

MC-22253A-X

MCP (MULTI-CHIP PACKAGE) FLASH MEMORY AND SRAM 32M-BIT FLASH MEMORY AND 4M-BIT SRAM

Description

The MC-222253A-X is a stacked type MCP (Multi-Chip Package) of 33,554,432 bits (BYTE mode: 4,194,304 words by 8 bits, WORD mode: 2,097,152 words by 16 bits) flash memory and 4,194,304 bits (BYTE mode: 524,288 words by 8 bits, WORD mode: 262,144 words by 16 bits) static RAM.

The MC-222253A-X is packaged in a 77-pin TAPE FBGA.

Features

General Features

- Fast access time: tacc = 85 ns (MAX.) (Flash Memory), taa = 70 ns (MAX.) (SRAM)
- Supply voltage: Vccf / Vccs = 2.7 to 3.6 V
- Wide operating temperature : $T_A = -25$ to $+85^{\circ}C$

Flash Memory Features

- Two bank organization enabling simultaneous execution of erase / program and read
- Bank organization : 2 banks (8M bits + 24M bits)
- Memory organization: 4,194,304 words × 8 bits (BYTE mode)
 2,097,152 words × 16 bits (WORD mode)
- Sector organization : 71 sectors (8K bytes / 4K words × 8 sectors, 64K bytes / 32K words × 63 sectors)
- Boot sector allocated to the lowest address (sector)
- 3-state output
- Automatic program
 - Program suspend / resume
- Unlock bypass program
- Automatic erase
 - Chip erase
 - Sector erase (sectors can be combined freely)
 - Erase suspend / resume
- Program / Erase completion detection
 - Detection through data polling and toggle bits
 - Detection through RY (/BY) pin
- Sector group protection
 - Any sector can be protected
 - Any protected sector can be temporary unprotected
- Sectors can be used for boot application
- Hardware reset and standby using /RESET pin
- Automatic sleep mode
- Boot block sector protect by /WP (ACC) pin
- Conforms to common flash memory interface (CFI)
- Extra One Time Protect Sector provided

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

SRAM Features

 • Memory organization : 524,288 words \times 8 bits (BYTE mode) 262,144 words \times 16 bits (WORD mode)

• Supply current : At operating : 40 mA (MAX.) At standby : 7 μ A (MAX.)

• Two Chip Enable inputs : /CE1s, CE2s

Byte data control : /LB, /UBByte data select : CIOs

• Low Vcc data retention : 1.0 to 3.6 V

Ordering Information

Part number	Flash Memory Boot sector	Flash Memory Access time ns (MAX.)	SRAM Access time ns (MAX.)	Package
MC-222253AF9-B85X-BT3	Lowest address (sector) (B type)	85	70	77-pin TAPE FBGA (12 × 7)

Pin Configuration

/xxx indicates active low signal.

77-pin TAPE FBGA (12×7)

8	
7	
6	
5	
4	
3	
2	
1	

	Botton	n View	
000	000	000	000
000	000	0000	00
c	000	0000	
c	00	000	
c	00	000	
c	000	0000	
000	000	0000	00
0000	000	000	000

ABCDEFGHJKLMNP

PNMLKJHGFEDCBA

Top View

	Α	В	С	D	Е	F	G	Н	J	K	L	М	N	Р
8	NC	NC	NC		A15	NC	NC	A16	CIOf	Vss		NC	NC	NC
7		NC	NC	A11	A12	A13	A14	SA	I/O15, A-1	1/07	I/O14	NC	NC	
6				A8	A19	A9	A10	I/O6	I/O13	I/O12	I/O5			
5				/WE	CE2s	A20			I/O4	Vccs	CIOs			
4				/WP(ACC) /RESET	RY(/BY)			I/O3	Vccf	I/O11			
3				/LB	/UB	A18	A17	I/O1	I/O9	I/O10	I/O2			
2		NC	NC	A7	A6	A5	A4	Vss	/OE	I/O0	I/O8	NC	NC	
1	NC	NC	NC		А3	A2	A1	A0	/CEf	/CE1s	NC	NC	NC	NC

Common Pins

Flash Memory Pins

A0 - A17 : Address inputs A18 - A20 : Address inputs

I/O0 - I/O15 : Data inputs / outputs I/O15, A-1 : Data inputs / outputs 15 (WORD mode)

/OE : Output Enable LSB address input (BYTE mode)

/WE : Write Enable /CEf : Chip Enable

Vss : Ground RY (/BY) : Ready (Busy) output

NC Note : No Connection /RESET : Hardware reset input

Vccf : Supply Voltage

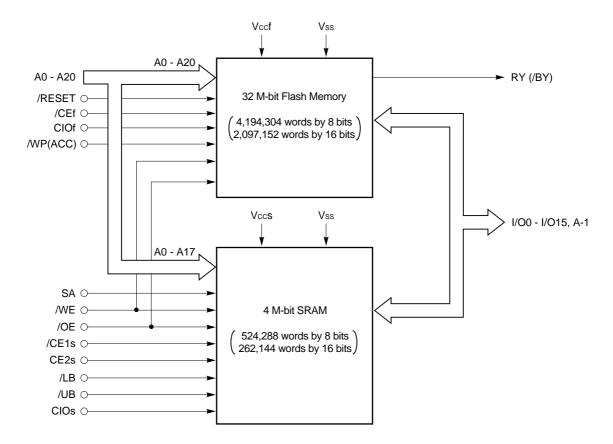
/WP(ACC) : Hardware Write Protect (Acceleration)

CIOf : Selects 8-bit or 16-bit mode

SRAM Pins

SA : Address input (A18 for SRAM)

/CE1s : Chip Enable 1
CE2s : Chip Enable 2
Vccs : Supply Voltage
/LB, /UB : Byte data select


CIOs : Selects 8-bit or 16-bit mode

Note Some signals can be applied because this pin is not internally connected.

Remark Refer to Package Drawing for the index mark.

Block Diagram

Bus Operations Table

Oper	ation		Flash	n Mem	ory			SRAM			Common					
		/RESET	/CEf	CIOf	/WP(ACC)	/CE1s	CE2s	/LB	/UB	CIOs	/OE	/WE	I/O0 - I/O7	I/O8-I/O15		
Full standby		Н	Н	×	×	Н	× ×		×	×	×	×	Hi-Z	Hi-Z		
						×	L									
						×	×	Н	Н							
Output disable		Н	L	×	×	L	Н	×	×	×	Н	Н	Hi-Z	Hi-Z		
Read (Flash	BYTE mode	Н	L	L	×			Note 2	!		L	Н	Data Out	Hi-Z		
Memory Note 1)	WORD mode			Н									Data Out	Data Out		
Write (Flash	BYTE mode	Н	L	L	×			Note 2	!		Н	L	Data In	Hi-Z		
Memory)	WORD mode			Н									Data In	Data In		
Temporary sect	tor group	VID	×	×	×			Note 2	!		×	×	Hi-Z or	Hi-Z or		
unprotect													Data In/Out	Data In/Out		
Boot block sect	or protect	×	×	×	L	×	×	×	×	×	×	×	Hi-Z or	Hi-Z or		
													Data In/Out	Data In/Out		
Flash Memory I	nardware reset	L	×	×	×	×	×	×	×	×	×	×	Hi-Z	Hi-Z		
Read (SRAM)	BYTE mode		N	lote 3		L	Н	×	×	L	L	Н	Data Out	Hi-Z		
	WORD mode		N	lote 3		L	Н	L	L	Н	L	Н	Data Out	Data Out		
									Н					Hi-Z		
								Н	L				Hi-Z	Data Out		
Write (SRAM)	BYTE mode		N	ote 3		L	Н	×	×	L	×	L	Data In	Hi-Z		
	WORD mode		N	lote 3		L	Н	L	L	Н	×	L	Data In	Data In		
									Н					Hi-Z		
								Н	L				Hi-Z	Data In		

Caution Other operations except for indicated in this table are inhibited.

Notes 1. When $/OE = V_{IL}$, V_{IL} can be applied to /WE. When $/OE = V_{IH}$, a write operation is started.

- 2. SRAM should be Standby.
- 3. Flash Memory should be Standby or Hardware reset.

