Panasonic ideas for life

RoHS Directive compatibility information http://www.mew.co.jp/ac/e/environment/

SUPER MINIATURE PC BOARD TYPE AUTOMOTIVE RELAY

FEATURES

1. Smallest in its class, it is extremely compact at approx. $2 / 3$ the size of previous products.
Compared to our previous miniature type CT relay, both the 1 Form C and 10-pin and 8-pin twin types take up approx. twothirds the space and volume. This makes them ideal for relay unit miniaturization. 2. Compact and high-capacity 25 A load switching
High capacity control is possible while being compact and capable of motor lock load switching at $25 \mathrm{~A}, 14 \mathrm{~V}$ DC.
2. Pin in Paste* compatible model added
Models compatible with the recently increasing Pin in Paste technique (reflow solder mounting) have been added. Pin in Paste compatible models are the flux tight type.

* The Pin in Paste method may sometimes be referred to as THR
(Through-hole Reflow).

4. Environmental protection
specifications
Cadmium-free contacts and use of leadfree solder are standard. Environmental pollutants are not used.

TYPICAL APPLICATIONS

- Powered windows
- Automatic door locks
- Electrically powered mirrors
- Powered sunroofs
- Powered seats
- Lift gates
- Smart J/B related products, etc.

TYPES

Contact arrangement	Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Part No.	
			Standard type	Pin in Paste type
1 Form C	12 V DC	Max.6.5 V DC (Initial)	ACJ1112	ACJ1112P
		Max.7.2 V DC (Initial)	ACJ1212	ACJ1212P
1 Form C $\times 2$ (8 terminal)		Max.6.5 V DC (Initial)	ACJ2112	ACJ2112P
		Max.7.2 V DC (Initial)	ACJ2212	ACJ2212P
1 Form C $\times 2$ (10 terminal)		Max.6.5V DC (Initial)	ACJ5112	ACJ5112P
		Max.7.2 V DC (Initial)	ACJ5212	ACJ5212P

[^0]Carton (tube): 35 pcs.; Case: 1,400 pcs. (10 terminal)

RATING

1. Coil data

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{aligned} & \text { Coil resistance } \\ & {[\pm 10 \%]} \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Nominal operating power (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Max. continuous voltage*
	$\underset{\text { (Initial) }}{\substack{\text { Max. } 7.2 \mathrm{~V} \\ \hline}}$	Min. 1.0 V DC (Initial)	53.3 mA	225Ω	640 mW	10 to 16 V DC
w.DataSheet4U.com	Max. 6.5 V DC (Initial)	Min. 0.8 V DC (Initial)	66.7 mA	180Ω	800 mW	9 to 16 V DC

[^1]
CJ (ACJ)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form C, 1 Form $\mathrm{C} \times 2$
	Initial contact resistance (Initial)		N.O.: Typ7m , N.C.: Typ10m (By voltage drop 6 V DC 1 A)
	Contact material		Ag alloy (Cadmium free)
Protective construction			Standard type: Sealed type Pin in Paste type: Flux tight type
Rating	Nominal switching capacity		N.O.: 20A 14V DC, N.C.: 10A 14V DC
	Max. carrying current (14V DC)		N.O.: 20 A for 1 hour, 30 A for 2 minutes (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
	Nominal operating power		640 mW (for pick-up voltage max. 7.2 V DC), 800 mW (for pick-up voltage max. 6.5 V DC)
	Min. switching capacity*1		1A 12V DC
Electrical characteristics	Initial insulation resistance		Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
	Initial breakdown voltage	Between open contacts	500 Vrms for 1 min . (Detection current: 10 mA)
		Between contacts and coil	500 Vrms for 1 min . (Detection current: 10 mA)
	Operate time (at nominal voltage)		Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time) (Initial)
	Release time (at nominal voltage)		Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time) (Initial)
Mechanical characteristics	Shock resistance	Functional	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$ (Half-wave pulse of sine wave: 11 ms ; detection: $10 \mu \mathrm{~s}$)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ \{100G\} (Half-wave pulse of sine wave: 6 ms)
	Vibration resistance	Functional	10 Hz to 100 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ (Detection time: $10 \mu \mathrm{~s}$)
		Destructive	$10 \mathrm{~Hz} \text { to } 500 \mathrm{~Hz}, \mathrm{Min} .44 .1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ Time of vibration for each direction; X, Y direction: 2 hours, Z direction: 4 hours
	Mechanical		Min. 10^{7} (at 120 cpm)
Expected life	Electrical		[Standard type] <Resistive load> Min. 10^{5} (At nominal switching capacity, operating frequency: 1s ON, 9s OFF) <Motor load> N.O. side: Min. 2×10^{5} : at 25 A (inrush), 5 A (steady), 14 V DC; Min. 105: at 25 A 14 V DC (Motor lock) N.C. side: Min. 2×10^{5} : at 20 A 14 V DC (brake) (Operating frequency: 0.5 s ON, 9.5 s OFF) [Pin in Paste type] <Resistive load> Min. 10^{5} (At nominal switching capacity, operating frequency: 1s ON, 9s OFF) <Motor load> N.O. side: Min. 105: at 25 A (inrush), 5 A (steady), $14 \mathrm{~V} \mathrm{DC;} \mathrm{Min} .5 \times 10^{4}$: at 25 A 14 V DC (Motor lock) N.C. side: Min. 105: at 20 A 14 V DC (brake) (Operating frequency: 0.5 s ON, 9.5 s OFF)
Conditions	Conditions for operation, transport and storage ${ }^{\star 2}$		Ambient temp: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ Humidity: 5% R.H. to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed		6 cpm (At nominal switching capacity)
Unit weight			1 Form C type: approx. 3.5 g .12 oz Twin type: approx. $6.5 \mathrm{~g} \mathrm{}$.

