PC910L0NSZ * VDE (VDE0884) approved type is also available us an option #### ■ Features 1. Ultra-high speed response $(t_{PHL}, t_{PLH}: TYP. 50ns at R_L=350\Omega)$ 2. Isolation voltage between input and output (V_{iso (rms)}: 5.0kV) 3. Low input current drive (I_{FHL}: MAX. 5mA) 4. Instantaneous common mode rejection voltage (CM_H:TYP. 20kV/µs) 5. TTL and LSTTL compatible output 6. Recognized by UL, file No. E64380 (model No. PC910L) #### ■ Applications 1. High speed interfaces for computer peripherals 2. Programmable controllers 3. Inverters | (T | =25 | °C) | |----|-----|-----| | | | | | Parameter | | Symbol | Rating | Unit | |--------------------------|-----------------------------|------------------------|-------------|------| | | *1 Forward current | I_F | 20 | mA | | Input | Reverse voltage | V _R | 5 | V | | Power dissipation | | P | 40 | mW | | | Supply voltage | V _{CC} | 7 | V | | nt | *2 Enable voltage | V _E | 5.5 | V | | Output | High level output voltage | V _{OH} | 7 | V | | | Low level output current | I_{OL} | 50 | mA | | | Collector power dissipation | P _C | 85 | mW | | *3 Isolation voltage | | V _{iso (rms)} | 5.0 | kV | | Operating temperature | | T_{opr} | -40 to +85 | °C | | Storage temperature | | T _{stg} | -55 to +125 | °C | | *4 Soldering temperature | | T _{sol} | 270 | °C | ^{*1} T_a=T_{opr} # Ultra-High Speed Response *OPIC Photocoupler ### **■** Outline Dimensions (Unit: mm) ^{* &}quot;OPIC"(Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signal-processing circuit integrated onto a single chip. ^{*2} Shall not exceed 500mV from supply voltage (V_{CC}) ^{*3 40} to 60%RH, AC for 1minute ^{*4} For 10s | ■ Elect | ro- | optical Characteristics | 3 | (Unspecified $T_a=-40$ to $+85^{\circ}$ C, A | ll typical | values at | T _a =25°C, | $V_{CC}=5V$ | |----------------------|--|---|-------------------------|---|--------------------|-----------|-----------------------|-------------| | | | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | | Forward voltage | | ward voltage | V _F | $T_a=25$ °C, $I_F=10$ mA | _ | 1.6 | 1.9 | V | | Input | Re | verse current | I_R | T _a =25°C, V _R =5V | - | _ | 10 | μΑ | | | Tei | Terminal capacitance | | T _a =25°C, V=0, f=1kHz | _ | 60 | 150 | pF | | Output | High level output voltage | | I_{OH} | $V_{CC}=V_{O}=5.5V, V_{E}=2.0V, I_{F}=250\mu A$ | _ | 0.02 | 100 | μΑ | | | Low level output voltage | | V _{OL} | $V_{CC}=V_{O}=5.5V, V_{E}=2.0V, I_{F}=5mA, I_{OL}=13mA$ | _ | 0.4 | 0.6 | V | | | High level enable current | | I_{EH} | V _{CC} =5.5V, V _E =2.0V | _ | -0.5 | -1.6 | mA | | | Low level enable current | | I_{EL} | $V_{CC}=5.5V, V_{E}=0.5V$ | _ | -0.7 | -1.6 | mA | | | 11: | TT 1 1 1 1 | | $V_{CC}=5.5V, I_F=0, V_E=2V$ | _ | 5 | 10 | mA | | | Пі | gh level supply current | I_{CCH} | $V_{CC}=5.5V, I_F=0, V_E=0.5V$ | _ | 5 | _ | mA | | | T | | I _{CCL} | $V_{CC}=5.5V, I_{F}=10mA, V_{E}=2V$ | _ | 7 | 13 | mA | | | LO | Low level supply current | | V_{CC} =5.5V, I_F =10mA, V_E =0.5V | _ | 5.5 | _ | mA | | | "High→Low" threshold input current | | I_{FHL} | V_{CC} =5V, V_{E} =2.0V, V_{O} =0.8V, R_{L} =350 Ω | _ | 2.5 | 5 | mA | | | Isolation resistance | | R _{ISO} | T _a =25°C, DC=500V, 40 to 60%RH | 5×10 ¹⁰ | 1011 | _ | Ω | | | Floating capacitance | | $C_{\rm f}$ | T _a =25°C, V=0, f=1MHz | - | 0.6 | 5 | pF | | | | "High-Low" propagation time | | Fig. 1 | 25 | 48 | 75 | ns | | | "Low-High" propagation time | | t _{PLH} | $T_a=25^{\circ}\text{C}, V_{CC}=5\text{V}, R_L=350\Omega,$ | 25 | 50 | 75 | ns | | | le | ଥ Rise time | | $C_L=15 \text{pF}, I_F=7.5 \text{mA}$ | _ | 10 | _ | ns | | | e tir | Fall time | $t_{\rm f}$ | OL 18p1, II / ISBN 1 | _ | 20 | _ | ns | | Transfer | *7 Distortion of pulse width | | Δt_{w} | | _ | _ | 35 | ns | | charac-
teristics | Rise time Fall time *7 Distortion of pulse width "High—Low" enable propagation delay time | | t _{EHL} | T_a =25°C, V_{CC} =5V, R_1 =350Ω, C_1 =15pF, | _ | 15 | _ | ns | | | "Low→High" enable