Remarks 1. $H: V_{IH}, L: V_{IL}, \times: V_{IH} \text{ or } V_{IL}$

- 2. Sector group protection and read the product ID are using a command.
- 3. Refer to DUAL OPERATION FLASH MEMORY 32M BITS A SERIES Information (M14914E) for the flash memory bus operations.

Sector Organization / Sector Address Table (Flash Memory)

Flash Memory bottom boot

(1/2)

Bank	Sector	Add	ress	Sectors	Sector Address Table Bank Address Table									
	Organization	BYTE mode	WORD made	Address	A20			ress Ta		Λ1 <i>E</i>	A 1 4	۸12	Λ.	
Bank 2	K bytes / K words 64/32	3FFFFFH	WORD mode 1FFFFFH	FSA70	A20	A19	A18	A17	A16	A15	A14 x	A13	Α΄	
Dank 2		3F0000H	1F8000H											
	64/32	3EFFFFH 3E0000H	1F7FFFH 1F0000H	FSA69	1	1	1	1	1	0	Х	Х		
	64/32	3DFFFFH	1EFFFFH	FSA68	1	1	1	1	0	1	Х	Х		
	64/32	3D0000H 3CFFFFH	1E8000H 1E7FFFH	FSA67	1	1	1	1	0	0		Х		
	04/32	3C0000H	1E0000H	F5A07	'	'	'	'	U	U	х	X		
	64/32	3BFFFFH 3B0000H	1DFFFFH 1D8000H	FSA66	1	1	1	0	1	1	Х	Х		
	64/32	3AFFFFH	1D7FFFH	FSA65	1	1	1	0	1	0	х	Х		
	64/22	3A0000H	1D0000H 1CFFFFH	ECAC4	1	1	1	0	0	1				
	64/32	39FFFFH 390000H	1C8000H	FSA64	'	'	'	U	U	'	х	х		
	64/32	38FFFFH 380000H	1C7FFFH 1C0000H	FSA63	1	1	1	0	0	0	х	х		
	64/32	37FFFFH	1BFFFFH	FSA62	1	1	0	1	1	1	Х	Х		
	0.4/0.0	370000H	1B8000H	F0.4.04			_	4	_	0				
	64/32	36FFFFH 360000H	1B7FFFH 1B0000H	FSA61	1	1	0	1	1	0	х	х		
	64/32	35FFFFH	1AFFFFH	FSA60	1	1	0	1	0	1	Х	Х		
	64/32	350000H 34FFFFH	1A8000H 1A7FFFH	FSA59	1	1	0	1	0	0	Х	Х		
		340000H	1A0000H		1	4	0	0		_				
	64/32	33FFFFH 330000H	19FFFFH 198000H	FSA58	1	1	0	0	1	1	х	х		
	64/32	32FFFFH	197FFFH	FSA57	1	1	0	0	1	0	Х	Х		
	64/32	320000H 31FFFFH	190000H 18FFFFH	FSA56	1	1	0	0	0	1	Х	Х	H	
	0.4/0.0	310000H	188000H 187FFFH	FOAFF			_	_	_	0				
	64/32	30FFFFH 300000H	180000H	FSA55	1	1	0	0	0	0	х	х		
	64/32	2FFFFFH 2F0000H	17FFFFH 178000H	FSA54	1	0	1	1	1	1	Х	Х		
	64/32	2EFFFFH	1776000H	FSA53	1	0	1	1	1	0	Х	Х		
	0.4/0.0	2E0000H	170000H	FOAFO		0		4	_	,				
	64/32	2DFFFFH 2D0000H	16FFFFH 168000H	FSA52	1	0	1	1	0	1	х	х		
	64/32	2CFFFFH 2C0000H	167FFFH 160000H	FSA51	1	0	1	1	0	0	Х	Х		
	64/32	2BFFFFH	15FFFFH	FSA50	1	0	1	0	1	1	Х	Х		
	64/32	2B0000H 2AFFFFH	158000H 157FFFH	FSA49	1	0	1	0	1	0				
	04/32	2A0000H	150000H	F5A49	'	0	'	0	'	U	х	х		
	64/32	29FFFFH 290000H	14FFFFH 148000H	FSA48	1	0	1	0	0	1	Х	Х		
	64/32	28FFFFH	147FFFH	FSA47	1	0	1	0	0	0	х	х		
	64/32	280000H 27FFFFH	140000H 13FFFFH	FSA46	1	0	0	1	1	1	х	х		
		270000H	138000H		'	"	"	l '	'	'	^	^		
	64/32	26FFFFH 260000H	137FFFH 130000H	FSA45	1	0	0	1	1	0	Х	Х		
	64/32	25FFFFH	12FFFFH	FSA44	1	0	0	1	0	1	Х	Х		
	64/32	250000H 24FFFFH	128000H 127FFFH	FSA43	1	0	0	1	0	0	х	Х		
		240000H	120000H								^	^	L	
	64/32	23FFFFH 230000H	11FFFFH 118000H	FSA42	1	0	0	0	1	1	х	х		
	64/32	22FFFFH	117FFFH	FSA41	1	0	0	0	1	0	х	х		
	64/32	220000H 21FFFFH	110000H 10FFFFH	FSA40	1	0	0	0	0	1	х	х		
		210000H	108000H											
	64/32	20FFFFH 200000H	107FFFH 100000H	FSA39	1	0	0	0	0	0	х	х		
	64/32	1FFFFFH	0FFFFFH	FSA38	0	1	1	1	1	1	х	х		
	64/32	1F0000H 1EFFFFH	0F8000H 0F7FFFH	FSA37	0	1	1	1	1	0	х	х		
		1E0000H	0F0000H											
	64/32	1DFFFFH 1D0000H	0EFFFFH 0E8000H	FSA36	0	1	1	1	0	1	Х	Х		
	64/32	1CFFFFH	0E7FFFH	FSA35	0	1	1	1	0	0	Х	Х		

(2/2)

Bank	Sector	Ado	Iress	Sectors					Addres	s Tab	le		
	Organization	D) CEE	LWODD 1	Address	100			ress Ta		A 4.5		1 4 4 0	1 4 4 0
Bank 2	K bytes / K words 64/32	BYTE mode 1BFFFFH	WORD mode 0DFFFFH	FSA34	A20	A19	A18	A17	A16	A15	A14 x	A13	A12
Dank 2		1B0000H	0D8000H			'			'		^	^	^
	64/32	1AFFFFH 1A0000H	0D7FFFH 0D0000H	FSA33	0	1	1	0	1	0	х	Х	х
	64/32	19FFFFH 190000H	0CFFFFH 0C8000H	FSA32	0	1	1	0	0	1	х	Х	х
	64/32	18FFFFH	0C7FFFH	FSA31	0	1	1	0	0	0	х	х	х
	64/32	180000H 17FFFFH	0C0000H 0BFFFFH	FSA30	0	1	0	1	1	1	х	Х	х
	64/32	170000H 16FFFFH	0B8000H 0B7FFFH	FSA29	0	1	0	1	1	0	х	х	X
		160000H	0B0000H										
	64/32	15FFFFH 150000H	0AFFFFH 0A8000H	FSA28	0	1	0	1	0	1	Х	Х	Х
	64/32	14FFFFH 140000H	0A7FFFH 0A0000H	FSA27	0	1	0	1	0	0	Х	Х	х
	64/32	13FFFFH 130000H	09FFFFH 098000H	FSA26	0	1	0	0	1	1	х	Х	х
	64/32	12FFFFH	097FFFH	FSA25	0	1	0	0	1	0	х	х	х
	64/32	120000H 11FFFFH	090000H 08FFFFH	FSA24	0	1	0	0	0	1	Х	Х	х
	64/32	110000H 10FFFFH	088000H 087FFFH	FSA23	0	1	0	0	0	0	х	х	Х
5	64/32	100000H 0FFFFH	H000080	FSA22	0	0		_	1				
Bank 1		0F0000H	07FFFFH 078000H				1	1		1	Х	Х	Х
	64/32	0EFFFFH 0E0000H	077FFFH 070000H	FSA21	0	0	1	1	1	0	Х	Х	х
	64/32	0DFFFFH 0D0000H	06FFFFH 068000H	FSA20	0	0	1	1	0	1	х	х	х
	64/32	0CFFFFH	067FFFH	FSA19	0	0	1	1	0	0	х	Х	х
	64/32	0C0000H 0BFFFFH	060000H 05FFFFH	FSA18	0	0	1	0	1	1	х	х	х
	64/32	0B0000H 0AFFFFH	058000H 057FFFH	FSA17	0	0	1	0	1	0	Х	Х	х
	64/32	0A0000H 09FFFFH	050000H 04FFFFH	FSA16	0	0	1	0	0	1	х	х	х
		090000H	048000H										
	64/32	08FFFFH 080000H	047FFFH 040000H	FSA15	0	0	1	0	0	0	х	х	Х
	64/32	07FFFFH 070000H	03FFFFH 038000H	FSA14	0	0	0	1	1	1	х	Х	х
	64/32	06FFFFH 060000H	037FFFH 030000H	FSA13	0	0	0	1	1	0	х	Х	х
	64/32	05FFFFH	02FFFFH	FSA12	0	0	0	1	0	1	х	Х	х
	64/32	050000H 04FFFFH	028000H 027FFFH	FSA11	0	0	0	1	0	0	х	Х	х
	64/32	040000H 03FFFFH	020000H 01FFFFH	FSA10	0	0	0	0	1	1	х	Х	х
		030000H	018000H 017FFFH							0			
	64/32	02FFFFH 020000H	010000H	FSA9	0	0	0	0	1		Х	Х	Х
	64/32	01FFFFH 010000H	00FFFFH 008000H	FSA8	0	0	0	0	0	1	х	Х	х
	8/4	00FFFFH 00E000H	007FFFH 007000H	FSA7	0	0	0	0	0	0	1	1	1
	8/4	00DFFFH	006FFFH	FSA6	0	0	0	0	0	0	1	1	0
	8/4	00C000H 00BFFFH	006000H 005FFFH	FSA5	0	0	0	0	0	0	1	0	1
	8/4	00A000H 009FFFH	005000H 004FFFH	FSA4	0	0	0	0	0	0	1	0	0
	8/4	008000H 007FFFH	004000H 003FFFH	FSA3	0	0	0	0	0	0	0	1	1
		006000H	003000H						_				
	8/4	005FFFH 004000H	002FFFH 002000H	FSA2	0	0	0	0	0	0	0	1	0
	8/4	003FFFH 002000H	001FFFH 001000H	FSA1	0	0	0	0	0	0	0	0	1
	8/4	002000H 001FFFH	001000H 000FFFH	FSA0	0	0	0	0	0	0	0	0	0
		000000H	000000H										

