” with the RESET
control instruction, and vice versa.

A switch name to be specified with the IF or ELSEIF control instruction must be defined at least once with the
SET or RESET control instruction in the source module before describing the IF or ELSEIF control instruction.
Switch names will not be output to a cross-reference list.

User's Manual U15255EJ1VOUM

CHAPTER 4 CONTROL INSTRUCTIONS

SET/RESET set/reset SET/RESET

[Application example]

$ SET (SW1) i (1)
$ IF (SW1) i (2)
$ ENDIF i (3)
$ RESET (SW1:SW2) i (4)
$ IF (SW1) i (5)
$ ELSEIF (SW2) i (6)
$ ELSE i (7)
$ ENDIF i (8)
END

<Explanation>

(1)
)

This instruction gives a true value (00FFH) to the switch name “SW1”.

Because the true value has been given to the switch name “SW1” in (1) above, statements in “text1” will be
assembled.

This instruction indicates the end of the source statement range for conditional assembly that starts from
(2).

This instruction gives a false value (0000H) to the switch names “SW1” and “SW2”, respectively.

Because the false value has been given to the switch name “SW1” in (4) above, statements in “text2” will
not be assembled.

Because the false value has also been given to the switch name “SW2” in (4) above, statements in “text3”
will not be assembled.

Because both switch names “SW1” and “SW2” are false in (5) and (6) above, statements in “text4” will be
assembled.

This instruction indicates the end of the source statement range for conditional assembly that starts from

(5).

User's Manual U15255EJ1VOUM 189

CHAPTER 4 CONTROL INSTRUCTIONS

4.8 SFR Area Change Control Instructions
When a chip is ordered according to the end user's request, the SFR area and its vicinity (the relocatable space)

can be changed. The SFR area change control instructions are control instructions provided to support the changes
requested by the end user in the assembler and linker.

190 User's Manual U15255EJ1VOUM

CHAPTER 4 CONTROL INSTRUCTIONS

CHGSFR/CHGSFRA change sfr area/change sfr area CHGSFR/CHGSFRA

(1) CHGSFR/CHGSFRA (change sfr area/change sfr area)

[Description format]

[A] $ [A] CHGSFR ([A] absolute-expression n [A])
[A] $ [A] CHGSFRA

[Default assumption]
$CHGSFR (0OFH)

[Function]
The CHGSFR control instruction specifies addresses in the SFR area.
When the operand has been specified as "0": OFDOOH to OFFFFH
When the operand has been specified as "OFH": OFFDOOH to OFFFFFH

The CHGSFRA control instruction instructs the assembler to check that no LOCATION instruction is
described and that no location address of an absolute segment is found in the entire available SFR area.
Under normal circumstances, do not use this control instruction.

[Use]
Describe this control instruction when you want to change the SFR area.

[Explanation]
The CHGSFR or CHGSFRA control instruction can be described only in the header section of a source
module file.
If two or more of these control instructions are specified in the header section of a source module file, the last
specified control instruction takes precedence over the others.
Change of the SFR area can also be specified by the assembler option (-CS/-CSA) in the start-up command
line.
If the control instruction specification (CHGSFR/CHGSFRA) in the source module file differs from the
assembler option specification (-CS/-CSA) in the start-up command line, the specification in the command line
will take precedence over that in the source module.
During linking, the specified values of all modules specified by the CHGSFR control instruction and the -CS
assembler option must be the same.
That value must also be the same as the value specified by the LOCATION instruction.
Even when the assembler option "-NO" has been specified in the start-up command line, the assembler
performs a syntax check on the CHGSFR/CHGSFRA control instruction.

User's Manual U15255EJ1VOUM 191

CHAPTER 4 CONTROL INSTRUCTIONS

4.9 Other Control Instructions

The following control instructions are special control instructions output by high-level programs such as a C
compiler and structured assembler preprocessor.

$TOL_INF

$DGS
$DGL

192 User's Manual U15255EJ1VOUM

CHAPTER 5 MACROS

This chapter explains how to use a macro function. A macro is a very useful function when you need to describe a
series of statements repeatedly in a source program.

5.1 Overview of Macros

When you must describe a series or group of instructions repeatedly in a source program, a macro function is very
useful for program description. The macro function refers to the expansion of a series of statements (an instruction
group) defined as a macro body with the MACRO and ENDM directives at the location where the macro name is
referenced.

A macro is used to increase the coding efficiency of a source program and is different from a subroutine.

Macros and subroutines have distinct features as explained below. For effective use, select either a macro or a
subroutine according to the specific purpose.

(1) Subroutines

e Describe a process that must be repeated many times in a program as a single subroutine. The subroutine
will be converted into machine language by the assembler only once.