propagation delay time | e e | t _{ELH} | $I_F=7.5$ mA, $V_{EH}=3$ V, $V_{EL}=0.5$ V | _ | 10 | _ | ns | | | CMR | Instantaneous common
mode rejection voltage
"Output : High level" | СМн | $\begin{array}{c} \text{Fig.3} \\ T_a \!\!=\!\! 25^{\circ}\text{C}, V_{\text{CC}} \!\!=\!\! 5\text{V}, V_{\text{CM}} \!\!=\!\! 1\text{kV}_{\text{(P-P)}}, \\ R_L \!\!=\!\! 350\Omega, I_F \!\!=\!\! 0, V_{O(\text{Min})} \!\!=\!\! 2\text{V} \end{array}$ | 10 | 20 | _ | kV/μs | | | Instantaneous common | | CM_L | $\begin{array}{c} Fig.3 \\ T_a \!\!=\!\! 25^\circ C, V_{CC} \!\!=\!\! 5V, V_{CM} \!\!=\!\! 1kV_{(P\!-P)}, \\ R_L \!\!=\!\! 350\Omega, I_F \!\!=\!\! 5mA, V_{O(Max)} \!\!=\!\! 0.8V \end{array}$ | -10 | -20 | _ | kV/μs | ^{*6} It shall connect a by-pass capacitor of $0.01\mu F$ or more between V_{CC} (Pin \$) and GND (Pin \$) near the device, when it measures the transfer characteristics and the output side characteristics ## **■** Recommended Operating Conditions | Parameter | Symbol | MIN. | MAX. | Unit | |---------------------------|-----------------|------|----------|------| | Low level input current | I_{FL} | 0 | 250 | μΑ | | High level input current | I_{FH} | 8 | 15 | mA | | High level enable voltage | V _{EH} | 2.0 | V_{CC} | V | | Low level enable voltage | V _{EL} | 0 | 0.8 | V | | Supply voltage | V _{CC} | 4.5 | 5.5 | V | | Fanout (TTL load) | N | _ | 8 | _ | | Operating temperature | Topr | -40 | 85 | °C | ^{1.} When the enable input is in high level state, external pull-up resistor is unnecessary ^{*7} Distortion of pulse width $\Delta t_w\!\!=\!\mid t_{PHL}\!\!-\!t_{PLH}\mid$ ### ■ Circuit Block Diagram #### **■** Truth Table | Input | Enable | Output | |-------|--------|--------| | Н | Н | L | | L | Н | Н | | Н | L | Н | | L | L | Н | L:Logic (0) H:Logic (1) Fig.1 Test Circuit for $t_{\text{PHL}},\,t_{\text{PLH}},\,t_{\text{r}}$ and t_{f} *C_L includes the probe and wiring capacitance. Fig.2 Test Circuit for t_{EHL} and t_{ELH} 3V 1.5V 0.5V t_{EHL} t_{ELH} 5V 1.5V $V_{\text{OL}} \\$ 1kV V_{OL} Fig.3 Test Circuit for CM_H and CM_L When the switch for infrared light emitting $V_O(MIN.)$ diode sets to A $V_{O}(MAX.)$ When the switch for infrared light emitting diode sets to B *C_L includes the probe and wiring capacitance. Fig.4 Forward Current vs. Ambient Temperature Fig.6 Forward Current vs. Forward Voltage Fig.8 Low Level Output Voltage vs. Ambient Temperature Fig.5 Collector Power Dissipation vs. Ambient Temperature Fig.7 High Level Output Current vs. Ambient Temperature Fig.9 Threshold Input Current vs. Ambient Temperature PC910L0NSZ Fig.10 Output Voltage vs. Forward Current Fig.12 Propagation Delay Time vs. Ambient Temperature Fig.11 Propagation Delay Time vs. Forward Current #### NOTICE - The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices. - Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice. - Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions: - (i) The devices in this publication are designed for use in general electronic equipment designs such as: - --- Personal computers - --- Office automation equipment - --- Telecommunication equipment [terminal] - --- Test and measurement equipment - --- Industrial control - --- Audio visual equipment - --- Consumer electronics - (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as: - --- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.) - --- Traffic signals - --- Gas leakage sensor breakers - --- Alarm equipment - --- Various safety devices, etc. - (iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as: - --- Space applications - --- Telecommunication equipment [trunk lines] - --- Nuclear power control equipment - --- Medical and other life support equipment (e.g., scuba). - If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices. - This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party. - Contact and consult with a SHARP representative if there are any questions about the contents of this publication.