★ Sector Group Address Table (Flash Memory)

Sector group	A20	A19	A18	A17	A16	A15	A14	A13	A12	Size	Sector
SGA0	0	0	0	0	0	0	0	0	0	8 KB (1 Sector)	FSA0
SGA1	0	0	0	0	0	0	0	0	1	8 KB (1 Sector)	FSA1
SGA2	0	0	0	0	0	0	0	1	0	8 KB (1 Sector)	FSA2
SGA3	0	0	0	0	0	0	0	1	1	8 KB (1 Sector)	FSA3
SGA4	0	0	0	0	0	0	1	0	0	8 KB (1 Sector)	FSA4
SGA5	0	0	0	0	0	0	1	0	1	8 KB (1 Sector)	FSA5
SGA6	0	0	0	0	0	0	1	1	0	8 KB (1 Sector)	FSA6
SGA7	0	0	0	0	0	0	1	1	1	8 KB (1 Sector)	FSA7
SGA8	0	0	0	0	0	1	×	×	×	192 KB (3 Sectors)	FSA8-FSA10
					1	0					
					1	1					
SGA9	0	0	0	1	×	×	×	×	×	256 KB (4 Sectors)	FSA11-FSA14
SGA10	0	0	1	0	×	×	×	×	×	256 KB (4 Sectors)	FSA15-FSA18
SGA11	0	0	1	1	×	×	×	×	×	256 KB (4 Sectors)	FSA19-FSA22
SGA12	0	1	0	0	×	×	×	×	×	256 KB (4 Sectors)	FSA23-FSA26
SGA13	0	1	0	1	×	×	×	×	×	256 KB (4 Sectors)	FSA27-FSA30
SGA14	0	1	1	0	×	×	×	×	×	256 KB (4 Sectors)	FSA31-FSA34
SGA15	0	1	1	1	×	×	×	×	×	256 KB (4 Sectors)	FSA35-FSA38
SGA16	1	0	0	0	×	×	×	×	×	256 KB (4 Sectors)	FSA39-FSA42
SGA17	1	0	0	1	×	×	×	×	×	256 KB (4 Sectors)	FSA43-FSA46
SGA18	1	0	1	0	×	×	×	×	×	256 KB (4 Sectors)	FSA47-FSA50
SGA19	1	0	1	1	×	×	×	×	×	256 KB (4 Sectors)	FSA51-FSA54
SGA20	1	1	0	0	×	×	×	×	×	256 KB (4 Sectors)	FSA55-FSA58
SGA21	1	1	0	1	×	×	×	×	×	256 KB (4 Sectors)	FSA59-FSA62
SGA22	1	1	1	0	×	×	×	×	×	256 KB (4 Sectors)	FSA63-FSA66
SGA23	1	1	1	1	0	0	×	×	×	192 KB (3 Sectors)	FSA67-FSA69
					0	1					
					1	0					
SGA24	1	1	1	1	1	1	×	×	×	64 KB (1 Sector)	FSA70

 $\textbf{Remark} \hspace{0.2cm} \times \hspace{0.1cm} : \hspace{0.1cm} V \hspace{0.1cm} \text{IH or } \hspace{0.1cm} V \hspace{0.1cm} \text{IL} \hspace{0.1cm}$

Command Sequence (Flash Memory)

Command sequence		Bus	1st bus	Cycle	2nd bu	s Cycle	3rd bus	S Cycle	4th bus	Cycle	5th bus	S Cycle	6th bus	Cycle
		Cycle	Address	Data	Address	Data	Address	Data	Address	Data	Address	Data	Address	Data
Read / Reset Note1		1	×××H	F0H	RA	RD	_	-	_	-	_	-	_	-
Read / Reset Note1	BYTE mode	3	AAAH	AAH	555H	55H	AAAH	F0H	RA	RD	-	-	_	-
	WORD mode		555H		2AAH		555H							
Program	BYTE mode	4	AAAH	AAH	555H	55H	AAAH	A0H	PA	PD	-	-	-	-
	WORD mode		555H		2AAH		555H							
Program Suspend Note 2		1	BA	B0H	_	-	-	-	-	-	-	-	_	_
Program Resume Note 3		1	BA	30H	_	-	_	-	-	-	_	-	_	-
Chip Erase	BYTE mode	6	AAAH	AAH	555H	55H	AAAH	80H	AAAH	AAH	555H	55H	AAAH	10H
	WORD mode		555H		2AAH		555H		555H		2AAH		555H	
Sector Erase	BYTE mode	6	AAAH	AAH	555H	55H	AAAH	80H	AAAH	AAH	555H	55H	FSA	30H
	WORD mode		555H		2AAH		555H		555H		2AAH			
Sector Erase Suspend Note	4	1	BA	ВОН	-	-	-	ı	-	-	-	-	_	-
Sector Erase Resume Note	e 5	1	BA	30H	_	-	_	-	-	-	-	-	_	-
Unlock Bypass Set	BYTE mode	3	AAAH	AAH	555H	55H	AAAH	20H	-	-	-	-	-	-
	WORD mode		555H		2AAH		555H							
Unlock Bypass Program No	ote 6	2	×××Н	A0H	PA	PD	-	-	_	-	-	-	_	_
Unlock Bypass Reset Note	6	2	ВА	90H	×××H	00H ^{Note11}	_	ı	-	-	_	-	_	-
Product ID	BYTE mode	3	AAAH	AAH	555H	55H	(BA)	90H	IA	ID	1	_	-	ı
							AAAH							
	WORD mode		555H		2AAH		(BA)							
							555H							
Sector Group Protection N	lote 7	4	×××H	60H	SPA	60H	SPA	40H	SPA	SD	_	-	_	-
Sector Group Unprotect N	ote 8	4	×××Н	60H	SUA	60H	SUA	40H	SUA	SD	-	-	_	-
Query Note 9	BYTE mode	1	AAH	98H	-	_	-	-	-	-	-	-	-	-
	WORD mode		55H											
Extra One Time Protect	BYTE mode	3	AAAH	AAH	555H	55H	AAAH	88H	-	-	-	-	-	-
Sector Entry	WORD mode		555H		2AAH		555H							
Extra One Time Protect	BYTE mode	4	AAAH	AAH	555H	55H	AAAH	A0H	PA	PD	-	-	-	-
Sector Program Note 10	WORD mode		555H		2AAH		555H							
Extra One Time Protect	BYTE mode	6	AAAH	AAH	555H	55H	AAAH	80H	AAAH	AAH	555H	55H	EOTPSA	30H
Sector Erase Note 10	WORD mode		555H		2AAH		555H		555H		2AAH			
Extra One Time Protect	BYTE mode	4	AAAH	AAH	555H	55H	AAAH	90H	xxxH	00H	_	-	-	1
Sector Reset Note 10	WORD mode		555H		2AAH		555H							
Extra One Time Protect S Protection Note 10	ector	4	×××Н	60H	EOTPSA	60H	EOTPSA	40H	EOTPSA	SD	-	-	-	-

