Preferred Devices

# **Dual Bias Resistor Transistors**

# PNP Silicon Surface Mount Transistors with Monolithic Bias Resistor Network

The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base–emitter resistor. These digital transistors are designed to replace a single device and its external resistor bias network. The BRT eliminates these individual components by integrating them into a single device. In the MUN5111DW1T1 series, two BRT devices are housed in the SOT–363 package which is ideal for low–power surface mount applications where board space is at a premium.

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- Available in 8 mm, 7 inch/3000 Unit Tape and Reel

#### **MAXIMUM RATINGS**

 $(T_A = 25^{\circ}C)$  unless otherwise noted, common for  $Q_1$  and  $Q_2$ 

| 1 2                       |                  |            |      |  |
|---------------------------|------------------|------------|------|--|
| Rating                    | Symbol           | Value      | Unit |  |
| Collector-Base Voltage    | V <sub>CBO</sub> | -50        | Vdc  |  |
| Collector-Emitter Voltage | V <sub>CEO</sub> | <b>-50</b> | Vdc  |  |
| Collector Current         | Ic               | -100       | mAdc |  |

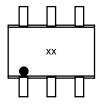
#### THERMAL CHARACTERISTICS


| Characteristic<br>(One Junction Heated)                            | Symbol                            | Max                                                              | Unit        |
|--------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------|-------------|
| Total Device Dissipation  T <sub>A</sub> = 25°C  Derate above 25°C | P <sub>D</sub>                    | 187 (Note 1.)<br>256 (Note 2.)<br>1.5 (Note 1.)<br>2.0 (Note 2.) | mW<br>mW/°C |
| Thermal Resistance –<br>Junction-to-Ambient                        | $R_{\theta JA}$                   | 670 (Note 1.)<br>490 (Note 2.)                                   | °C/W        |
| Characteristic<br>(Both Junctions Heated)                          | Symbol                            | Max                                                              | Unit        |
| Total Device Dissipation  T <sub>A</sub> = 25°C  Derate above 25°C | P <sub>D</sub>                    | 250 (Note 1.)<br>385 (Note 2.)<br>2.0 (Note 1.)<br>3.0 (Note 2.) | mW<br>mW/°C |
| Thermal Resistance –<br>Junction-to-Ambient                        | $R_{\theta JA}$                   | 493 (Note 1.)<br>325 (Note 2.)                                   | °C/W        |
| Thermal Resistance –<br>Junction-to-Lead                           | $R_{	heta JL}$                    | 188 (Note 1.)<br>208 (Note 2.)                                   | °C/W        |
| Junction and Storage Temperature Range                             | T <sub>J</sub> , T <sub>stg</sub> | -55 to +150                                                      | °C          |

- 1. FR-4 @ Minimum Pad
- 2. FR-4 @ 1.0 x 1.0 inch Pad



# ON Semiconductor™


#### http://onsemi.com





SOT-363 CASE 419B STYLE 1

#### **MARKING DIAGRAM**



xx = Device Marking (See Page 2)

#### **DEVICE MARKING INFORMATION**

See specific marking information in the device marking table on page 2 of this data sheet.

**Preferred** devices are recommended choices for future use and best overall value.

#### **DEVICE MARKING AND RESISTOR VALUES**

| Device                 | Package | Marking | R1 (K) | R2 (K) | Shipping         |
|------------------------|---------|---------|--------|--------|------------------|
| MUN5111DW1T1           | SOT-363 | 0A      | 10     | 10     | 3000/Tape & Reel |
| MUN5112DW1T1           | SOT-363 | 0B      | 22     | 22     | 3000/Tape & Reel |
| MUN5113DW1T1           | SOT-363 | 0C      | 47     | 47     | 3000/Tape & Reel |
| MUN5114DW1T1           | SOT-363 | 0D      | 10     | 47     | 3000/Tape & Reel |
| MUN5115DW1T1 (Note 3.) | SOT-363 | 0E      | 10     | ∞      | 3000/Tape & Reel |
| MUN5116DW1T1 (Note 3.) | SOT-363 | 0F      | 4.7    | ∞      | 3000/Tape & Reel |
| MUN5130DW1T1 (Note 3.) | SOT-363 | 0G      | 1.0    | 1.0    | 3000/Tape & Reel |
| MUN5131DW1T1 (Note 3.) | SOT-363 | 0H      | 2.2    | 2.2    | 3000/Tape & Reel |
| MUN5132DW1T1 (Note 3.) | SOT-363 | 0J      | 4.7    | 4.7    | 3000/Tape & Reel |
| MUN5133DW1T1 (Note 3.) | SOT-363 | 0K      | 4.7    | 47     | 3000/Tape & Reel |
| MUN5134DW1T1 (Note 3.) | SOT-363 | 0L      | 22     | 47     | 3000/Tape & Reel |
| MUN5135DW1T1 (Note 3.) | SOT-363 | OM      | 2.2    | 47     | 3000/Tape & Reel |
| MUN5136DW1T1 (Note 3.) | SOT-363 | 0N      | 100    | 100    | 3000/Tape & Reel |
| MUN5137DW1T1 (Note 3.) | SOT-363 | 0P      | 47     | 22     | 3000/Tape & Reel |

