Data Sheet, V 1.1, January 2008

TLE4921-5U

Dynamic Differential Hall Effect Sensor IC

Sensors

Edition 2008-01

Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
81669 München, Germany
© Infineon Technologies AG 2008.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revision History: \quad 2008-01	
Previous Version: \quad V1.0	V1.1
Page	Subjects (major changes since last revision)
5	Ordering Code changed
11	"Output leakage current" unit corrected
20	Figures "Delay Time between Switching Threshold" exchanged and corrected
21	Figure "Delay Time versus Differential Field" corrected

[^0]\qquad
Table of Contents Page
1 Overview 5
1.1 Features 5
1.2 Pin Configuration (view on branded side of component) 6
2 General 7
2.1 Block Diagram 7
2.2 Functional Description 8
2.3 Circuit Description (see Figure 2) 8
3 Maximum Ratings 9
4 Operating Range 10
5 Electrical and Magnetic Parameters 11
6 Application Configurations 14
7 Typical Performance Characteristics 18
8 Package Outlines 25

Dynamic Differential Hall Effect Sensor IC

Bipolar IC

1 Overview

1.1 Features

- Advanced performance
- High sensitivity
- Symmetrical thresholds
- High piezo resistivity
- Reduced power consumption
- South and north pole pre-induction possible

- AC coupled
- Digital output signal
- Two-wire and three-wire configuration possible
- Large temperature range
- Large airgap
- Low cut-off frequency
- Protection against overvoltage
- Protection against reversed polarity
- Output protection against electrical disturbances

The differential Hall Effect sensor TLE4921-5U provides a high sensitivity and a superior stability over temperature and symmetrical thresholds in order to achieve a stable duty cycle. TLE4921-5U is particularly suitable for rotational speed detection and timing applications of ferromagnetic toothed wheels such as anti-lock braking systems, transmissions, crankshafts, etc. The integrated circuit (based on Hall effect) provides a digital signal output with frequency proportional to the speed of rotation. Unlike other rotational sensors differential Hall ICs are not influenced by radial vibration within the effective airgap of the sensor and require no external signal processing.

Type	Marking	Ordering Code	Package
TLE4921-5U	215 U	SP000013593	PG-SSO-4-1

TLE4921-5U

1.2 Pin Configuration

 (view on branded side of component)

Figure 1

Table 1 Pin Definitions and Functions

Pin No.	Symbol	Function
1	V_{S}	Supply voltage
2	Q	Output
3	GND	Ground
4	C	Capacitor

TLE4921-5U

2 General

2.1 Block Diagram

Figure 2 Block Diagram

TLE4921-5U
technologies

General

2.2 Functional Description

The Differential Hall Sensor IC detects the motion and position of ferromagnetic and permanent magnet structures by measuring the differential flux density of the magnetic field. To detect ferromagnetic objects the magnetic field must be provided by a back biasing permanent magnet (south or north pole of the magnet attached to the rear unmarked side of the IC package).
Using an external capacitor the generated Hall voltage signal is slowly adjusted via an active high pass filter with a low cut-off frequency. This causes the output to switch into a biased mode after a time constant is elapsed. The time constant is determined by the external capacitor. Filtering avoids ageing and temperature influence from Schmitttrigger input and eliminates device and magnetic offset.
The TLE4921-5U can be exploited to detect toothed wheel rotation in a rough environment. Jolts against the toothed wheel and ripple have no influence on the output signal.
Furthermore, the TLE4921-5U can be operated in a two-wire as well as in a three-wireconfiguration.
The output is logic compatible by high/low levels regarding on and off.

2.3 Circuit Description (see Figure 2)

The TLE4921-5U is comprised of a supply voltage reference, a pair of Hall probes spaced at 2.5 mm , differential amplifier, filter for offset compensation, Schmitt trigger, and an open collector output.
The TLE4921-5U was designed to have a wide range of application parameter variations. Differential fields up to $\pm 80 \mathrm{mT}$ can be detected without influence to the switching performance. The pre-induction field can either come from a magnetic south or north pole, whereby the field strength up to 500 mT or more will not influence the switching points. The improved temperature compensation enables a superior sensitivity and accuracy over the temperature range. Finally the optimized piezo compensation and the integrated dynamic offset compensation enable easy manufacturing and elimination of magnet offsets.
Protection is provided at the input/supply (pin 1) for overvoltage and reverse polarity and against over-stress such as load dump, etc., in accordance with ISO-TR 7637 and DIN 40839. The output (pin 2) is protected against voltage peaks and electrical disturbances.