Notes: *1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2 Refer to Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT
Please inquire if you will be using the relay in a high temperature atmosphere $\left(110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}\right)$.

REFERENCE DATA

1-(1). Coil temperature rise (at room temperature)
Sample: ACJ1212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

1-(2). Coil temperature rise (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
Sample: ACJ1212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

1-(3). Coil temperature rise (at room temperature)
Sample: ACJ2212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

1-(4). Coil temperature rise (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$) Sample: ACJ2212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

2-(1). Electrical life test (Motor free)
Sample: ACJ2212, 3pcs; Load: Inrush current: 25A/ Steady current: 5A, Power window motor actual load (free condition); Tested voltage: 14V DC; Switching frequency: (ON:OFF = 0.5s:9.5s); Switching cycle: 2×10^{5}; Ambient temperature: Room temperature Circuit

Load current waveform
Inrush current: 25A, Steady current: 6A Brake current: 13A

1-(5). Coil temperature rise (at room temperature)
Sample: ACJ5212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

1-(6). Coil temperature rise (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
Sample: ACJ5212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

Change of pick-up and drop-out voltage

Change of contact resistance

2-(2). Electrical life test (Motor lock)
Sample: ACJ2212, 3pcs; Load: Steady current: 25A,
Power window motor actual load (lock condition);
Tested voltage: 14V DC; Switching frequency:
(ON:OFF = $0.5 \mathrm{~s}: 9.5 \mathrm{~s}$); Switching cycle: 105 ;
Ambient temperature: Room temperature
Circuit

Change of pick-up and drop-out voltage

Change of contact resistance

Load current waveform
Current value: 25A

DIMENSIONS (Unit: mm inch)

1. Twin type (8-pin)

[^2]PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

2. Twin type (8-pin)

Pin in Paste type

Dimension:

Max. 1 mm .039 inch: 1 to 3 mm 039 to Min. 3 mm .118 inch: $\quad \pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

3. Twin type (10-pin)

Standard type

External dimensions

Max. 1mm . 039 inch:
1 to 3 mm .039
Min. 3mm . 118 inch: $\quad \pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

4. Twin type (10-pin)

Pin in Paste type

www.DataSheet4U.com

External dimensions

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

5. Slim 1 Form C

Standard type

External dimensions

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

6. Slim 1 Form C

Pin in Paste type

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

EXAMPLE OF CIRCUIT

Forward/reverse control circuits of DC motor (for 1 Form $\mathrm{C} \times 2$ (8 terminal) type)

(M) : Power window motor

For Cautions for Use, see Relay Technical Information.

[^0]: Standard packing; Carton (tube): 70 pcs.; Case: 2,800 pcs. (1 Form C), Carton (tube): 40 pcs.; Case: 1,000 pcs. (8 terminal),

[^1]: * Other usable voltage range types are also available. Please contact us for details.

[^2]: * Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering Intervals between terminals is measured at A surface level.