¢ To call the subroutine, you only need to describe a subroutine call instruction (generally, instructions to set
arguments are also described before and after the subroutine).

Effective use of subroutines enables program memory to be used with high efficiency.

e By coding a series of processes in a program as subroutines, the program can be structured (this structuring
makes the overall structure of the program easy for the programmer to understand, making program design
easy).

(2) Macros

e The basic function of a macro is the replacement of a group of instructions with a name.

A series (or group) of instructions defined as a macro body with the MACRO and ENDM directives will be
expanded at the location where the macro name is referenced.

o When the assembler finds a macro reference, the assembler expands the macro body and converts the group
of instructions into machine language while replacing the formal parameter(s) of the macro body with the
actual parameters at the time of the macro reference.

e Parameters can be described for a macro.

For example, if there are instruction groups that are the same in processing procedure but are different in the
data to be described in the operand, define a macro by assigning formal parameter(s) to the data. By
describing the macro name and the actual parameter(s) when the macro is referenced, the assembler can
cope with various instruction groups that differ only in part of the statement description.

Programming techniques using subroutines are mainly used to reduce memory size and structure programs,
whereas macros are used to increase the coding efficiency of the program.

User's Manual U15255EJ1VOUM 193

CHAPTER 5 MACROS

5.2 Utilization of Macros

5.2.1 Macro definition

A macro is defined with the MACRO and ENDM directives.

[Description format]

Symbol field Mnemonic field Operand field Comment field
macro-name MACRO [formal-parameter [,...]] [;comment]
ENDM
[Function]

e The MACRO directive executes a macro definition by assigning the macro name specified in the symbol field
to a series of statements (called a macro body) described between this directive and the ENDM directive.

[Application example]

ADMAC MACRO PARAL, PARA2
MOV A, #PARAL
ADD A, #PARA2
ENDM

<Explanation>

The above example shows a simple macro definition that specifies the addition of two values “PARA1” and
“PARA2” and the storage of the result in register A. The macro is given the name “ADMAC” and “PARA1” and
“PARA2” are formal parameters.

For details, see (1) MACRO (macro) in 3.9 Macro Directives.

194 User's Manual U15255EJ1VOUM

CHAPTER 5 MACROS

5.2.2 Macro reference

To call a macro, the already defined macro name must be described in the mnemonic field of the source program.

[Description format]

Symbol field Mnemonic field Operand field Comment field
[label:] macro-name [actual-parameter [,...]] [;comment]
[Function]

This statement description calls the macro body assigned to the macro name specified in the mnemonic field.

[Use]

Use this statement description to call a macro body.

[Explanation]

The macro name to be specified in the mnemonic field must have been defined before the macro reference.
Up to 16 actual parameters may be specified per line by delimiting each actual parameter with a comma (,).
No blank can be described in the character string constituting an actual parameter.

When describing a comma (,), semicolon (;), blank, or tab in an actual parameter, enclose the character string
that includes any of these special characters with a pair of single quotation marks.

Formal parameters are replaced with their corresponding actual parameters in sequence from left to right.

A warning message will be output if the number of formal parameters is not equal to the number of actual
parameters.

[Application example]

NAME SAMPLE
ADMAC MACRO PARA1, PARA2

MOV A, #PARAL

ADD A, #PARA2

CSEG

ADMAC 10H, 20H

END

<Explanation>

This macro reference calls the already defined macro name “ADMAC”. 10H and 20H are actual parameters.

User's Manual U15255EJ1VOUM 195

CHAPTER 5 MACROS

5.2.3 Macro expansion

The assembler processes a macro as follows.
e The assembler expands the macro body corresponding to the referenced macro name at the location where the

macro name is referenced.

e The assembler assembles statements in the expanded macro body in the same way as other statements.

[Application example]

When the macro referenced in 5.2.2 Macro reference is assembled, the macro body will be expanded as

shown below.

NAME SAMPLE
ADMAC MACRO PARA1, PARA2
MOV A, #PARAL
ADD A, #PARA2
ENDM
CSEG
ADMAC 10H, 20H (1)
MOV A,PARA1 10H
ADD A,PARA2 20H
END

<Explanation>

Macro definition

Macro expansion

By the macro reference in (1), the macro body will be expanded. The formal parameters within the macro body

will be replaced with the actual parameters.

196

User's Manual U15255EJ1VOUM

CHAPTER 5 MACROS

5.3 Symbols Within Macros
Symbols that can be defined in a macro are divided into two types: global symbols and local symbols.

(1) Global symbols
e A global symbol is a symbol that can be referenced from any statement within a source program.
Therefore, if a macro in which the global symbol has been defined is referenced more than once to expand a
series of statements, the symbol will cause a double definition error.
e Symbols not defined with the LOCAL directive are global symbols.

