4571 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

DESCRIPTION

The 4571 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with three 8 -bit timers (each timer has one or two reload registers), interrupts, and voltage drop detection circuit.
The various microcomputers in the 4571 Group include variations of the built-in memory size as shown in the table below.

FEATURES

- Minimum instruction execution time \qquad $0.5 \mu \mathrm{~s}$
(at 6 MHz oscillation frequency, in through-mode)
- Supply voltage \qquad 1.8 to 5.5 V
(It depends on oscillation frequency and operation mode)
- Timers

Timer 1 \qquad 8-bit timer with a reload register and carrier wave output auto-control function
Timer 2 \qquad 8-bit timer with a reload register
Timer 3. \qquad 8 -bit timer with two reload registers and carrier wave generation circuit

- Interrupt

6 sources

- Key-on wakeup function pins12
- I/O port 17
- Output port ... 1
- Input port
.1
- Voltage drop detection circuit

Reset occurrence
Typ. $1.65 \mathrm{~V}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
Reset release
Typ. $1.75 \mathrm{~V}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
Interrupt occurrence.
Typ. $1.85 \mathrm{~V}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

- Watchdog timer
- Power-on reset circuit
- Clock generating circuit (ceramic resonator)

APPLICATION

Remote control transmitter

Table 1 Support Product

Part number	ROM size ($\times 10$ bits)	RAM size $(\times 4$ bits)	Package	ROM type
M34571G4FP (Note 1)	4096 words	128 words	PRSP0024GA-A	QzROM
M34571G4-XXXFP	4096 words	128 words	PRSP0024GA-A	QzROM
M34571G6FP (Note 1)	6144 words	128 words	PRSP0024GA-A	QzROM
M34571G6-XXXFP	6144 words	128 words	PRSP0024GA-A	QzROM
M34571GDFP (Note 1)	16384 words	128 words	PRSP0024GA-A	QzROM
M34571GD-XXXFP	16384 words	128 words	PRSP0024GA-A	QzROM

Note 1.Shipped in blank

PIN CONFIGURATION

Pin configuration (top view)

Fig 1. Pin configuration (PRSP0024GA-A type)

Fig 2. Functional block diagram (PRSP0024GA-A type)

PERFORMANCE OVERVIEW

Table 2 Performance overview

Parameter				Function	
Number of basic instructions			M34571G4/G6	126	
			M34571GD	128	
Minimum instruction execution time				0.5μ (Oscillation frequency 6 MHz : through mode)	
Memory sizes		ROM	M34571G4	4096 words $\times 10$ bits	
		M34571G6	6144 words $\times 10$ bits		
		M34571GD	16384 words $\times 10$ bits		
		RAM	128 words $\times 4$ bits		
I/O port			D0-D4	I/O (Input is examined by skip decision)	Five independent I/O ports; The output structure of ports Do-D3 is switched by software. Port D4 is also used as CNTR0, respectively.
		P00-P03	I/O	4-bit I/O port; a pull-up function and a key-on wakeup function can be switched by software.	
		P10-P13	I/O	4-bit I/O port; a pull-up function and a key-on wakeup function can be switched by software.	
		P20, P21	I/O	2-bit I/O port; a pull-up function and a key-on wakeup function can be switched by software Ports P20 and P21 are also used as INT0 and INT1, respectively.	
		P30, P31	I/O	2-bit I/O port ; the output structure is switched by software.	
		C	Output	1-bit output port (CMOS output only); port C is also used as CNTR1 pin.	
		K	Input	1-bit input port ; a key-on wakeup function can be switched by software.	
		CNTR0	Timer I/O	1-bit I/O port ; CNTR0 pin is also used as port D4.	
		CNTR1	Timer output	1-bit output port ; CNTR1 pin is also used as port C.	
		INT0, INT1	Interrupt input	1-bit input port ; INT0 and INT1 are also used as ports P20 and P21, respectively.	
Timer			Timer 1		8-bit timer with a reload register and carrier wave output auto-control function, and has an event counter.
		Timer 2		8-bit timer with a reload register.	
		Timer 3		8-bit timer with two reload registers and carrier wave generation function.	
		Watchdog timer		16-bit timer, fixed dividing frequency (timer for monitor)	
Power-on reset circuit				Built-in	
Voltage drop detection circuit		Reset occurrence		Typ. $1.65 \mathrm{~V}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$	
		Reset release		Typ. $1.75 \mathrm{~V}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$	
		Interrupt occurrence		Typ. $1.85 \mathrm{~V}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$	
Interrupt		Source		6 sources (two for external, three for timers, voltage drop detection circuit)	
		Nesting		1 level	
Subroutine nesting				8 levels	
Device structure				CMOS sillicon gate	
Package				24-pin plastic molded SSOP (PRSP0024GA-A)	
Operating temperature range				-20 to $85{ }^{\circ} \mathrm{C}$	
Power source voltage				1.8 to 5.5 V (It depends on oscillation frequency and operation mode)	
Power dissipation (Typ. value)	At active mode			$0.3 \mathrm{~mA}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VdD}=3.0 \mathrm{~V}, \mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz}, \mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{XIN}) / 8\right)$	
	At RAM back-up			$0.1 \mu \mathrm{~A}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right.$, output transistor is cut-off state)	

PIN DESCRIPTION

Table 3 Pin description

Pin	Name	Input/Output	Function
Vdd	Power source	-	Connected to a plus power supply.
Vss	Power source	-	Connected to a 0 V power supply.
$\overline{\text { RESET }}$	Reset I/O	I/O	An N-channel open-drain I/O pin for a system reset. When the SRST instruction, watchdog timer, or the built-in power-on reset causes the system to be reset, the $\overline{\mathrm{RESET}}$ pin outputs "L" level.
XIN	Main clock input	Input	I/O pins of the main clock generating circuit. Connect a ceramic resonator between pins
Xout	Main clock output	Output	XIn and Xout. A feedback resistor is built-in between them.
D0-D4	I/O port D (Input is examined by skip decision.)	I/O	Each pin of port D has an independent 1-bit wide I/O function. The output structure of ports Do-D3 can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to " 1 " and select the N -channel open-drain. Port D4 is also used as CNTR0 pin.
P00-P03	I/O port P0	I/O	Port P0 serves as a 4-bit I/O port. The output structure is N-channel open-drain. Port P0 has a key-on wakeup function and a pull-up function. Both functions can be switched by software.
P10-P13	I/O port P1	I/O	Port P1 serves as a 4-bit I/O port. The output structure is N -channel open-drain. Port P1 has a key-on wakeup function and a pull-up function. Both functions can be switched by software.
P20, P21	I/O port P2	I/O	Port P2 serves as a 2-bit I/O port. The output structure is N -channel open-drain. For input use, set the latch of the specified bit to " 1 ". Ports P20 and P21 are also used as INT0 pin and INT1 pin, respectively.
P30, P31	I/O port P3	I/O	Port P3 serves as a 2-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1".
C	Output port C	Output	Port C serves as a 1-bit output port. The output structure is CMOS. Port C is also used as CNTR1.
K	Input port K	Input	Port K serves as a 1-bit input port. It has the key-on wakeup function which can be switched by software. When port K is used for the input of key matrix, connect a pull-up resistor to it externally.
CNTRO, CNTR1	Timer I/O	I/O	CNTR0 pin has the function to input the clock for the timer 1 event counter, and to output the timer 1 or timer 2 underflow signal divided by 2. CNTR1 pin has the function to output the PWM signal generated by timer 3. CNTR0 pin and CNTR1 pin are also used as Ports D4 and C, respectively.
INT0, INT1	Interrupt input	Input	INT0 pin and INT1 pin accept external interrupts. They have the key-on wakeup function which can be switched by software. INT0 pin and INT1 pin are also used as Ports P 20 and P 21 , respectively.

MULTIFUNCTION

Table 4 Pin description

Pin	Multifunction	Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
C	CNTR1	P20	INT0	CNTR1	C	INT0	P20
D4	CNTR0	P21	INT1	CNTR0	D4	INT1	P21

Note 1.Pins except above have just single function.
Note 2.The input of D4 can be used even when CNTR0 (output) is selected.
The input/output of D4 can be used even when CNTRO (input) is selected.
Be careful when using inputs of both CNTRO and D4 since the input threshold value of CNTRO pin is different from that of port D4.
Note 3. "H" output function of port C can be used even when the CNTR1 (output) is used.
Note 4.The input/output of P2o can be used even when INTO is used.
Be careful when using inputs of both INTO and P2o since the input threshold value of INTO pin is different from that of port P20.
Note 5. The input/output of P21 can be used even when INT1 is used.
Be careful when using inputs of both INT1 and P21 since the input threshold value of INT1 pin is different from that of port P21.

PORT FUNCTION

Table 5 Port function

Port	Pin	Input Output	Output structure	I/O unit	Control instructions	Control registers	Remark
Port D	D0-D3	$\begin{aligned} & \mathrm{I} / \mathrm{O} \\ & (5) \end{aligned}$	N -channel open-drain/ CMOS	1 bit	$\begin{aligned} & \text { SD, RD } \\ & \text { SZD, CLD } \end{aligned}$	FR1	Programmable output structure selection function
	D4/CNTR0		N -channel open-drain			$\begin{array}{\|l\|} \hline \text { W1 } \\ \text { W2 } \\ \text { W5 } \\ \hline \end{array}$	-
Port P0	$\begin{array}{\|l\|} \hline \mathrm{POO} \\ \mathrm{PO} 1 \\ \mathrm{PO} 2 \\ \mathrm{PO} \\ \hline \end{array}$	I/O (4)	N -channel open-drain	4 bits	$\begin{array}{\|l} \hline \text { OPOA } \\ \text { IAPO } \end{array}$	$\begin{aligned} & \text { PU0 } \\ & \text { K0 } \end{aligned}$	Programmable pull-up and key-on wakeup function
Port P1	$\begin{array}{\|l\|} \hline \mathrm{P} 10 \\ \mathrm{P} 11 \\ \mathrm{P} 12 \\ \mathrm{P} 13 \\ \hline \end{array}$	I/O (4)	N -channel open-drain	4 bits	OP1A IAP1	$\begin{aligned} & \text { PU1 } \\ & \text { K1 } \end{aligned}$	Programmable pull-up and key-on wakeup function
Port P2	$\begin{array}{\|l} \hline \text { P2o/INT0 } \\ \text { P21/INT1 } \\ \hline \end{array}$	I / O (2)	N -channel open-drain	2 bits	$\begin{aligned} & \text { OP2A } \\ & \text { IAP2 } \end{aligned}$	$\begin{aligned} & \text { PU2 } \\ & \text { K2, I1, I2, L1 } \end{aligned}$	Programmable pull-up and key-on wakeup function
Port P3	$\begin{aligned} & \hline \text { P30 } \\ & \text { P31 } \end{aligned}$	I/O (2)	N -channel open-drain/ CMOS	2 bits	$\begin{aligned} & \text { OP3A } \\ & \text { IAP3 } \end{aligned}$	FR0	Programmable output structure selection function
Port C	C/CNTR1	Output (1)	CMOS	1 bit	$\begin{aligned} & \text { RCP } \\ & \text { SCP } \end{aligned}$	W1, W3, W5	-
Port K	K	Input (1)	-	1 bit	IAK	K2	Programmable key-on wakeup function

DEFINITION OF CLOCK AND CYCLE

- Operation source clock

The operation source clock is the source clock to operate this product. In this product, the following clocks are used.

- Clock (f(XiN)) by the external ceramic resonator
- Clock (f(Xin)) by the external input
- System clock

The system clock is the basic clock for controlling this product.
The system clock is selected by the register MR.

- Instruction clock

The instruction clock is a signal derived by dividing the system clock by 3 . The one instruction clock cycle generates the one machine cycle.

- Machine cycle

The machine cycle is the standard cycle required to execute the instruction.

Table 6 Table Selection of system clock

Register MR		System clock	Operation mode
MR3	MR2		
1	1	$f($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 8$	Frequency divided by 8 mode
1	0	$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 4$	Frequency divided by 4 mode
0	1	$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 2$	Frequency divided by 2 mode
0	0	$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN})$	Frequency through mode

Note 1.The frequency divided by 8 is selected after system is released from reset.

CONNECTIONS OF UNUSED PINS

Table 7 Port function

Pin	Connection	Usage condition				
		Output structure	Pull-up transistor	Key-on wakeup	Value of output latch	Others
$\begin{array}{\|l} \hline \text { D0-D3 } \\ \text { P30, P31 } \end{array}$	Open.	N-channel open-drain	-	-	0/1	(Note 1)
		CMOS	-	-	0/1	-
	Connect to Vss.	N-channel open-drain	-	-	0/1	-
		CMOS	-	-	0	-
	Connect to Vdd.	N-channel open-drain	-	-	1	-
		CMOS	-	-	1	-
D4/CNTR0	Open.	N-channel open-drain	-	-	0/1	(Notes 1, 2)
	Connect to Vss.	N-channel open-drain	-	-	0/1	(Note 2)
	Connect to Vdd.	N-channel open-drain	-	-	1	(Note 2)
$\begin{aligned} & \mathrm{P} 00-\mathrm{PO} 3, \\ & \mathrm{P} 10-\mathrm{P} 13 \end{aligned}$	Open.	N -channel open-drain	OFF	Invalid	0/1	(Note 1)
			ON	Invalid	1	-
	Connect to Vss.	N-channel open-drain	OFF	Invalid	0/1	-
	Connect to Vdd.	N-channel open-drain	ON/OFF	Valid/Invalid	1	-
$\begin{array}{\|l\|} \hline \text { P20/INT0 } \\ \text { P21/INT1 } \end{array}$	Open.	N -channel open-drain	OFF	Invalid	0/1	(Notes 1, 3)
			ON	Invalid	1	(Note 3)
	Connect to Vss.	N-channel open-drain	OFF	Invalid	0/1	(Note 3)
	Connect to Vdd.	N-channel open-drain	ON/OFF	Valid/Invalid	1	(Note 3)
C/CNTR1	Open.	CMOS	-	-	0/1	-
	Connect to Vss.	CMOS	-	-	0	(Note 4)
K	Connect to Vss.	-	-	Invalid	-	-
	Connect to Vdd.	-	-	Valid/Invalid	-	-

Note 1. If a port input instruction (SZD, IAPO, IAP1, IAP2, IAP3) is executed when the output latch is 1 , the supply voltage may be increased in the instruction execution cycle by the through current.
Note 2. Do not select the CNTR0 input as the timer 1 count source. (W11 W10キ11)
Note 3.Set the input of INT0 pin or INT1 pin to be disabled. (I13=0, $123=0$)
Note 4.Set the output of the CNTR1 pin to be invalid. (W33=0)
(Note when connecting to Vss or Vdd)
Connect the unused pins to Vss using the thickest wire at the shortest distance against noise

PORT BLOCK DIAGRAM

Notes 1. $--\mid<---$ This symbol represents a parasitic diode on the port.
2. Applied potential to these ports must be Vdd or less.
3. i represents bits 0 to 3.
4. A falling edge of port input is detected.

Fig 3. Port block diagram (1)

Notes 1.
 . This symbol represents a parasitic diode on the port.
2. Applied potential to these ports must be VDD or less.
3. i represents bits 0 to 3 .
4. Falling edge of port input is detected.
5. As for details, refer to the external interrupt structure.

6 . The threshold value of port input is different from that of external interrupt input.
Fig 4. Port block diagram (2)

Notes 1. --|<--- This symbol represents a parasitic diode on the port.
2. Applied potential to these ports must be Vod or less.
3. j represents bits 0 or 1.
4. Falling edge of port input is detected.

Fig 5. Port block diagram (3)

Note 1: $--1<--$ This symbol represents a parasitic diode on the port.
2: When $I X_{2}=0(X=0$ or 1$)$ is 0 , " L " level is detected.
When I_{2} is 1 , " H " level is detected.
3: When I X_{2} is 0 , falling edge is detected.
When $I X_{2}$ is 1 , rising edge is detected.

Fig 6. Port block diagram (4)

FUNCTION BLOCK OPERATIONS

CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4 -bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.
Carry flag CY is a 1 -bit flag that is set to " 1 " when there is a carry with the AMC instruction (Figure 7).
It is unchanged with both A n instruction and AM instruction. The value of A0 is stored in carry flag CY with the RAR instruction (Figure 8)
Carry flag CY can be set to " 1 " with the SC instruction and cleared to " 0 " with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.
Register E is an 8 -bit register. It can be used for 8 -bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 9).
Register E is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

(4) Register D

Register D is a 3-bit register.
It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 10). Also, when the TABP p instruction is executed at UPTF flag $=$ " 1 ", the high-order 2 bits of ROM reference data is stored to the low-order 2 bits of register D, the high-order 1 bit of register D is "0".
When the TABP p instruction is executed at UPTF flag $=$ " 0 ", the contents of register D remains unchanged. The UPTF flag is set to " 1 " with the SUPT instruction and cleared to " 0 " with the RUPT instruction.
The initial value of UPTF flag is " 0 ".
Register D is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

Fig 7. AMC instruction execution example

Fig 8. RAR instruction execution example

Fig 9. Registers A, B and register E

Fig 10. TABP p instruction execution example

(5) Stack registers (SKS) and stack pointer (SP)

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.
The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.
Figure 11 shows the stack registers (SKs) structure.
Figure 12 shows the example of operation at subroutine call.

(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1 -stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine.
Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

Program counter (PC)	
Executing BM instruction	Executing RT instruction
SK_{0}	
SK_{1}	
SK_{2}	
SK_{3}	
SK_{4}	
SK_{5}	
SK_{6}	
SK_{7}	

$(\mathrm{SP})=0$
$(S P)=1$
(SP) $=2$
$(\mathrm{SP})=3$
(SP) $=4$
$(\mathrm{SP})=5$
$(\mathrm{SP})=6$
$(\mathrm{SP})=7$
Stack pointer (SP) points "7" at reset or returning from RAM back-up mode. It points "0" by executing the first $\mathbf{B M}$ instruction, and the contents of program counter is stored in SKo. When the $\mathbf{B M}$ instruction is executed after eight stack registers are used $((S P)=7),(S P)=0$ and the contents of SK_{0} is destroyed.

Fig 11. Stack registers (SKs) structure

Fig 12. Example of operation at subroutine call

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.
Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCl (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 13).
Make sure that the PCH does not specify after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 14).
Register Y is also used to specify the port D bit position.
When using port D , set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 15).

- Note

Register Z of data pointer is undefined after system is released from reset.
Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

Fig 13. Program counter (PC) structure

Fig 14. Data pointer (DP) structure

Fig 15. SD instruction execution example

PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 16 shows the ROM map of M34571G6.