- **Notes 1.** Both these read / reset commands reset the device to the read mode.
 - **2.** Programming is suspended if B0H is input to the bank address being programmed to in a program operation.
 - **3.** Programming is resumed if 30H is input to the bank address being suspended to in a program-suspend operation.
 - 4. Erasure is suspended if B0H is input to the bank address being erased in a sector erase operation.
 - **5.** Erasure is resumed if 30H is input to the bank address being suspended in a sector-erase-suspend operation.
 - **6.** Valid only in the unlock bypass mode.
 - 7. Valid only when /RESET = VID (except in the Extra One Time Protect Sector mode).
 - **8.** The command sequence that protects a sector group is excluded.
 - 9. Only A0 to A6 are valid as an address.
 - 10. Valid only in the Extra One Time Protect Sector mode.
 - 11. This command can be used even if this data is F0H.
- **Remarks 1.** Specify address 555H or 2AAH (A10 to A0) in the WORD mode, and AAAH or 555H (A10 to A0, A-1) in the BYTE mode.
 - 2. RA: Read address
 - RD: Read data
 - IA : Address input
 - xx00H (to read the manufacturer code)
 - xx02H (to read the device code in the BYTE mode)
 - xx01H (to read the device code in the WORD mode)
 - ID : Code output. Refer to the Product ID code (Manufacturer code / Device code) (Flash Memory).
 - PA: Program address
 - PD: Program data
 - FSA: Erase sector address. The sector to be erased is selected by the combination of this address. Refer to the **Sector Organization / Sector Address Table (Flash Memory)**.
 - BA: Bank address. Refer to the Sector Organization / Sector Address Table (Flash Memory).
 - SPA: Sector group address to be protected. Set sector group address (SGA) and (A6, A1, A0) = (VIL, VIH, VIL). For the sector group address, refer to the **Sector Group Address Table (Flash Memory)**.
 - SUA: Unprotect sector group address. Set sector group address (SGA) and (A6, A1, A0) = (Vih, Vih, Vil). For the sector group address, refer to the **Sector Group Address Table (Flash Memory)**.
 - SD: Data for verifying whether sector groups read from the address specified by SPA, SUA, and EOTPSA are protected.
 - EOTPSA: Extra One Time Protect Sector area addresses.
 - BYTE mode : 000000H to 00FFFFH, WORD mode : 000000H to 007FFFH
 - **3.** The sector group address is don't care except when a program / erase address or read address are selected.
 - 4. For the operation of the bus, refer to Bus Operations Table.
 - **5.** \times of address bit indicates ViH or ViL.
- 6. Refer to DUAL OPERATION FLASH MEMORY 32M BITS A SERIES Information (M14914E) for the flash memory commands.

Product ID Code (Manufacturer Code / Device Code) (Flash Memory)

Product ID Code		Address inputs		Output
	A6	A1	A0	Hex
Manufacturer Code	L	L	L	10H
Device code	L	L	Н	53H (BYTE mode),
				2253H (WORD mode)

Product	t ID Code									Code	outp	uts						
		I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	Hex								
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Manufacturer	Code	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	10H
Device code	BYTE mode	A-1	х	х	Х	Х	Х	Х	Х	0	1	0	1	0	0	1	1	53H
	WORD mode	0	0	1	0	0	0	1	0	0	1	0	1	0	0	1	1	2253H

 $\textbf{Remark} \quad H: V_{IH}, \, L: V_{IL}, \, x: Hi\text{-}Z$

★ Hardware Sequence Flags, Hardware Data Protection (Flash Memory)

Refer to DUAL OPERATION FLASH MEMORY 32M BITS A SERIES Information (M14914E).

Electrical Specifications

Before turning on power, input Vss \pm 0.2 V to the /RESET pin until Vccf \geq Vccf (MIN.).

Absolute Maximum Ratings

Parameter	Symbol		Condition	Rating	Unit
Supply voltage	Vccf, Vccs	with respect t	o Vss	-0.5 to +4.0	V
Input / Output voltage	VT	with respect	/WP(ACC), /RESET	-0.5 Note 1 to +13.0	V
		to Vss	except /WP(ACC), /RESET	-0.5 Note 1 to Vccf, Vccs + 0.4 (4.0 V MAX.) Note 2	
Ambient operation	TA			-25 to +85	°C
temperature					
Storage temperature	T _{stg}			-55 to +125	°C

Notes 1. -2.0 V (MIN.) (pulse width $\leq 20 \text{ ns}$)

2. Vccf, Vccs + 0.5 V (MAX.) (pulse width \leq 20 ns)

Caution Exposing the device to stress above those listed in Absolute Maximum Rating could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply voltage	Vccf, Vccs		2.7		3.6	V
Ambient operation temperature	TA		-25		+85	°C

DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)

Common

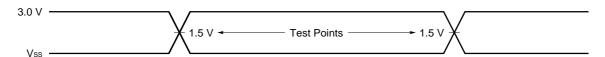
Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Unit
High level input voltage	ViH		2.4		Vccf, Vccs + 0.3	V
Low level input voltage	VIL		-0.3		+0.5	V
High level output voltage	Vон	Iон = -500μ A, Vccf = Vccf (MIN.),	2.4			V
		Vccs = Vccs (MIN.)				
Low level output voltage	Vol	IoL = +1.0 mA, Vccf = Vccf (MIN.),			0.4	V
		Vccs = Vccs (MIN.)				
Input leakage current	lu		-1.0		+1.0	μΑ
Output leakage current	Іьо		-1.0		+1.0	μΑ

Flash Memory

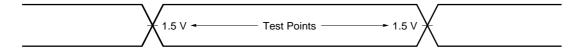
	Param	eter	Symbol	Test cor	ndition	MIN.	TYP.	MAX.	Unit
Power	Read	BYTE mode	Icc ₁ f	Vccf = Vccf (MAX.),	tcycle = 5 MHz		10	16	mA
supply				/CEf = VIL, /OE = VIH	tcycle = 1 MHz		2	4	
current		WORD mode			tcycle = 5 MHz		10	16	
					tcycle = 1 MHz		2	4	
	Program,	Erase	Icc2f	Vccf = Vccf (MAX.), /CEf =	= VIL, /OE = VIH		15	30	mA
	Standby		lcc3f	Vccf = Vccf (MAX.), /CEf =	=/RESET =		0.2	5	μΑ
				/WP(ACC) = Vccf ± 0.3 V	, /OE = VIL				
	Standby /	Reset	Icc4f	Vccf = Vccf (MAX.), /RESET = Vss ± 0.2 V			0.2	5	μΑ
	Automatic	sleep mode	Iccsf	$V_{IH} = V_{CC}f \pm 0.2 \text{ V}, V_{IL} = V_{SS} \pm 0.2 \text{ V}$			0.2	5	μΑ
	Read duri	ng programming	Icc6f	$V_{IH} = V_{CC}f \pm 0.2 \text{ V}, V_{IL} = V_{CC}$	ss ± 0.2 V		21	45	mA
	Read duri	ng erasing	Icc7f	$V_{IH} = V_{CC}f \pm 0.2 V, V_{IL} = V_{CC}$	ss ± 0.2 V		21	45	mA
	Programn	ning	Iccsf	/CEf = VIL, /OE = VIH,			17	35	mA
	during sus	spend		Automatic programming of	during suspend				
	Accelerate	ed	IACC	/WP (ACC) pin			5	10	mA
	programm	ning		Vccf			15	30	
/RESET	high level i	nput voltage	VID	High Voltage is applied		11.5		12.5	V
Accelera	ated prograr	nming voltage	Vacc	High Voltage is applied		8.5		9.5	V
Low Vcc	f lock-out ve	oltage ^{Note}	VLKO					1.7	V

★ Note When Vccf is equal to or lower than VLKO, the device ignores all write cycles. Refer to Refer to DUAL OPERATION FLASH MEMORY 32M BITS A SERIES Information (M14914E).