#### **ELECTRICAL CHARACTERISTICS** ( $T_A = 25^{\circ}C$ unless otherwise noted, common for $Q_1$ and $Q_2$ )

| Characteris                                                                                                                                                                                                                                                       | Symbol                                                                         | Min                  | Тур                                  | Max                                       | Unit                                                                      |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------|--------------------------------------|-------------------------------------------|---------------------------------------------------------------------------|------|
| OFF CHARACTERISTICS                                                                                                                                                                                                                                               |                                                                                | •                    |                                      | •                                         | •                                                                         |      |
| Collector-Base Cutoff Current (V <sub>CB</sub> = -                                                                                                                                                                                                                | I <sub>CBO</sub>                                                               | -                    | -                                    | -100                                      | nAdc                                                                      |      |
| Collector-Emitter Cutoff Current (V <sub>CE</sub> =                                                                                                                                                                                                               | Collector-Emitter Cutoff Current (V <sub>CE</sub> = -50 V, I <sub>B</sub> = 0) |                      | _                                    | _                                         | -500                                                                      | nAdc |
| Emitter-Base Cutoff Current (V <sub>EB</sub> = -6.0 V, I <sub>C</sub> = 0)  MUN5112DW1T1 MUN5113DW1T1 MUN5114DW1T1 MUN5115DW1T1 MUN5116DW1T1 MUN5130DW1T1 MUN5131DW1T1 MUN5132DW1T1 MUN5133DW1T1 MUN5133DW1T1 MUN5134DW1T1 MUN5135DW1T1 MUN5135DW1T1 MUN5136DW1T1 |                                                                                | I <sub>EBO</sub>     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -0.5 -0.2 -0.1 -0.2 -0.9 -1.9 -4.3 -2.3 -1.5 -0.18 -0.13 -0.2 -0.05 -0.13 | mAdc |
| Collector-Base Breakdown Voltage (I <sub>C</sub> = -10 μA, I <sub>E</sub> = 0)                                                                                                                                                                                    |                                                                                | V <sub>(BR)CBO</sub> | -50                                  | _                                         | _                                                                         | Vdc  |
| Collector-Emitter Breakdown Voltage (N                                                                                                                                                                                                                            | V <sub>(BR)CEO</sub>                                                           | -50                  | _                                    | _                                         | Vdc                                                                       |      |
| ON CHARACTERISTICS (Note 4.)                                                                                                                                                                                                                                      |                                                                                | •                    |                                      | •                                         | •                                                                         |      |
| Collector-Emitter Saturation Voltage ( $I_C$ ( $I_C$ = -10 mA, $I_B$ = -5 mA) MUN5136 ( $I_C$ = -10 mA, $I_B$ = -1 mA) MUN5115 MUN5132DW1T1/MUN513                                                                                                                | V <sub>CE(sat)</sub>                                                           | -                    | _                                    | -0.25                                     | Vdc                                                                       |      |

<sup>3.</sup> New resistor combinations. Updated curves to follow in subsequent data sheets.