(2) Local symbols
e A local symbol is a symbol defined with the LOCAL directive (see (2) LOCAL (local) in 3.9 Macro
Directives).
¢ A local symbol can be referenced within the macro declared as LOCAL with the LOCAL directive.
¢ No local symbol can be referenced from outside the macro.

User's Manual U15255EJ1VOUM 197

CHAPTER 5 MACROS

198

[Application example]

<Source program>

NAME SAMPLE
MAC1 MACRO
LOCAL LLAB ;o (1)
LLAB:
GLAB: Macro definition
BR LLAB i (2)
BR GLAB i (3)
ENDM
REF1: MAC1 ;o (4) -«——— Macro reference
BR LLAB ; (5) -«——— This description is
BR GLAB i (6) erroneous.
REF2: MAC1 ; (7) -4«——1— Macro reference
END

<Explanation>

This LOCAL directive defines the label “LLAB” as a local symbol.

This BR instruction references the local symbol “LLAB” in macro “MAC1”.

This BR instruction references the global symbol “GLAB” in macro “MAC1”.

This statement references the macro “MAC1”.

This BR instruction references the local symbol “LLAB” from outside the definition of the macro “MAC1”.
This description causes an error when the source program is assembled.

This BR instruction references the global symbol “GLAB” from outside the definition of the macro “MAC1”.
This statement references the macro “MAC1”. The same macro is referenced twice.

User's Manual U15255EJ1VOUM

CHAPTER 5 MACROS

When the source program in the above example is assembled, the macro body will be expanded as shown below.

NAME
REF1: MAC1
??RA0000:
Macro expansion
GLAB:
BR 2?RA0000 <%= Error
BR GLAB
BR ILLAB <—1—— Error
BR IGLAB
REF2: MAC1
??RA0001:
: Macro expansion
GLAB: “*— Error
BR ??RA0001
BR GLAB
END

<Explanation>

The global symbol “GLAB” has been defined in the macro “MAC1”. Because the macro “MAC1” is referenced
twice, the global symbol “GLAB” causes a double definition error as a result of expanding a series of statements
in the macro body.

User's Manual U15255EJ1VOUM 199

CHAPTER 5 MACROS

5.4 Macro Operators

Two types of macro operators are available: “& (ampersand)” and “ (single quotation mark)”.

(1) & (Concatenation)

200

The ampersand “&” concatenates one character string to another within a macro body. When the macro is
expanded, the character string on the left of the ampersand is concatenated to the character string on the
right of the sign. The “&” itself disappears after concatenating the strings.

When the macro is defined, a string before or after “&” in a symbol can be recognized as a formal parameter
or LOCAL symbol. When the macro is expanded, the formal parameter or LOCAL symbol before or after “&”
is evaluated as a symbol and can be concatenated in the symbol.

The “&” sign enclosed in a pair of single quotation marks is simply handled as data.

Two “&” signs described in succession are handled as a single “&” sign.

[Application example]

Macro definition

MAC MACRO P
LAB&P: <&— Formal parameter “P” is recognized.
D&B 10H
DB ‘P!
DB P
DB '&P!
ENDM

Macro reference

MAC 1H
LAB1H:
DB 10H &— “D” and “B” are concatenated and become
DB P! “DB”.
DB 1H
DB 1&P! -4— & enclosed in a pair of single quotation

marks is simply handled as data.

User's Manual U15255EJ1VOUM

CHAPTER 5 MACROS

(2) ’ (Single quotation mark)

o |If a character string enclosed by a pair of single quotation marks is described at the beginning of an actual
parameter in a macro reference line or an IRP directive or after a delimiting character, the character string will
be interpreted as an actual parameter. The character string will be passed to the actual parameter without
the enclosing single quotation marks.

o |f a character string enclosed by a pair of single quotation marks exists in a macro body, the character string
will simply be handled as data.

e To use a single quotation mark as a single quotation mark in text, describe the single quotation mark twice in

succession.

[Application example]

NAME SAMP
MAC1 MACRO P
IRP Z,<P>
MOV A, #2
ENDM
ENDM
MAC1 ‘10,20,30

When the source program in the above example is assembled, the macro “MAC1” will be expanded as shown

below.
IRP Z,<10,20,30>
MOV A, #Z
ENDM
MOV A, #10
MOV A, #20 IRP expansion
MOV A, #30

User's Manual U15255EJ1VOUM 201

jus

1)

()

CHAPTER 6 PRODUCT UTILIZATION

This chapter introduces some measures recommended for effective utilization of the RA78K4 assembler package.
There are several ways to effectively use the RA78K4 for assembly of source modules. This section introduces
t a few of these techniques.