TLE4921-5U

3 Maximum Ratings

Table 2 Absolute Maximum Ratings
$T_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Supply voltage	V_{S}	$-35^{1)}$	30	V	
Output voltage	V_{Q}	-0.7	30	V	
Output current	I_{Q}	-	50	mA	
Output reverse current	$-I_{\mathrm{Q}}$	-	50	mA	
Capacitor voltage	V_{C}	-0.3	3	V	
Junction temperature	T_{j}	-	150	${ }^{\circ} \mathrm{C}$	5000 h
	-	160		2500 h	
	-	-	170		1000 h
	-	210		40 h	
Storage temperature	T_{S}	-40	150	${ }^{\circ} \mathrm{C}$	
Thermal resistance	R_{thJA}	-	190	$\mathrm{~K} / \mathrm{W}$	
PG-SSO-4-1			200	mA	$t<2 \mathrm{~ms} ; v=0.1$
Current through input-protection device Current through output-protection device	I_{SZ}	-	-	200	mA

1) Reverse current $<10 \mathrm{~mA}$

TLE4921-5U

4 Operating Range

Table 3 ESD Protection
Human Body Model (HBM) tests according to:
Standard EIA/JESD22-A114-B HBM

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
ESD - protection	$V_{\text {ESD }}$	-	± 2	kV	

Table $4 \quad$ Operating Range

Parameter	Symbol	Limit Values			Unit	Remarks
		min.	typ.	max.		
Supply voltage	$V_{\text {S }}$	4.5	-	24	V	
Junction temperature	T_{j}	-40	-	150	${ }^{\circ} \mathrm{C}$	5000 h
		-	-	160		2500 h
		-	-	170		1000 h
Pre-induction	B_{0}	-500	-	500	mT	at Hall probe; independent of magnet orientation
Differential induction	ΔB	-80	-	80	mT	

Note: In the operating range the functions given in the circuit description are fulfilled.

5 Electrical and Magnetic Parameters

Table $5 \quad$ Electrical Characteristics

Parameter	Symbol	Limit Values			Unit	Test Condition	Test Circuit
		min.	typ.	max.			
Supply current	$I_{\text {S }}$	$\begin{aligned} & 3.8 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 5.9 \end{aligned}$	$\begin{array}{\|l} 8.0 \\ 8.8 \end{array}$	mA mA	$\begin{aligned} & V_{\mathrm{Q}}=\text { high } \\ & I_{\mathrm{Q}}=0 \mathrm{~mA} \\ & V_{\mathrm{Q}}=10 \mathrm{w} \\ & I_{\mathrm{Q}}=40 \mathrm{~mA} \end{aligned}$	
Output saturation voltage	$V_{\text {QSAT }}$	-	0.25	0.6	V	$I_{\mathrm{Q}}=40 \mathrm{~mA}$	1
Output leakage current	$I_{\text {QL }}$	-	-	50	$\mu \mathrm{A}$	$V_{Q}=24 \mathrm{~V}$	1
Center of switching points: $\left(\Delta B_{\mathrm{OP}}+\Delta B_{\mathrm{RP}}\right) / 2$	ΔB_{m}	-1	0	1	mT	$\begin{aligned} & -20 \mathrm{mT}<\Delta B \\ & \left.<20 \mathrm{mT}^{1)} 2\right) \\ & f=200 \mathrm{~Hz} \end{aligned}$	2
Operate point	ΔB_{OP}	-	-	0	mT	$\begin{aligned} & f=200 \mathrm{~Hz} \\ & \Delta B=20 \mathrm{mT} \end{aligned}$	2
Release point	ΔB_{RP}	0	-	-	mT	$\begin{aligned} & f=200 \mathrm{~Hz} \\ & \Delta B=20 \mathrm{mT} \end{aligned}$	2
Hysteresis	ΔB_{H}	0.5	1.5	2.5	mT	$\begin{aligned} & f=200 \mathrm{~Hz}, \\ & \Delta B=20 \mathrm{mT} \end{aligned}$	2
Overvoltage protection at supply voltage at output	$\begin{aligned} & V_{\mathrm{SZ}} \\ & V_{\mathrm{QZ}} \end{aligned}$	$\begin{aligned} & 27 \\ & 27 \end{aligned}$	$-$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & I_{\mathrm{S}}=16 \mathrm{~mA} \\ & I_{\mathrm{Q}}=16 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
Output rise time	t_{r}	-	-	0.5	$\mu \mathrm{S}$	$\begin{aligned} & I_{\mathrm{Q}}=40 \mathrm{~mA} \\ & C_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$	1
Output fall time	$t_{\text {f }}$	-	-	0.5	$\mu \mathrm{S}$	$\begin{aligned} & I_{\mathrm{Q}}=40 \mathrm{~mA} \\ & C_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$	1
Delay time	$\begin{array}{\|l} t_{\mathrm{dop}} \\ t_{\mathrm{drp}} \\ t_{\mathrm{dop}}-t_{\mathrm{drp}} \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{aligned} & - \\ & - \\ & 0 \end{aligned}$	$\begin{aligned} & 25 \\ & 10 \\ & 15 \end{aligned}$	$\mu \mathrm{S}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$	$\begin{aligned} & f=10 \mathrm{kHz} \\ & \Delta B=5 \mathrm{mT} \end{aligned}$	2
Filter input resistance	$R_{\text {C }}$	35	43	52	$\mathrm{k} \Omega$	$25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	1

