

Application Note

1 of 9www.xicor.comJune, 2000

AN74

Software Creates Compatible 64Kbit 2-Wire Serial EEPROMs

by Applications Staff

Introduction

In recent years, nonvolatile memory manufacturers have
pushed the envelope on serial EEPROM performance.
Devices now exist with higher densities, extra data
protection features, and lower operating voltages, while
at the same time consuming less power. In many appli-
cations, these newer generation devices are ideal
because they satisfy important system requirements.
Among these devices, 64Kbit 2-wire serial EEPROMs in
8-lead SOIC packages have been particularly well
received. Unfortunately, not all manufacturers have
implemented a common set of features within their
devices. This causes problems for a designer who
desires multiple sources. Although none of these
devices could ever be considered as second sources for
one another, there are some steps that can be taken by a

designer to guarantee that any of these 64Kbit devices
can be used interchangeably in a system.

In this note, we’ll consider devices from Xicor (X24645),
Atmel (AT24C64), and Microchip (24C65). For the
addressing of the X24645, Xicor has implemented an
approach that differs slightly from the more conventional
addressing scheme found on lower density 2-wire devices
(e.g. X24C02). The advantage is a simplification of the
protocol for accessing the X24645. The AT24C64 and
24C65 adhere to the older standard, however in systems
attempting to use multiple sources for 64Kbit devices,
certain software modifications and pin connections could
be made to ensure compatibility. In this note, the details
of this implementation are explained and general purpose
C code provided. The code was debugged using Turbo
C

®

 and Fig. 3 shows the simple test set-up.

NC

S1

S2

VSS

A0

A1

A2

VSS

A0

A1

A2

GND

VCC

WP

SCL

SDA

VCC

NC

SCL

SDA

VCC

WP

SCL

SDA

 Pin Descriptions

SCL Serial Clock
SDA Serial Data
S1 Device Select Input
S2 Device Select Input
WP Write Protect
NC No Connect
VCC Supply
VSS Ground

 Pin Descriptions

SCL Serial Clock
SDA Serial Data
A0-A2 Chip Select Inputs
NC No Connect
VCC Supply
VSS Ground

 Pin Descriptions

SCL Serial Clock
SDA Serial Data
A0-A2 Address Inputs
WP Write Protect
VCC Supply
GND Ground

X24645 24C65 AT24C64

DIP/SOIC DIP/SOIC DIP/SOIC

2 of 9

AN74

Application Note

www.xicor.comJune, 2000

Slave Address

The first discrepancy encountered between Xicor’s
X24645 and the Microchip 24C65 or Atmel AT24C64 is
the difference in slave addressing and the protocol for
sending upper address bits to the device. Both the
24C65 and AT24C64 use an 8-bit slave address
consisting of the device ID (1010), a 3-bit device address
(A2,A1,A0), and the R/W bit. The 13-bit array address
is transferred following the slave address by sending two
additional bytes, containing 3 zeroes (000) or 3 don’t
cares (XXX) and the complete address. This sequence is
similar to lower density devices available from all three
manufacturers. Xicor’s X24645 has a slave address and
upper array address protocol consisting of an 8-bit slave
address followed by a single address byte. The slave
address consists of 2 device select bits (S2,S1), the 5
MSBs of the array address (A12,A11,A10,A9,A8), and
the R/W bit. This allows for a 1-byte simplification of
the software overhead when the X24645 is accessed.

In order to make these 3 devices functional in the same
socket, pins 1, 2, and 3 must be tied to Vss. On power-
up, the master should transmit (10101110) as the slave
address. If the Xicor device is present, the master will
receive an acknowledge. If the Microchip or Atmel
devices are present, then there will not be an acknowl-
edge. The software routine should then set a “X24645
detected” flag for later use.

Write Protection Register

The X24645 contains an internal Write Protect Register
(WPR) that is used to control the state of the device. As
soon as the X24645 is detected, a separate routine is
used to correctly set the WPR. First the WEL bit is set,
then the RWEL bit is set, and then the Block Protect

(BP) and WPEN registers are set. If the BP registers are
set to protect the upper 1/2 of the array, then control of
the array write protection for both the Atmel and Xicor
devices will behave similarly, depending on the WP pin
(pin 7).