Saving time and trouble in starting up the assembler

Some control instructions have the same functions as assembler options and must always be used when
starting up the assembler; examples of these include the processor type specification (-C) and the kanji code
specification (-ZS/-ZE/-ZN) (Japanese version only). It is advisable to describe such control instructions in a
source module file. In particular, the processor type specification, which cannot be omitted, should be specified
in the header section of a source module file using the PROCESSOR control instruction. This avoids the need
to specify the assembler option (-C) in the start-up command line each time the assembler program is started.
Remember that an error will result if this assembler option is not specified in the start-up command line, in which
case the assembler will need to be started from the beginning again with the correct assembler options.

The cross-reference list output control instruction (XREF) should also be specified in the module header.

Example

S PROCESSOR (4038)
DEBUG
XREF

NAME TEST

CSEG

How to develop programs with high memory utilization efficiency

The short direct addressing area is an area that can be accessed with instructions of short byte length as
compared with other data memory areas.

Therefore, by using this area efficiently, a program with high memory utilization efficiency can be developed.
Declare the short direct addressing area in one module. In this way, even if all the variables intended for
location in the short direct addressing area cannot be located there, changes can easily be made so that only
variables to be accessed frequently are located in the short direct addressing area.

Module 1
PUBLIC TMP1, TMP2
WORK DSEG AT OFE20H
TMP1 : DS 2 ;word
TMP2 : DS 1 ;byte

202 User's Manual U15255EJ1VOUM

CHAPTER 6 PRODUCT UTILIZATION

Module 2

SAB

EXTRN
CSEG
MOVW
MOV

TMP1, TMP2

TMP1, #1234H
TMP2, #56H

User's Manual U15255EJ1VOUM

203

APPENDIX A LIST OF RESERVED WORDS

Reserved words are available in six types: machine language instructions, directives, control instructions,
operators, register names, and sfr symbols. The reserved words are character strings reserved in advance by the
assembler and cannot be used for other than the intended purposes.

Types of reserved words that can be described in the respective fields of a source program are shown below.

Symbol field No reserved words can be described in this field.

Mnemonic field Only machine language instructions and directives can be described in this field.
Operand field Only operators, sfr symbols, and register names can be described in this field.
Comment field All reserved words can be described in this field.

For the sfr list, refer to the Special Function Register Table of each device.
For the interrupt request source list, refer to the Notes on Use in each device file.
For the machine language instructions and list of register names, refer to the user's manual of each device.

(1) List of reserved words

Operators | AND BITPOS DATAPOS EQ GE
GT HIGH HIGHW LE Low
LOWW LT MASK MOD NE
NOT OR SHL SHR XOR
Directives AT BASE BR BSEG CALL
CALLTO CSEG DB DBIT DG
DS DSEG DTABLE DTABLEP DW
END ENDM EQU EXITM EXTBIT
EXTRN FIXED FIXEDA GRAM IRP
LOCAL LRAM MACRO NAME ORG
PAGE PAGE64K PUBLIC REPT RSS
SADDR SADDR2 SADDRA SADDRP SADDRP2
SET SFR SFRP UNIT UNITP
Control CHGSFR CHGSFRA COND DEBUG DEBUGA
instructions | g EJECT ELSE ELSEIF _ELSEIF
ENDIF FORMFEED GEN Ic IF
F INCLUDE KANJICODE LENGTH Li
LIST NOCOND NODEBUG NODEBUGA NOFORMFEED
NOGEN NOLI NOLIST NOSYMLIST NOXR
NOXREF PC PROCESSOR RESET SET
ST SUBTITLE SYMLIST TAB TITLE
T WIDTH XR XREF
Others DGL DGS TOL_INF

204 User's Manual U15255EJ1VOUM

(1) List of directives

APPENDIX B LIST OF DIRECTIVES

No. Directive Function Remarks
Symbol Field | Mnemonic Field | Operand Field | Comment Field /Classification
1 |[segment name] | CSEG [relocation- [;comment] Declares the start of
attribute] a code segment.
2 |[segment name] | DSEG [relocation- [;comment] Declares the start of
attribute] a data segment.
3 | [segment name] | BSEG [relocation- [;comment] Declares the start of
attribute] a bit segment.
4 | [segment name] | ORG absolute- [;comment] Declares the start of | Forward reference of symbols
expression an absolute within an operand is
segment. prohibited.
5 | name EQU expression [;comment] Defines a name. name: symbol
Forward or external reference
of symbols within an operand
is prohibited.
6 |name SET absolute- [;comment] Defines a name: symbol
expression redefinable name. Forward reference of symbols
within an operand is
prohibited.
7 | [label:] DB {(size) initial [;comment] Initializes or label: symbol
value [,...]} reserves a byte data | A character string can be
area. located in place of an initial
value.
8 |[label] DW {(size) initial [;comment] Initializes or label: symbol
value [,...]} reserves a word data
area.
9 |[label:] DG {(size) initial [;comment] Initializes or label: symbol
value [,...]} reserves a 3-byte
data area.
10 | [label:] DS absolute- [;comment] Reserves byte data | name: symbol
expression area. Forward reference of symbols
within an operand is
prohibited.
11 | name DBIT None [;comment] Reserves a bit data | name: symbol
area. Forward reference of symbols
within an operand is
prohibited.
12 |[label:] PUBLIC symbol-name [;comment] Declares an external
[-.] definition name.
13 | [label:] EXTRN symbol-name [;comment] Declares an external
[,-r] reference name.
14 | [label:] EXTBIT bit-symbol- [;comment] Declares an external | Symbol names are limited to
name [,...] reference name. those having a bit value.
15 | [label:] NAME object-module- | [;comment] Defines a module module name: symbol
name name.
16 | [label:] BR expression [;comment] Automatically selects | label: symbol