TLE4921-5U

Electrical and Magnetic Parameters

Table $5 \quad$ Electrical Characteristics (cont'd)

Parameter	Symbol	Limit Values			Unit	Test Condition	Test Circuit
		min.	typ.	max.			1
Filter sensitivity to ΔB	S_{C}	-	-5	-	$\mathrm{mV} / \mathrm{mT}$	-	1
Filter bias voltage	V_{C}	1.6	2	2.4	V	$\Delta B=0$	1
Frequency	f	$3)$	-	20000	Hz	$\Delta B=5 \mathrm{mT}$	2
Resistivity against mechanical stress (piezo)	ΔB_{m}	-0.1	-	0.1	mT	$\mathrm{F}=2 \mathrm{~N}$	$2^{4)}$

1) The Current consumption characteristic will be different and the specified values can slightly change
2) Leakage currents at pin 4 should be avoided. The bias shift of B_{m} caused by a leakage current I_{L} can be calculated by: $\Delta B_{\mathrm{m}}=\frac{I_{\mathrm{L}} \times R_{\mathrm{C}}(\mathrm{T})}{S_{\mathrm{C}}(\mathrm{T})}$
3) For higher ΔB the values may exceed the limits like following $\left|\Delta B_{\mathrm{m}}\right|<|0.05 \times \Delta B|$
4) Depends on filter capacitor C_{F}. The cut-off frequency is given by $f=\frac{1}{2 \pi \times R_{\mathrm{C}} \times C_{\mathrm{F}}}$. The switching points are guaranteed over the whole frequency range, but amplitude modification and phase shift due to the $1^{\text {st }}$ order highpass filter have to be taken into account.

Note: The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_{j}=25^{\circ} \mathrm{C}$ and the given supply voltage.

TLE4921-5U

Electrical and Magnetic Parameters

Figure $3 \quad$ Test Circuit 1

Figure 4 Test Circuit 2

Application Configurations

6 Application Configurations

Two possible applications are shown in Figure 7 and Figure 8 (Toothed and Magnet Wheel). The difference between two-wire and three-wire application is shown in Figure 9.

Gear Tooth Sensing

In the case of ferromagnetic toothed wheel application the IC has to be biased by the south or north pole of a permanent magnet (e.g. SmCO_{5} (Vacuumschmelze VX145)) with the dimensions $8 \mathrm{~mm} \times 5 \mathrm{~mm} \times 3 \mathrm{~mm}$) which should cover both Hall probes.
The maximum air gap depends on:

- the magnetic field strength (magnet used; pre-induction) and
- the toothed wheel that is used (dimensions, material, etc.; resulting differential field)

Figure 5 Sensor Spacing

Figure 6 Tooth Wheel Dimensions

TLE4921-5U

Application Configurations

Figure $7 \quad$ TLE4921-5U, with Ferromagnetic Toothed Wheel

Figure 8 TLE4921-5U, with Magnet Wheel

TLE4921-5U

Two-wire-application

Three-wire-application

Figure $9 \quad$ Application Circuits

TLE4921-5U

Figure 10 System Operation

TLE4921-5U

Typical Performance Characteristics

$7 \quad$ Typical Performance Characteristics

Quiescent Current versus Supply Voltage

Quiescent Current versus
Output Current

Quiescent Current versus Temperature

Saturation Voltage versus

 Temperature

TLE4921-5U

Typical Performance Characteristics

Saturation Voltage versus

Supply Voltage

Hysteresis versus Temperature

Typical Performance Characteristics

Minimum Switching Field versus

Frequency

Delay Time between Switching Threshold ΔB and Rising Edge of $V_{\text {OUT }}$ at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Typical Performance Characteristics

Delay Time versus Temperature

Rise and Fall Time versus Output Current

Typical Performance Characteristics

Capacitor Voltage versus Temperature

Filter Sensitivity versus Temperature

Switching Thresholds versus

 Mechanical Stress

Filter Input Resistance versus Temperature

Typical Performance Characteristics

Delay Time for Power on (V_{S} Switching from 0 V to 4.5 V) $t_{\text {pon }}$ versus Temp.

Table 6 Electro Magnetic Compatibility

ref. DIN 40839 part 1; test circuit 1

Parameter	Symbol	Level/Typ	Status
Testpulse 1	$V_{\text {LD }}$	IV $/-100 \mathrm{~V}$	C
Testpulse 2		IV $/ 100 \mathrm{~V}$	B
Testpulse 3a		IV $/-150 \mathrm{~V}$	C
Testpulse 3b		IV $/ 100 \mathrm{~V}$	C
Testpulse 4		IV $/-7 \mathrm{~V}$	C
Testpulse 5		IV 86.5 V	C

Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 11 Distance Chip to Upper Side of IC

TLE4921-5U

8 Package Outlines

Figure 12 PG-SSO-4-1 (Plastic Single Small Outline Package)

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.
ww w.infineon.com

Published by Infineon Technologies AG

[^0]: We Listen to Your Comments
 Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: sensors@infineon.com