SRAM


Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Unit
Power supply current	Icc1s	/CE1s = V _I L, CE2s = V _I H, Minimum cycle time, I _V O = 0 mA		-	40	mA
		/CE1s = V _{IL} , CE2s = V _{IH} , I _{I/O} = 0 mA, Cycle time = ∞		_	10	
	Icc2s	/CE1s \leq 0.2 V, CE2s \geq Vccs $-$ 0.2 V, Cycle time = 1 μ s,		-	8	
		$I_{\text{I/O}} = 0 \text{ mA}, \text{ V}_{\text{IL}} \le 0.2 \text{ V}, \text{ V}_{\text{IH}} \ge \text{V}_{\text{CCS}} - 0.2 \text{ V}$				
Standby supply current	I _{SB1S}	/CE1s = VIH or CE2s = VIL or /LB = /UB = VIH		-	0.6	mA
	I _{SB2S}	/CE1s ≥ Vccs - 0.2 V, CE2s ≥ Vccs - 0.2 V		0.5	7	μΑ
		CE2s ≤ 0.2 V		0.5	7	
		$/LB = /UB \ge V\cos S - 0.2 \text{ V}, /CE1S \le 0.2 \text{ V}, CE2S \ge V\cos S - 0.2 \text{ V}$		0.5	7	

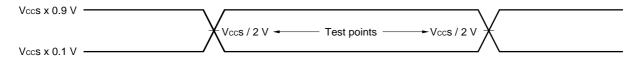
AC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)


★ AC Test Conditions

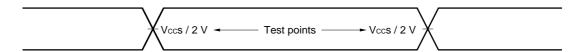
Flash Memory

Input Waveform (Rise and Fall Time ≤ 5 ns)

Output Waveform



Output Load


1 TTL + 30 pF

SRAM

Input Waveform (Rise and Fall Time ≤ 5 ns)

Output Waveform

Output Load

1 TTL + 30 pF

/CEf, /CE1s, CE2s Timing

Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	Unit	Notes
/CEf, /CE1s, CE2s recover time	tccr		0			ns	

Read Cycle (Flash Memory)

Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	Unit	Notes
Read cycle time	trc		85			ns	
Address access time	tacc	/CEf = /OE = VIL			85	ns	
/CEf access time	tcef	/OE = VIL			85	ns	
/OE access time	toe	/CEf = VIL			40	ns	
Output disable time	tor	/OE = VIL or /CEf = VIL			30	ns	
Output hold time	tон		0			ns	
/RESET pulse width	trp		500			ns	
/RESET hold time before read	tкн		50			ns	
/RESET low to read mode	t READY				20	μs	
/CEf low to CIOf low, high	telfl/telfh				5	ns	
CIOf low output disable time	t FLQZ				30	ns	
CIOf high access time	t FHQV		85			ns	

 $\textbf{Remark} \quad \text{toF is the time from inactivation of /CEf or /OE to Hi-Z state output.}$

Write Cycle (Erase / Program) (Flash Memory)

Danasastas	Cumele el	MINI	TVD	MAN	1.1	Notes	
Parameter		Symbol	MIN.	TYP.	MAX.	Unit	Notes
Write cycle time		twc	85			ns	
Address setup time (/WE to address)		t _{AS}	0			ns	
Address setup time (/CEf to address)		t _{AS}	0			ns	
Address hold time (/WE to address)		t AH	45			ns	
Address hold time (/CEf to address)		t AH	45			ns	
Input data setup time		tos	35			ns	
Input data hold time	T	tон	0			ns	
/OE hold time	Read	tоен	0			ns	
	Toggle bit, Data polling		10				
Read recovery time before write (/OE	to /CEf)	t GHEL	0			ns	
Read recovery time before write (/OE	to /WE)	t GHWL	0			ns	
/WE setup time (/CEf to /WE)		tws	0			ns	
/CEf setup time (/WE to /CEf)		tcs	0			ns	
/WE hold time (/CEf to /WE)		twн	0			ns	
/CEf hold time (/WE to /CEf)		tсн	0			ns	
Write pulse width		t wp	35			ns	
/CEf pulse width	t cp	35			ns		
Write pulse width high	t wph	30			ns		
/CEf pulse width high	tсрн	30			ns		
Byte programming operation time	t BPG		9	200	μs		
Word programming operation time	twpg		11	200	μs		
Sector erase operation time		tser		0.7	5	S	1
Vccf setup time		tvcs	50			μs	
RY (/BY) recovery time		tпв	0			ns	
/RESET pulse width		t RP	500			ns	
/RESET high-voltage (VID) hold time fr	om high of RY(/BY)	trrb	20			μs	
when sector group is temporarily unpr	otect						
/RESET hold time		t RH	50			ns	
From completion of automatic program	n / erase to data	t EOE			85	ns	
output time							
RY (/BY) delay time from valid program	m or erase operation	t BUSY			90	ns	
Address setup time to /OE low in togg	le bit	taso	15			ns	
Address hold time to /CEf or /OE high	in toggle bit	t aht	0			ns	
/CEf pulse width high for toggle bit		t CEPH	20			ns	
/OE pulse width high for toggle bit	t oeph	20			ns		
Voltage transition time	t vlht	4			μs	2	
Rise time to VID (/RESET)	tvidr	500			ns	3	
Rise time to Vacc (/WP(ACC))	tvaccr	500			ns	2	
Erase timeout time		t TOW	50			μs	4
Erase suspend transition time		tspd			20	μs	4

Notes 1. The preprogramming time prior to the erase operation is not included.

- 2. Sector group protection and accelerated mode only
- 3. Sector group protection only.
- 4. Table only.

Write operation (Erase / Program) Performance (Flash Memory)

Parameter	Description	MIN.	TYP.	MAX.	Unit	
Sector erase time	Excludes programming time prior	to erasure		0.7	5	S
Chip erase time	Excludes programming time prior	Excludes programming time prior to erasure				8
Byte programming time	Excludes system-level overhead		9	200	μs	
Word programming time	Excludes system-level overhead		11	200	μs	
Chip programming time	Excludes system-level overhead	BYTE mode		40		s
		WORD mode		25		
Accelerated programming time	Excludes system-level overhead			7	150	μs
Erase / Program cycle			100,000			cycles

Read Cycle (SRAM)

Parameter	Symbol	MIN.	MAX.	Unit	Notes
Read cycle time	trc	70		ns	
Address access time	taa		70	ns	
/CE1s access time	tco1		70	ns	
CE2s access time	tco2		70	ns	
/OE to output valid	toe		35	ns	
/LB, /UB to output valid	tва		70	ns	
Output hold from address change	toн	10		ns	
/CE1s to output in Low-Z	t _{LZ1}	10		ns	
CE2s to output in Low-Z	tız2	10		ns	
/OE to output in Low-Z	toLz	0		ns	
/LB, /UB to output in Low-Z	tBLZ	10		ns	
/CE1s to output in Hi-Z	t _{HZ1}		25	ns	
CE2s to output in Hi-Z	t _{HZ2}		25	ns	
/OE to output in Hi-Z	tонz		25	ns	
/LB, /UB to output in Hi-Z	tвнz		25	ns	

Write Cycle (SRAM)

Parameter	Symbol	MIN.	MAX.	Unit	Notes
Write cycle time	twc	70		ns	
/CE1s to end of write	tcw1	55		ns	
CE2s to end of write	tcw2	55		ns	
/LB, /UB to end of write	tвw	55		ns	
Address valid to end of write	taw	55		ns	
Address setup time	tas	0		ns	
Write pulse width	twp	45		ns	
Write recovery time	twr	0		ns	
Data valid to end of write	tow	30		ns	
Data hold time	tон	0		ns	
/WE to output in Hi-Z	twнz		25	ns	_
Output active from end of write	tow	5		ns	

