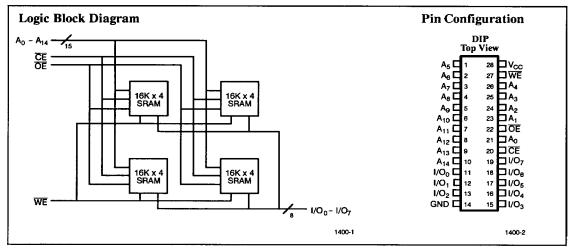
32K x 8 SRAM Module

Features

- Very high speed 256K SRAM module
 Access time of 10 nsec.
- 300-mil-wide hermetic DIP package
- Low active power
 - 2.1W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- On-chip decode for speed and density
- JEDEC pinout—compatible with 7C199 monolithic SRAMs
- Small PCB footprint
 - 0.42 sq. in.

Functional Description


The CYM1400 is an extremely high performance 256-kilobit static RAM module organized as 32,768 words by 8 bits. This module is constructed using four 16K x 4 static RAMs in LCC packages mounted on a 300-mil-wide ceramic substrate. Extremely high speed and density are achieved by using BiCMOS SRAMs containing internal address decoding logic.

Writing to the module is accomplished when the chip enable (\overline{CE}) and write enable (\overline{WE}) inputs are both LOW. Data on the eight input pins $(I/O_0$ through $I/O_7)$

of the device is written into the memory location specified on the address pins (A₀ through A₁₄).

Reading the device is accomplished by taking the chip enable (\overline{CE}) and output enable (\overline{OE}) LOW, while write enable (\overline{WE}) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins $(A_0$ through $A_{14})$ will appear on the eight output pins $(I/O_0$ through $I/O_7)$.

The data output pins remain in a high-impedance state unless the module is selected, outputs are enabled, and write enable (\overline{WE}) is HIGH.

Selection Guide

		1400HD-10	1400HD-12	1400HD-15	1400HD-20
Maximum Access Time (ns)		10	12	15	20
Maximum Operating	Commercial	375	375	375	
Current (mA)	Military		425	425	425
Maximum Standby	Commercial	200	200	200	
Current (mA)	Military		250	250	250

Maximum Ratings

(Above which the useful life may be impaired)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied -55°C to +125°C

Supply Voltage to Ground Potential -0.5V to +7.0V

DC Voltage Applied to Outputs

in High Z State -0.5V to +7.0V DC Input Voltage -0.5V to +7.0V

Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	5V ± 10%
Military	-55°C to +125°C	5V ± 10%

Electrical Characteristics Over the Operating Range

					CYM1220HD		
Parameters Description		Test Conditions	Min.	Max.	Units		
Voн	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$		2.4		V	
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0 \text{ mA}$			0.4	V	
ViH	Input HIGH Voltage			2.2	V_{CC}	V	
Vil	Input LOW Voltage [1]		-0.5	0.8	V		
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$	-20	+ 20	μА		
Ioz	Output Leakage Current	GND ≤ V _O ≤ V _{CC} , Output Disa	-20	+ 20	μА		
I _{CC}	V _{CC} Operating Supply Current	$\frac{V_{CC}}{CE} = Max., I_{OUT} = 0 \text{ mA},$ Commercial Military			375 425	mA	
I _{SB1}	Automatic CE Power-Down Current	V _{CC} = Max., CE ≥ V _{IH} , Commercial Min. Duty Cycle = 100% Military			200 250	mA	
I _{SB2}	Automatic CE Power-Down Current	$\begin{array}{ll} V_{CC} = \text{Max., } \overline{\text{CE}} \geq V_{CC} - 0.2V, \\ V_{IN} \geq V_{CC} - 0.2V \text{ or} \\ V_{IN} \leq 0.2V \end{array} \qquad \begin{array}{ll} \text{Commercial} \\ \text{Military} \end{array}$			200 250	mA	

Capacitance[2]

Parameters	Description	Test Conditions	Max.	Units
C _{IN}	Input Capacitance	$T_A = 25$ °C, $f = 1$ MHz,	25	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	30	pF

Motors

AC Test Loads and Waveforms

^{1.} $V_{IL(MIN)} = -3.0V$ for pulse widths less than 20 ns.