<sup>4.</sup> Pulse Test: Pulse Width < 300  $\mu$ s, Duty Cycle < 2.0%

**ELECTRICAL CHARACTERISTICS** ( $T_A = 25^{\circ}C$  unless otherwise noted, common for  $Q_1$  and  $Q_2$ ) (Continued)

| Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                              | Symbol                         | Min                                                                                                | Тур                                                                                     | Max                                                                                              | Unit |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------|
| ON CHARACTERISTICS (Note 5.) (Continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                              |                                |                                                                                                    |                                                                                         |                                                                                                  |      |
| $(V_{CE} = -10 \text{ V}, \text{ I}_{C} = -5.0 \text{ mA}) \\ \text{M} \\ \text$ | IUN5111DW1T1<br>IUN5111DW1T1<br>IUN5112DW1T1<br>IUN5113DW1T1<br>IUN5114DW1T1<br>IUN5115DW1T1<br>IUN5130DW1T1<br>IUN5131DW1T1<br>IUN5131DW1T1<br>IUN5133DW1T1<br>IUN5133DW1T1                                                 | h <sub>FE</sub>                | 35<br>60<br>80<br>80<br>160<br>160<br>3.0<br>8.0<br>15<br>80                                       | 60<br>100<br>140<br>140<br>250<br>250<br>5.0<br>15<br>27<br>140                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                             |      |
| M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IUN5135DW1T1<br>IUN5136DW1T1<br>IUN5137DW1T1                                                                                                                                                                                 |                                | 80<br>80<br>80                                                                                     | 140<br>130<br>140                                                                       | -<br>-<br>-                                                                                      |      |
| $\begin{array}{c} M \\ M $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IUN5111DW1T1 IUN5112DW1T1 IUN5114DW1T1 IUN5115DW1T1 IUN5116DW1T1 IUN5130DW1T1 IUN5131DW1T1 IUN5132DW1T1 IUN5133DW1T1 IUN5133DW1T1 IUN5135DW1T1 IUN5135DW1T1 IUN5135DW1T1 IUN5135DW1T1 IUN5136DW1T1 IUN5137DW1T1              | V <sub>OL</sub>                | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                          |                                                                                         | -0.2<br>-0.2<br>-0.2<br>-0.2<br>-0.2<br>-0.2<br>-0.2<br>-0.2                                     | Vdc  |
| $(V_{CC} = -5.0 \text{ V}, V_B = -0.25 \text{ V}, R_L = 1.0 \text{ k}\Omega)$ M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R <sub>L</sub> = 1.0 kΩ)<br>IUN5130DW1T1<br>IUN5115DW1T1<br>IUN5116DW1T1<br>IUN5131DW1T1<br>IUN5133DW1T1                                                                                                                     | V <sub>OH</sub>                | <b>-4.9</b>                                                                                        | _                                                                                       | _                                                                                                | Vdc  |
| M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IUN5111DW1T1 IUN5112DW1T1 IUN5113DW1T1 IUN5114DW1T1 IUN5115DW1T1 IUN5116DW1T1 IUN5130DW1T1 IUN5131DW1T1 IUN5132DW1T1 IUN5133DW1T1 IUN5133DW1T1 IUN5133DW1T1 IUN5134DW1T1 IUN5134DW1T1 IUN5135DW1T1 IUN5135DW1T1 IUN5135DW1T1 | R <sub>1</sub>                 | 7.0<br>15.4<br>32.9<br>7.0<br>7.0<br>3.3<br>0.7<br>1.5<br>3.3<br>3.3<br>15.4<br>1.54<br>70<br>32.9 | 10<br>22<br>47<br>10<br>10<br>4.7<br>1.0<br>2.2<br>4.7<br>4.7<br>22<br>2.2<br>100<br>47 | 13<br>28.6<br>61.1<br>13<br>13<br>6.1<br>1.3<br>2.9<br>6.1<br>6.1<br>28.6<br>2.86<br>130<br>61.1 | kΩ   |
| Resistor Ratio MUN5111DW1T1/MUN5112DW1T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DW1T1<br>T1                                                                                                                                                                                                                  | R <sub>1</sub> /R <sub>2</sub> | 0.8<br>0.17<br>-<br>0.8<br>0.055<br>0.38<br>0.038<br>1.7                                           | 1.0<br>0.21<br>-<br>1.0<br>0.1<br>0.47<br>0.047<br>2.1                                  | 1.2<br>0.25<br>-<br>1.2<br>0.185<br>0.56<br>0.056<br>2.6                                         |      |

