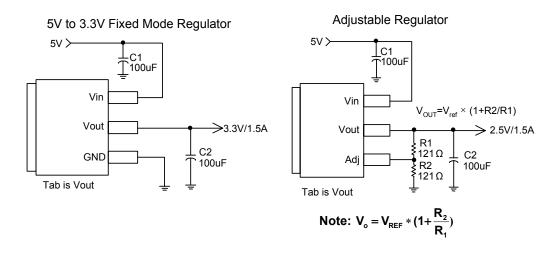

Features

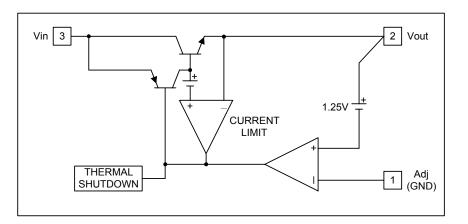
- 3-Terminal Adjustable or Fixed 1.5V, 1.8V, 2.5V, 3.3V, 5.0V
- 1.4V Maximum Dropout at Full Load Current
- Fast Transient Response
- Built-in Thermal Shutdown
- Output Current Limiting
- RoHS Compliant


General Description

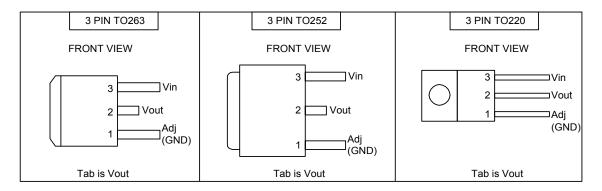
APE1086 is a low dropout positive adjustable or fixed-mode regulator with minimum of 1.5A output current capability. The product is specifically designed to provide well-regulated supply for low voltage IC applications such as high-speed bus termination and low current 3.3V logic supply. APE1086 is also well suited for other applications such as VGA cards. APE1086 is guaranteed to have <1.4V dropout at full load current making it ideal to provide well-regulated outputs of 1.25V to 5.0V with 4.7 to 12V input supply by different output voltage.

Ordering Information

Typical Application



This datasheet contains new product information. Advanced Power Electronics Corp. reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sale of the product.



Block Diagram

Connection Diagram

Pin Descriptions

NAME	I/O	PIN #	FUNCTION		
Adj (GND)		1	Adjustable (Ground only for fixed mode)		
Vout	0	2	The output of the regulator. A minimum of 10uF capacitor must be connected from this pin to ground to insure stability.		
Vin	I	3	The input pin of regulator. Typically a large storage capacitor is connected from this pin to ground to insure that the input voltage does not sag below the minimum dropout voltage during the load transient response. This pin must always be 1.4V higher than Vout in order for the device to regulate properly.		

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit	
Vin	DC Supply Voltage	-0.3 to 12	V	
PD	Power Dissipation	Internally Limited		
T _{ST}	Storage Temperature	-65 to +150	°C	
T _{OP}	Operating Junction Temperature Range	0 to +150	°C	

Electrical Characteristics (Under Operating Conditions)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT
Reference Voltage	APE1086-Adj	T _J =25 [°] C,(V _{IN} -V _{OUT})=1.5V,I _O =10mA	1.225	1.250	1.275	V
	APE1086-1.5	I_{OUT} = 10mA, T_{J} = 25°C, 3V \leq V _{IN} \leq 12V	1.470	1.500	1.530	V
Output Voltage	APE1086-1.8	I_{OUT} = 10mA, T _J = 25°C, 3.3V \leq V _{IN} \leq 12V	1.764	1.800	1.836	V
	APE1086-2.5	I_{OUT} = 10mA, T_{J} = 25°C, 4V \leq V _{IN} \leq 12V	2.450	2.500	2.550	V
	APE1086-3.3	I _{OUT} = 10mA, T _J = 25°C, 4.8V≦V _{IN} ≦ 12V	3.235	3.300	3.365	V
	APE1086-5.0	I _{OUT} = 10mA, T _J = 25°C, 6.5V≦V _{IN} ≦ 12V	4.900	5.000	5.100	V
Line Regulation	APE1086-XX	I _O =10mA, V _{OUT} +1.5V <v<sub>IN<12V</v<sub>	-	0.2	0.5	%
	APE1086-Adj	V _{IN} =3.3V, 0mA <lo<1.5a, t<sub="">J=25^oC (Note 1, 2)</lo<1.5a,>	-	-	1	%
	APE1086-1.5	V _{IN} =3V, 0mA <lo<1.5a, t<sub="">J=25^oC (Note 1, 2)</lo<1.5a,>	-	12	15	mV
Lood Dogulation	APE1086-1.8	V _{IN} =3.3V, 0mA <lo<1.5a, t<sub="">J=25°C (Note 1, 2)</lo<1.5a,>	-	15	18	mV
Load Regulation	APE1086-2.5	V _{IN} =4V, 0mA <lo<1.5a, t<sub="">J=25°C (Note 1, 2)</lo<1.5a,>	-	20	25	mV
	APE1086-3.3	V _{IN} = 5V, 0≦I _{OUT} ≦1.5A, T _J =25 ^o C , T _J =25 ^o C (Note 1.2)	-	26	33	mV
	APE1086-5.0	V _{IN} = 8V, 0≦I _{OUT} ≦1.5A, T _J =25 ^o C , T _J =25 ^o C (Note 1.2)	-	40	50	mV
Dropout Voltage (V _{IN} -V _{OUT})	APE1086-Adj/-2.5 /-3.3/-3.6/-5.0	I _{OUT} = 1.5A, ΔV _{OUT} =1%V _{OUT}	-	1.3	1.4	V
Current Limit	APE1086-Adj/-2.5 /-3.3/-3.6/-5.0	(V _{IN} -V _{OUT}) = 5V	1.6	-	-	А
Minimum Load Current	APE1086-XX	0°C≦Tj≦125°C	-	5	10	mA
Thermal Regulation	T _A =25℃, 30ms pulse		-	0.008	0.04	%/W
Ripple Rejection	$F=120Hz, C_{OUT}=25uF \text{ Tantalum, } I_{OUT}=1.5A$ $APE1086-XX \qquad V_{IN}=V_{OUT}+3V$			60	70	dB
RMS Noise (% of V _{OUT})	$10Hz \le f \le 10KHz$			0.003	-	%
Temperature Stability	I ₀ =10mA			0.5	-	%
Thermal Resistance Junction-to-Ambient (No heat sink ;No air flow)	TO-252 TO-263 TO-220		-	101 83 86	-	°C/W
Thermal Resistance Junction-to-Case	TO-252: Control Circuitry/Power Transistor TO-263: Control Circuitry/Power Transistor TO-220: Control Circuitry/Power Transistor		-	15 0.65/2.7 0.65/2.7	-	^o C/W