^{2.} Tested on a sample basis.

Switching Characteristics Over the Operating Range [3]

Parameters	Description	1400HD-10		1400HD-12		1400HD-15		1400HD-20		Units
rarameters	Description	Min.	Max.	Min.	Max.	Min.	Max.	MIn.	Max.	Units
READ CYC	READ CYCLE									
t _{RC}	Read Cycle Time	10		12		15		20		ns
t _{AA}	Address to Data Valid		10		12		15		20	ns
tOHA	Data Hold from Address Change	2		3		3		3		ns
tACS	CE LOW to Data Valid		10		12		15		20	ns
tDOE	OE LOW to Data Valid		8		10		10		10	ns
tLZOE	OE LOW to Low Z	2		2		3		3		ns
tHZOE	OE HIGH to High Z		8		9		9		9	ns
tLZCE	CE LOW to Low Z	2		3		3		3		ns
tHZCE	CE HIGH to High Z ^[4]		6		8		8		8	ns
tpU	CE LOW to Power-Up	0		0		0		0		ns
tPD	CE HIGH to Power-Down		10		12		15		20	ns
WRITE CY	CLE									
twc	Write Cycle Time	10		12		15		20		ns
tSCE	CE LOW to Write End	8		10		12		15		ns
t _{AW}	Address Set-Up to Write End	8		10		12		15		ns
tHA	Address Hold from Write End	1		1		1		1		ns
tSA	Address Set-Up from Write Start	0		0		0		0		ns
tPWE	WE Pulse Width	8		10		12		15		ns
tSD	Data Set-Up to Write End	8		10		10		10		ns
tHD	Data Hold from Write End	1		1		1		. 1		ns
tLZWE	WE HIGH to Low Z	3		5		5		5		ns
tHZWE	WE LOW to High Z ^[4]	0	5	0	7	0	7	0	10	ns

Notes:

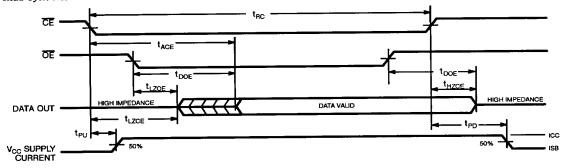
- Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- t_{HZCS} and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady state voltage.
- The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input

set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

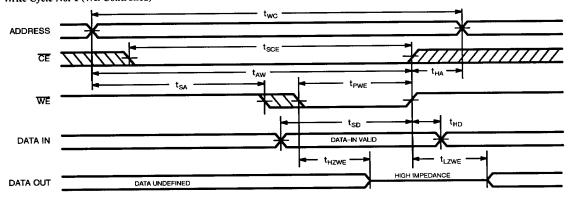
- 6. \overline{WE} is HIGH for read cycle.
- 7. Device is continuously selected, $\overline{CE} = V_I$.
- 8. Address valid prior to or coincident with $\overline{\text{CE}}$ transition low.
- If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

Switching Waveforms

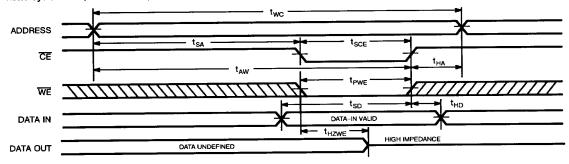
Read Cycle No. 1[6, 7]


1400-5

1400-6



Switching Waveforms (continued)


Read Cycle No. 2 [6, 8]

Write Cycle No. 1 (WE Controlled) [5]

Write Cycle No. 2 (CE Controlled)[5, 9]

1400-8

1400-7

Truth Table

CE	WE	ŌĒ	Inputs/Outputs	Mode
Н	Х	Х	High Z	Deselect/Power-Down
L	н	L	Data Out	Read Word
L	L	Х	Data In	Write Word
L	Н	Н	High Z	Deselect

Ordering Information

Speed	Ordering Code	Package Type	Operating Range
10	CYM1400HD-10C	HD09	Commercial
12	CYM1400HD-12C	HD09	Commercial
	CYM1400HD-12MB		Military
15	CYM1400HD-15C	HD09	Commercial
	CYM1400HD-15MB		Military
20	CYM1400HD-20MB	HD09	Military

Document #: 38-M-00022-A