Table 8 ROM size and pages

Part number	ROM (PROM) size $(\times 10$ bits $)$	Pages
M34571G4	4096 words	$32(0$ to 31$)$
M34571G6	6144 words	$48(0$ to 47$)$
M34571GD	16384 words	$128(0$ to 127$)$

Note 1.Data in pages 64 to 127 can be referred with the TABP p instruction after the SBK instruction is executed.
Data in pages 0 to 63 can be referred with the TABP p instruction after the RBK instruction is executed.

A part of page 1 (addresses 008016 to 00 FF 16) is reserved for interrupt addresses (Figure 17). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.
Page 2 (addresses 010016 to 017 F 16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1 -word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.
ROM pattern (bits 9 to 0) of all addresses can be used as data areas with the TABP p instruction.

ROM Code Protect Address

When selecting the protect bit write by using a serial programmer or selecting protect enabled for writing shipment by Renesas Technology corp., reading or writing from/to QzROM is disabled by a serial programmer.
As for the QzROM product in blank, the ROM code is protected by selecting the protect bit write at ROM writing with a serial programmer.
As for the QzROM product shipped after writing, whether the ROM code protect is used or not can be selected as ROM option setup ("MASK option" written in the mask file converter) when ordering.

Fig 16. ROM map of M34571GD

Fig 17. Page 1 (addresses 008016 to 00FF16) structure

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB $\mathrm{j}, \mathrm{RB} \mathrm{j}$, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM (also, set a value after system returns from RAM back-up).
Table 9 shows the RAM size. Figure 18 shows the RAM map.

- Note

Register Z of data pointer is undefined after system is released from reset.
Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

Table 9 RAM size and pages

Part number	
M34571G4	RAM size
M34571G6	
M34571GD	

Fig 18. RAM map

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

- An interrupt activated condition is satisfied (request flag $=$ "1")
- Interrupt enable bit is enabled (" 1 ")
- Interrupt enable flag is enabled (INTE = " 1 ")

Table 10 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to " 1 " with the EI instruction and disabled when INTE flag is cleared to " 0 " with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to " 0 ," so that other interrupts are disabled until the EI instruction is executed.

(2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.
Table 11 shows the interrupt request flag, interrupt enable bit and skip instruction.
Table 12 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to " 1. ." Each interrupt request flag except the voltage drop detection circuit interrupt request flag is cleared to " 0 " when either;

- an interrupt occurs, or
- the next instruction is skipped with a skip instruction.

The voltage drop detection circuit interrupt request flag cannot be cleared to " 0 " at the state that the activated condition is satisfied.
Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.
Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.
If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 10.

Table 10 Interrupt sources

Priority level	Interrupt source		Interrupt address
	Interrupt name	Activated condition	
1	Voltage drop detection circuit interrupt	when supply voltage goes lower than specified value	Address E in page 1
2	External 0 interrupt	Level change of INT0 pin	Address 0 in page 1
3	External 1 interrupt	Level change of INT1 pin	Address 2 in page 1
4	Timer 1 interrupt	Timer 1 underflow	Address 4 in page 1
5	Timer 2 interrupt	Timer 2 underflow	Address 6 in page 1
6	Timer 3 interrupt	Timer 3 underflow	Address 8 in page 1

Table 11 Interrupt request flag, interrupt enable bit and skip instruction

Interrupt name	Interrupt request flag	Skip instruction	Interrupt enable bit
Voltage drop detection circuit interrupt	VDF	SNZVD	V23
External 0 interrupt	EXF0	SNZ0	V10
External 1 interrupt	EXF1	SNZ1	V11
Timer 1 interrupt	T1F	SNZT1	V12
Timer 2 interrupt	T2F	SNZT2	V13
Timer 3 interrupt	T3F	SNZT3	V20

Table 12 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction
1	Enabled	Invalid
0	Disabled	Valid

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 20).

- Program counter (PC)

An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).

- Interrupt enable flag (INTE)

INTE flag is cleared to " 0 " so that interrupts are disabled.

- Interrupt request flag

Only the request flag for the current interrupt source is cleared to " 0 " (the voltage drop detection circuit interrupt request flag is excluded)

- Data pointer, carry flag, skip flag, registers A and B

The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address. Use the RTI instruction to return from an interrupt service routine.
Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 19)

Fig 19. Program example of interrupt processing

Fig 20. Internal state when interrupt occurs

Fig 21. Interrupt system diagram

(6) Interrupt control registers

- Interrupt control register V1

Interrupt enable bits of external 0 , external 1 , timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A.

- Interrupt control register V2

The voltage drop detection circuit interrupt enable bit and timer 3 interrupt enable bit are assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A .

Table 13 Interrupt control registers

Interrupt control register V1		at reset : 00002		at RAM back-up :00002	R/W
TAV1/TV1A					

\left.| Interrupt control register V2 | | at reset : 00002 | | R/W | at RAM back-up :00002 |
| :--- | :--- | :---: | :--- | :--- | :--- |$\right]$| TAV2/TV2A |
| :--- |

(7) Interrupt sequence

Interrupts only occur when the respective INTE flag, interrupt enable bits (V10-V13, V20, V23), and interrupt request flag are " 1 ." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 22).

Fig 22. Interrupt sequence

EXTERNAL INTERRUPTS

The 4571 Group has the external 0 interrupt and external 1 interrupt. An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).
The external interrupt can be controlled with the interrupt control registers I1 and I2.

Table 14 External interrupt activated conditions

Name	Input pin	Activated condition	Valid waveform selection bit
External 0 interrupt	P20/INT0	When the next waveform is input to P2o/INT0 pin - Falling waveform ("H" \rightarrow "L'") - Rising waveform ("L" \rightarrow "H") - Both rising and falling waveforms	$\begin{array}{\|l\|} \hline \mathrm{I} 11 \\ \mathrm{I} 2 \end{array}$
External 1 interrupt	P21/INT1	When the next waveform is input to P21/INT1 pin - Falling waveform ("H" \rightarrow "L") - Rising waveform ("L" \rightarrow "H") - Both rising and falling waveforms	$\begin{aligned} & \mathrm{I} 21 \\ & \mathrm{I} 22 \end{aligned}$

Note 1: -- $\mid---$ This symbol represents a parasitic diode on the port.
2 : When $I X_{2}=0(X=0$ or 1$)$ is 0 , " L " level is detected
When $I X_{2}$ is 1 , " H " level is detected.
3 : When $I X_{2}$ is 0 , falling edge is detected.
When I_{2} is 1 , rising edge is detected.
Fig 23. External interrupt circuit structure

(1) External 0 interrupt request flag (EXFO)

External 0 interrupt request flag (EXF0) is set to " 1 " when a valid waveform is input to P20/INT0 pin.
The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 22).
The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to " 0 " when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 0 interrupt activated condition

External 0 interrupt activated condition is satisfied when a valid waveform is input to P20/INT0 pin.
The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.
(1) Set the bit 3 of register I1 to " 1 " for the INT0 pin to be in the input enabled state.
(2) Select the valid waveform with the bits 1 and 2 of register I1.
(3) Clear the EXF0 flag to " 0 " with the SNZ0 instruction.
(4) Set the NOP instruction for the case when a skip is performed with the SNZ0 instruction.
(5) Set both the external 0 interrupt enable bit (V10) and the INTE flag to " 1. "
The external 0 interrupt is now enabled. Now when a valid waveform is input to the P20/INT0 pin, the EXF0 flag is set to " 1 " and the external 0 interrupt occurs.

(2) External 1 interrupt request flag (EXF1)

External 1 interrupt request flag (EXF1) is set to " 1 " when a valid waveform is input to $\mathrm{P} 21 / \mathrm{INT} 1$ pin.
The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 22).
The state of EXF1 flag can be examined with the skip instruction (SNZ1). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF1 flag is cleared to " 0 " when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 1 interrupt activated condition

External 1 interrupt activated condition is satisfied when a valid waveform is input to $\mathrm{P} 21 / \mathrm{INT} 1$ pin.
The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 1 interrupt is as follows.
(1) Set the bit 3 of register I2 to " 1 " for the INT1 pin to be in the input enabled state.
(2) Select the valid waveform with the bits 1 and 2 of register I2.
(3) Clear the EXF1 flag to " 0 " with the SNZ1 instruction.
(4) Set the NOP instruction for the case when a skip is performed with the SNZ1 instruction.
(5) Set both the external 1 interrupt enable bit (V11) and the INTE flag to " 1. ."
The external 1 interrupt is now enabled. Now when a valid waveform is input to the P21/INT1 pin, the EXF1 flag is set to " 1 " and the external 1 interrupt occurs.

(3) External interrupt control registers

(1) Interrupt control register I1

Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A.
(2) Interrupt control register I2

Register I2 controls the valid waveform for the external 1 interrupt. Set the contents of this register through register A with the TI2A instruction. The TAI2 instruction can be used to transfer the contents of register I2 to register A.

Table 15 External interrupt control register

Interrupt control register I1		at reset : 00002		at RAM back-up : state retained	R/W TAI1/TI1A
113	INT0 pin input control bit (Note 2)	0	INT0 pin input disabled		
		1	INT0 pin input enabled		
112	Interrupt valid waveform for INTO pin/ return level selection bit (Note 2)	0	Falling waveform ("L" level of INT0 pin is recognized with the SNZIO instruction)/"L" level		
		1	Rising waveform ("H" level of INTO pin is recognized with the SNZIO instruction)/"H" level		
111	INTO pin edge detection circuit control bit	0	One-sided edge detected		
		1	Both edges detected		
110	INTO pin timer 1 control enable bit	0	Timer 1 disabled		
		1	Timer 1 enabled		

Interrupt control register I2		at reset : 00002		at RAM back-up : state retained	R/W TAI2/TI2A
123	INT1 pin input control bit (Note 3)	0	INT0 pin input disabled		
		1	INT0 pin input enabled		
122	Interrupt valid waveform for INT1 pin/ return level selection bit (Note 3)	0	Falling waveform ("L" level of INT0 pin is recognized with the SNZI1 instruction)/"L" level		
		1	Rising waveform ("H" level of INT0 pin is recognized with the SNZI1 instruction)/"H" level		
121	INT1 pin edge detection circuit control bit	0	One-sided edge detected		
		1	Both edges detected		
120	Not used	0	This bit has no function, but read/write is enabled.		
		1			

Note 1."R" represents read enabled, and "W" represents write enabled.
Note 2. When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set.
Note 3 . When the contents of I 22 and I 23 are changed, the external interrupt request flag EXF1 may be set.

(4) Notes on interrupts

(1) Bit 3 of register I1

When the input of the P20/INT0 pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

- Depending on the input state of the P20/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to (1) in Figure 24) and then, change the bit 3 of register I1. In addition, execute the SNZ0 instruction to clear the EXF0 flag to " 0 " after executing at least one instruction (refer to (2) in Figure 24).
Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to (3) in Figure 24).

Fig 24. External 0 interrupt program example-1
(2) Bit 3 of register I1

When the bit 3 of register I1 is cleared to " 0 ", the RAM back-up mode is selected and the input of INT0 pin is disabled, be careful about the following notes.

- When the INT0 pin input is disabled (register I13 = " 0 "), set the key-on wakeup of INT0 pin to be invalid (register L10 $=$ " 0 ") before system enters to the RAM back-up mode. (refer to (1) in Figure 25).

Fig 25. External 0 interrupt program example-2
(3) Bit 2 of register I1

When the interrupt valid waveform of the P20/INT0 pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

- Depending on the input state of the P20/INT0 pin, the external 1 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to " 0 " (refer to (1) in Figure 26) and then, change the bit 2 of register I1 is changed.
In addition, execute the SNZ0 instruction to clear the EXF0 flag to " 0 " after executing at least one instruction (refer to (2) in Figure 26).
Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to (3) in Figure 26).

Fig 26. External 0 interrupt program example-3
(4) Bit 3 of register I2

When the input of the $\mathrm{P} 21 / \mathrm{INT} 1$ pin is controlled with the bit 3 of register I2 in software, be careful about the following notes.

- Depending on the input state of the $\mathrm{P} 21 / \mathrm{INT} 1$ pin, the external 1 interrupt request flag (EXF1) may be set when the bit 3 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to (1) in Figure 27) and then, change the bit 3 of register I2. In addition, execute the SNZ1 instruction to clear the EXF1 flag to " 0 " after executing at least one instruction (refer to (2) in Figure 27).
Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to (3) in Figure 27).

:	
LA 4	; ($\times \times 0 \times 2$)
TV1A	; The SNZ1 instruction is valid (1)
LA 8	; (1×××2)
TI1A	; Control of INT1 pin input is changed
NOP	.. (2)
SNZO	; The SNZ1 instruction is executed (EXF1 flag cleared)
NOP	... (3)
x : these bits are not used here.	

Fig 27. External 1 interrupt program example-1
(5) Bit 3 of register I2

When the bit 3 of register I2 is cleared to " 0 ", the RAM back-up mode is selected and the input of INT1 pin is disabled, be careful about the following notes.

- When the INT1 pin input is disabled (register I23 = " 0 "), set the key-on wakeup of INT1 pin to be invalid (register L20 $=$ " 0 ") before system enters to the RAM back-up mode. (refer to (1) in Figure 28)

$:$	
LA 0	$;(\times 0 \times \times 2)$
TL1A	$;$ INT1 key-on wakeup disabled $\ldots . . .(1)$
DI	
EPOF	
POF	RAM back-up
\vdots	
\times : these bits are not used here.	

Fig 28. External 1 interrupt program example-2
(6) Bit 2 of register I2

When the interrupt valid waveform of the P21/INT1 pin is changed with the bit 2 of register I2 in software, be careful about the following notes.

- Depending on the input state of the P21/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to " 0 " (refer to (1) in Figure 29) and then, change the bit 2 of register I2 is changed.
In addition, execute the SNZ1 instruction to clear the EXF1 flag to " 0 " after executing at least one instruction (refer to (2) in Figure 29).
Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to (3) in Figure 29).

Fig 29. External 1 interrupt program example-3
\vdots

LA	; ($\times \times 0 \times 2$)
TV1A	; The SNZ1 instruction is valid(1)
LA 12	; (1×××2)
TI1A	; Interrupt valid waveform is changed
NOP	..(2)
SNZO	; The SNZ1 instruction is executed (EXF1 flag cleared)

NOP
:
x : these bits are not used here.

TIMERS

The 4571 Group has the following timers.

- Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n . When it underflows (count to $\mathrm{n}+1$), a timer interrupt request flag is set to " 1 ," new data is loaded from the reload register, and count continues (auto-reload function).

- Fixed dividing frequency timer The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to " 1 " after every n count of a count pulse.

Fig 30. Auto-reload function

The 4571 Group timer consists of the following circuits.

- Prescaler : 8-bit programmable timer
- Timer 1:8-bit programmable timer
- Timer $2: 8$-bit programmable timer
- Timer 3:8-bit programmable timer
- Watchdog timer: 16-bit fixed frequency timer
(Timers 1, 2 and 3 have the interrupt function, respectively)

Prescaler, timer 1, timer 2 and timer 3 can be controlled with the timer control registers PA, W1, W2, W3 and W5. The watchdog timer is a free counter which is not controlled with the control register.
Each function is described below.

Table 16 Function related timers

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register
Prescaler	8-bit programmable binary down counter	- Instruction clock (INSTCK) - Instruction clock divided by 4 (INSTCK/4)	1 to 256	- Timer 1 count source - Timer 2 count source - Timer 3 count source	PA
Timer 1	8-bit programmable binary down counter (link to INT0 input) (carrier wave output autocontrol function)	- PWM signal (PWMOUT) - Prescaler output (ORCLK) - CNTRO input (CNTROIN) - System clock (STCK)	1 to 256	- Timer 2 count source - CNTRO output - Carrier wave output autocontrol - Timer 1 interrupt	$\begin{aligned} & \hline \text { W1 } \\ & \text { W5 } \end{aligned}$
Timer 2	8-bit programmable binary down counter	- PWM signal (PWMOUT) - Timer 1 underflow (T1UDF) - Prescaler output (ORCLK) - System clock (STCK)	1 to 256	- CNTRO output - Timer 2 interrupt	$\begin{aligned} & \text { W2 } \\ & \text { W5 } \end{aligned}$
Timer 3	8-bit programmable binary down counter (with carrier wave generation function)	- XIN input - Prescaler output divided by 2 (ORCLK/2)	1 to 256	- Timer 1 count source - Timer 2 count source - CNTR1 output - Timer 3 interrupt	$\begin{aligned} & \text { W1 } \\ & \text { W3 } \\ & \text { W5 } \end{aligned}$
Watchdog timer	16-bit fixed dividing frequency	- Instruction clock (INSTCK)	65536	- System reset (counting twice) - Decision of flag WDF1	-

Fig 31. Timers structure (1)

T2UDF: Timer 2 underflow signal
ORCLK: Prescaler output

Data is set automatically from each reload register
when timer underflows (auto-reload function).

Note 1: When the CNTR1 output function is valid (W33="1"), the value is auto-reloaded alternately from reload register R3L and R3H every timer 3 underflow.
When the CNTR1 function is invalid (W33="0"), the value is auto-reloaded from reload register R3L only.
2: Flag WDF1 is cleared to " 0 " and the next instruction is skipped when the WRST instruction is executed while flag WDF1 = " 1 ".
The WRST instruction is equivalent to the NOP instruction while flag WDF1 = " 0 ".
3: Flag WEF is cleared to " 0 " and watchdog timer reset does not occur when the DWDT instruction and WRST instruction are executed continuously.
4: The WEF flag is set to " 1 " at system reset or RAM back-up mode.
Fig 32. Timers structure (2)

Table 17 Timer control registers

Timer control register PA		at reset : 002		at RAM back-up : 002	$\begin{gathered} \text { W } \\ \text { TPAA } \end{gathered}$
PA1	Prescaler count source selection bit	0	Instruction clock (INSTCK)		
		1	Instruction clock divided by 4 (INSTCK/4)		
PAo	Prescaler control bit	0	Stop (state initialized)		
		1	Operating		

Timer control register W1		at reset :00002		at RAM back-up : state retained	R/W
TAW1/TW1A					

Timer control register W2		at reset : 00002		at RAM back-up : state retained	$\begin{gathered} \hline \text { R/W } \\ \text { TAW2/TW2A } \end{gathered}$
W23	CNTR0 pin function selection bit	0 Timer	Timer 1 underflow signal divided by 2 output		
		1 Time	Timer 2 underflow signal divided by 2 output		
W22	Timer 2 control bit	0 Stop	Stop (state retained)		
		1 Ope	Operating		
W21	Timer 2 count source selection bits	W21 W20		Count source	
		00	PWM signa	OUT)	
		01	Prescaler out	(ORCLK)	
W20		10	System clock		
		11	Timer 1 und	signal (T1UDF)	

Timer control register W3		at reset :00002		at RAM back-up :00002	R/W
W33	CNTR1 pin output control bit	0	CNTR1 pin output invalid		
		1	CNTR1 pin output valid		
W32	PWM signal "H" interval expansion function control bit	0	PWM signal "H" interval expansion function invalid		
	Timer 3 control bit	PWM signal "H" interval expansion function valid			
W30		0	Stop (state retained)		
		1	Operating		

Timer control register W5		at reset : 00002		at RAM back-up : state retained	R/W
TAW5/TW5A					

Note 1."R" represents read enabled, and "W" represents write enabled.
Note 2. This function is valid only when the INT0 pin/timer 1 control is enabled ($110=" 1 "$) and the timer 1 count start synchronous circuit is selected (W53 ="1").
Note 3.This function is valid only when the INT0 pin/timer 1 control is enabled ($110=$ " 1 ").