a branch instruction.

User's Manual U15255EJ1VOUM

205

APPENDIX B LIST OF DIRECTIVES

No. Directive Function Remarks
Symbol Field | Mnemonic Field | Operand Field | Comment Field /Classification
17 | [label:] CALL expression [;comment] Automatically selects | label: symbol
the CALL instruction.
18 | [label:] RSS n [;comment] Declares the value n=0,1
of the register set
selection flag.
19 | macro-name MACRO [formal- [;comment] Defines a macro. macro-name: symbol
parameter [,...]]
20 | [label:] LOCAL symbol-name [;comment] Defines a symbol Can only be used in the
[...] valid only within a macro definition.
macro.
21 | [label:] REPT absolute- [;comment] Specifies repeat label: symbol
expression count during macro
expansion.
22 | [label:] IRP formal- [;comment] Assigns an actual label: symbol
parameter, parameter to a
<actual- formal parameter.
parameter [,...]>
23 | [label] EXITM None [;comment] Interrupts macro Can only be used in the
expansion. macro definition.
24 | None ENDM None [;comment] Terminates macro Can only be used in the
definition. macro definition.
25 | None END None [;comment] Indicates the end of
the source module.
206 User's Manual U15255EJ1VOUM

APPENDIX C MAXIMUM PERFORMANCE CHARACTERISTICS

(1) Maximum performance characteristics of assembler

ltem Maximum Performance Characteristics
PC Version WS Version

Number of symbols (local + public) 65,535 symbols"™" 65,535 symbols"™"
Number of symbols for which cross-reference list can be output 65,534 symbols"™** 65,534 symbols"™*?
Maximum size of macro body for one macro reference 1 MB 1 MB
Total size of all macro bodies 10 MB 10 MB
Number of segments in one file 256 segments 256 segments
Macro and include specifications in one file 10,000 10,000
Macro and include specifications in one include file 10,000 10,000
Relocation data"** 65,535 items 65,535 items
Line number data 65,535 items 65,535 items
Number of BR directives in one file 32,767 directives 32,767 directives
Number of characters per line 2,048 characters™* 2,048 characters™™*
Symbol length 256 characters 256 characters
Number of definitions of switch name"*°® 1,000 1,000
Character length of switch name"**® 31 characters 31 characters
Number of nesting levels on include file in one file 8 levels 8 levels

Notes 1. XMS is used. If there is no XMS, a file is used.

2. Memory is used. If there is no memory, a file is used.

3. “Relocation data” is the data transferred to the linker when the assembler cannot determine the symbol
values.
For example, when referring to an external reference symbol by a MOV instruction, two items of
relocation data are generated in the .rel file.

4. This includes the carriage return and feed codes. If 2,049 characters or more are described on a line,
a warning message is output and any characters at or over 2,049 are ignored.

5. Switch name is set to true or false by SET/RESET directives and used with $IF, etc.

(2) Maximum performance characteristics of linker

ltem Maximum Performance Characteristics
PC Version WS Version
Number of symbols (local + public) 65,535 symbols 65,535 symbols
Line number data of same segment 65,535 items 65,535 items
Number of segments 65,535 segments 65,535 segments
Number of input modules 1,024 modules 1,024 modules