Array Write Protection

All three devices have write protection features, however
guaranteeing compatibility with the Microchip device is
a problem. In order to protect the upper 1/2 of the array
for the Microchip part, a software sequence must be sent
to the device. In order to implement this feature, we
would have to assume that the WP input pin of the socket
is being driven by a microcontroller, which could then
also execute a special routine for the Microchip device.
If the AT24C64 is actually present when this occurs, data
corruption is possible unless the starting block for the
Microchip device is defined with the B3 bit set (i.e.
B3,B2,B1,B0 = 1XXX). Additionally, with the 24C65,
once the write protection mechanism is set, it cannot be
undone. This is in contrast to the Xicor and Atmel
devices which allow for write protection control by the
WP pin. Of special note is the scheme used on the
X24645. By using a WPR with a Write Protect Enable
bit (WPEN), a system can have the WP pin hard-wired
HIGH without the array being protected. During system
test, the E2PROM can be loaded with data and at this
point, the WPEN bit can be set, which would "lock" the
array write protection. The only way to alter the write
protection at that point is to take WP LOW and/or reset
the WPEN bit. Because of the difficulties, write protec-
tion on the Microchip 24C65 has not been implemented
in the attached code, though simple modifications can be
made to provide for it.

3 of 9

AN74

Application Note

www.xicor.comJune, 2000

Serial EEPROM Modes of Operation

Once software has detected the X24645, the necessary
modifications to the protocol are made automatically.
For 2-wire serial EEPROMs, there are really only two
modes of operation, with all others being special cases of
these modes: Page Write and Random Sequential Read.
A Single Byte Write operation is merely a special case of

a Page Write operation, where only 1 data byte is sent to
the device. Likewise, a Single Byte Read operation is a
special case of the Sequential Read operations. Because
of the way that the Random Read protocol is imple-
mented in the code, a Current Address Read operation
can be seen to be a Random Read operation without the
“dummy” address write preceding it. Note that the

S
T
A
R
T

S
T
O
P

A
C
K

A
C
K

A
C
K

SLAVE ADDRESS WORD ADDRESS (n) DATA(n)

R/W

DATA(n+31)

S
T
A
R
T

S
T
O
P

A
C
K

A
C
K

A
C
K

SLAVE ADDRESS

FIRST
WORD ADDRESS (n) DATA(n)

R/W A
C
K

DATA(n+31)

SECOND
WORD ADDRESS (n)

A
C
K

A
C
K

®

®

S
T
A
R
T

S
T
O
P

A
C
K

A
C
K

A
C
K

SLAVE ADDRESS WORD ADDRESS 1 DATA(n)

R/W A
C
K

DATA (n+7)WORD ADDRESS 0

A
C
K

Figure 1. Page Write (Byte Write) operations for each device

Figure 2. Random Sequential Read (or current address Sequential Read) operations for each device.
For a current address read operation, disregard the dummy write operation.

S
T
A
R
T

A
C
K

A
C
K

SLAVEADDRESS WORD ADDRESS (n)

R/W

S
T
A
R
T

A
C
K

A
C
K

SLAVE ADDRESS

FIRST
WORDADDRESS (n)

R/W

SECOND
WORD ADDRESS (n)

®

S
T
A
R
T

S
T
O
P

A
C
K

SLAVEADDRESS

R/W

DUMMYWRITEOPERATION

A
C
K

DATA (n)

A
C
K

DATA (n+x)

®

S
T
A
R
T

A
C
K

A
C
K

A
C
K

SLAVE ADDRESS WORD ADDRESS 1 DATA(n)

R /W A
C
K

DATA(n+x)WORDADDRESS 0

A
C
K

S
T
O
P

A
C
K

S
T
A
R
T SLAVE ADDRESS

R/W

DUMMY WRITE OPERATION

A
C
K

DATA(n)

A
C
K

DATA(n+x)

A
C
K

S
T
O
P

A
C
K

S
T
A
R
T SLAVE ADDRESS

R/W

DUMMY WRITE OPERATION

4 of 9

AN74

Application Note

www.xicor.comJune, 2000

X24645 does not internally increment its address
counter after the last byte written, which differs from the
behavior of the AT24C64 and 24C65. For example,
write operations ending on the last byte of a page (e.g.
$001F) followed by a current address read, will return
data from different locations, depending on the device.
For the X24645, data would be read from $001F. For the
24C65, it would be from $0018, but with the AT24C64,
it would be from $0000. This should be taken into
account when using the current address Sequential Read
operation.

Endurance

Another peculiarity with the Microchip 24C65 device
(as well as Microchip's 24LC65 and 24AA65 lower
voltage versions of the 24C65) is its endurance specifica-
tion. Although Microchip touts their EEPROMs as
having more than a million cycles endurance on the
24C65, this only applies to a small portion of the
memory array. A user defined 4Kbit block will provide
1,000,000 cycles, but the rest of the array is only speci-
fied as 10,000 cycles. Both Xicor and Atmel specify
their devices at 100,000 cycles for every byte in the
array. With Microchip, an average endurance of 71,875
endurance cycles per byte is perhaps a more appropriate
spec. In reality, few systems require such endurance and
this code does not attempt to change the high endurance
block position from the Microchip default position.
Again, simple modifications to the code are all that are
required to implement this feature, if it is desirable to
relocate this high endurance block.