<sup>5.</sup> Pulse Test: Pulse Width < 300 μs, Duty Cycle < 2.0%

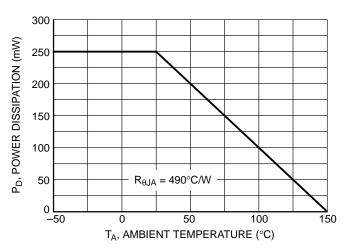



Figure 1. Derating Curve

#### **TYPICAL ELECTRICAL CHARACTERISTICS — MUN5111DW1T1**

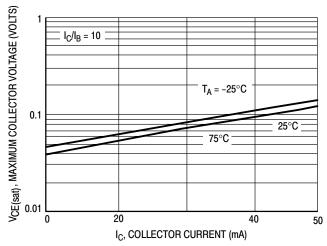



Figure 2. V<sub>CE(sat)</sub> versus I<sub>C</sub>

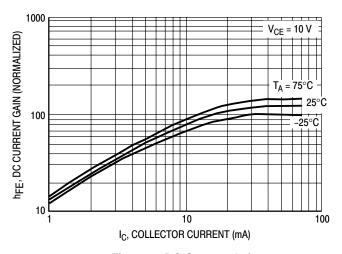



Figure 3. DC Current Gain

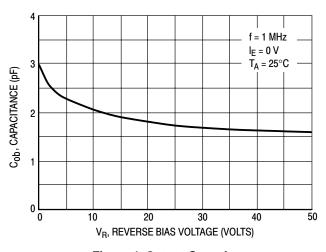



Figure 4. Output Capacitance

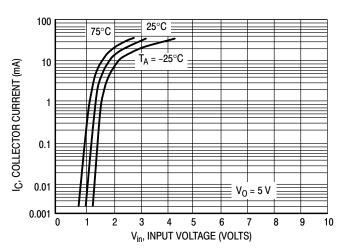



Figure 5. Output Current versus Input Voltage

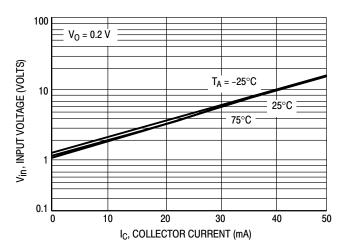



Figure 6. Input Voltage versus Output Current

## TYPICAL ELECTRICAL CHARACTERISTICS — MUN5112DW1T1

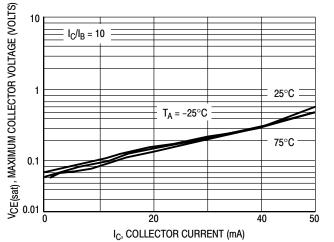



Figure 7. V<sub>CE(sat)</sub> versus I<sub>C</sub>

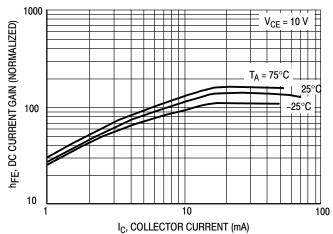



Figure 8. DC Current Gain

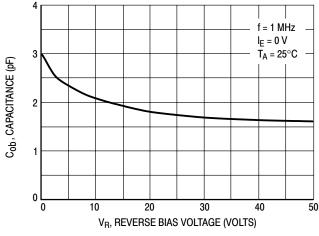



Figure 9. Output Capacitance

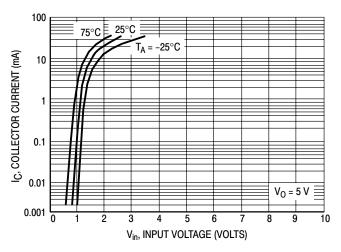



Figure 10. Output Current versus Input Voltage

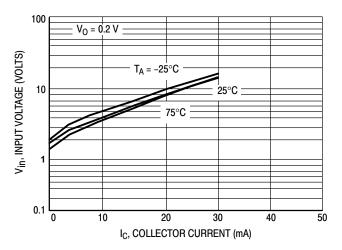



Figure 11. Input Voltage versus Output Current

#### TYPICAL ELECTRICAL CHARACTERISTICS — MUN5113DW1T1

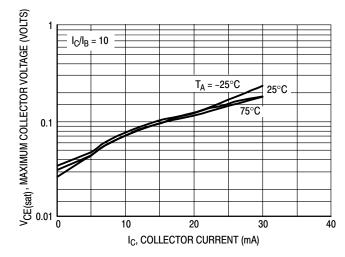



Figure 12.  $V_{CE(sat)}$  versus  $I_{C}$ 

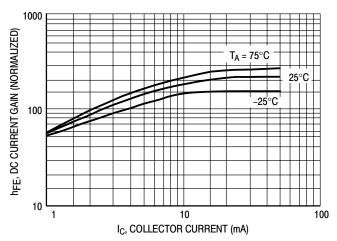



Figure 13. DC Current Gain

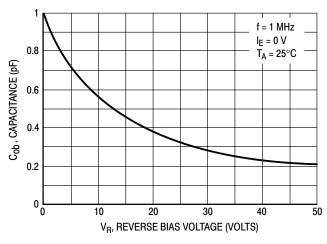



Figure 14. Output Capacitance



Figure 15. Output Current versus Input Voltage

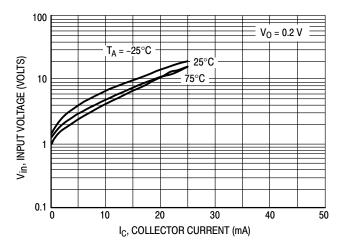
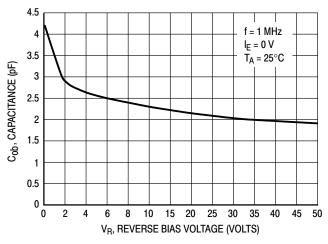