*

Low Vcc Data Retention Characteristics (SRAM)

Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vccdr1	/CE1s \geq Vccs $-$ 0.2 V, CE2s \geq Vccs $-$ 0.2 V	1.0		3.6	V
	Vccdr2	CE2s ≤ 0.2 V	1.0		3.6	
	Vccdr3	/LB = /UB ≥ Vccs - 0.2 V,	1.0		3.6	
		/CE1s ≤ 0.2 V, CE2s ≥ Vccs − 0.2 V				
Data retention supply current	ICCDR1	Vccs = 1.5 V, /CE1s ≥ Vccs - 0.2 V,		0.3	3	μΑ
		CE2s ≥ Vccs - 0.2 V				
	Iccdr2	Vccs = 1.5 V, CE2s ≤ 0.2 V		0.3	3	
	ICCDR3	$Vccs = 1.5 \text{ V}, /LB = /UB \ge Vccs - 0.2 \text{ V},$		0.3	3	
		/CE1s ≤ 0.2 V, CE2s ≥ Vccs – 0.2 V				
Chip deselection to data retention mode	tcdr		0			ns
Operation recovery time	t⊓		trc Note			ns

Note tRC: Read cycle time

Figure 1. Alternating SRAM to Flash Memory Timing Chart

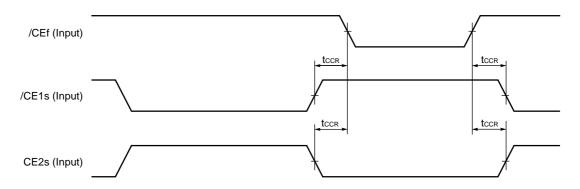


Figure 2. Read Cycle Timing Chart 1 (Flash Memory)

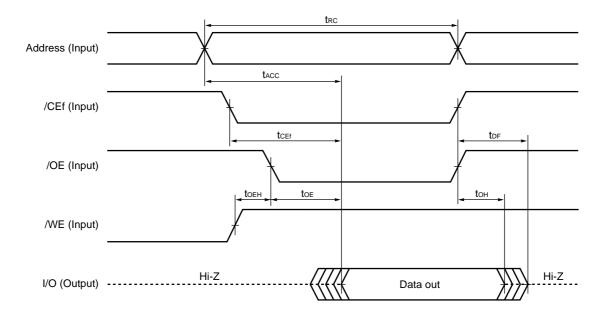
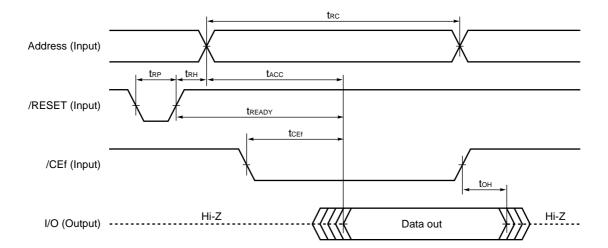



Figure 3. Read Cycle Timing Chart 2 (Flash Memory)

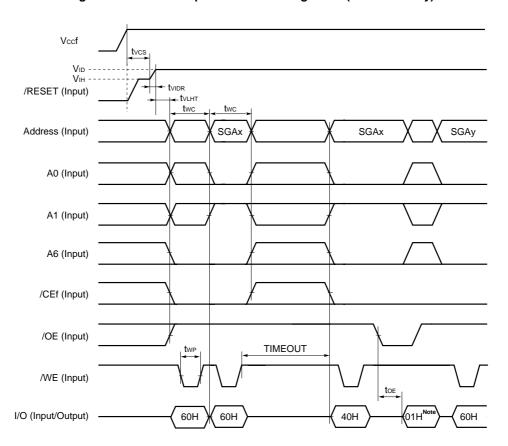


Figure 4. Sector Group Protection Timing Chart (Flash Memory)

Note The sector group protection verification result is output.

01H: The sector group is protected.

00H: The sector group is not protected.

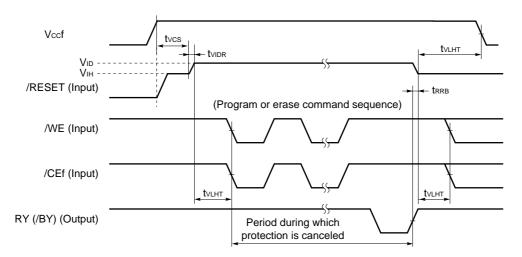
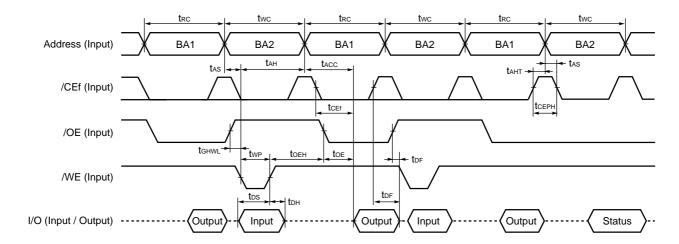


Figure 5. Temporary Sector Group Unprotect Timing Chart (Flash Memory)

Vccf
VACC
VIH
VACC
VIH
(Program or erase command sequence)


/WE (Input)
/CEf (Input)

RY (/BY) (Output)

Accelerated mode period

Figure 6. Accelerated Mode Timing Chart (Flash Memory)

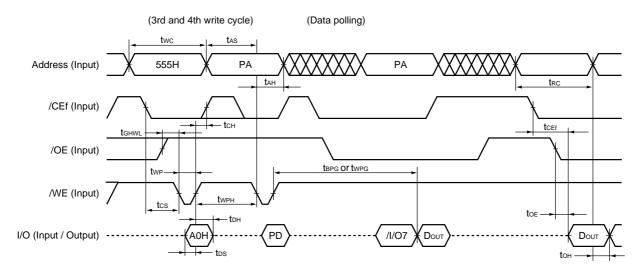


Figure 8. Write Cycle Timing Chart (/WE Controlled) (Flash Memory)

- **Remarks 1.** This timing chart shows the last two write cycles among the program command sequence's four write cycles, and data polling.
 - 2. This timing chart shows the WORD mode's case. In the BYTE mode, address to be input are different from the WORD mode. See Command Sequence (Flash Memory).
 - 3. PA: Program address

PD: Program data

/I/O7 : The output of the complement of the data written to the device.

Dout: The output of the data written to the device.

(3rd and 4th write cycle) (Data polling) tas twc Address (Input) 555H PΑ PΑ t_{AH} **t**CP /CEf (Input) **t**CEf /OE (Input) tbpg or twpg /WE (Input) I/O (Input / Output) /I/O7 Dоит Dout

Figure 9. Write Cycle Timing Chart (/CEf Controlled) (Flash Memory)

- **Remarks 1.** This timing chart shows the last two write cycles among the program command sequence's four write cycles, and data polling.
 - 2. This timing chart shows the WORD mode's case. In the BYTE mode, address to be input are different from the WORD mode. See Command Sequence (Flash Memory).
 - 3. PA: Program address

PD: Program data

/I/O7: The output of the complement of the data written to the device.

Dout: The output of the data written to the device.

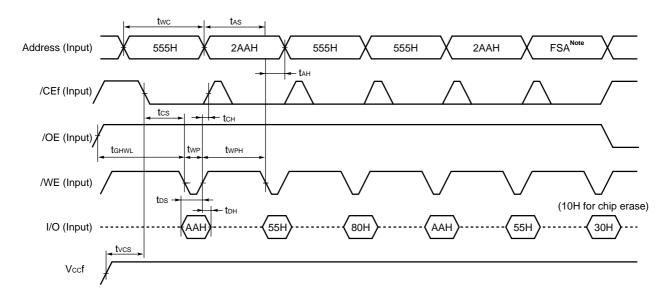


Figure 10. Sector / Chip Erase Timing Chart (Flash Memory)

Note FSA is the sector address to be erased. In the case of chip erase, input 555H (WORD mode), AAAH (BYTE mode).

Remark This timing chart shows the WORD mode's case. In the BYTE mode, address to be input are different from the WORD mode. See **Command Sequence (Flash Memory)**..