(1) Timer control registers

- Timer control register PA

Register PA controls the count operation and count source of prescaler. Set the contents of this register through register A with the TPAA instruction.

- Timer control register W1

Register W1 controls the count operation and count source of timer 1, and timer 1 count auto-stop circuit. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

- Timer control register W2

Register W2 controls the count operation and count source of timer 2, and CNTR0 pin output signal function. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

- Timer control register W3

Register W3 controls timer 3 count source, timer 3 count operation, CNTR1 pin output and PWM signal "H" interval expansion function. Set the contents of this register through register A with the TW3A instruction. The TAW3 instruction can be used to transfer the contents of register W3 to register A.

- Timer control register W5

Register W5 controls the input count edge of CNTR0 pin, the timer 1 count start synchronous circuit, CNTR1 pin output auto-control circuit and the D4/CNTR1 pin function. Set the contents of this register through register A with the TW5A instruction. The TAW5 instruction can be used to transfer the contents of register W5 to register A.

(2) Prescaler

Prescaler is an 8-bit binary down counter with the prescaler reload register RPS. Data can be set simultaneously in prescaler and the reload register RPS with the TPSAB instruction. Data can be read from reload register RPS with the TABPS instruction.
Stop counting and then execute the TPSAB or TABPS instruction to read or set prescaler data.
Prescaler starts counting after the following process;
(1) set data in prescaler, and
(2) set the bit 0 of register PA to " 1. ."

When a value set in reload register RPS is n, prescaler divides the count source signal by $\mathrm{n}+1(\mathrm{n}=0$ to 255$)$.
Count source for prescaler can be selected the instruction clock (INSTCK) or the instruction clock (INSTCK)/4.
Once count is started, when prescaler underflows (the next count pulse is input after the contents of prescaler becomes " 0 "), new data is loaded from reload register RPS, and count continues (auto-reload function).
The output signal (ORCLK) of prescaler can be used for timer 1 and 2 count sources.

(3) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with a timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register R1 with the TR1AB instruction. Data can be read from timer 1 with the TAB1 instruction.
Stop counting and then execute the T1AB or TAB1 instruction to read or set timer 1 data.
When executing the TR1AB instruction to set data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.
Timer 1 starts counting after the following process;
(1) set data in timer 1
(2) set count source by bits 0 and 1 of register W1, and
(3) set the bit 2 of register W1 to " 1. ."

When a value set in reload register R 1 is n , timer 1 divides the count source signal by $\mathrm{n}+1(\mathrm{n}=0$ to 255$)$.
Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes " 0 "), the timer 1 interrupt request flag (T1F) is set to " 1 ," new data is loaded from reload register R1, and count continues (auto-reload function).
After timer 1 control by INT0 pin is enabled by setting the bit 0 of register I1 to " 1 ", INT0 pin input can be used as the start trigger for timer 1 count operation by setting the bit 3 of register W5 to " 1 ".
Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 3 of register W 1 to " 1 ."
The timer 1 underflow signal divided by 2 can be output from the CNTR0 pin by setting the bit 0 of register W5 to " 1 " and bit 3 of register W2 to " 0 ".

(4) Timer 2 (interrupt function)

Timer 2 is an 8 -bit binary down counter with timer 2 reload register (R2). Data can be set simultaneously in timer 2 and the reload register R2 with the T2AB instruction. Data can be read from timer 2 with the TAB2 instruction.
Stop counting and then execute the T2AB or TAB2 instruction to read or set timer 2 data.
Timer 2 starts counting after the following process;
(1) set data in timer 2
(2) set count source by bits 0 and 1 of register W2, and
(3) set the bit 2 of register W2 to " 1. ."

When a value set in reload register R2 is n, timer 2 divides the count source signal by $\mathrm{n}+1(\mathrm{n}=0$ to 255$)$.
Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes " 0 "), the timer 2 interrupt request flag (T2F) is set to " 1 ," new data is loaded from reload register R2, and count continues (auto-reload function).
The timer 2 underflow signal divided by 2 can be output from the CNTR0 pin by setting the bit 0 of register W5 to " 1 " and bit 3 of register W2 to " 1 ".

(5) Timer 3 (interrupt function)

Timer 3 is an 8-bit binary down counter with two timer 3 reload registers (R3L, R3H). Data can be set simultaneously in timer 3 and the reload register R3L with the T3AB instruction. Data can be set in the reload register R 3 H with the T3HAB instruction. The contents of reload register R 3 L set with the T 3 AB instruction can be set to timer 3 again with the T3R3L instruction. Data can be read from timer 3 with the TAB3 instruction.
Stop counting and then execute the T3AB or TAB3 instruction to read or set timer 3 data.
When executing the T3HAB instruction to set data to reload register R 3 H while timer 3 is operating, avoid a timing when timer 3 underflows.
Timer 3 starts counting after the following process;
(1) set data in timer 3
(2) set count source by bit 0 of register W3, and
(3) set the bit 1 of register W3 to " 1 ."

When a value set in reload register R3L is n and a value set in reload register R 3 H is m , timer 3 divides the count source signal by $n+1$ or $m+1(n=0$ to $255, m=0$ to 255$)$.
<Bit 3 of register W3 = " 0 " (CNTR1 pin output invalid)>
Once count is started, when timer 3 underflows (the next count pulse is input after the contents of timer 3 becomes " 0 "), the timer 3 interrupt request flag (T3F) is set to " 1 ," new data is loaded from reload register R3L, and count continues (autoreload function).
<Bit 3 of register $\mathrm{W} 3=$ " 1 " (CNTR1 pin output valid)>
Timer 3 generates the PWM signal of the "L" interval set as reload register R3L, and the "H" interval set as reload register R3H. The PWM (PWMOD) signal generated by timer 3 is output from CNTR1 pin.
When bit 2 of register W3 is set to " 1 " at this time, timer 3 extends the interval set to reload register R3H for a half period of count source. When a value set in reload register R3H is n, timer 3 divides the count source signal by $m+1.5$ ($\mathrm{m}=1$ to 255).
When this function is used, set " 1 " or more to reload register R3H.
When bit 1 of register W5 is set to " 1 ", the PWM signal output to CNTR1 pin is switched to valid/invalid each timer 1 underflow. However, when timer 3 is stopped, this function is canceled.
Even when bit 1 of a register W3 is cleared to " 0 " in the " H " interval of PWM signal, timer 3 does not stop until it next timer 3 underflow.
When bit 1 of register W3 is cleared to " 0 " in order to stop timer 3 while the PWM output is used, avoid a timing when timer 3 underflows.
If these timings overlap, a hazard may occur in a CNTR1 output waveform.

(6) Count start synchronization circuit (timer 1)

Timer 1 has the count start synchronous circuit which synchronizes the input of INT0 pin, and can start the timer count operation.
Timer 1 count start synchronous circuit function can be selected after timer 1 control by INT0 pin is enabled by setting the bit 0 of register I1 to " 1 " and its function is selected by setting the bit 3 of register W5 to " 1 ".
When timer 1 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to timer by inputting valid waveform to INT0 pin.
The valid waveform of INT0 pin to set the count start synchronous circuit is the same as the external interrupt activated condition.
Once set, the count start synchronous circuit is cleared by clearing the bit I10 to " 0 " or system reset.
However, when the count auto-stop circuit is selected, the count start synchronous circuit is cleared (auto-stop) at the timer 1 underflow.

(7) Count auto-stop circuit (timer 1)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.
The count auto-stop circuit is valid by setting the bit 3 of register W1 to " 1 ". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.
This function is valid only when the timer 1 count start synchronous circuit is selected.

(8) Timer input/output pin (D4/CNTRO)

CNTR0 pin is used to input the timer 1 count source and output the timer 1 or timer 2 underflow signal/ 2 .
The D4/CNTR0 pin function can be selected by bit 0 of register W5.
The output signal can be selected by bit 0 of register W2.
When the CNTR0 input is selected for timer 1 count source, timer 1 counts the falling or rising waveform of CNTR0 input. The count edge is selected by bit 2 of register W5.

(9) PWM signal output function (C/CNTR1, timer 1, timer 2)

The C/CNTR1 pin is also used to output the PWM signal generated by timer 3 .
When the bit 3 of register W3 is set to " 1 ", the PWM signal can be output from the C/CNTR1 pin. In this time, set the output latch of port C to " 1 ."

(10)Timer interrupt request flags (T1F, T2F, T3F)

Each timer interrupt request flag is set to " 1 " when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2, SNZT3).
Use the interrupt control register V1, V2 to select an interrupt or a skip instruction.
An interrupt request flag is cleared to " 0 " when an interrupt occurs or when the next instruction is skipped with a skip instruction.

(11) Precautions

- Prescaler

Stop prescaler counting and then execute the TABPS instruction to read its data.
Stop prescaler counting and then execute the TPSAB instruction to write data to prescaler.
Stop prescaler counting to change its count source.

- Timer count source

Stop timer 1, 2 or 3 counting to change its count source.

- Reading the count value

Stop timer 1, 2 or 3 counting and then execute the TAB1, TAB2 or TAB3 instruction to read its data.

- Writing to the timer

Stop timer 1, 2 or 3 counting and then execute the T 1 AB , T2AB, T3AB or T3R3L instruction to write data to timer.

- Writing to reload register

In order to write a data to the reload register R1 while the timer 1 is operating, execute the TR1AB instruction except a timing of the timer 1 underflow.
In order to write a data to the reload register R 3 H while the timer 3 is operating, execute the T3HAB instruction except a timing of the timer 3 underflow.

- PWM signal

If the timer 3 count stop timing and the timer 3 underflow timing overlap during output of the PWM signal, a hazard may occur in the PWM output waveform.
When " H " interval expansion function of the PWM signal is used, set " 1 " or more to reload register R3H.
Set the port C output latch to " 0 " to output the PWM signal from C/CNTR1 pin.

- Prescaler, timer 1, timer 2 and timer 3 count start timing and count time when operation starts
Count starts from the first rising edge of the count source (2) in Figure 33 after prescaler and timer operations start (1) in Figure 33.
Time to first underflow (3) in Figure 33 is shorter (for up to 1 period of the count source) than time among next underflow (4) in Figure 33 by the timing to start the timer and count source operations after count starts.
When selecting CNTR0 input as the count source of timer 1 , timer 1 operates synchronizing with the count edge (falling edge or rising edge) of CNTR0 input selected by software.

Fig 33. Timer count start timing and count time when operation starts

Fig 34. Timer 3 operation example

- CNTR1 output auto-control circuit operation example $1($ W33 = " 1 ", W51 = " 1 " $)$

* When the CNTR1 output auto-control circuit is selected, valid/invalid of CNTR1 output is repeated every timer 1 underflows.
- CNTR1 output auto-control circuit operation example 2 (W33 = "1", W51 = "1")

(1) When the CNTR1 output auto-control function is not selected while the CNTR1 output is invalid, CNTR1 output invalid state is retained
(2) When the CNTR1 output auto-control function is not selected while the CNTR1 output is valid,

CNTR1 output valid state is retained.
(3) When the timer 1 is stopped, the CNTR1 output auto-control function becomes invalid.

Fig 35. CNTR1 output auto-control function by timer 1

Timer 3 count start timing (R3L = "0216", R3H = "0216", W33 = " 1 ")

Timer 3 count stop timing (R3L = "0216", R3H = "0216", W33 = " 1 ")
Machine cycle
Timer 3 count source (XIN input)
Register W31
Timer 3 count value (reload register)

Timer 3 underflow signal
PWM signal

Notes 1: If the timer count stop timing and the timer underflow timing overlap while the CNTR1 pin output is valid (W33="1"), a hazard may occur in the PWM signal waveform.
2: When timer count is stopped during " H " interval of the PWM signal, timer is stopped after the end of the " H " output interval.

Fig 36. Timer count start/stop timing

WATCHDOG TIMER

Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).
The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset.
After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches " 000016 ," the next count pulse is input), the WDF1 flag is set to "1." If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to " 1 ," and the $\overline{\text { RESET }}$ pin outputs " L " level to reset the microcomputer. Execute the WRST instruction at each period of 65534 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally.

When the WEF flag is set to " 1 " after system is released from reset, the watchdog timer function is valid.
When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to " 0 " and the watchdog timer function is invalid.
The WEF flag is initialized to " 1 " at system reset or RAM backup mode.
The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is " 1 ", the WDF1 flag is cleared to " 0 " and the next instruction is skipped.
When the WRST instruction is executed while the WDF1 flag is " 0 ", the next instruction is not skipped.
The skip function of the WRST instruction can be used even when the watchdog timer function is invalid.

Value of 16-bit timer (WDT)

(1) After system is released from reset (= after program is started), timer WDT starts count down.
(2) When timer WDT underflow occurs, WDF1 flag is set to " 1 ".
(3) When the WRST instruction is executed while the WDF1 flag is " 1 ", WDF1 flag is cleared to " 0 ", the next instruction is skipped.
(4) When timer WDT underflow occurs while WDF1 flag is " 1 ", WDF2 flag is set to " 1 " and the watchdog reset signal is output.
(5) The output transistor of RESET pin is turned "ON" by the watchdog reset signal and system reset is executed.

Note: The number of count is equal to the number of machine cycle because the count source of watchdog timer is the instruction clock.

Fig 37. Watchdog timer function

When the watchdog timer is used, clear the WDF1 flag at the period of 65534 machine cycles or less with the WRST instruction.
When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 38).
The watchdog timer is not stopped with only the DWDT instruction.
The contents of WDF1 flag and timer WDT are initialized at the RAM back-up mode.
When using the watchdog timer and the RAM back-up mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the RAM back-up state. Also, set the NOP instruction after the WRST instruction, for the case when a skip is performed with the WRST instruction (refer to Figure 39).

Fig 38. Program example to start/stop watchdog timer

```
    \vdots
WRST ; WDF1 flag cleared
NOP
DI ; Interrupt disabled
EPOF ; POF instruction enabled
POF ; RAM back-up mode
    \downarrow
Oscillation stop
    \vdots
```

Fig 39. Program example when using the watchdog timer

RESET FUNCTION

System reset is performed by the followings:

- "L" level is applied to the RESET pin externally,
- System reset instruction (SRST) is executed,
- Reset occurs by watchdog timer,
- Reset occurs by built-in power-on reset
- Reset occurs by voltage drop detection circuit

Then when " H " level is applied to $\overline{\text { RESET }}$ pin, software starts from address 0 in page 0 .

(1) RESET pin input

System reset is performed certainly by applying "L" level to $\overline{\text { RESET }}$ pin for 1 machine cycle or more when the following condition is satisfied;
the value of supply voltage is the minimum value or more of the recommended operating conditions.

Notes 1: --|<---- This symbol represents a parasitic diode. 2: Applied potential to RESET pin must be VDD or less.

Fig 40. Structure of reset pin and its peripherals

Fig 41. RESET pin input waveform and reset release timing

(2) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, set the time for the supply voltage to rise from 0 V to the minimum voltage of recommended operating conditions to 100μ s or less.
If the rising time exceeds $100 \mu \mathrm{~s}$, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

(3) System reset instruction (SRST)

By executing the SRST instruction, "L" level is output to $\overline{\text { RESET }}$ pin and system reset is performed.

Fig 42. Power-on reset operation

Table 18 Port state at reset

Name	Function	State
D0-D3	D0-D3	High-impedance (Notes 1, 2)
D4/CNTR0	D4	High-impedance (Note 1)
P00-P03	P00-P03	High-impedance (Notes 1, 3)
P10-P13	P10-P13	High-impedance (Notes 1, 3)
P20/INT0, P21/INT1	P20, P21	High-impedance (Notes 1, 3)
P30, P31	P30, P31	High-impedance (Notes 1, 2)
C/CNTR1	C/CNTR1	(Vss)
K	K	High-impedance

Note 1. Output latch is set to "1."
Note 2.The output structure is N -channel open-drain.
Note 3.Pull-up transistor is turned OFF.

(4) Internal state at reset

Figure 43 shows internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure 43 are undefined, so set the initial value to them.

Fig 43. Internal state at reset

VOLTAGE DROP DETECTION CIRCUIT

The built-in voltage drop detection circuit is used to set the voltage drop detection circuit interrupt request flag (VDF) or to perform system reset.
The voltage drop detection circuit stops at RAM back-up mode.

Notes 1: -- \dagger---- This symbol represents a parasitic diode. 2: Applied potential to RESET pin must be VDD or less.

Fig 44. Voltage drop detection reset circuit

(1) Voltage drop detection circuit interrupt request flag (VDF)

Voltage drop detection circuit interrupt request flag (VDF) is set to " 1 " when the supply voltage goes the defined value (Vint) or less. Moreover, voltage drop detection circuit interrupt request flag (VDF) is cleared to " 0 " when the supply voltage goes the defined value (VINT) or more. The state of the interrupt request flag can be examined with the skip instruction (SNZVD). Use the interrupt control register V2 to select an interrupt or a skip instruction. Unlike other interrupt request flags, even when the interrupt occurs or the skip instruction is executed, the voltage drop detection circuit interrupt request flag is not cleared to " 0 ".

(2) Voltage drop detection circuit reset

System reset is performed when the supply voltage goes the defined value (VRST) or less ("L" level is not output to $\overline{\text { RESET }}$ pin.). However, unlike the normal system reset, the oscillation circuit is stopped.
When the supply voltage goes the defined value (VRST) or more, the oscillation circuit goes to be in the operating enabled state and system reset is released.