Figure 16. Input Voltage versus Output Current


#### TYPICAL ELECTRICAL CHARACTERISTICS — MUN5114DW1T1

100



Figure 17. V<sub>CE(sat)</sub> versus I<sub>C</sub>

Figure 18. DC Current Gain



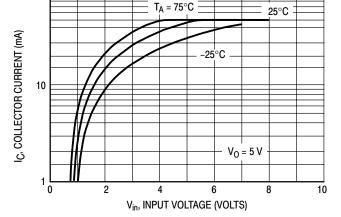



Figure 19. Output Capacitance

Figure 20. Output Current versus Input Voltage

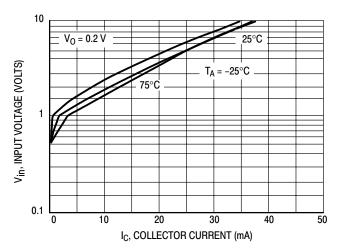



Figure 21. Input Voltage versus Output Current

#### TYPICAL ELECTRICAL CHARACTERISTICS — MUN5115DW1T1

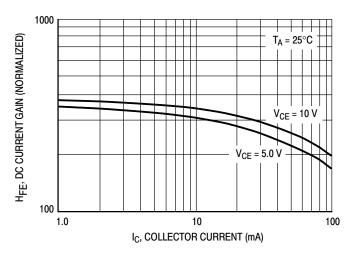



Figure 22. DC Current Gain

#### TYPICAL ELECTRICAL CHARACTERISTICS — MUN5116DW1T1

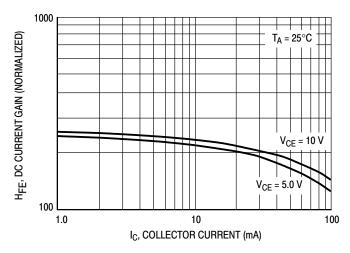



Figure 23. DC Current Gain

#### TYPICAL ELECTRICAL CHARACTERISTICS — MUN5136DW1T1

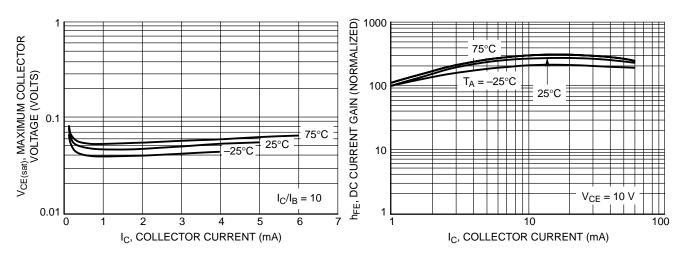



Figure 24. Maximum Collector Voltage versus
Collector Current

Figure 25. DC Current Gain

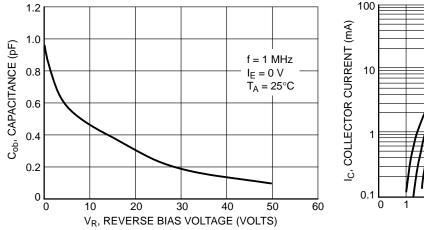



Figure 26. Output Capacitance

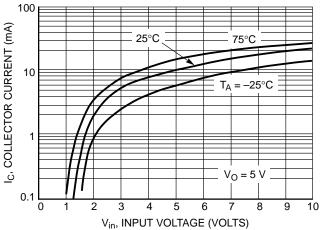



Figure 27. Output Current versus Input Voltage

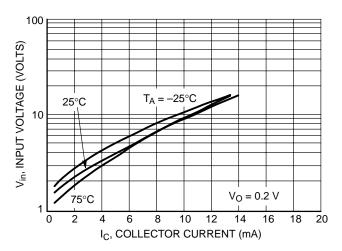



Figure 28. Input Voltage versus Output Current

#### TYPICAL ELECTRICAL CHARACTERISTICS — MUN5137DW1T1

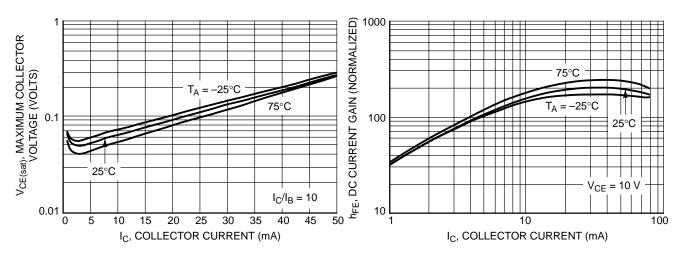



Figure 29. Maximum Collector Voltage versus
Collector Current

Figure 30. DC Current Gain

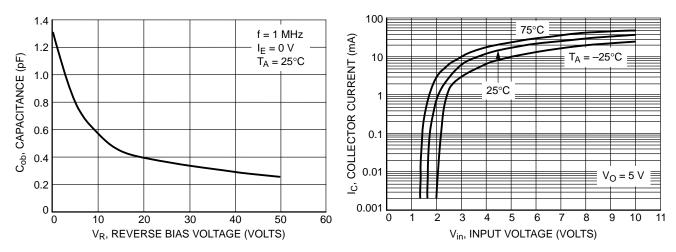
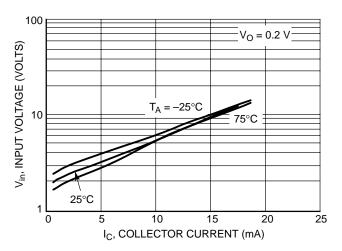
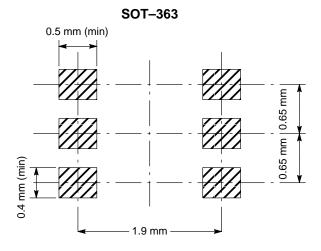



Figure 31. Output Capacitance

Figure 32. Output Current versus Input Voltage





Figure 33. Input Voltage versus Output Current

#### INFORMATION FOR USING THE SOT-363 SURFACE MOUNT PACKAGE

#### MINIMUM RECOMMENDED FOOTPRINTS FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection

interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process.