User's Manual U15255EJ1VOUM 207

APPENDIX D INDEX

PPRADN < 137
PBSEG ...oiiiiiieeeeee e 34, 94
4 =151 =€ C 34,94
PBSEGS......cooiiieee e 34, 94
PBSEGS2.....cooieeeeeeee e 34,94
PBSEGSA ..o 34, 94
PBSEGSP ... 34,94
PBSEGSP2 ...t 34, 94
PBSEGUP ..o 34,94
PCSEG ..ottt 34, 85
PCSEGB......eii e 34, 85
PCSEGFX ..o 34, 85
PCSEGFXA ..o 34, 85
PCSEGTO....ceiieiiiee et 34, 85
PCSEGP.....eieeeeeeee e 34, 85
PCSEGPBA.....cceieeeee e 34, 85
PCSEGUP ..o 85
PCSEG ..ottt 34, 89
4 D151 =1 C 1 34, 89
PDSEGDTP...coiiiiieieeiee e 34, 89
PDSEGGeeieeiieeeeee e e 34, 89
PDSEGP....iiiiiieeee e 34, 89
PDSEGPBA........eeeeee e 34, 89
PDSEGS... .. e 34, 89
PDSEGSP ... 34, 89
PDSEGSP2....ooiiieie e 34, 89
PDSEGUP ... 89
[A]

Absolute assembleroccceveiiieiieee e 16
Absolute segmentccoooiiiiiieeenenn. 23, 81, 96
Absolute term.........oeeeeeiiiiiiiiieeeeee. 61, 78
Actual parameter............cccceeeiii, 195, 212
ADDRESS........ooi e 35,78
ADDRESS term.....cccueviiiiiiiiiieeeiee e 65
Alphabetic charactercccccovveviiiiee e 30
AND operator.......cccceeveiiii, 44,49
Area reservation directiveccooeceee. 106
ASSEMDIETccveiiiiiiiee e 13, 20
Assembler optioncccccooiiiiiiiiiiiens 22,152
Assembler packageccccveeeeeiiiiiiiiiieeeeen 13
Assembly l[anguage........c..ococeeeiiiereniineee e 14
Assembly list control instruction...................... 164
Assembly termination directive 149
AT relocation attribute..................... 84, 85, 88, 92

Automatic branch instruction selection

AIFECHIVE ..o 125
[B]

BASE relocation attributecoouuenn.... 84, 85
Backward reference.........ooccceeeeeiiiiiiiiiieeee. 75
Binary number ... 37
BIT e s 35
Bit ACCESS ...eviiiiiiiiiiiiieee e 67
Bit segment.........oooiii 28, 81, 91
Bit SYmbOlcoooiii 69
BITPOS operator......cccccceeeeeceeeeeeceeeeeeennn 44,58
BR directivecccouevveveiiiiiiiiiiieeceeeee, 20, 126
BSEG direCtivecoeeeiiiieiieeeeee e 91
[C]

CALL direCtiveceeeeeeeeeeiieee e 128
CALLF inStructioncccoveviieeeeiiiee e 84
CALLTO relocation attribute............c........... 84, 85
CALLT inStructionccceveviieeeeiiiee e 84
Character Set......c.coceeeeieiieeeee e 29
Character-string constantcccceeeiiieennen. 38
CHGSFR control instruction 22,191
Code segmentccceeeeviieeeniieee e, 23, 81, 83
Comment fieldoooevvveeeieieeieeeeeeeeeeeeeeeees 42,204
Concatenationccccevvieiiniiiie i 200
COND control instruction............ccccceeeercveeeenns 171
Conditional assembly function.. 20, 144, 171, 183
CoNStaNtoeeiee e 37
Control instruction............ccuuveeeeiiiiiiiiieenns 22, 151
Cross-reference list output specification

control iNStruCtioneevveiiiiiiiieee e 157
CSEG dir€CtiVe ...ceeoeeeeeeeee e 83

[D]

Data segment ... 23, 81, 87
DATAPOS operator........ccceeveeeevcceeeeneeennn 44,58
DB direCtiVec.cooveiiiiiieeeeeeeeee e 107
DBIT direCtiveoooeeieeeieeieeeieee e 115
DEBUG control instruction........................ 22,155
Debug information output control

INSTFUCTION ... 154
DEBUGA control instruction 22, 156
Decimal numbers..........cccooiiiiiiieiiiiiiieeeen 37

208 User's Manual U15255EJ1VOUM

APPENDIX D INDEX

DG direCtiveccoouveieiiiii e, 111
DireCtivescoovvveeeeeeeeeeeee e, 80, 205
DS dir€Ctivecooeeviiiiiiieiiee e 113
DSEG dir€CtiVecocoeeeeeeeiieeeiee e 87
DTABLE relocation attribute 88, 89
DW direCtivecovieiiiiiiiiiie e 109
[E]