Fig 45. Voltage drop detection circuit operation waveform

Fig 46. Vdd and Vrst

(3) Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.
When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and rises again, depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 46);
supply voltage does not fall below to VRST, and its voltage rises again with no reset.
In such a case, please design a system which supply voltage is once reduced below to VRST and re-goes up after that.

RAM BACK-UP MODE

The 4571 Group has the RAM back-up mode.
When the POF instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state.
The POF instruction is equal to the NOP instruction when the EPOF instruction is not executed before the POF instruction.
As oscillation stops retaining RAM, the function of reset circuit and states at RAM back-up mode, current dissipation can be reduced without losing the contents of RAM.
Table 19 shows the function and states retained at RAM back-up. Figure 47 shows the state transition.

(1) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the power down flag (P) with the SNZP instruction.

(2) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the EPOF instruction and POF instruction continuously, the CPU starts executing the program from address 0 in page 0 . In this case, the P flag is " 1 ."

(3) Cold start condition

The CPU starts executing the program from address 0 in page 0 when;

- "L" level is applied to $\overline{\operatorname{RESET}}$ pin,
- system reset (SRST) is performed,
- reset by watchdog timer is performed,
- reset by the built-in power-on reset circuit is performed, or
- reset by the voltage drop detection circuit is performed.

In this case, the P flag is " 0 ."

Table 19 Functions and states retained at RAM back-up

Function	RAM back-up
Program counter (PC), stack pointer (SP) (Table 2), carry flag (CY), registers A, B	\times
Contents of RAM	O
Interrupt control registers V1, V2	\times
Interrupt control registers I1, I2	O
Clock control register MR	\times
Timer 1, Timer 2, Timer 3 function	$\times($ Note 4)
Watchdog timer function	\times
Timer control registers PA, W3	O
Timer control registers W1, W2, W5	(Note 5)
Voltage drop detection circuit	O
Port level	O
Key-on wakeup control registers K0 to K2, L1	O
Pull-up control registers PU0 to PU2	\times
Port output structure control registers FR0, FR1	\times
External interrupt request flags (EXF0, EXF1)	\times
Timer interrupt request flags (T1F, T2F, T3F)	(Note 3)
Voltage drop detection circuit interrupt request flag (VDF)	\times
Interrupt enable flag (INTE)	$\times($ Note 4)
Watchdog timer flags (WDF1, WDF2)	$\times($ Note 4)
Watchdog timer enable flag (WEF)	$\left(\begin{array}{l}\text { (Wote }\end{array}\right.$

Note 1."O" represents that the function can be retained, and " x " represents that the function is initialized.
Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.
Note 2. The stack pointer (SP) points the level of the stack register and is initialized to "7" at RAM back-up.
Note 3. The state of the timer is undefined.
Note 4.Initialize the watchdog timer flag WDF1 with the WRST instruction, and then set the system to be in the RAM back-up mode.
Note 5.The voltage drop detection circuit is invalid.
Note 6.C/CNTR pin outputs "L" level. Other ports retain their output levels.

(4) Return signal

An external wakeup signal is used to return from the RAM backup mode because the oscillation is stopped. Table 20 shows the return condition for each return source.

(5) Control registers

- Key-on wakeup control register K0

Register K0 controls the port P0 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the contents of register K0 to register A.

- Key-on wakeup control register K1

Register K1 controls the port P1 key-on wakeup function. Set the contents of this register through register A with the TK1A instruction. In addition, the TAK1 instruction can be used to transfer the contents of register K1 to register A.

- Key-on wakeup control register K2

Register K2 controls the ports K and P2 key-on wakeup function. Set the contents of this register through register A with the TK2A instruction. In addition, the TAK2 instruction can be used to transfer the contents of register K2 to register A.

- Key-on wakeup control register L1

Register L1 controls the selection of the selection of the INT0 pin return condition and INT0 pin key-on wakeup function and the selection of the INT1 pin return condition and INT1 pin key-on wakeup function. Set the contents of this register through register A with the TL1A instruction. In addition, the TAL1 instruction can be used to transfer the contents of register L 1 to register A.

- Pull-up control register PU0

Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPU0A instruction. In addition, the TAPU0 instruction can be used to transfer the contents of register PU0 to register A.

- Pull-up control register PU1

Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction. In addition, the TAPU1 instruction can be used to transfer the contents of register PU1 to register A.

- Pull-up control register PU2

Register PU2 controls the ON/OFF of the ports P2 pull-up transistor. Set the contents of this register through register A with the TPU2A instruction. In addition, the TAPU2 instruction can be used to transfer the contents of register PU2 to register A.

- Interrupt control register I1

Register I1 controls the valid waveform/level of the INT0 pin and the input control of INT0 pin. Set the contents of this register through register A with the TI1A instruction. In addition, the TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 20 Return source and return condition

Return source		Return condition	Remarks
	Port P00-PO3 Port P10-P13 Port P20, P21 Port K	Return by an external falling edge ("H" \rightarrow "L") input.	The key-on wakeup function can be selected by one port unit. Set the port using the key-on wakeup function to "H" level before going into the RAM back-up state.
	INT pin	Return by an external "H" level or "L" level input, or falling edge ("H" \rightarrow "L") or rising edge ("L" \rightarrow "H"). When the return level is input, the EXF0 flag is not set.	The key-on wakeup function can be selected by one port unit. Select the return level ("L" level or "H" level) with the register 11 and return condition (level or edge) with the register L1 according to the external state before going into the RAM back-up state.

Notes 1: Microcomputer starts its operation after counting $f\left(X_{\text {IN }}\right) 5400$ to 5424 times from system is released from reset. 2: Continuous execution of the EPOF instruction and the POF instruction is required to go into the RAM back-up state.
3: The operation mode also returns to the initial state (internal frequency divided by 4 mode) (register MR initialized).

Fig 47. State transition

Fig 48. Set source and clear source of the P flag

Fig 49. Start condition identified example using the SNZP instruction

Table 21 Key-on wakeup control registers

Key-on wakeup control register K0		at reset : 00002		at RAM back-up : state retained	$\begin{gathered} \text { R/W } \\ \text { TAKO/TKOA } \end{gathered}$
K03	Port P03 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K02	Port P02 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K01	Port P01 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K00	Port P0o key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		

Key-on wakeup control register K1		at reset : 00002		at RAM back-up : state retained	R/W
K13	Port P13 key-on wakeup control bit	0	Key-on wakeup not used		
	K12	Port P12 key-on wakeup control bit	0	Key-on wakeup used	
K11	Port P11 key-on wakeup control bit	1	Key-on wakeup used		
	Port P10 key-on wakeup control bit	0	Key-on wakeup not used		
	1	Key-on wakeup used			

Key-on wakeup control register K2		at reset : 00002		at RAM back-up : state retained	$\begin{gathered} \text { R/W } \\ \text { TAK2/TK2A } \end{gathered}$
K23	Not used	0	This bit has no function, but read/write is enabled.		
		1			
K22	Port K key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K21	Port P21 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K20	Port P2o key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		

Key-on wakeup control register L1		at reset : 00002		at RAM back-up : state retained	$\begin{gathered} \text { R/W } \\ \text { TAL1/TL1A } \end{gathered}$
L13	INT1 pin return condition selection bit	0	Return by level		
		1	Return by edge		
L12	INT1 pin valid waveform/ level selection bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
L11	INT0 pin return condition selection bit	0	Return by level		
		1	Return by edge		
L10	INT0 pin key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		

Note 1."R" represents read enabled, and "W" represents write enabled.

Table 22 Pull-up control registers

Pull-up control register PU0		at reset :00002		at RAM back-up : state retained	TAPU0/TPU0A
PU03	Port P03 pull-up transistor control bit	0	Pull-up transistor OFF		
	1	Pull-up transistor ON			
PU02	Port P02 pull-up transistor control bit	0	Pull-up transistor OFF		
	1	Pull-up transistor ON			
PU01	Port P01 pull-up transistor control bit	0	Pull-up transistor OFF		
PU00	Port P00 pull-up transistor control bit	1	Pull-up transistor ON		

Pull-up control register PU1		at reset: 00002		at RAM back-up : state retained	R/W TAPU1/TPU1A
PU13	Port P13 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU12	Port P12 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU11	Port P11 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU10	Port P1o pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		

Pull-up control register PU2		at reset : 00002		at RAM back-up : state retained	$\begin{gathered} \text { R/W } \\ \text { TAPU2/TPU2A } \end{gathered}$
PU23	Not used	0	This bit has no function, but read/write is enabled.		
		1			
PU22	Not used	0	This bit has no function, but read/write is enabled.		
		1			
PU21	Port P21 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU20	Port P2o pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		

Note 1."R" represents read enabled, and "W" represents write enabled.

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- Ceramic oscillation circuit
- Frequency divider
- Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.
Figure 50 shows the structure of the clock control circuit.

Fig 50. Clock control circuit structure

(1) Ceramic resonator

When the ceramic resonator is used as the main clock (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and Xout at the shortest distance. A feedback resistor is built in between pins XIN and Xout (Figure 51).

(2) External clock

When the external signal clock is used for the main clock ($\mathrm{f}(\mathrm{XIN})$), connect the XIN pin to the clock source and leave Xout pin open (Figure 52).
Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition).
Also, note that the RAM back-up mode (POF instruction) cannot be used when using the external clock.

(3) Clock control register MR

Register MR controls the selection of operation mode. Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.

Note: Externally connect a damping resistor Rd depending on the oscillation frequency.
(A feedback resistor is built-in.)
Use the resonator manufacturer's recommended value because constants such as capacitance depend on the resonator.

Fig 51. Ceramic resonator external circuit

Fig 52. External clock input circuit

Table 23 Return source and return condition

Clock control register MR		at reset : 11112			at RAM back-up : 11112	R/W TAMR/TMRA
MR3	Operation mode selection bits	MR3	MR2	Operation mode		
		0	0	Through mod	y not divided)	
MR2		0	1	Frequency	mode	
		1	0	Frequency	mode	
		1	1	Frequency	mode	
MR1	Not used	0	This bit has no function, but read/write is enabled.			
MR1	Not used	1				
MRo	Not used	0		has no function	d/write is enabled.	
MRo	Not used	1		has no fun	,	

Note 1."R" represents read enabled, and "W" represents write enabled.

QzROM Writing Mode

In the QzROM writing mode, the user ROM area can be rewritten while the microcomputer is mounted on-board by using a serial pro-grammer which is applicable for this microcomputer. Table 24 lists the pin description (QzROM writing mode) and Figure 53 shows the pin connections.
Refer to Figure 54 for examples of a connection with a serial programmer.
Contact the manufacturer of your serial programmer for serial pro-grammer. Refer to the user's manual of your serial programmer for details on how to use it.

Table 24 Pin description (QzROM writing mode)

Pin	Name	I/O	
VDD	Power source	-	\bullet Power supply voltage pin.
Vss	GND	-	• GND pin.
K	VPP input	-	\bullet QzROM programmable power source pin.
P01	SDA input/output	I/O	• QzROM serial data I/O pin.
P00	SCLK input	Input	• QzROM serial clock input pin.
P10	$\overline{\text { PGM input }}$	Input	• QzROM read/program pulse input pin.
RESET	Reset input	Input	• Reset input pin. • Input "L" level signal.
XIN	Clock input	-	• Either connect an oscillation circuit or connect Xin pin to Vss and leave
the Xout pin open.			

Package code: PRSP0024GA-A (24P2Q-A)

Note: Either connect an oscillation circuit or connect XIN pin to Vss and leave the Xout pin open.
\square : QzROM pin

Fig 53. Pin connection diagram

Note: For the programming circuit, the wiring capacity of each signal pin must not exceed 47 pF .

Fig 54. When using programmer of Suisei Electronics System Co., LTD, connection example

DATA REQUIRED FOR QzROM WRITING ORDERS

The following are necessary when ordering a QzROM product shipped after writing:

1. QzROM Writing Confirmation Form*
2. Mark Specification Form*
3. ROM data...........Mask file

* For the QzROM writing confirmation form and the mark specification form, refer to the "Renesas Technology Corp."
Homepage (http://www.renesas.com/homepage.jsp).
Note that we cannot deal with special font marking (customer's trademark etc.) in QzROM microcomputer.

LIST OF PRECAUTIONS

(1) Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. $0.1 \mu \mathrm{~F}$) between pins Vdd and Vss at the shortest distance,
- equalize its wiring in width and length, and
- use relatively thick wire.

Port K is also used as Vpp pin. Accordingly, when using this pin, connect this pin to Vss or Vdd. Do not leave this pin open. When port is used for key matrix, connect it to VDD through a pull-up resistor.

(2) Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.
In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

(3) Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

(4) Register initial values 2

The initial value of the following registers are undefined at RAM back-up. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

(5) Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

(6) Stack registers (SKS)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

(7) Multifunction

- The input of D4 can be used even when CNTR0 (output) is selected. The input/output of D_{4} can be used even when CNTR0 (input) is selected. Be careful when using inputs of both CNTR0 and D_{4} since the input threshold value of CNTR0 pin is different from that of port D_{4}.
- "H" output function of port C can be used even when the CNTR1 (output) is used.
- The input/output of P 20 can be used even when INT0 is used. Be careful when using inputs of both INT0 and P2o since the input threshold value of INT0 pin is different from that of port P20.
- The input/output of P21 can be used even when INT1 is used. Be careful when using inputs of both INT1 and P2 since the input threshold value of INT1 pin is different from that of port P21.

(8) Power-on reset

When the built-in power-on reset circuit is used, set the time for the supply voltage to rise from 0 V to the minimum voltage of recommended operating conditions to $100 \mu \mathrm{~s}$ or less.
If the rising time exceeds $100 \mu \mathrm{~s}$, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to $\overline{\text { RESET }}$ pin until the value of supply voltage reaches the minimum operating voltage.

(9) POF instruction

When the POF instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state.
Note that system cannot enter the RAM back-up state when executing only the POF instruction.
Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF instruction continuously.

(10)P20/INTO pin

(1) Bit 3 of register I1

When the input of the P20/INT0 pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

- Depending on the input state of the P20/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to " 0 " (refer to (1) in Figure 55) and then, change the bit 3 of register I1. In addition, execute the SNZ0 instruction to clear the EXF0 flag to " 0 " after executing at least one instruction (refer to (2) in Figure 55).
Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to (3) in Figure 55).

Fig 55. External 0 interrupt program example-1
(2) Bit 3 of register I1

When the bit 3 of register I1 is cleared to " 0 ", the RAM back-up mode is selected and the input of INT0 pin is disabled, be careful about the following notes.

- When the INT0 pin input is disabled (register I13 = " 0 "), set the key-on wakeup of INT0 pin to be invalid (register L10 = " 0 ") before system enters to the RAM back-up mode. (refer to (1) in Figure 56).

Fig 56. External 0 interrupt program example-2
(3) Bit 2 of register I1

When the interrupt valid waveform of the $\mathrm{P} 20 / \mathrm{INT} 0$ pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

- Depending on the input state of the P20/INT0 pin, the external 1 interrupt request flag (EXFO) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to " 0 " (refer to (1) in Figure 57) and then, change the bit 2 of register I1 is changed.
In addition, execute the SNZ0 instruction to clear the EXF0 flag to " 0 " after executing at least one instruction (refer to (2) in Figure 57).
Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to (3) in Figure 57).

:	
LA 4	; ($\times \times \times 02$)
TV1A	; The SNZO instruction is valid(1)
LA 12	; (1×××2)
TI1A	; Interrupt valid waveform is changed
NOP	..(2)
SNZO	; The SNZO instruction is executed (EXFO flag cleared)
NOP	..(3)
x : these bits are not used here.	

Fig 57. External 0 interrupt program example-3

(11)P21/INT1 pin

(1) Bit 3 of register I2

When the input of the P21/INT1 pin is controlled with the bit 3 of register I2 in software, be careful about the following notes.

- Depending on the input state of the P21/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 3 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to (1) in Figure 58) and then, change the bit 3 of register I2. In addition, execute the SNZ1 instruction to clear the EXF1 flag to " 0 " after executing at least one instruction (refer to (2) in Figure 58).
Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to (3) in Figure 58).

Fig 58. External 1 interrupt program example-1
(2) Bit 3 of register I2

When the bit 3 of register I2 is cleared to " 0 ", the RAM back-up mode is selected and the input of INT1 pin is disabled, be careful about the following notes.

- When the INT1 pin input is disabled (register I23 = " 0 "), set the key-on wakeup of INT1 pin to be invalid (register L20 $=$ " 0 ") before system enters to the RAM back-up mode. (refer to (1) in Figure 59)

Fig 59. External 1 interrupt program example-2
(3) Bit 2 of register I2

When the interrupt valid waveform of the P21/INT1 pin is changed with the bit 2 of register I2 in software, be careful about the following notes.

- Depending on the input state of the P21/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to " 0 " (refer to (1) in Figure 60) and then, change the bit 2 of register I2 is changed.
In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to (2) in Figure 60).
Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to (3) in Figure 60).

LA 4	; (x×0×2)
TV1A	; The SNZ1 instruction is valid(1)
LA 12	; (1×××2)
TIAA	; Interrupt valid waveform is changed
NOP	..(2)
SNZO	; The SNZ1 instruction is executed (EXF1 flag cleared)
NOP	..(3)
x : these bits are not used here.	

Fig 60. External 1 interrupt program example-3

(12)Prescaler

Stop prescaler counting and then execute the TABPS instruction to read its data.
Stop prescaler counting and then execute the TPSAB instruction to write data to prescaler.

(13)Timer count source

Stop timer 1, 2 or 3 counting to change its count source.

(14)Reading the count value

Stop timer 1, 2 or 3 counting and then execute the TAB1, TAB2 or TAB3 instruction to read its data.

(15)Writing to the timer

Stop timer 1,2 or 3 counting and then execute the $T 1 A B, T 2 A B$, T3AB or T3R3L instruction to write data to timer.

(16)Writing to reload register

In order to write a data to the reload register R 1 while the timer 1 is operating, execute the TR1AB instruction except a timing of the timer 1 underflow.
In order to write a data to the reload register R3H while the timer 3 is operating, execute the T3HAB instruction except a timing of the timer 3 underflow.

(17)PWM signal

If the timer 3 count stop timing and the timer 3 underflow timing overlap during output of the PWM signal, a hazard may occur in the PWM output waveform.
When "H" interval expansion function of the PWM signal is used, set " 1 " or more to reload register R3H.
Set the port C output latch to " 0 " to output the PWM signal from C/CNTR1 pin.
(18)Prescaler, timer 1, timer 2 and timer 3 count start
timing and count time when operation starts

Count starts from the first rising edge of the count source (2) in Figure 61 after prescaler and timer operations start (1) in Figure 61.