#### SOT-363 POWER DISSIPATION

The power dissipation of the SOT–363 is a function of the pad size. This can vary from the minimum pad size for soldering to the pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by  $T_{J(max)}$ , the maximum rated junction temperature of the die,  $R_{\theta JA}$ , the thermal resistance from the device junction to ambient; and the operating temperature,  $T_A$ . Using the values provided on the data sheet,  $P_D$  can be calculated as follows:

$$P_D = \frac{T_{J(max)} - T_A}{R_{\theta JA}}$$

The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature  $T_A$  of 25°C,

one can calculate the power dissipation of the device which in this case is 256 milliwatts.

$$P_D = \frac{150^{\circ}C - 25^{\circ}C}{490^{\circ}C/W} = 256 \text{ milliwatts}$$

The 490°C/W for the SOT-363 package assumes the use of the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 256 milliwatts. There are other alternatives to achieving higher power dissipation from the SOT-363 package. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad™. Using a board material such as Thermal Clad, an aluminum core board, the power dissipation can be doubled using the same footprint.

#### **SOLDERING PRECAUTIONS**

The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected.

- Always preheat the device.
- The delta temperature between the preheat and soldering should be 100°C or less.\*
- When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference should be a maximum of 10°C.

- The soldering temperature and time should not exceed 260°C for more than 10 seconds.
- When shifting from preheating to soldering, the maximum temperature gradient should be 5°C or less.
- After soldering has been completed, the device should be allowed to cool naturally for at least three minutes.
   Gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress.
- Mechanical stress or shock should not be applied during cooling.
- \* Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device.