EJECT control instructionc.ccccoeveviveennn. 165
ELSE control instructioncccccoveeeeeviineeenn. 184
ELSEIF control instructioncccccceveviveennn. 184
END directive......cccooviiiiiieeiiiiieeee e 150
ENDIF control instruction............cccccceeieiinines 184
ENDM direCtivVe.........occueieeeiiiiiiiiieecee e 154
EQ 0peratorcceveicieeeeciee e 44, 51
EQU directive........oooeeeviiiiiiiiiiieenieee e 100
EXITM directivecooeeeeiiiiiiiiee e 144
EXPressionsccuvvvviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeen 44
EXTBIT direCtive ..o 119
External definition declaration................. 116, 121
External reference declaration........ 116, 117, 119
External reference termccocoevvvvvevneenens 61, 78
EXTRN direCtivecoooeeieieiieeeeiieeee e 117
[F]

FIXED relocation attribute............ccccccuenne.... 84, 85
FIXEDA relocation attribute 84, 85
Formal parameterccccceevnnennn. 135, 193, 200
FORMFEED control instruction................. 22,179
Forward reference ... 75

[G]

GE 0peratorcoocceeeviieeeeeiee e 44,52
GEN control instruction...........c.ccevevviereinneen. 169
General-purpose register..........cccovveerieereeenane 39
General-purpose register pair........cccocceeeernneen. 39
General-purpose register selection directive 39
Global symbol.......cc.coeviieiiiiiiieeeiieeee 137,197
[o] o 1T - 1 (o] LSS 44,52
[H]

Hexadecimal number...........cccccooiiiiin. 37
HIGH operatorcccccceevvcviiiieeeececciiee. 44, 56
HIGHW 0peratorccceeeeceeeeicieeeeniieeene 44, 57

[1]

idea-L editorcocoemioiieieieieeeeieeeee e 13
IF control instruction............coocciiiiiiiins 184
INCLUDE control instructionccccovveeenn. 161
Inclusion control instruction..........ccccccoeoiune 160
IRP direCtiVecoveeiieiieieee e 142
IRP-ENDM bIOCK ..cveeeeeiieeeeee e 142
[L]

Label..cciieeieeee e 32
LE operator......cccvvveveiiieieieiiiiiiieieieieieieieiens 44,53
LENGTH control instruction...................... 22, 181
Librarianooveeeieiii e 13
LiNES et 28
Linkage directiveccccceeviiiiiiiiieeieeieee 116
[0] =] G SRR 13, 18
LIST control instruction...........cccccovievinnieennn. 167
List converter........oooiiiiiiiieeeeee e 13
LOCAL direCtiveeeeveeiiieeeeieee e 137
LOCAI SymMbOlcooveiieiiieiieenieenee e 197
LOW operator.......ccceveccveiiieieeeeeeiiiiieeeee e 44, 56
LOWW operatorccoeeeeeeeviieeeeeiee e 44,57
LT operator.....cccceveeeiiiiiiiiieiiieieieieieeeeeeeeeees 44,53
[M]

Machine language..........cccccoeiiiiiiiiieene s 14
| F=To] (o 1= S 20, 193
Macro body.........cceevviiininneenn. 135, 137, 144, 195
Macro definition.........cccoovvevveeeeieeiiieiennn. 169, 144
MACRO directive........cccoecveeeirieeeeiieenn. 135, 193
Macro directive ... 134
Macro expansion.........cccccceveveieiiieieienennns 169, 196
Macro nameccccceeeeiiienneenn. 32, 135, 194, 195
Macro operator........cccccvvveveieieieieieieieieieieeeeeees 200
Macro referencecoceeeeeevvveeeeeeeeeennnnnn. 169, 195
MASK Operator........cccccvvvieeeeeeeeiiieieeeee e, 44,59
Memory initialization directivec..ceee.... 106
MNEMONIC......eiiiiieieie i 36
Mnemonic fieldcccceeeveiiiiiieeeeeeeeee. 36, 204
MOD Operator..........coeecvvveeeeeeeeeiiieeieeae e 44,48
Modular programmingcccceeeerireeeeiineeennnns 16
Module body........coocceiiiiiiiiiieeeee 21,23
Module headerccooeevvieviiiieiieeiiiieeeenns 21, 22
Module name.........ccccceeeviieeiiiieeeenn, 32,123, 124
Module tail.........coevvveeeieieieiiceee e 21,24

User's Manual U15255EJ1VOUM

209

APPENDIX D INDEX

NaAME ..ccveeieeee e 32, 100
NAME direCtiveccooiiiiiiiiiieeeieeee e 124
NE operator.........uuuuueveieieieivieiiieieieieieiernneinn 44, 51
NOCOND control instructionccccceecveeeennee 171
NODEBUG control instruction................... 22,155
NODEBUGA control instruction 22,156
NOFORMFEED control instruction 22,179
NOGEN control instruction............ccccceeecveeennns 169
NOLIST control instruction............cccceeevieeennnns 167
NOSYMLIST control instruction................ 22,159
NOT operator.......cccceceeevciiieieee e 44, 49
NOXREF control instruction.............ceeee.... 22,158
NUMBER.......cooiiiiiiiiii e 35,78
Number of fileS ... 18
NUMBER term ... 65
Numeric character...........cccccoioiiii s 29
Numeric constant............cccccoveiiieiie e, 37