Time to first underflow (3) in Figure 61 is shorter (for up to 1 period of the count source) than time among next underflow (4) in Figure 61 by the timing to start the timer and count source operations after count starts.
When selecting CNTR0 input as the count source of timer 1 , timer 1 operates synchronizing with the count edge (falling edge or rising edge) of CNTR0 input selected by software.

Fig 61. Timer count start timing and count time when operation starts

(19)Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously, and clear the WEF flag to " 0 " to stop the watchdog timer function.
- The contents of WDF1 flag and timer WDT are initialized at the RAM back-up mode.
- When using the watchdog timer and the RAM back-up mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the RAM back-up state.
Also, set the NOP instruction after the WRST instruction, for the case when a skip is performed with the WRST instruction.

(20)External clock

Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition).
Also, note that the RAM back-up mode (POF instruction) cannot be used when using the external clock.

(21)QzROM

(1) Be careful not to apply overvoltage to MCU. The contents of QzROM may be overwritten because of overvoltage. Take care especially at turning on the power.
(2) As for the product shipped in blank, Renesas does not perform the writing test to user ROM area after the assembly process though the QzROM writing test is performed enough before the assembly process. Therefore, a writing error of approx. 0.1% may occur. Moreover, please note the contact of cables and foreign bodies on a socket, etc. because a writing environment may cause some writing errors.

(22)Notes On ROM Code Protect (QzROM product shipped after writing)

As for the QzROM product shipped after writing, the ROM code protect is specified according to the ROM option setup data in the mask file which is submitted at ordering.
The ROM option setup data in the mask file is " 0016 " for protect enabled or "FF16" for protect disabled.
Note that the mask file which has nothing at the ROM option data or has the data other than " 0016 " and "FF16" can not be accepted.

NOTES ON NOISE

Countermeasures against noise are described below.
The following countermeasures are effective against noise in theory, however, it is necessary not only to take measures as follows but to evaluate before actual use.

1. Shortest wiring length

(1) Wiring for $\overline{\text { RESET }}$ pin

Make the length of wiring which is connected to the $\overline{\text { RESET }}$ pin as short as possible. Especially, connect a capacitor across the RESET pin and the Vss pin with the shortest possible wiring.
<Reason>
In order to reset a microcomputer correctly, 1 machine cycle or more of the width of a pulse input into the $\overline{\text { RESET }}$ pin is required.
If noise having a shorter pulse width than this is input to the RESET input pin, the reset is released before the internal state of the microcomputer is completely initialized.
This may cause a program runaway.

Fig 62. Wiring for the RESET pin
(2) Wiring for clock input/output pins

- Make the length of wiring which is connected to clock I/O pins as short as possible.
- Make the length of wiring across the grounding lead of a capacitor which is connected to an oscillator and the Vss pin of a microcomputer as short as possible.
- Separate the Vss pattern only for oscillation from other Vss patterns.

<Reason>

If noise enters clock I/O pins, clock waveforms may be deformed. This may cause a program failure or program runaway. Also, if a potential difference is caused by the noise between the Vss level of a microcomputer and the Vss level of an oscillator, the correct clock will not be input in the microcomputer.

Fig 63. Wiring for clock I/O pins
(3) Port K Wiring

Do not leave port K open. Always connect it to the VDD pin or Vss pin using the thickest wire at the shortest distance.
When port K is used for key matrix, connect it to the VDD pin through a pull-up resistor.
In that case too, place a pull-up resistor close to port K and connect it to port K or the VDD pin using the thickest wire at the shortest distance as above.

<Reason>

Port K is also used as the power source input pin (VPP pin) for the built-in QzROM.
When programming to the QzROM, the impedance of port K is low so that the electric writing current will flow into the QzROM. This allows noise to enter easily. If noise enters from port K, abnormal instruction codes or data are read from the QzROM, which may cause a program runaway.

Fig 64. Wiring for port K

2. Connection of bypass capacitor across Vss line and Vdd line

Connect an approximately $0.1 \mu \mathrm{~F}$ bypass capacitor across the Vss line and the VDD line as follows:

- Connect a bypass capacitor across the Vss pin and the VdD pin at equal length.
- Connect a bypass capacitor across the Vss pin and the Vdd pin with the shortest possible wiring.
- Use lines with a larger diameter than other signal lines for Vss line and VdD line.
- Connect the power source wiring via a bypass capacitor to the Vss pin and the Vdd pin.

N.G.

O.K.

Fig 65. Bypass capacitor across the Vss line and the Vdo line

3. Wiring to analog input pins

- Connect an approximately 100Ω to $1 \mathrm{k} \Omega$ resistor to an analog signal line which is connected to an analog input pin in series. Besides, connect the resistor to the microcomputer as close as possible.
- Connect an approximately 1000 pF capacitor across the Vss pin and the analog input pin. Besides, connect the capacitor to the Vss pin as close as possible. Also, connect the capacitor across the analog input pin and the Vss pin at equal length.

<Reason>

Signals which is input in an analog input pin (such as an A/D converter/comparator input pin) are usually output signals from sensor. The sensor which detects a change of event is installed far from the printed circuit board with a microcomputer, the wiring to an analog input pin is longer necessarily. This long wiring functions as an antenna which feeds noise into the microcomputer, which causes noise to an analog input pin.

Fig 66. Analog signal line and a resistor and a capacitor

4. Oscillator concerns

Take care to prevent an oscillator that generates clocks for a microcomputer operation from being affected by other signals.
(1) Keeping oscillator away from large current signal lines Install a microcomputer (and especially an oscillator) as far as possible from signal lines where a current larger than the tolerance of current value flows.

<Reason>

In the system using a microcomputer, there are signal lines for controlling motors, LEDs, and thermal heads or others. When a large current flows through those signal lines, strong noise occurs because of mutual inductance.
(2) Installing oscillator away from signal lines where potential levels change frequently
Install an oscillator and a connecting pattern of an oscillator away from signal lines where potential levels change frequently. Also, do not cross such signal lines over the clock lines or the signal lines which are sensitive to noise.

<Reason>

Signal lines where potential levels change frequently (such as the CNTR pin signal line) may affect other lines at signal rising edge or falling edge. If such lines cross over a clock line, clock waveforms may be deformed, which causes a microcomputer failure or a program runaway.

Fig 67. Wiring for a large current signal line

Fig 68. Wiring to a signal line where potential levels change frequently
(3) Oscillator protection using Vss pattern

As for a two-sided printed circuit board, print a Vss pattern on the underside (soldering side) of the position (on the component side) where an oscillator is mounted.
Connect the Vss pattern to the microcomputer Vss pin with the shortest possible wiring. Besides, separate this Vss pattern from other Vss patterns.

Fig 69. Vss pattern on the underside of an oscillator

5. Setup for I/O ports

Setup I/O ports using hardware and software as follows:
<Hardware>

- Connect a resistor of 100Ω or more to an I/O port in series.
<Software>
- As for an input port, read data several times by a program for checking whether input levels are equal or not.
- As for an output port or an I/O port, since the output data may reverse because of noise, rewrite data to its port latch at fixed periods.
- Rewrite data to pull-up control registers at fixed periods.

6. Providing of watchdog timer function by software

If a microcomputer runs away because of noise or others, it can be detected by a software watchdog timer and the microcomputer can be reset to normal operation. This is equal to or more effective than program runaway detection by a hardware watchdog timer. The following shows an example of a watchdog timer provided by software. In the following example, to reset a microcomputer to normal operation, the main routine detects errors of the interrupt processing routine and the interrupt processing routine detects errors of the main routine.
This example assumes that interrupt processing is repeated multiple times in a single main routine processing.
<The main routine>

- Assigns a single word of RAM to a software watchdog timer (SWDT) and writes the initial value N in the SWDT once at each execution of the main routine. The initial value N should satisfy the following condition:
$\mathrm{N}+1 \geq$ (Counts of interrupt processing executed in each main routine)
As the main routine execution cycle may change because of an interrupt processing or others, the initial value N should have a margin.
- Watches the operation of the interrupt processing routine by comparing the SWDT contents with counts of interrupt processing after the initial value N has been set.
- Detects that the interrupt processing routine has failed and deter-mines to branch to the program initialization routine for recovery processing in the following case:
If the SWDT contents do not change after interrupt processing.

<The interrupt processing routine>

- Decrements the SWDT contents by 1 at each interrupt processing.
- Determines that the main routine operates normally when the SWDT contents are reset to the initial value N at almost fixed cycles (at the fixed interrupt processing count).
- Detects that the main routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:
If the SWDT contents are not initialized to the initial value N but continued to decrement and if they reach 0 or less.

Fig 70. Watchdog timer by software

CONTROL REGISTERS

Interrupt control register V1		at reset : 00002		at RAM back-up : 00002	$\begin{gathered} \text { R/W } \\ \text { TAV1/TV1A } \end{gathered}$
V13	Timer 2 interrupt enable bit	0	Interrupt disabled (SNZT2 instruction is valid)		
		1	Interrupt enabled (SNZT2 instruction is invalid)		
V12	Timer 1 interrupt enable bit	0	Interrupt disabled (SNZT1 instruction is valid)		
		1	Interrupt enabled (SNZT1 instruction is invalid)		
V11	External 1 interrupt enable bit	0	Interrupt disabled (SNZ1 instruction is valid)		
		1	Interrupt enabled (SNZ1 instruction is invalid)		
V10	External 0 interrupt enable bit	0	Interrupt disabled (SNZ0 instruction is valid)		
		1	Interrupt enabled (SNZO instruction is invalid)		

Interrupt control register V2		at reset : 00002		at RAM back-up : 0000	$\begin{gathered} \text { R/W } \\ \text { TAV2/TV2A } \end{gathered}$
V23	Voltage drop detector interrupt enable bit	0	Interrupt disabled (SNZVD instruction is valid)		
		1	Interrupt enabled (SNZVD instruction is invalid)		
V22	Not used	0	This bit has no function, but read/write is enabled.		
		1			
V21	Not used	0	This bit has no function, but read/write is enabled.		
		1			
V20	Timer 3 interrupt enable bit	0	Interrupt disabled (SNZT3 instruction is valid)		
		1	Interrupt enabled (SNZT3 instruction is invalid)		

Interrupt control register I1		at reset : 00002		at RAM back-up : state retained	$\begin{gathered} \hline \text { R/W } \\ \text { TAI1/TI1A } \end{gathered}$
113	INT0 pin input control bit (Note 2)	0	INT0 pin input disabled		
		1	INT0 pin input enabled		
112	Interrupt valid waveform for INTO pin/ return level selection bit (Note 2)	0	Falling waveform ("L" level of INT0 pin is recognized with the SNZIO instruction)/"L" level		
		1	Rising waveform ("H" level of INT0 pin is recognized with the SNZIO instruction)/"H" level		
111	INT0 pin edge detection circuit control bit	0	One-sided edge detected		
		1	Both edges detected		
110	INTO pin timer 1 control enable bit	0	Timer 1 disabled		
		1	Timer 1 enabled		

Interrupt control register I2		at reset : 00002		at RAM back-up : state retained	R/W TAI2/TI2A
123	INT1 pin input control bit (Note 3)	0	INT0 pin input disabled		
		1	INT0 pin input enabled		
122	Interrupt valid waveform for INT1 pin/ return level selection bit (Note 3)	0	Falling waveform ("L" level of INTO pin is recognized with the SNZI1 instruction)/"L" level		
		1	Rising waveform ("H" level of INT0 pin is recognized with the SNZI1 instruction)/"H" level		
121	INT1 pin edge detection circuit control bit	0	One-sided edge detected		
		1	Both edges detected		
120	Not used	0	This bit has no function, but read/write is enabled.		
		1			

Note 1."R" represents read enabled, and "W" represents write enabled.
Note 2. When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set.
Note 3. When the contents of I 22 and I 23 are changed, the external interrupt request flag EXF1 may be set.

$\left.$| Timer control register W2 | | at reset : 00002 | | | at RAM back-up : state retained |
| :--- | :--- | :---: | :---: | :---: | :---: | | R/W |
| :---: |
| TAW2/TW2A | \right\rvert\,

$\left.$| Timer control register W3 | | at reset : 00002 | | at RAM back-up : 00002 |
| :--- | :--- | ---: | :--- | :--- | | R/W |
| ---: |
| TAW3/TW3A | \right\rvert\,

Timer control register W5		at reset : 00002		at RAM back-up : state retained	R/W TAW5/TW5A
W53	Timer 1 count start synchronous circuit selection bit (Note 3)	0	Count start synchronous circuit not selected		
		1	Count start synchronous circuit selected		
W52	CNTR0 pin input count edge selection bit	0	Falling edge		
		1	Rising edge		
W51	CNTR 1 pin output auto-control circuit selection bit	0	Output auto-control circuit not selected		
		1	Output auto-control circuit selected		
W50	D4/CNTR0 pin function selection bit	0	D4 (I/O) / CNTR0 (input)		
		1	D4 (input) /CNTR0 (1/O)		

Note 1. "R" represents read enabled, and "W" represents write enabled.
Note 2.This function is valid only when the INTO pin/timer 1 control is enabled ($110=$ " 1 ") and the timer 1 count start synchronous circuit is selected (W53 ="1").
Note 3.This function is valid only when the INTO pin/timer 1 control is enabled ($110=$ " 1 ").

Key-on wakeup control register K0		at reset : 00002		at RAM back-up : state retained	R/W TAK0/TKOA
K03	Port P03 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K02	Port P02 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K01	Port P01 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K00	Port P0o key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		

Key-on wakeup control register K1		at reset :00002		at RAM back-up : state retained	R/W
K13	Port P13 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K12	Port P12 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K11	Port P11 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K10	Port P10 key-on wakeup control bit	0	Key-on wakeup not used		

Key-on wakeup control register K2		at reset :00002		at RAM back-up : state retained	R/W
K23	Not used	0	This bit has no function, but read/write is enabled.		
		1			
K22	Port K key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K21	Port P21 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K20	Port P20 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		

Key-on wakeup control register L1		at reset : 00002		at RAM back-up : state retained	$\begin{gathered} \text { R/W } \\ \text { TAL1/TL1A } \end{gathered}$
L13	INT1 pin return condition selection bit	0	Return by level		
		1	Return by edge		
L12	INT1 pin valid waveform/ level selection bit	0	Falling waveform/"L" level		
		1	Rising waveform/"H" level		
L11	INTO pin return condition selection bit	0	Return by level		
		1	Return by edge		
L10	INTO pin key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		

Note 1."R" represents read enabled, and "W" represents write enabled.

Pull-up control register PU0		at reset : 00002		at RAM back-up : state retained	$\begin{gathered} \text { R/W } \\ \text { TAPU0/TPUOA } \end{gathered}$
PU03	Port PO a pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU02	Port P02 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU01	Port P01 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU00	Port P0o pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		

Pull-up control register PU1		at reset : 00002		at RAM back-up : state retained	$\begin{gathered} \text { R/W } \\ \text { TAPU1/TPU1A } \end{gathered}$
PU13	Port P13 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU12	Port P12 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU11	Port P11 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU10	Port P1o pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		

Pull-up control register PU2		at reset : 00002		at RAM back-up : state retained	$\begin{gathered} \text { R/W } \\ \text { TAPU2/TPU2A } \end{gathered}$
PU23	Not used	0	This bit has no function, but read/write is enabled.		
		1			
PU22	Not used	0	This bit has no function, but read/write is enabled.		
		1			
PU21	Port P21 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU20	Port P2o pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		

Port output structure control register FR0		at reset : 00002		at RAM back-up : state retained	W
TFROA					

Port output structure control register FR1		at reset:00002		at RAM back-up : state retained	$\begin{gathered} \mathrm{W} \\ \text { TFR1A } \end{gathered}$
FR13	Port D3 output structure selection bit	0	N -channel open-drain output		
		1	CMOS output		
FR12	Port D2 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR11	Port D1 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR10	Port Do output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		

Note 1. "R" represents read enabled, and "W" represents write enabled.

INSTRUCTIONS

Each instruction is described as follows;

1. Index list of instruction function
2. Machine instructions (index by alphabet)
3. Machine instructions (index by function)
4. Instruction code table

SYMBOL

Symbol	Contents	Symbol	Contents
A	Register A (4 bits)	T1F	Timer 1 interrupt request flag
B	Register B (4 bits)	T2F	Timer 2 interrupt request flag
DR	Register DR (3 bits)	T3F	Timer 3 interrupt request flag
E	Register E (8 bits)	WDF1	Watchdog timer flag
V1	Interrupt control register V1 (4 bits)	WEF	Watchdog timer enable flag
V2	Interrupt control register V2 (4 bits)	INTE	Interrupt enable flag
11	Interrupt control register I1 (4 bits)	EXFO	External 0 interrupt request flag
12	Interrupt control register I2 (4 bits)	EXF1	External 1 interrupt request flag
PA	Timer control register PA (2 bits)	VDF	Voltage drop detection circuit interrupt request flag
W1	Timer control register W1 (4 bits)	P	Power down flag
W2	Timer control register W2 (4 bits)	D	Port D (5 bits)
W3	Timer control register W3 (4 bits)	P0	Port P0 (4 bits)
W5	Timer control register W5 (4 bits)	P1	Port P1 (4 bits)
MR	Clock control register MR (4 bits)	P2	Port P2 (2 bits)
K0	Key-on wakeup control register K0 (4 bits)	P3	Port P3 (2 bits)
K1	Key-on wakeup control register K1 (4 bits)		
K2	Key-on wakeup control register K2 (4 bits)	X	Hexadecimal variable
L1	Key-on wakeup control register L1 (4 bits)	y	Hexadecimal variable
PU0	Pull-up control register PU0 (4 bits)	z	Hexadecimal variable
PU1	Pull-up control register PU1 (4 bits)	p	Hexadecimal variable
PU2	Pull-up control register PU2 (4 bits)	n	Hexadecimal constant
FR0	Port output structure control register FR0 (4 bits)	i	Hexadecimal constant
FR1	Port output structure control register FR1 (4 bits)	j	Hexadecimal constant
X	Register X (4 bits)	$\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$	Binary notation of hexadecimal variable A
Y	Register Y (4 bits)		(same for others)
Z	Register Z (2 bits)		
DP	Data pointer (10 bits) (It consists of registers X, Y, and Z)	()	Direction of data movement Contents of registers and memories
PC	Program counter (14 bits)	-	Negate, Flag unchanged after executing instruction
PCH	High-order 7 bits of program counter	M (DP)	RAM address pointed by the data pointer
PCL	Low-order 7 bits of program counter	a	Label indicating address a6 a5 a4 a3 a2 a1 ao
SK	Stack register (14 bits $\times 8$)	p, a	Label indicating address a6 a5 a4 a3 a2 a1 ao in page
SP	Stack pointer (3 bits)		p6 p5 P4 p3 p2 P1 po
CY	Carry flag		
RPS	Prescaler reload register (8 bits)	C	Hex. C + Hex. number x (also same for others)
R1L	Timer 1 reload register (8 bits)	+	
R2	Timer 2 reload register (8 bits)	X	
R3L	Timer 3 reload register (8 bits)	?	Decision of state shown before "?"
R3H	Timer 3 reload register (8 bits)	$\leftarrow \rightarrow$	Data exchange between a register and memory
PS	Prescaler		
T1	Timer 1	AND	Logical multiplication
T2	Timer 2	OR	Logical addition
T3	Timer 3		

Note 1.The 4571 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes " 1 " if the TABP p, RT, or RTS instruction is skipped.