Note 1: See thermal regulation specifications for changes in output voltage due to heating effects. Line and load regulation are measured at a constant junction temperature by low duty cycle pulse testing. Load regulation is measured at the output lead = 1/18" from the package.

Note 2:Line and load regulation are guaranteed up to the maximum power dissipation of 15W. Power dissipation is determined by the difference in input and output and the output current. Guaranteed maximum power dissipation will not be available over the full input/output range.

Note 3:Quiescent current is defined as the minimum output current required in maintaining regulation. At 12V input/output differential the device is guaranteed to regulate if the output current is greater than 10mA.

Advanced Power Electronics Corp.

1.5A Low Dropout Positive Adjustable or Fixed-Mode Regulator

Functional Description

Introduction

The APE1086 adjustable or fixed-mode Low Dropout (LDO) regulator is a 3 terminal device which can easily be programmed by internal mask change to any voltages within the range of 1.25V to Vin-1.4V. The APE1086 only needs 1.4V differential between Vin and Vout to maintain output regulation. In addition, the output voltage tolerances are also extremely tight and they include the transient response as part of the specification. For example, Intel VRE specification calls for a total of +/- 100mV including initial tolerance, load regulation and 0 to 1.5A load step.

The APE1086 is specifically designed to meet the fast current transient needs as well as providing an accurate initial voltage, reducing the overall system cost with the need for fewer output capacitors.

Load Regulation

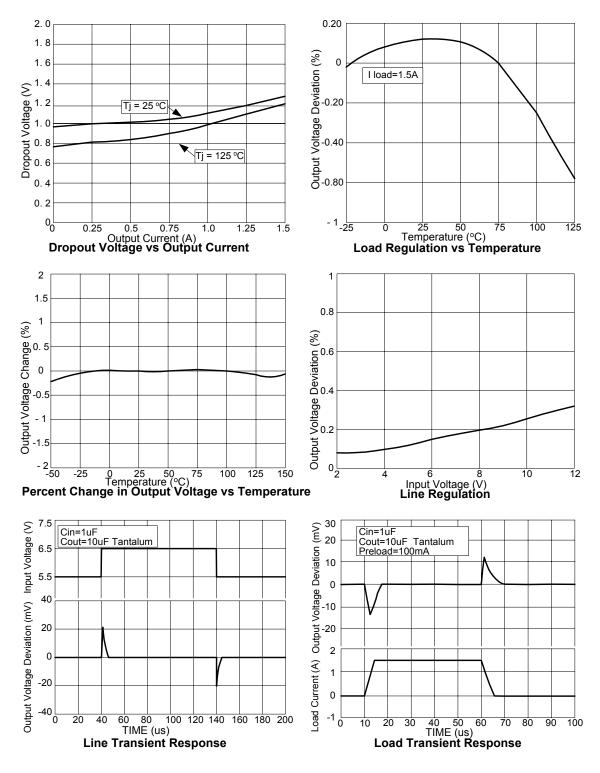
Since the APE1086 is only a 3 terminal device, it is not possible to provide true remote sensing of the output voltage at the load. But it can supply good load regulation by internal feedback bypass the external loss such as adjustable mode.

Stability

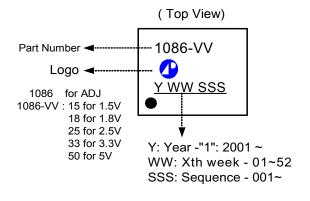
The APE1086 requires the use of an output capacitor as part of the frequency compensation in order to make the regulator stable. For most applications a minimum of 10uF aluminum electrolytic capacitor insures both stability and good transient response.

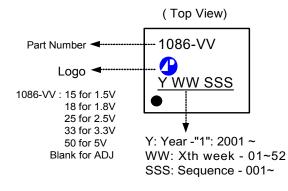
Thermal Design

The APE1086 incorporates an internal thermal shutdown that protects the device when the junction temperature exceeds the maximum allowable junction temperature. Although this device can operate with junction temperatures in the range of 150°C, it is recommended that the selected heat sink be chosen such that during maximum continuous load operation the junction temperature is kept below the temperature.


Layout Consideration

The output capacitors must be located as close to the Vout terminal of the device as possible. It is recommended to use a section of a layer of the PC board as a plane to connect the Vout pin to the output capacitors to prevent any high frequency oscillation that may result due to excessive trace inductance.


Typical Performance Characteristics



Marking Information

(TO252-3L)

(TO220-3L / TO263-3L)