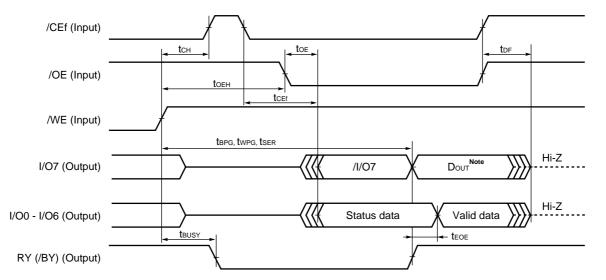


Figure 11. Data Polling Timing Chart (Flash Memory)

Note I/O7 = Dout : True value of program data (indicates completion of automatic program / erase)

Address (Input) **TAHT** t_{AS} **t**AHT /CEf (Input) -taso **t**CEPH /WE (Input) **t**OEH /OE (Input) t_{DH} Valid Stop I/O6, I/O2 (Input / Output) Toggle Input data Toggle Toggle toggling data out **t**BUSY RY (/BY) (Output)

Figure 12. Toggle Bit Timing Chart (Flash Memory)

Note I/O6 stops the toggle (indicates automatic program / erase completion).

Figure 13. I/O2 vs. I/O6 Timing Chart (Flash Memory)

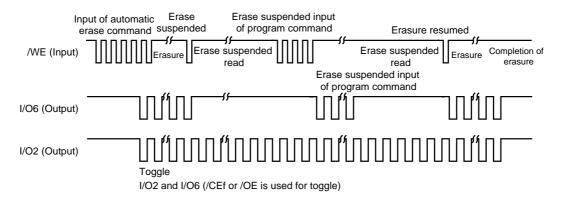


Figure 14. RY (/BY) (Ready / Busy) Timing Chart (Flash Memory)

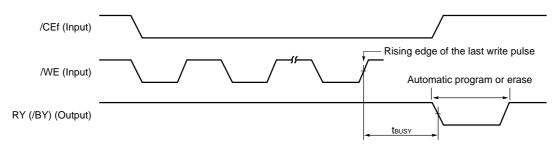


Figure 15. /RESET and RY (/BY) Timing Chart (Flash Memory)

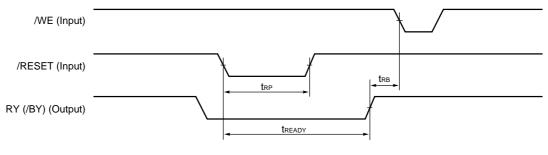


Figure 16. Write CIOf Timing Chart (Flash Memory)

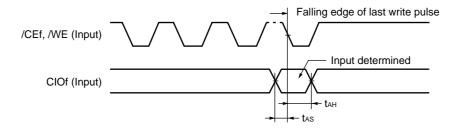


Figure 17. BYTE mode Switching Timing Chart (Flash Memory)

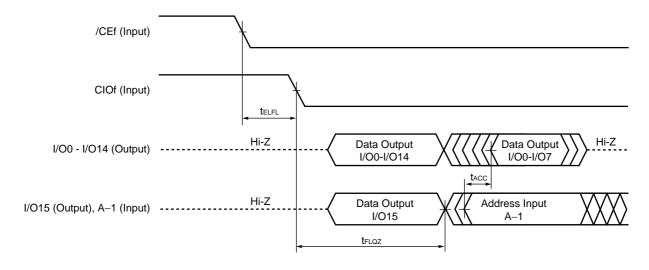
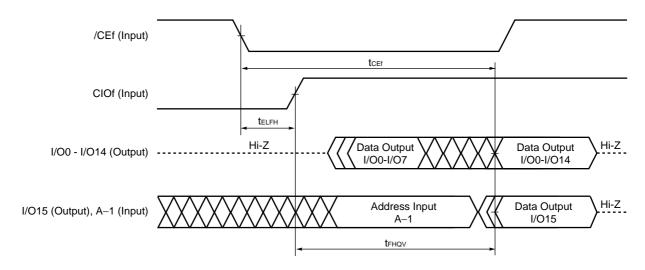



Figure 18. WORD mode Switching Timing Chart (Flash Memory)

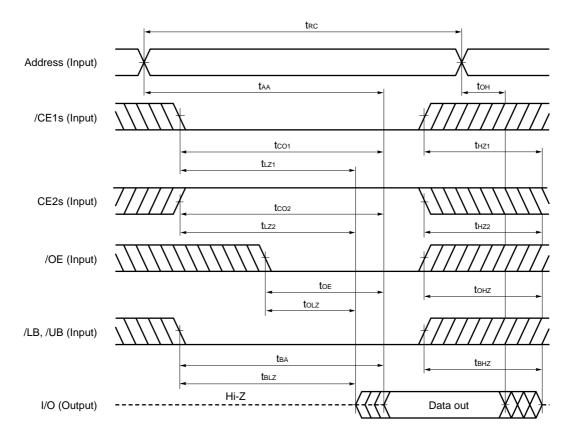


Figure 19. Read Cycle Timing Chart (SRAM)

Remark In read cycle, /WE should be fixed to high level.

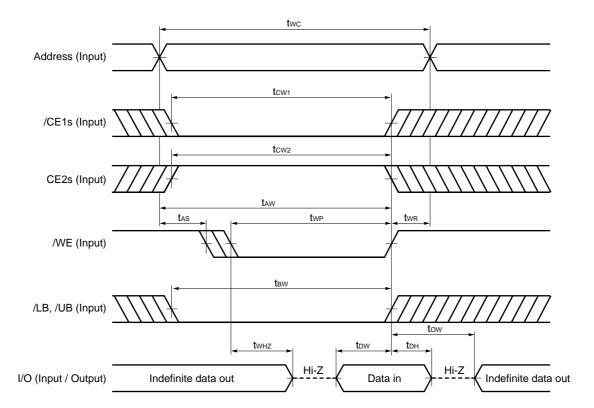


Figure 20. Write Cycle Timing Chart 1 (/WE Controlled) (SRAM)

- Cautions 1. During address transition, at least one of pins /CE1s, CE2s, /WE should be inactivated.
 - 2. Do not input data to the I/O pins while they are in the output state.
- **Remarks 1.** Write operation is done during the overlap time of a low level /CE1s, /WE, /LB and/or /UB, and a high level CE2s.
 - 2. If /CE1s changes to low level at the same time or after the change of /WE to low level, or if CE2s changes to high level at the same time or after the change of /WE to low level, the I/O pins will remain Hi-Z state.
 - 3. When /WE is at low level, the I/O pins are always Hi-Z. When /WE is at high level, read operation is executed. Therefore /OE should be at high level to make the I/O pins Hi-Z.



Figure 21. Write Cycle Timing Chart 2 (/CE1s Controlled) (SRAM)

- Cautions 1. During address transition, at least one of pins /CE1s, CE2s, /WE should be inactivated.
 - 2. Do not input data to the I/O pins while they are in the output state.

Remark Write operation is done during the overlap time of a low level /CE1s, /WE, /LB and/or /UB, and a high level CE2s.

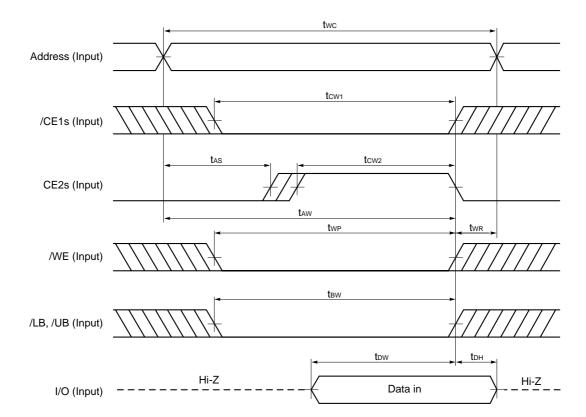


Figure 22. Write Cycle Timing Chart 3 (CE2s Controlled) (SRAM)

Cautions 1. During address transition, at least one of pins /CE1s, CE2s, /WE should be inactivated.

2. Do not input data to the I/O pins while they are in the output state.

Remark Write operation is done during the overlap time of a low level /CE1s, /WE, /LB and/or /UB, and a high level CE2s.