INDEX LIST OF INSTRUCTION FUNCTION

$\begin{array}{\|c\|} \hline \text { Group } \\ \text { ing } \end{array}$	Mnemonic	Function	Page	Group ing	Mnemonic	Function	Page
	TAB	$(\mathrm{A}) \leftarrow(\mathrm{B})$	88, 103		LA n	$\begin{aligned} & (A) \leftarrow n \\ & n=0 \text { to } 15 \end{aligned}$	76,105
	TBA	$(B) \leftarrow(A)$	95, 103		TABP p	$(S P) \leftarrow(S P)+1$	89, 105
	TAY	$(\mathrm{A}) \leftarrow(\mathrm{Y})$	95, 103			$\begin{aligned} & (\mathrm{SK}(\mathrm{SP})) \leftarrow(\mathrm{PC}) \\ & (\mathrm{PCH}) \leftarrow \mathrm{p} \end{aligned}$	
	TYA	$(\mathrm{Y}) \leftarrow(\mathrm{A})$	101, 103			$\begin{aligned} & (\mathrm{PCL}) \leftarrow\left(\mathrm{DR} 2-\mathrm{DR}, \mathrm{~A}_{3}-\mathrm{Ao}\right) \\ & (\mathrm{UPTF})=1, \end{aligned}$	
	TEAB	$\begin{aligned} & \left(\mathrm{E}_{7}-\mathrm{E}_{4}\right) \leftarrow(\mathrm{B}) \\ & \left(\mathrm{E}_{3}-\mathrm{E}_{0}\right) \leftarrow(\mathrm{A}) \end{aligned}$	96, 103			$\left(\mathrm{DR}_{2}\right) \leftarrow 0$ $\left(\mathrm{DR}_{1}, \mathrm{DR}_{0}\right) \leftarrow(\mathrm{ROM}(\mathrm{PC})) 9,8$ $(\mathrm{B}) \leftarrow(\mathrm{ROM}(\mathrm{PC})) 7-4$	
	TABE	$(B) \leftarrow\left(E_{7}-E_{4}\right)$ $(A) \leftarrow($ E3-Eo $)$	89, 103			$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{ROM}(\mathrm{PC}))_{3-0} \\ & (\mathrm{PC}) \leftarrow(\mathrm{SK}(\mathrm{SP})) \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 \end{aligned}$	
	TDA	$(\mathrm{DR2} 2-\mathrm{DRo}) \leftarrow\left(\mathrm{A}_{2}-\mathrm{A}_{0}\right)$	95, 103			$(S P) \leftarrow(S P)-1$	
	TAD	$\left(\mathrm{A}_{2}-\mathrm{A}_{0}\right) \leftarrow\left(\mathrm{DR}_{2}-\mathrm{DR}_{0}\right)$	103		AM	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{M}(\mathrm{DP}))$	71, 105
	TAD	$\left(\mathrm{A}_{3}\right) \leftarrow 0$	90, 103		AMC	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{M}(\mathrm{DP}))+(\mathrm{CY})$ $(\mathrm{CY}) \leftarrow \text { Carry }$	71, 105
	TAZ	$\begin{aligned} & \left(\mathrm{A}_{1}, \mathrm{~A}_{0}\right) \leftarrow\left(\mathrm{Z}_{1}, \mathrm{Z}_{0}\right) \\ & \left(\mathrm{A}_{3}, \mathrm{~A}_{2}\right) \leftarrow 0 \end{aligned}$	95, 103	$$	A n	$(\mathrm{A}) \leftarrow(\mathrm{A})+\mathrm{n}$	71, 105
	TAX	$(\mathrm{A}) \leftarrow(\mathrm{X})$	94, 103			$\mathrm{n}=0$ to 15	
		$\angle \Delta$			AND	$(\mathrm{A}) \leftarrow(\mathrm{A}) \mathrm{AND}(\mathrm{M}(\mathrm{DP}))$	71, 105
	TASP	$\left(\mathrm{A}_{3}\right) \leftarrow 0$	93,		OR	$(\mathrm{A}) \leftarrow(\mathrm{A}) \mathrm{OR}(\mathrm{M}(\mathrm{DP}))$	78, 105
	LXY x, y	$(\mathrm{X}) \leftarrow \mathrm{x}, \mathrm{x}=0$ to 15 $(Y) \leftarrow y, y=0$ to 15	77, 103		SC	$(C Y) \leftarrow 1$	82, 105
	LZ z	$(\mathrm{Z}) \leftarrow \mathrm{z}, \mathrm{z}=0$ to 3	77, 103		RC	$(C Y) \leftarrow 0$	80, 105
	INY	$(\mathrm{Y}) \leftarrow(\mathrm{Y})+1$	76,103		SZC	$(C Y)=0 ?$	86, 105
	DEY	$(\mathrm{Y}) \leftarrow(\mathrm{Y})-1$	74, 103		CMA	$(\mathrm{A}) \leftarrow \overline{(\mathrm{A})}$	73, 105
	TAM j	$\begin{aligned} & (A) \leftarrow(M(D P)) \\ & (X) \leftarrow(X) \operatorname{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \end{aligned}$	91, 103		RAR	$\rightarrow \mathrm{CY} \rightarrow \mathrm{~A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$	79, 105
	XAM j	$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{M}(\mathrm{DP})) \\ & (\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \end{aligned}$			SB j	$(\mathrm{Mj}(\mathrm{DP})) \leftarrow 1$	81, 105
			102, 103			$\mathrm{j}=0 \text { to } 3$	
				-	RB j	$\begin{aligned} & (\operatorname{Mj}(D P)) \leftarrow 0 \\ & \mathrm{j}=0 \text { to } 3 \end{aligned}$	79, 105
	XAMD j	$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{M}(\mathrm{DP})) \\ & (\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \\ & (\mathrm{Y}) \leftarrow(\mathrm{Y})-1 \end{aligned}$	102, 103	$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{\overline{0}} \end{aligned}$		$(\mathrm{Mj}(\mathrm{DP}))=0 ?$	
					SZB j	$\begin{aligned} & (\mathrm{Mj}(\mathrm{DP}))=0 ? \\ & \mathrm{j}=0 \text { to } 3 \end{aligned}$	86, 105
				¢	SEAM	$(\mathrm{A})=(\mathrm{M}(\mathrm{DP}))$?	83,107
	XAMI j	$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{M}(\mathrm{DP})) \\ & (\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \\ & (\mathrm{Y}) \leftarrow(\mathrm{Y})+1 \\ & (\mathrm{M}(\mathrm{DP})) \leftarrow(\mathrm{A}) \\ & (\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \end{aligned}$	102, 103		SEA n	$\begin{aligned} & (A)=n \\ & n=0 \text { to } 15 \end{aligned}$	83, 107
	TMA j			\bigcirc	B a	$(\mathrm{PCL}) \leftarrow \mathrm{a} 6-\mathrm{a} 0$	72, 107
			98, 103	$\begin{aligned} & \text { 으N } \\ & \frac{\pi}{0} \\ & \text { 응 } \end{aligned}$	BL p, a	$\begin{aligned} & (\mathrm{PCH}) \leftarrow \mathrm{p} \\ & (\mathrm{PCL}) \leftarrow \mathrm{a} 6-\mathrm{a} 0 \end{aligned}$	72, 107
M34571G4: $\mathrm{p}=0$ to 31 M34571G6: $p=0$ to 47 M34571GD: $p=0$ to 127					BLA p	$($ РСн $) \leftarrow$ p	72, 107
						$(P C L) \leftarrow\left(\mathrm{DR}_{2}-\mathrm{DR} 0, \mathrm{~A}_{3}-\mathrm{A} 0\right)$	

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group ing	Mnemonic	Function	Page
	TPAA	$(\mathrm{PA} 0) \leftarrow\left(\mathrm{A}_{0}\right)$	98, 109
	TAW1	$(\mathrm{A}) \leftarrow(\mathrm{W} 1)$	93, 109
	TW1A	$(\mathrm{W} 1) \leftarrow(\mathrm{A})$	100, 109
	TAW2	$(\mathrm{A}) \leftarrow(\mathrm{W} 2)$	94, 109
	TW2A	$(\mathrm{W} 2) \leftarrow(\mathrm{A})$	101, 109
	TAW3	$(\mathrm{A}) \leftarrow(\mathrm{W} 3)$	94, 109
	TW3A	$(\mathrm{W} 3) \leftarrow(\mathrm{A})$	101, 109
	TAW5	$(\mathrm{A}) \leftarrow(\mathrm{W} 5)$	94, 109
	TW5A	$(\mathrm{W} 5) \leftarrow(\mathrm{A})$	101, 109
	TABPS	$(\mathrm{B}) \leftarrow($ TPS7-TPS4 $)$ $(\mathrm{A}) \leftarrow($ TPS $3-\mathrm{TPS} 0)$	89, 111
	TPSAB	$($ RPS7-RPS 4$) \leftarrow(\mathrm{B})$	99, 111
		$\left(\mathrm{TPS}_{7}-\mathrm{TPS} 4\right) \leftarrow(\mathrm{B})$ $\left(R_{P S}-R P S_{0}\right) \leftarrow(A)$	
		$($ TPS $3-\mathrm{TPS} 0) \leftarrow(A)$	
	TAB1	$\begin{aligned} & (\mathrm{B}) \leftarrow(\mathrm{T} 17-\mathrm{T} 14) \\ & (\mathrm{A}) \leftarrow(\mathrm{T} 13-\mathrm{T} 10) \end{aligned}$	88, 111
	T1AB	$\begin{aligned} & (\mathrm{R} 17-\mathrm{R} 14) \leftarrow(\mathrm{B}) \\ & (\mathrm{T} 17-\mathrm{T} 14) \leftarrow(\mathrm{B}) \\ & (\mathrm{R} 13-\mathrm{R} 10) \leftarrow(\mathrm{A}) \\ & (\mathrm{T} 13-\mathrm{T} 10) \leftarrow(\mathrm{A}) \end{aligned}$	87, 111
	TR1AB	$\begin{aligned} & (\mathrm{R} 17-\mathrm{R} 14) \leftarrow(\mathrm{B}) \\ & (\mathrm{R} 13-\mathrm{R} 10) \leftarrow(\mathrm{A}) \end{aligned}$	100, 111
	TAB2	$\begin{aligned} & (\mathrm{B}) \leftarrow(\mathrm{T} 27-\mathrm{T} 24) \\ & (\mathrm{A}) \leftarrow(\mathrm{T} 23-\mathrm{T} 20) \end{aligned}$	88, 111
	T2AB	$\begin{aligned} & (\mathrm{R} 27-\mathrm{R} 24) \leftarrow(\mathrm{B}) \\ & (\mathrm{T} 27-\mathrm{T} 24) \leftarrow(\mathrm{B}) \\ & (\mathrm{R} 23-\mathrm{R} 20) \leftarrow(\mathrm{A}) \\ & (\mathrm{T} 23-\mathrm{T} 20) \leftarrow(\mathrm{A}) \end{aligned}$	87, 111
	TAB3	$\begin{aligned} & (\mathrm{B}) \leftarrow(\mathrm{T} 37-\mathrm{T} 34) \\ & (\mathrm{A}) \leftarrow(\mathrm{T} 33-\mathrm{T} 30) \end{aligned}$	89, 111
	T3AB	$\begin{aligned} & (\text { R3L7-R3L4 }) \leftarrow(\mathrm{B}) \\ & (\mathrm{T} 37-\mathrm{T} 34) \leftarrow(\mathrm{B}) \\ & (\mathrm{R} 3 \mathrm{~L} 3-\mathrm{R} 3 \mathrm{~L} 0) \leftarrow(\mathrm{A}) \\ & (\mathrm{T} 33-\mathrm{T} 30) \leftarrow(\mathrm{A}) \end{aligned}$	87, 111
	T3R3L	$($ T37-T30 $) \leftarrow($ R3L7-R3Lo $)$	88, 111
	T3HAB	$\begin{aligned} & \left(\mathrm{R}_{3} \mathrm{H}_{7}-\mathrm{R} 3 \mathrm{H}_{4}\right) \leftarrow(\mathrm{B}) \\ & \left(\mathrm{R}_{3}-\mathrm{R}_{3}\right) \leftarrow(\mathrm{A}) \end{aligned}$	87, 111

M34571G4: $p=0$ to 31
M34571G6: $p=0$ to 47
M34571GD: $p=0$ to 127

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group	Mnemonic	Function	Page	ing	Mnemonic	Function	Page
				Input/Output operation	TAKO	$(\mathrm{A}) \leftarrow(\mathrm{K} 0)$	90, 115
	SNZT1	$\begin{aligned} & \mathrm{V} 12=0:(\mathrm{T} 1 \mathrm{~F})=1 ? \\ & (\mathrm{~T} 1 \mathrm{~F}) \leftarrow 0 \\ & \mathrm{~V} 12=1: \mathrm{SNZT} 1=\mathrm{NOP} \end{aligned}$	84, 111		TKOA	$(\mathrm{KO}) \leftarrow(\mathrm{A})$	97, 115
	SNZT2	$\mathrm{V} 13=0:(\mathrm{T} 2 \mathrm{~F})=1$?	85, 111		TAK1	$(\mathrm{A}) \leftarrow(\mathrm{K} 1)$	91, 115
		$\begin{aligned} & (\mathrm{T} 2 \mathrm{~F}) \leftarrow 0 \\ & \mathrm{~V} 13=1: \mathrm{SNZT} 2=\mathrm{NOP} \end{aligned}$			TK1A	$(\mathrm{K} 1) \leftarrow(\mathrm{A})$	97, 115
	SNZT3	$\mathrm{V} 20=0:(\mathrm{T} 3 \mathrm{~F})=1$?	85, 111		TAK2	$(\mathrm{A}) \leftarrow(\mathrm{K} 2)$	91, 115
		V20 $=1:$ SNZT3=NOP			TK2A	$(\mathrm{K} 2) \leftarrow$ (A$)$	97, 115
	IAPO	$(\mathrm{A}) \leftarrow(\mathrm{P} 0)$	75, 113		TAL1	$(\mathrm{A}) \leftarrow(\mathrm{L} 1)$	91, 115
	OPOA	$(\mathrm{P} 0) \leftarrow$ (A$)$	77, 113		TL1A	$(\mathrm{L} 1) \leftarrow(\mathrm{A})$	98, 115
	IAP1	$(\mathrm{A}) \leftarrow$ ¢ P 1$)$	75, 113		TAMR	$(\mathrm{A}) \leftarrow(\mathrm{MR})$	92, 115
	OP1A	$(\mathrm{P} 1) \leftarrow(\mathrm{A})$	78, 113		TMRA	$(\mathrm{MR}) \leftarrow(\mathrm{A})$	98, 115
	IAP2	$\left(\mathrm{A}_{1}, \mathrm{~A}_{0}\right) \leftarrow(\mathrm{P} 21, \mathrm{P} 20)$	76, 113		NOP	$(\mathrm{PC}) \leftarrow(\mathrm{PC})+1$	77, 115
		$\left(A_{3}, A_{2}\right) \leftarrow 0$			POF	RAM back-up	79, 115
	OP2A	$(\mathrm{P} 21, \mathrm{P} 20) \leftarrow\left(\mathrm{A}_{1}, \mathrm{~A}_{0}\right)$	78, 113		EPOF	POF instruction valid	75, 115
	IAP3	$\left(\mathrm{A}_{1}, \mathrm{~A}_{0}\right) \leftarrow(\mathrm{P} 31, \mathrm{P} 30)$	76, 113		SNZP	$(\mathrm{P})=1$?	84, 115
		$\left(\mathrm{A}_{3}, \mathrm{~A}_{2}\right) \leftarrow 0$			SNZVD	$\mathrm{V} 23=0:(\mathrm{VDF})=1$?	85, 115
	OP3A	$(\mathrm{P} 31, \mathrm{P} 30) \leftarrow\left(\mathrm{A}_{1}, \mathrm{~A}_{0}\right)$	78, 113			$\mathrm{V} 23=0$: NOP	
	CLD	(D) $\leftarrow 1$	73, 113		WRST	$\begin{aligned} & \left(W D F_{1}\right)=1 ? \\ & \left(W_{1}\right) \leftarrow 0 \end{aligned}$	102, 115
	RD	$\begin{aligned} & (\mathrm{D}(\mathrm{Y})) \leftarrow 0 \\ & (\mathrm{Y})=0 \text { to } 4 \end{aligned}$	80, 113	$\begin{aligned} & \stackrel{\rightharpoonup}{ \pm} \\ & \stackrel{\text { ® }}{ } \end{aligned}$	DWDT	Stop of watchdog timer function enabled	74, 115
	SD	$(\mathrm{D}(\mathrm{Y})) \leftarrow 1$	82, 113		SRST	System reset	85, 115
		$(\mathrm{Y})=0$ to 4			RUPT	$($ UPTF) $\leftarrow 0$	81, 115
	SZD	$\begin{aligned} & (\mathrm{D}(\mathrm{Y}))=0 ? \\ & (\mathrm{Y})=0 \text { to } 4 \end{aligned}$	86, 113		SUPT	$($ UPTF) $\leftarrow 1$	86, 115
	RCP	$(\mathrm{C}) \leftarrow(0)$	80, 113		RBK	$p 6 \leftarrow 0$ when TABP p instruction is executed	79, 115
	SCP	$(\mathrm{C}) \leftarrow(1)$	82, 113		SBK	$p 6 \leftarrow 1$ when TABP p instruction is executed	82, 115
	IAK	$\begin{aligned} & \left(A_{0}\right) \leftarrow(K) \\ & \left(A_{3}-A_{1}\right) \leftarrow 0 \end{aligned}$	75,113				
	TFROA	$(\mathrm{FRO}) \leftarrow(\mathrm{A})$	96, 113				
	TFR1A	$($ FR1 $) \leftarrow(\mathrm{A})$	96, 113				
	TAPU0	$(\mathrm{A}) \leftarrow(\mathrm{PUO})$	92, 113				
	TPUOA	$(\mathrm{PUO}) \leftarrow(\mathrm{A})$	99, 113				
	TAPU1	$(\mathrm{A}) \leftarrow(\mathrm{PU1} 1)$	92, 113				
	TPU1A	$(\mathrm{PU1}) \leftarrow(\mathrm{A})$	99, 113				
	TAPU2	$(\mathrm{A}) \leftarrow(\mathrm{PU} 2)$	92, 113				
	TPU2A	$($ PU2 $) \leftarrow(\mathrm{A})$	99, 113				

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)
A n (Add n and accumulator)

Instruc tion code	D9 Do												Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	1	0				0	6		1	1	-	Overflow = 0
Opera- $(\mathrm{A}) \leftarrow(\mathrm{A})+\mathrm{n}$ tion: $\mathrm{n}=0$ to 15													Grouping: Arithmetic operation			
													Description: Adds the value n in the immediate field to register A , and stores a result in register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.			