#### SOLDER STENCIL GUIDELINES

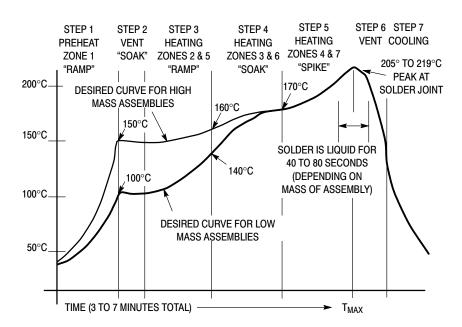
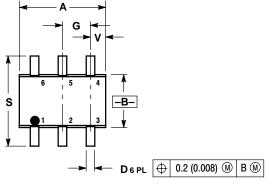
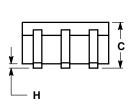
Prior to placing surface mount components onto a printed circuit board, solder paste must be applied to the pads. A solder stencil is required to screen the optimum amount of solder paste onto the footprint. The stencil is made of brass

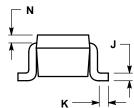
or stainless steel with a typical thickness of 0.008 inches. The stencil opening size for the surface mounted package should be the same as the pad size on the printed circuit board, i.e., a 1:1 registration.

#### TYPICAL SOLDER HEATING PROFILE

For any given circuit board, there will be a group of control settings that will give the desired heat pattern. The operator must set temperatures for several heating zones, and a figure for belt speed. Taken together, these control settings make up a heating "profile" for that particular circuit board. On machines controlled by a computer, the computer remembers these profiles from one operating session to the next. Figure 34 shows a typical heating profile for use when soldering a surface mount device to a printed circuit board. This profile will vary among soldering systems but it is a good starting point. Factors that can affect the profile include the type of soldering system in use, density and types of components on the board, type of solder used, and the type of board or substrate material being used. This profile shows temperature versus time.

The line on the graph shows the actual temperature that might be experienced on the surface of a test board at or near a central solder joint. The two profiles are based on a high density and a low density board. The Vitronics SMD310 convection/infrared reflow soldering system was used to generate this profile. The type of solder used was 62/36/2 Tin Lead Silver with a melting point between 177–189°C. When this type of furnace is used for solder reflow work, the circuit boards and solder joints tend to heat first. The components on the board are then heated by conduction. The circuit board, because it has a large surface area, absorbs the thermal energy more efficiently, then distributes this energy to the components. Because of this effect, the main body of a component may be up to 30 degrees cooler than the adjacent solder joints.



Figure 34. Typical Solder Heating Profile

#### **PACKAGE DIMENSIONS**

SOT-363 CASE 419B-01 ISSUE G







- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION: INCH.

|     | INCHES    |           | MILLIMETERS |          |  |  |
|-----|-----------|-----------|-------------|----------|--|--|
| DIM | MIN       | MAX       | MIN         | MAX      |  |  |
| Α   | 0.071     | 0.087     | 1.80        | 2.20     |  |  |
| В   | 0.045     | 0.053     | 1.15        | 1.35     |  |  |
| С   | 0.031     | 0.043     | 0.80        | 1.10     |  |  |
| D   | 0.004     | 0.012     | 0.10        | 0.30     |  |  |
| G   | 0.026     | 0.026 BSC |             | 0.65 BSC |  |  |
| Н   |           | 0.004     |             | 0.10     |  |  |
| J   | 0.004     | 0.010     | 0.10        | 0.25     |  |  |
| K   | 0.004     | 0.012     | 0.10        | 0.30     |  |  |
| N   | 0.008 REF |           | 0.20 REF    |          |  |  |
| S   | 0.079     | 0.087     | 2.00        | 2.20     |  |  |
| v   | 0.012     | 0.016     | 0.30        | 0.40     |  |  |

- STYLE 1:
  PIN 1. EMITTER 2
  2. BASE 2
  3. COLLECTOR 1
  4. EMITTER 1
  5. BASE 1
  6. COLLECTOR 2



Thermal Clad is a trademark of the Bergquist Company

are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

#### **PUBLICATION ORDERING INFORMATION**

#### NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS\*: 00-800-4422-3781

\*Available from Germany, France, Italy, UK, Ireland

#### CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031

Phone: 81-3-5740-2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.