[O]

Object conNVerer.........cocccuiiieiiee e 14
Object module.......ccocceveeviiieieiee e 123, 154
Octal numMberoooviiiiii e 37
Operand.......ccceeeeeeeeeeeee e 37,70, 72
Operand fieldcccceveeiiiciiieee e, 37, 204
OPEIAtOr ...ttt 44
Order of precedence of operator..............c........ 45
Optimize functioncccoveiiiieneeneeee, 20
OR operatorcccceveeeeecciiieiee e 44,50
ORG dir€CtiVe ...evveeeeiiee e 96
[P]

PAGE relocation attribute 84, 85, 88, 89
PAGEG64K relocation attribute.......... 84, 85, 88, 89
PROCESSOR control instruction............... 22,153
Processor type specification control

INSTIUCTION. ... 152
Project Manager..........ccccceveieiiiiieeeeee e 13
PUBLIC directive......cccoceeeeeieieeeieee e 121
[R]

Register set selection flag........ccccceeeiiiiineeee. 131
Relocatable assembler ..., 16
Relocatable term.........cccooovvevivieeeeeeiiiennnnn. 61, 78
Relocation attribute..........ccoooevvviiiiiiiiiiennnnnns 61,75
REPT directiveocueeieeiiiieee 140
REPT-ENDM bIOCK ...cccovuvieiiiiiiiiiieeeeiice e 140

RESET control instructionccccoevveeennne 188
RSS flag ...eevuveeieeeiieeie e 131
RSS directive........cueeeeiiiiiiiiceee e 131
[S]

SADDR relocation attribute 88, 89, 92, 94
SADDR?2 relocation attribute 88, 89, 92, 94
SADDRA relocation attribute. 88, 89, 92, 94
SADDRP relocation attribute 88, 89, 94
SADDRP2 relocation attribute 88, 89, 94
SegmMeNtoovveiee e 18, 23, 81
Segment definition directivecccocvvvennee. 81
Segment nameccceeeeeeveevceennn. 85, 89, 94, 97
SET control instructionccccovvveeeeiiieeenns 188
SET dir€CtVE ..eevveeiieeeecee e 104
SHL operatoreveevveciiieieee e 44,55
SHR operator.......ccocccevevceeeeee e 44,54
Source moduleccceeeviiiiiiiiiieiiieiin. 21, 152
Special character.........cocccceeviiieiecceeee 30, 40
Special function register..........cccooceeviiiieeennnen. 39
Statementooceeveiee e 28
Structured assembler preprocessor 13
SUDIOULING ...oeeiiee e 193
SUBTITLE control instructioncccccueeenn. 176
Subtitle SECHONccuveeeeeiie e 176
Switch nameceeeeiiiiiiiiiees 185, 188
SymbOol.......eeeeeeiee e 18, 32, 197, 214
Symbol attribute.........ccoocceeiiiiiii, 34,75
Symbol definition directive...........ccccceeiieenienne 99
SYMLIST control instruction...................... 22,159
[T]

TAB control instructionccceeevvvvnnneee. 22,182
TITLE control instruction.........cccccceeeeeeee. 22,173
[U]

UNIT relocation attribute..... 84, 85, 88, 89, 92, 94
UNITP relocation attribute 84, 85, 88, 89, 94
[W]

WIDTH control instruction...............c.ceuu.... 22,180
[X]

XOR 0peratorccocveeeeiieeeiiieee e 44, 50
XREF control instruction...........ccccceeeee. 22,158

210 User's Manual U15255EJ1VOUM

NEC

[EXEIITE Message

Although NEC has taken all possible steps
toensure thatthe documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that

From: .
errors may occur. Despite all the care and
precautions we’ve taken, you may

Name encounterproblems inthe documentation.
Please complete this form whenever

Company _you’d like to report errors or suggest
improvements to us.

Tel. FAX

Address

Thank you for your kind support.

North America
NEC Electronics Inc.

Fax: +1-800-729-9288
+1-408-588-6130

Europe

NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6462-6829

Corporate Communications Dept.

Hong Kong, Philippines, Oceania

NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea

NEC Electronics Hong Kong Ltd.
Seoul Branch

Fax: +82-2-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: +886-2-2719-5951

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: +81- 44-435-9608

| would like to report the following error/make the following suggestion:

Document title:

Document number:

Page number:

If possible, please fax the referenced page or drawing.

Document Rating

Clarity
Technical Accuracy
Organization

Excellent Good
D d
M| a
J d

Acceptable Poor
a a
a a
a d

CS 01.2