AM (Add accumulator and Memory)

AND (logical AND between accumulator and memory)

Instruction code	Ds									Do					Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	1	1	0	0		0	1	8		1	1	-	-
Operation:	$(\mathrm{A}) \leftarrow(\mathrm{A})$ AND $(\mathrm{M}(\mathrm{DP})$)														Grouping: Arithmetic operation			
															Description: Takes the AND operation between the contents of register A and the contents of $M(D P)$, and stores the result in register A .			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

BM a (Branch and Mark to address a in page 2)

Instruction code	D9							Do				Number of words	Number of cycles	Flag CY	Skip condition
	0	1		a5		а3 ${ }^{\text {a }}$	a ${ }^{\text {a }}$	a0 2	1	a	a 16	1	1	-	-
Operation:	$\begin{aligned} & (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \\ & (\mathrm{SK}(\mathrm{SP})) \leftarrow(\mathrm{PC}) \\ & (\mathrm{PCH}) \leftarrow 2 \\ & (\mathrm{PCL}) \leftarrow \mathrm{a} 6-\mathrm{a} 0 \end{aligned}$											Grouping: Subroutine call operation			
												Description: Call the subroutine in page 2 : Calls the subroutine at address a in page 2.			
												Note:	Subroutine extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.		
												Be careful not to over the stack because the maximum level of subroutine nesting is 8 .			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
BML p,a (Branch and Mark Long to address a in page p)

BMLA p (Branch and Mark Long to address (D)+(A) in page p)

Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	1	1	0	0				3		2	2	-	-
	1										2	p		Grouping:	ubroutine call	eration	
CLD (CLear port D)																	
Instruction code														Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	1	0	0	0		0	1		1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(D) \leftarrow(1) \\ & \text { tion: } \end{aligned}$														Grouping: Input/Output operation			
														Description: Sets (1) to port D.			

CMA (CoMplement of Accumulator)

Instruc tion	D9													Number of words	Number of cycles	Flag CY	Skip condition
code	0	0	0	0	0			1	0	02	0	1	C 16	1	1	-	-
Opera- $\quad(\mathrm{A}) \leftarrow(\overline{\mathrm{A}})$tion:														Grouping: Arithmetic operation			
														Description:	ores the on gister A .	compleme	ister A's conten

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

IAP2 (Input Accumulator from port P2)																		
Instruction code	D9 ${ }^{\text {do }}$														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	1	0	0	0	1	2	2	6	2		1	1	-	
Opera- $\left(\mathrm{A}_{1}, \mathrm{~A}_{0}\right) \leftarrow(\mathrm{P} 21, \mathrm{P} 20)$ tion: $\left(\mathrm{A}_{3}, \mathrm{~A}_{2}\right) \leftarrow 0$															Grouping: Input/Output operation			
															Description: Transfers the input of port P2 to the low-order 2 bits (A_{1}, A 0) of register A . " 0 " is stored to the high-order 2 bits (A_{3}, A_{2}) of register A .			

IAP3 (Input Accumulator from port P3)

INY (INcrement register Y)																		
Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	1	0	0	1		0	1	3	16	1	1	-	$(\mathrm{Y})=0$
Opera- $\quad(\mathrm{Y}) \leftarrow(\mathrm{Y})+1$ tion:															Grouping: RAM addresses			
															Description: Adds 1 to the contents of register Y . As a result of addition, when the contents of register Y is 0 , the next instruction is skipped. When the contents of register Y is not 0 , the next instruction is executed.			

LA n (Load n in Accumulator)

Instruction code	D9									Do				Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	1	1	n	n			0	7	n 16	1	1	-	Continuous description
Operation:	$\begin{aligned} & (\mathrm{A}) \leftarrow \mathrm{n} \\ & \mathrm{n}=0 \text { to } 15 \end{aligned}$													Grouping: Arithmetic operation			
														Description: Loads the value n in the immediate field to register A . When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

LXY $\mathbf{x , y}$ (Load register X and Y with x and y)															
Instruc tion code	D9											Number of words	Number of cycles	Flag CY	Skip condition
	1	1	x3	x2 ${ }^{1}$	x $1 \times$	x0 y	у3 ${ }^{\text {y }}$			x	y 16	1	1	-	Continuous description
Opera- $(X) \leftarrow x x=0$ to 15 tion: $(Y) \leftarrow y y=0$ to 15												Grouping: RAM addresses Description: Loads the value x in the immediate field to register X , and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.			
LZ z (Load register Z with z)															
Instruc tion code	D9											Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	0	1	0	$\mathrm{Z}_{1} \mathrm{Z}_{0} 2{ }_{2} 0$	4	8 +Z 116	1	1	-	-
Opera- $\quad(\mathrm{Z}) \leftarrow \mathrm{zz}=0$ to 3 tion:												Grouping: RAM addresses Description: Loads the value z in the immediate field to register Z.			
NOP (No OPeration)															
Instruction code	D9											Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0		0		$00^{0} 2{ }^{0}$	0		1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{PC}) \leftarrow(\mathrm{PC})+1 \\ & \text { tion: } \end{aligned}$												Grouping: Other operation			
												Description: No operation; Adds 1 to program counter value, and others remain unchanged.			
OPOA (Output port P0 from Accumulator)															
Instruction code	D9 1 1 0											Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	1	0	0		$00^{0} 22$	2	016	1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{P} 0) \leftarrow(\mathrm{A}) \\ & \text { tion: } \end{aligned}$												Grouping: Input/Output operation			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
OP1A (Output port P1 from Accumulator)

Instruction	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0	1	0	0	0	0	1	2	2	1	16	1	1	-	-
$\text { Opera- } \quad(\mathrm{P} 1) \leftarrow(\mathrm{A})$ tion:															Grouping: Input/Output operation			
															Description: Outputs the contents of register A to port P1.			

OP2A (Output port P2 from Accumulator)

Instruc tion	D9															Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0	1	0	0	0	1	0	2	2	2	2	16	1	1	-	-
Opera- $\quad(\mathrm{P} 21, \mathrm{P} 20) \leftarrow(\mathrm{A} 1, \mathrm{~A} 0)$tion:																Grouping: Input/Output operation			
																Description: Outputs the contents of the low-order 2 bits ($\mathrm{A} 1, \mathrm{~A} 0$) of register A to port P2.			

OP3A (Output port P3 from Accumulator)

Instruction	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0	1	0	0	0	1	1	2	2	3	16	1	1	-	-
Opera- $\quad(\mathrm{P} 31, \mathrm{P} 30) \leftarrow(\mathrm{A} 1, \mathrm{~A} 0)$tion:															Grouping: Input/Output operation			
															Description:	utputs the co er A to port	nts of the	$\text { r } 2 \text { bits (A1, Ao) }$

OR (logical OR between accumulator and memory)

Instruc tion code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	1	1	0	0		0	1	916	1	1	-	-
Opera- $\quad(A) \leftarrow(A) O R(M(D P))$tion:														Grouping: Arithmetic operation			
														Description: Takes the OR operation between the contents of register A and the contents of $M(D P)$, and stores the result in register A.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

POF (Power OFf)																			
Instruction code	D9															Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	0	0	0	1	0	2	0	0	2	16	1	1	-	-
Opera- RAM back-up tion:																Grouping: Other operation			
																Description: Puts the system in RAM back-up state by executing the POF instruction after executing the EPOF instruction. Note: If the EPOF instruction is not executed just before this instruction, this instruction is equivalent to the NOP instruction.			

RAR (Rotate Accumulator Right)

Instruc- tion code	0	0	0	0	0	1	1	1	0	1	2	0	1	D	16	Number of words	Number of cycles	Flag CY	Skip condition

RB j (Reset Bit)

Instruction code	Do													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0								0	4	$\underset{+}{C}$	1	1	-	-
Opera- $(\mathrm{Mj}(\mathrm{DP})) \leftarrow 0$ tion: $\mathrm{j}=0$ to 3														Grouping: Bit operation			
														Description: Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).			
RBK (Reset BanK flag))																	
Instruc tion code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0						0	02	0	4	016	1	1	-	
Operation:	$\mathrm{p} 6 \leftarrow 0$ when TABP p instruction is executed.													Grouping: Other operation			
														Description: Sets referring data area to pages 0 to 63 when the TABP pinstruction is executed. This instruction is valid only for theTABP p instruction.Note: \quad This instruction cannot be used for the M34571G4/G6.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

set to register Y .

RT (ReTurn from subroutine)

Instruc tion code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0						0	4		1	2	-	-
Operation:	$\begin{aligned} & (\mathrm{PC}) \leftarrow(\mathrm{SK}(\mathrm{SP})) \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 \end{aligned}$													Grouping: Return operation			
														Description: Returns from subroutine to the routine called the subroutine.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

RTI (ReTurn from Interrupt)

Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	0	0	1	1		0	4	6		1	2	-	
Operation:	$\begin{aligned} & (\mathrm{PC}) \leftarrow(\mathrm{SK}(\mathrm{SP})) \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 \end{aligned}$														Grouping: Return operation			
															Description: Returns from interrupt service routine to main routine. Returns each value of data pointer ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$), carry flag, skip status, NOP mode status by the continuous description of the LA/LXY instruction, register A and register B to the states just before interrupt.			

RTS (ReTurn from subroutine and Skip)

Instruction	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	0	0	0	1	0	0	0	1	0		20	4	5	16	1	2	-	Skip at uncondition
Operation:	$\begin{aligned} & (\mathrm{PC}) \leftarrow(\mathrm{SK}(\mathrm{SP})) \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 \end{aligned}$														Grouping: Return operation			
															Description:	eturns from ne, and skips	routine to next ins	tine called the subro at uncondition.

RUPT (Reset UPT flag)

Opera- (UPTF) $\leftarrow 0$
tion:

SB \mathbf{j} (Set Bit)

Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	1	1	1			0	5		1	1	-	-
Opera- $(\mathrm{Mj}(\mathrm{DP})) \leftarrow 1$ tion: $\mathrm{j}=0$ to 3														Grouping: Bit operation			
														Description: Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of $M(D P)$.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
SBK (Set BanK flag)

SC (Set Carry flag)

Instruction	D9									Do				Number of words	Number of cycles	Flag CY	Skip condition
code	0	0	0	0	0	0	0	1	1		0	0		1	1	1	-
Opera-)												Grouping:	rithmetic ope		
														Description:	ets (1) to carry	lag CY.	

SCP (Set Port C)

Instruction	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	1	0	0	0	1	1	0		2	8	D		1	1	-	-
Opera- $\quad(\mathrm{C}) \leftarrow 1$tion:															Grouping: Input/Output operation			
															Description: Sets (1) to port C.			

SD (Set port D specified by register Y)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
SEA n (Skip Equal, Accumulator with immediate data n)

SEAM (Skip Equal, Accumulator with Memory)

Instruc tion code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	1	0	0	1	1		0	2	6		1	1		$(\mathrm{A})=(\mathrm{M}(\mathrm{DP}))^{\text {a }}$
Opera- $\quad(\mathrm{A})=(\mathrm{M}(\mathrm{DP}))$?tion:															Grouping: Comparison operation			
															Description: Skips the next instruction when the contents of register A is equal to the contents of $M(D P)$. Executes the next instruction when the contents of register A is not equal to the contents of $M(D P)$.			

SNZO (Skip if Non Zero condition of external interrupt 0 request flag)

Instruction code	D9											Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	1	1	1	0		3	8	1	1	-	$\mathrm{V} 10=0:(E X F O)=1$
Operation:	$\begin{aligned} & \mathrm{V} 10=0:(\text { EXFO })=1 ? \\ & \text { (EXF0 }) \leftarrow 0 \\ & \text { V10 }=1: \text { SNZ0 }=\text { NOP } \\ & \text { (V10 }: \text { bit } 0 \text { of the interrupt control register V1) } \end{aligned}$											Grouping: Interrupt operation			
												Description: When V10 $=0$: Clears (0) to the EXFO flag and skips the next instruction when external 0 interrupt request flag EXFO is " 1 ". When the EXFO flag is " 0 ", executes the next instruction. When $\mathrm{V} 10=1$: This instruction is equivalent to the NOP instruction.			

SNZ1 (Skip if Non Zero condition of external interrupt 1 request flag)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

SNZIO (Skip if Non Zero condition of external Interrupt 0 input pin)																
Instruction code	D9									Do			Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	1	1	1	0	1	$02 \bigcirc$	3	A 16	1	1	-	$\begin{aligned} & I 12=0:(\text { INTO }=\text { "L" } \\ & I 12=1:(\text { INTO })=" H " \end{aligned}$
Operation:	$\begin{aligned} & I 12=0:(\text { INTO })=\text { "L" ? } \\ & I 12=1:(\text { INTO })=\text { "H" ? } \\ & (112: \text { bit } 2 \text { of the interrupt control register I1 }) \end{aligned}$												Grouping: Description:	terrupt oper Vhen I12 = 0 NT0 pin is " L " vel of INTO p When $\mathrm{I} 12=1$ NT0 pin is " H . vel of INTO pin	ips the ne xecutes th s "H". ips the ne xecutes th s "L".	ruction when the level of instruction when the ruction when the level of instruction when the

SNZI1 (Skip if Non Zero condition of external Interrupt 1 input pin)

Instruction	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	0	0	0	0	1	1	1	0	1	12	20	3	B	16	1	1	-	$\begin{aligned} & 122=0:(\text { INT1 })=" L " \\ & 122=1:(\text { INT1 })=\text { "H" } \end{aligned}$
Opera- $\mathrm{I} 22=0:($ INT1 $)=" \mathrm{~L} " ?$ tion: $\mathrm{I} 22=1:($ INT1 $)=" \mathrm{H} " ?$															Grouping: Interrupt operation			
															Description: When $\mathrm{I} 22=0$: Skips the next instruction when the level of INT1 pin is " L ". Executes the next instruction when the level of INT1 pin is "H". When $\mathrm{I}_{2}=1$: Skips the next instruction when the level of INT1 pin is "H". Executes the next instruction when the level of INT1 pin is " L ".			

SNZP (Skip if Non Zero condition of Power down flag)

Instruction	D9													Number of words	Number of cycles	Flag CY	Skip condition
code	0	0	0	0							0	0		1	1		$(\mathrm{P})=1$
Opera-		= 1												Grouping:	ther operatio		
														Description:	kips the nex Ater skipping xecutes the	truction w P flag re instructio	flag is " 1 ". changed. e flag is " 0 ".

SNZT1 (Skip if Non Zero condition of Timer 1 interrupt request flag)

Instruction	D9													Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	1	0	0	0	0			2	8	0	16	1	1	-	$\mathrm{V} 12=0:(\mathrm{T} 1 \mathrm{~F})=1$
Operation:														Grouping:	mer operatio		

tion: $\quad(\mathrm{T} 1 \mathrm{~F}) \leftarrow 0$
$\mathrm{V} 12=1: \mathrm{SNZT} 1=\mathrm{NOP}$
(V12 = bit 2 of interrupt control register V1)
Description: When V12 $=0$: Clears (0) to the T1F flag and skips the next instruction when timer 1 interrupt request flag T1F is " 1 ". When the T 1 F flag is " 0 ," executes the next instruction. When $\mathrm{V} 12=1$: This instruction is equivalent to the NOP instruction.

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
SNZT2 (Skip if Non Zero condition of Timer 2 interrupt request flag)

SNZT3 (Skip if Non Zero condition of Timer 3 interrupt request flag)

Instruction	D9															Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	1	0	0	0	0	0	1	02	2	2	8	2	16	1	1	-	$\mathrm{V} 20=0:(\mathrm{T} 3 \mathrm{~F})=1$
Opera- V20 $=0:($ T3F $)=1 ?$ tion: $($ T3F $) \leftarrow 0$ V20 $=1:$ SNZT3 $=$ NOP																Grouping: Timer operation			
																Description: When V20 = 0: Clears (0) to the T3F flag and skips the next instruction when timer 3 interrupt request flag T3F is " 1 ". When the T3F flag is " 0 ", executes the next instruction. When $\mathrm{V} 20=1$: This instruction is equivalent to the NOP instruction.			

SNZVD (Skip if Non Zero condition of Voltage Detector interrupt request flag)

Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	1	0	0	0	1	0	1	0	2	8	A	16	1	1	-	$\mathrm{V} 23=0:(\mathrm{VDF})=1$
Operation:	$\begin{aligned} & \mathrm{V} 23=0:(\mathrm{VDF})=1 ? \\ & \mathrm{~V} 23=1: \text { SNZVD }=\mathrm{NOP} \end{aligned}$														Grouping: Other operation			
															Description: When $\mathrm{V} 23=0$: Skips the next instruction when voltage detector interrupt request flag VDF is "1". After skipping, clears (0) to the VDF flag. The VDF flag is not cleared to "0". When $\mathrm{V}_{2}=1$: This instruction is equivalent to the NOP instruction.			