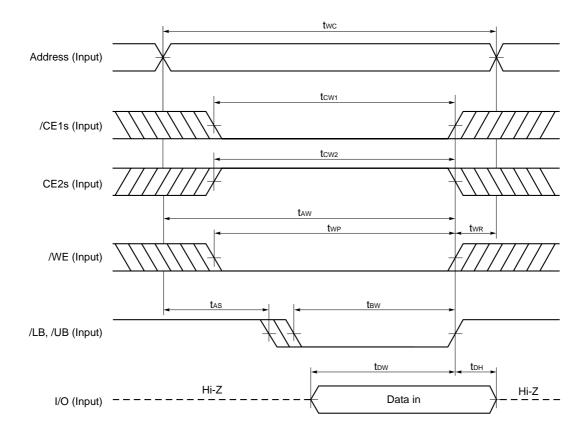


Figure 23. Write Cycle Timing Chart 4 (/LB, /UB Controlled) (SRAM)

- Cautions 1. During address transition, at least one of pins /CE1s, CE2s, /WE should be inactivated.
 - 2. Do not input data to the I/O pins while they are in the output state.

Remark Write operation is done during the overlap time of a low level /CE1s, /WE, /LB and/or /UB, and a high level CE2s.

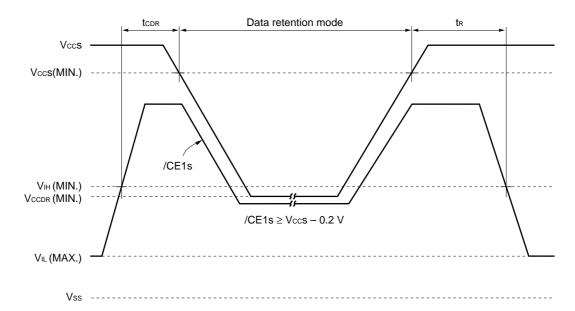


Figure 24. Data Retention Timing Chart 1 (/CE1s Controlled) (SRAM)

Remark On the data retention mode by controlling /CE1s, the input level of CE2s must be \geq Vccs - 0.2 V or \leq 0.2 V. The other pins (Address, I/O, /WE, /OE, /LB, /UB) can be in Hi-Z state.

Figure 25. Data Retention Timing Chart 2 (CE2s Controlled) (SRAM)

Remark On the data retention mode controlling CE2s, the other pins (/CE1s, Address, I/O, /WE, /OE, /LB, /UB) can be in Hi-Z state.

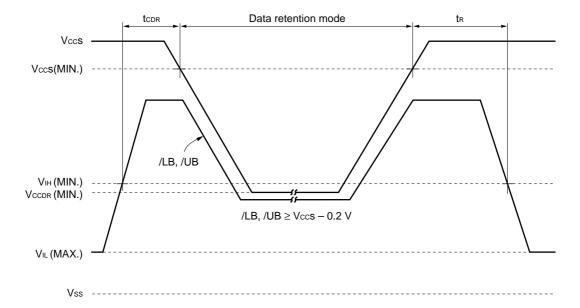


Figure 26. Data Retention Timing Chart 3 (/LB, /UB Controlled) (SRAM)

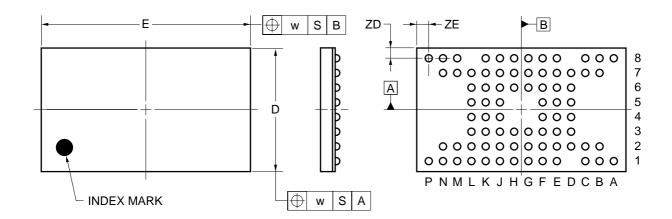
Remark On the data retention mode by controlling /LB and /UB, the input level of /CE1s and CE2s must be ≥ Vccs – 0.2 V or ≤ 0.2 V. The other pins (Address, I/O, /WE, /OE) can be in Hi-Z state.

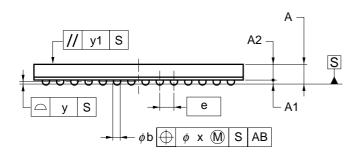
Flow Charts (Flash Memory)

Refer to DUAL OPERATION FLASH MEMORY 32M BITS A SERIES Information (M14914E).

CFI Code List

(1/2)


Address A6 to A0	Data I/O15 to I/O0	Description
10H	0051H	"QRY" (ASCII code)
11H	0052H	
12H	0059H	
13H	0002H	Main command set
14H	0000H	2 : AMD/FJ standard type
15H	0040H	Start address of PRIMARY table
16H	0000H	
17H	0000H	Auxiliary command set
18H	0000H	00H: Not supported
19H	0000H	Start address of auxiliary algorithm table
1AH	0000H	
1BH	0027H	Minimum Vccf voltage (program / erase)
		I/O7 to I/O4 : 1 V/bit
		I/O3 to I/O0 : 100 mV/bit
1CH	0036H	Maximum Vccf voltage (program / erase)
		I/O7 to I/O4 : 1 V/bit
		I/O3 to I/O0 : 100 mV/bit
1DH	0000H	Minimum VPP voltage
1EH	0000H	Maximum VPP voltage
1FH	0004H	Typical word program time (2 $^{\text{N}}$ μ s)
20H	0000H	Typical buffer program time (2 $^{\rm N}$ μ s)
21H	000AH	Typical sector erase time (2 ^N ms)
22H	0000H	Typical chip erase time (2 nms)
23H	0005H	Maximum word program time (typical time \times 2 $^{\text{\tiny N}}$)
24H	0000H	Maximum buffer program time (typical time × 2 N)
25H	0004H	Maximum sector erasing time (typical time \times 2 $^{\text{N}}$)
26H	0000H	Maximum chip erasing time (typical time \times 2 $^{\text{\tiny N}}$)
27H	0016H	Capacity (2 ^N Bytes)
28H	0002H	I/O information
29H	0000H	2: ×8/×16-bit organization
2AH	0000H	Maximum number of bytes when two banks are programmed (2 N)
2BH	0000H	
2CH	0002H	Type of erase block
2DH	0007H	Information about erase block 1
2EH	0000H	Bit0 to 15 : y = number of sectors
2FH	0020H	Bit16 to 31 : z = size
30H	0000H	(Z × 256 Bytes)


(2/2)

Address A6 to A0	Data I/O15 to I/O0	Description
31H	003EH	Information about erase block 2
32H	0000H	bit0 to 15 : y = number of sectors
33H	0000H	bit16 to 31 : z = size
34H	0001H	(z × 256 Bytes)
40H	0050H	"PRI" (ASCII code)
41H	0052H	
42H	0049H	
43H	0031H	Main version (ASCII code)
44H	0032H	Minor version (ASCII code)
45H	0000H	Address during command input
		00H : Necessary
		01H : Unnecessary
46H	0002H	Temporary erase suspend function
		00H : Not supported
		01H : Read only
		02H : Read / Program
47H	0001H	Sector group protection
		00H : Not supported
		01H : Supported
48H	0001H	Temporary sector group protection
		00H : Not supported
		01H : Supported
49H	0004H	Sector group protection algorithm
4AH	00xxH	Number of sectors of bank 2
		00H : Not supported
		30H : MC-222253A-X
4BH	0000H	Burst mode
		00H : Not supported
4CH	0000H	Page mode
		00H : Not supported
4DH	0085H	Minimum Vacc voltage
		I/O7 to I/O4 : 1 V/bit
		I/O3 to I/O0 : 100 mV/bit
4EH	0095H	Maximum Vacc voltage
		I/O7 to I/O4 : 1 V/bit
		I/O3 to I/O0 : 100 mV/bit
4FH	00xxH	Boot organization
		02H : Bottom boot
50H	0001H	Temporary program suspend function
		00H : Not supported
		01H : Supported

Package Drawing

77-PIN TAPE FBGA (12x7)

ITEM	MILLIMETERS
D	7.0±0.1
E	12.0±0.1
W	0.2
Α	1.1±0.1
A1	0.26±0.05
A2	0.84
е	0.8
b	0.45±0.05
Х	0.08
У	0.1
y1	0.1
ZD	0.7
ZE	0.8
	D77F0 00 DT2

P77F9-80-BT3

Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the MC-222253A-X.

Type of Surface Mount Device

MC-222253AF9-B85X-BT3 : 77-pin TAPE FBGA (12 \times 7)

[MEMO]

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Related Documents

Document Name	Document Number
DUAL OPERATION FLASH MEMORY 32M BITS A SERIES Information	M14914E

- The information in this document is current as of July, 2001. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
 books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
 and/or types are available in every country. Please check with an NEC sales representative for
 availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The

developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4