Page Size

Though Xicor’s X24645 and Atmel’s AT24C64 have
32-byte pages, the Microchip 24C65 only has an 8-byte
page. To compensate for this flaw, Microchip uses a
64-byte FIFO buffer internally to write consecutive
pages. We can use this feature to make the Microchip
device compatible with 32-byte page devices, however
there could be some problems with the 24C65 due to
wrap-around within the FIFO. Careful use of the
seq_write() routine will prevent anomalous behavior.

Never write more than 32 bytes on a page at a time and
never attempt to utilize the wrap-around feature of the
Xicor and Atmel devices when a Microchip device could
be present. That should be sufficient to avoid any
problems.

Conclusion

Though all three devices have been tested and will work
with this generic code, the Xicor X24645 and Atmel
AT24C64 clearly stand-out as the best design choices.
The potential headaches associated with guaranteeing
compatibility between the Microchip 24C65 software
protocols (i.e. setting the high endurance block or the
array write protection) and the protocols of the other
devices would prevent the use of some advanced features
on the 24C65, possibly limiting its usefulness in a
system. Furthermore, the X24645 has some apparent
advantages over the AT24C64 because of its more flex-
ible BlockLock™ array write protection and the
presence of the WPEN bit in the WPR, which makes this
device more attractive for programming during system
production.

1 3
2 5
1 2
2 4
1 1
2 3
1 0
2 2
9
2 1
8
2 0
7
1 9
6
1 8
5
1 7
4
1 6
3
1 5
2
1 4
1

Connector DB25

74LS07

SCL

SDA

VccVcc

Figure 3: Simple interface between 2-wire serial
EEPROMs and a parallel printer port on a PC

5 of 9

AN74

Application Note

www.xicor.comJune, 2000

/***/
/* */
/* Software for creating compatibility between Xicor's X24645, */
/* Atmel's AT24C64, and Microchip's 24C65 2-wire serial EEPROMs. */
/* This code contains all of the routines necessary for accessing */
/* these devices. Simply use the seq_read() and seq_write() */
/* routines for access, regardless of which device is present. */
/*
/* Note that in this code, all attempts to read the status of the */
/* SDA pin (by the PC) assume that the SDA level is logically */
/* inverted, due to this particular test set-up (Fig. 3). If this */
/* is not true for other hardware set-ups, then this code must be */
/* altered accordingly. */
/* GHC IV */
/***/

#include <stdio.h>
#include <stdlib.h>

int data_port = 0x378; /* printer port output address*/
int status_port = 0x379; /* printer port input address*/
unsigned char control = 0xFF;
unsigned char xicor_flag; /* X24645 detected flag */
void SCL_high(){
 control = control | 0x04; /* set SCL bit at port */
 outportb(data_port, control);
}

void SCL_low(){
 control = control & 0xFB; /* reset SCL bit at port */
 outportb(data_port, control);
}

void SDA_high(){
 control = control | 0x02; /* set SDA bit at port */
 outportb(data_port,control);
}

void SDA_low(){
 control = control & 0xFD; /* reset SDA bit at port */
 outportb(data_port,control);
}

void start(){
 SDA_high();
 SCL_high();
 SDA_low();
 SCL_low();
}

void stop(){
 SDA_low();
 SCL_high();
 SDA_high();
}

6 of 9

AN74

Application Note

www.xicor.comJune, 2000

unsigned char clock(){
unsigned char SDA_value;

 SCL_high();
 SDA_value = inportb(status_port); /* read port */
 SDA_value = SDA_value & 0x80; /* isolate SDA */
 SCL_low();
 SDA_value = SDA_value >> 7; /* shift to LSB */
 return(SDA_value); /* and return data */
}

void ack(){
 SDA_low();
 clock(); /* master sends acknowledge */
}

void nack(){
 SDA_high(); /* master receives acknowledge */
 clock();
}
void out_byte(unsigned char byte){
char count;

 for (count = 0; count <= 7; count++){ /* send data to EEPROM */
 if ((byte & 0x80) == 0) /* one bit at a time */
 SDA_low();
 else
 SDA_high();
 byte = byte << 1; /* shift for next bit */
 clock();
 }
}

unsigned char get_byte(){
int count;
unsigned char byte,temp;

 byte = 0;
 for (count = 0; count <= 7; count++){ /* read data from EEPROM */
 byte = byte << 1; /* one bit at a time */
 SDA_high();
 temp = clock(); /* input bit from port */
 if (temp == 0)
 byte = byte | 0x01;
 }
 return(byte); /* return data byte */
}

unsigned char serial_detect(){
unsigned char temp;

 start();
 out_byte(0xAE); /* send slave address */
 SDA_high();

7 of 9

AN74

Application Note

www.xicor.comJune, 2000

 temp = clock(); /* check for acknowledge */
 stop();
 return(temp);
}

void ack_poll(){
unsigned char poll;

 do { /* ack polling loop */
 start();
 if (xicor_flag == 1)
 out_byte(0x80); /* Xicor slave address */
 else
 out_byte(0xA0); /* Microchip and Atmel slave address */
 SDA_high();
 poll = clock(); /* check for acknowledge */
 } while (poll == 0);
 stop();
}

void program_WPR(){
 start();
 out_byte(0xBE); /* X24645 slave address for location $1FFF */
 nack();
 out_byte(0xFF);
 nack();
 out_byte(0x02); /* set WEL bit */
 nack();
 stop();
 start();
 out_byte(0xBE);
 nack();
 out_byte(0xFF);
 nack();
 out_byte(0x06); /* set RWEL bit */
 nack();
 stop();
 start();
 out_byte(0xBE);
 nack();
 out_byte(0xFF);
 nack();
 out_byte(0x92); /* set WPEN, BP1, and BP0 bits */
 nack();
 stop();
 ack_poll();
}

void dummy_write(int addr){
int temp;

 if (xicor_flag == 1){
 temp = (((addr >> 7) & 0x3E) | 0x80); /* construct X24645 */
 /* slave address */
 start();

8 of 9

AN74

Application Note

www.xicor.comJune, 2000

 out_byte(temp);
 nack();
 temp = (addr & 0xFF); /* construct X24645 address byte */
 out_byte(temp);
 nack();
 }
 else{
 start();
 out_byte(0xA0); /* Microchip and Atmel slave address */
 nack();
 temp = ((addr & 0xFF00) >> 16); /* construct first address byte */
 out_byte(temp);
 nack();
 temp = addr & 0xFF; /* construct second address byte */
 out_byte(temp);
 nack();
 }
}

/**/
/* */
/* Sequential read routine that handles all read operations. For */
/* current address reads, set current != 0 and addr as a don't care */
/* when calling the routine, otherwise addr = starting address and */
/* *bytes points to buffer where data is to be stored for later */
/* use. no_bytes is the number of bytes to be sequentially read */
/* from the EEPROM. */
/* */
/**/

void seq_read(int current,int no_bytes,int addr,unsigned char *bytes){
int n, temp;

 if (current == 0) /* random read? */
 dummy_write(addr); /* yes, send address */

 if (xicor_flag == 1){ /* is it the X24645? */
 start(); /* yes */
 temp = (((addr >> 7) & 0x3E) | 0x81); /* construct slave address */
 out_byte(temp);
 nack();
 }
 else{
 start(); /* no */
 out_byte(0xA1); /* slave address for Atmel and Microchip */
 nack();
 }
 for (n = 0;n < no_bytes - 1; n++){ /* sequentially read data */
 bytes[n] = get_byte(); /* in loop and send acknowledges */
 ack();
 }
 bytes[no_bytes - 1] = get_byte(); /* for last databyte, don't */
 stop(); /* send acknowledge */
}

9 of 9

AN74

Application Note

www.xicor.comJune, 2000

/***/
/* */
/* Sequential write routine handles all write operations. no_bytes */
/* is number of bytes to write, starting at address (addr), and */
/* take the data from the buffer pointed to by *bytes. */
/* */
/***/

void seq_write(int no_bytes,int addr,unsigned char *bytes){
unsigned char temp;
int n;

 dummy_write(addr); /* send address to EEPROM */
 for (n = 0;n < no_bytes; n++){
 out_byte(bytes[n]); /* loop and send data bytes */
 nack();
 }
 stop(); /* begin nonvolatile write cycle */
 ack_poll(); /* poll for cycle completion */
}

/**/
/* */
/* Simple program to demonstrate these routines. */
/* */
/**/

main(){
unsigned char data1[]={31,32,33,34,35}; /* buffer of data bytes */
unsigned char data2[]={41,42,43,44,45}; /* buffer of data bytes */
unsigned char data3[512]; /* buffer to store bytes from EEPROM */
unsigned char data4[512]; /* buffer to store bytes from EEPROM */

 xicor_flag=serial_detect(); /* check for X24645 */
 if (xicor_flag==1) /* is it X24645? */
 program_WPR(); /* yes, set up WPR */
 seq_write(5,59,&data1); /* page write ending on last byte of page */
 seq_write(5,64,&data2); /* page write beginning on 1st byte of next page */
 seq_read(0,6,59,&data3); /* random read across page boundaries (6 bytes) */
 seq_read(1,4,0,&data4); /* current address read of remaining 4 bytes */
}