SRST (System ReSet)

Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	0	0	0	0	12	0	0	1		1	1	-	-
Opera- System resettion:															Grouping: Other operation			
															Description:	ystem reset		

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

SUPT (Set UPT flag)																	
Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	1	1	0	0		0	5	916	1	1	-	-
Opera- $\quad($ UPTF $) \leftarrow 1$tion:														Grouping: Other operation Description: Sets (1) to the high-order bit reference enable flag UPTF. Note: When the table reference instruction (TABP p) is executed, the high-order 2 bits of ROM reference data is transferred to the low-order 2 bits of register D.			
SZB j (Skip if Zero, Bit)																	
Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	1	0	0	0	j		0	2	j 16	1	1	-	$\begin{gathered} (M j(D P))=0 \\ j=0 \text { to } 3 \end{gathered}$
$\begin{array}{ll} \hline \text { Opera- } & (\mathrm{Mj}(\mathrm{DP}))=0 ? \\ \text { tion: } & \mathrm{j}=0 \text { to } 3 \end{array}$														Grouping: Bit operation			
														Description: Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of $M(D P)$ is " 0 ". Executes the next instruction when the contents of bit j of $M(D P)$ is " 1 ".			

SZC (Skip if Zero, Carry flag)

	D9									Do				
code	0	0	0	0	1	0	1	1	1	12	0	2	F	6

Opera- (CY) $=0$?
tion:

Number of words	Number of cycles	Flag CY	Skip condition
1	1	-	$(C Y)=0$
Grouping:	Arithmetic operation		
Description:	Skips the next instruction when the contents of carry flag CY is " 0 ". After skipping, the CY flag remains unchanged. Executes the next instruction when the contents of the CY flag is " 1 ".		

SZD (Skip if Zero, port D specified by register Y)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
T1AB (Transfer data to timer 1 and register R1 from Accumulator and register B)

Instruc tion	D9													Number of words	Number of cycles	Flag CY	Skip condition			
code	1	0	0	0	1	1	0	0	0		2	3		1	1	-	-			
Operation:	(T17-T14) $\leftarrow(\mathrm{B})$													Grouping:	Timer operation					
	$(\mathrm{R17-R14)} \leftarrow$ (B$)$													Description: Transfers the contents of register B to the high-order 4 bits						
	$(\mathrm{T} 13-\mathrm{T} 10) \leftarrow(\mathrm{A})$																			
	$(\mathrm{R} 13-\mathrm{R} 10) \leftarrow(\mathrm{A})$													of timer 1 and timer 1 reload register R1. Transfers the contents of register A to the low-order 4 bits of timer 1 and						
															ner 1 reload	gister R1.				

T2AB (Transfer data to timer 2 and register R2 from Accumulator and register B)

Instruc tion	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0	1	1	0	0	0		2	3		16	1	1	-	-
Operation:	$\begin{aligned} & (\text { T27-T24) } \leftarrow(\mathrm{B}) \\ & (\text { R27-R24 }) \leftarrow(\mathrm{B}) \\ & (\text { T23-T20) } \leftarrow(\mathrm{A}) \\ & (\text { R23-R20 }) \leftarrow(\mathrm{A}) \end{aligned}$														Grouping: Timer operation			
															Description: Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload register R2. Transfers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2.			

T3AB (Transfer data to timer 3 and register R3L from Accumulator and register B)

Instruction	D9												Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0	1	1		1			3		1	1	-	-
Operation:	$\begin{aligned} & (\text { T37-T34) } \leftarrow(\mathrm{B}) \\ & (\text { R3L7-R3L4) } \leftarrow(\mathrm{B}) \\ & (\text { T33-T30) } \leftarrow(\mathrm{A}) \\ & (\text { R3L3-R3L0 }) \leftarrow(\mathrm{A}) \end{aligned}$												Grouping: Timer operation			
													Description:	ransfers the timer 3 and ontents of reg ner 3 reload	ents of read 3 reload A to the ister R3L	the high-order 4 bits R3L. Transfers the r 4 bits of timer 3 and

T3HAB (Transfer data to register R3H from Accumulator and register B)

Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	1	1	1	1	0		2	3		1	1	-	
Operation:	$\begin{aligned} & \left(\mathrm{R} 3 \mathrm{H}_{7}-\mathrm{R} 3 \mathrm{H}_{4}\right) \leftarrow(\mathrm{B}) \\ & \left(\mathrm{R} 3 \mathrm{H}_{3}-\mathrm{R} 3 \mathrm{H}_{0}\right) \leftarrow(\mathrm{A}) \end{aligned}$													Grouping: Timer operation			
														Description: Transfers the contents of register B to the high-order 4 bits of timer 3 and timer 3 reload register R3H. Transfers the contents of register A to the low-order 4 bits of timer 3 and timer 3 reload register R3H.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

T3R3L (Transfer data to timer 3 from register R3L)																		
Instruc tion code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	1	1	0	1	0		2	3	4	16	1	1	-	-
Opera- $\quad($ T37-T30 $) \leftarrow($ R3L7-R3L0 $)$tion:															Grouping: Timer operation			

TAB (Transfer data to Accumulator from register B)

Instruc tion code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	1	1	1		2	0	1	E		1	1	-	-
$\text { Opera- } \quad(\mathrm{A}) \leftarrow(\mathrm{B})$															Grouping: Register to register transfer			

TAB1 (Transfer data to Accumulator and register B from timer 1)

TAB2 (Transfer data to Accumulator and register B from timer 2)

Instruction	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	1	1	1	0			2	2	7	1		1	1	-	-
Operation:	$\begin{aligned} & (\mathrm{B}) \leftarrow(\mathrm{T} 27-\mathrm{T} 24) \\ & (\mathrm{A}) \leftarrow(\mathrm{T} 23-\mathrm{T} 20) \end{aligned}$														Grouping: Timer operation			
															Description:	ransfers the ter B. ransfers the A.	-order 4 b order 4 bi	T24) of timer 2 to 20) of timer 2 to

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
TAB3 (Transfer data to Accumulator and register B from timer 3)

TABE (Transfer data to Accumulator and register B from register E)

Instruction	D9 Do													Number of words	Number of cycles	Flag CY	Skip condition
code	0	0	0	0	1	0	1	0	1		0	2	A 16	1	1	-	-
$\begin{array}{ll} \hline \text { Opera- } & (B) \leftarrow\left(\mathrm{E}_{7}-\mathrm{E}_{4}\right) \\ \text { tion: } & (A) \leftarrow\left(\mathrm{E}_{3}-\mathrm{E}_{0}\right) \end{array}$														Grouping: Register to register transfer			
														Description: Transfers the high-order 4 bits (E7-E4) of register E to register B, and low-order 4 bits of register E to register A.			

TABP p (Transfer data to Accumulator and register B from Program memory in page p)

TABPS (Transfer data to Accumulator and register B from Prescaler)

Instruc tion	D9													Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	1	1	1	0			2	2	7	516	1	1	-	-
Opera- (B) $\leftarrow\left(\right.$ TPS7-TPS4 $\left.^{2}\right)$ tion: $($ A $) \leftarrow\left(\right.$ TPS $_{3}-$ TPS 0$)$														Grouping: Timer operation			
														Description: Transfers the high-order 4 bits of prescaler to register B. Transfers the low-order 4 bits of prescaler to register A.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
TAD (Transfer data to Accumulator from register D)

TAl1 (Transfer data to Accumulator from register I1)

Instruc tion	D9													Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	1	0	1	0	0			2	5	316	1	1	-	-
Opera- $\quad(\mathrm{A}) \leftarrow(11)$tion:														Grouping: Interrupt operation			
														Description: Transfers the contents of interrupt control register I1 to register A.			

TAI2 (Transfer data to Accumulator from register I2)

Instruction code	D9												Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	0	1	0	1	0	02	5	416	1	1	-	-
Opera- $\quad(\mathrm{A}) \leftarrow(12)$tion:													Grouping: Interrupt operation Description: Transfers the contents of interrupt control register I2 to register A.			
TAK0 (Transfer data to Accumulator from register K0)																
Instruction code	D9												Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	0	1	0	1	1	02	5		1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{A}) \leftarrow(\mathrm{K} 0) \\ & \text { tion: } \end{aligned}$													Grouping: Input/Output operation			
													Description: Transfers the contents of key-on wakeup control register K0 to register A.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAL1 (Transfer data to Accumulator from register L1)

Instruction code	D9									Do				Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	0	0	1	0	1		2	4		1	1	-	-
Opera- $\quad(\mathrm{A}) \leftarrow(\mathrm{L1})$tion:														Grouping: Input/Output operation			
														Description: Transfers the contents of key-on wakeup control register L1 to register A.			

TAM j (Transfer data to Accumulator from Memory)

Instruc tion code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	1	0	1	1								C	j 16	1	1	-	-
Operation:	$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{M}(\mathrm{DP})) \\ & (\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \end{aligned}$													Grouping: RAM to register transfer			
														Description: After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X .			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAMR (Transfer data to Accumulator from register MR)
Instruc-

Instruc tion	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	1	0	1	0	0		2	2	5	2		1	1	-	-
Opera- $\quad(\mathrm{A}) \leftarrow(\mathrm{MR})$	$(\mathrm{A}) \leftarrow(\mathrm{MR})$														Grouping: Clock operation			
															scription:	ransfers the ter A.	tents of	l register MR to

TAPU0 (Transfer data to Accumulator from register PU0)

TAPU1 (Transfer data to Accumulator from register PU1)

Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	0	1		1		2	2	5	E		1	1	-	-
Opera- $\quad(\mathrm{A}) \leftarrow(\mathrm{PU1})$tion:															Grouping: Input/Output operation			
															Description: Transfers the contents of pull-up control register PU1 to register A .			

TAPU2 (Transfer data to Accumulator from register PU2)

Instruc tion	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	1	0	1	1	1		2	2	5	F		1	1	-	-
Opera- $\quad(\mathrm{A}) \leftarrow($ PU2)tion:															Grouping: Input/Output operation			
															Description: Transfers the contents of pull-up control register PU2 to register A .			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
TASP (Transfer data to Accumulator from Stack Pointer)

TAV1 (Transfer data to Accumulator from register V1)

Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	1	0	1	0			5		1	1	-	-
Opera- $\quad(\mathrm{A}) \leftarrow(\mathrm{V} 1)$tion:														Grouping: Interrupt operation			
														Description: Transfers the contents of interrupt control register V1 toregister A.			

TAV2 (Transfer data to Accumulator from register V2)

Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	1	0	1	0	12	0	5		1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{A}) \leftarrow(\mathrm{V} 2) \\ & \text { tion: } \end{aligned}$														Grouping: Interrupt operation Description: Transfers the contents of interrupt control register V2 to register A.			
TAW1 (Transfer data to Accumulator from register W1)																	
Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	0	0	1	0	1	12	2	4	B 16	1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{A}) \leftarrow(\mathrm{W} 1) \\ & \text { tion: } \end{aligned}$														Grouping: Timer operation			
														Description: Transfers the contents of timer control register W1 to regis ter A .			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAW3 (Transfer data to Accumulator from register W3)

TAW5 (Transfer data to Accumulator from register W5)

TAX (Transfer data to Accumulator from register X)

Instruction	D9								Do				Number of words	Number of cycles	Flag CY	Skip condition
code	0	0	0	1		0	0	1		0	5		1	1	-	-
Opera-		-											Grouping:	egister to reg	r transfer	
													Description:	ansfers the	tents of re	oregister A.

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAY (Transfer data to Accumulator from register Y)																	
Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	1	1	1	1		0	1		1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{A}) \leftarrow(\mathrm{Y}) \\ & \text { tion: } \end{aligned}$														Grouping: Register to register transfer			
														Description: Transfers the contents of register Y to register A .			

TAZ (Transfer data to Accumulator from register Z)

	Number of words	Number of cycles	Flag CY	Skip condition
	1	1	-	-
Grouping:				
Rescription: Transfers the contents of register Z to the low-order 2 bits (A1, A0) of register A. "0" is stored to the high-order 2 bits (A3, A2) of register A.				

TBA (Transfer data to register B from Accumulator)

TDA (Transfer data to register D from Accumulator)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
TEAB (Transfer data to register E from Accumulator and register B)

Instruc tion	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	0	0	0	0	0	1	1	0	1		0	1	A	16	1	1	-	-
Operation:	$\begin{aligned} & \left(\mathrm{E}_{7}-\mathrm{E}_{4}\right) \leftarrow(\mathrm{B}) \\ & \left(\mathrm{E}_{3}-\mathrm{E}_{0}\right) \leftarrow(\mathrm{A}) \end{aligned}$														Grouping: Register to register transfer			
															Description:	ransfers the (E3-E0) of reg w-order 4 bit	ents of re E, and th ${ }_{3}-E_{0}$) of	the high-order ts of register A

TFROA (Transfer data to register FR0 from Accumulator)

TFR1A (Transfer data to register FR1 from Accumulator)

TI1A (Transfer data to register 11 from Accumulator)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TI2A (Transfer data to register I2 from Accumulator)

Instruc tion code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	0	1	1	0	0		2	1	8	16	1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(I 2) \leftarrow(A) \\ & \text { tion: } \end{aligned}$															Grouping: Interrupt operation			
															Description: Transfers the contents of register A to interrupt control register 12 .			

TK0A (Transfer data to register K0 from Accumulator)

Instruction	D9 Do														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0	0	1	1	0	1		2	1	B		1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{K} 0) \leftarrow(\mathrm{A}) \\ & \text { tion: } \end{aligned}$															Grouping: Input/Output operation			
															Description: Transfers the contents of register A to key-on wakeup control register KO.			

TK1A (Transfer data to register K1 from Accumulator)

Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	0	1	0	1	0	02	2	1	416	1	1	-	-
$\text { Opera- } \quad(\mathrm{K} 1) \leftarrow(\mathrm{A})$ tion:														Grouping: Input/Output operation Description: Transfers the contents of register A to key-on wakeup control register K1.			
TK2A (Transfer data to register K2 from Accumulator)																	
Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	0	1	0	1	0	12	2	1	516	1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{K} 2) \leftarrow(\mathrm{A}) \\ & \text { tion: } \end{aligned}$														Grouping: Input/Output operation			
														Description: Transfers the contents of register A to key-on wakeup control register K2.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
TL1A (Transfer data to register L1 from Accumulator)

Instruc tion	D9 Do													Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0				1	0	2	0	A		1	1		
Opera- $\quad(\mathrm{L} 1) \leftarrow(\mathrm{A})$tion:													Grouping: Input/Output operation				
													Description: Transfers the contents of register A to key-on wakeup control register L1.				

TMA j (Transfer data to Memory from Accumulator)

Instruction		D9													
code	1	0	1				j	j	j		2	2	B	j	16
Operation:		0	(X)	$(\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j})$											

TMRA (Transfer data to register MR from Accumulator)

Instruc tion code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	0	1	0	1	1	02	2	1	6		1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{MR}) \leftarrow(\mathrm{A}) \\ & \text { tion: } \end{aligned}$															Grouping: Clock operation Description: Transfers the contents of register A to clock control register MR.			
TPAA (Transfer data to register PA from Accumulator)																		
Instruc tion code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	1	0	1	0	1	0	1	02	2	A	A		1	1	-	-
$\text { Opera- } \quad(\mathrm{PA} 0) \leftarrow(\mathrm{A}))$tion:															Grouping: Timer operation Description: Transfers the least significant bit of register A (A0) to timer control register PA.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
TPSAB (Transfer data to Prescaler and register RPS from Accumulator and register B)

TPU0A (Transfer data to register PU0 from Accumulator)

Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	1	0	1	1	0	12	2	2	D	16	1	1	-	-
Opera- $\quad(\mathrm{PUO}) \leftarrow(\mathrm{A})$tion:															Grouping: Input/Output operation			
															Description: Transfers the contents of register A to pull-up control register PUO.			

TPU1A (Transfer data to register PU1 from Accumulator)

Instruction	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0	1	0	1	1	1	0		2	E	16	1	1	-	-
Opera- $\quad(\mathrm{PU1}) \leftarrow(\mathrm{A})$tion:															Grouping: Input/Output operation			
															Description:	ansfers the PU1.	tents of re	pull-up contro

TPU2A (Transfer data to register PU2 from Accumulator)

Instruction	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0	1			1	1		2	2			1	1	-	-
Opera- $\quad(\mathrm{PU2}) \leftarrow(\mathrm{A})$tion:															Grouping: Input/Output operation			
															Description: Transfers the contents of register A to pull-up control register PU2.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
TR1AB (Transfer data to register R1 from Accumulator and register B)

Instruction	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0	1	1	1	1	1	1	2	3	F		1	1		
Opera- $($ R17-R14 $) \leftarrow($ B $)$ tion: $($ R13-R10 $) \leftarrow(A)$															Grouping: Input/Output operation			
															Description: Transfers the contents of register B to the high-order 4 bits (R17-R14) of reload register R1, and the contents of register A to the low-order 4 bits (R13-R10) of reload register R1.			

TV1A (Transfer data to register V1 from Accumulator)

TV1A (Transfer data to register V1 from Accumulator)

Instruction code	D9												Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	1	1	1	1	1	120	3	F 16	1	1	-	-
Opera- $\quad(\mathrm{V} 1) \leftarrow(\mathrm{A})$tion:													Grouping: Interrupt operation			
													Description: Transfers the contents of register A to interrupt control register V1.			
TV2A (Transfer data to register V2 from Accumulator)																
Instruction code	D9												Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	1	1	1	1	1	$02 \bigcirc$	3	E 16	1	1		
Opera- $\quad(\mathrm{V} 2) \leftarrow(\mathrm{A})$tion:													Grouping: Interrupt operation			
													Description: Transfers the contents of register A to interrupt control register V2.			

TW1A (Transfer data to register W1 from Accumulator)

Instruc tion code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	0	0	1	1	1		2	0	E 16	1	1	-	-
Opera- $\quad(\mathrm{W} 1) \leftarrow(\mathrm{A})$tion:														Grouping: Timer operation			
														Description: Transfers the contents of register A to timer control register W1.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
TW2A (Transfer data to register W2 from Accumulator)

Instruc tion code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	0	0	1	1	1	12	2	0	F	16	1	1	-	-
$\text { Opera- } \quad(\mathrm{W} 2) \leftarrow(\mathrm{A})$ tion:															Grouping: Timer operation			
															Description: Transfers the contents of register A to timer control register W2.			

TW3A (Transfer data to register W3 from Accumulator)

 W3.

TW5A (Transfer data to register W5 from Accumulator)

Instruction	D9												Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0	0								1	1	-	-
Opera- $\quad(\mathrm{W} 5) \leftarrow(\mathrm{A})$													Grouping: Timer operation			
	(W5) \leftarrow (A$)$												Description: Transfers the			

TYA (Transfer data to register Y from Accumulator)

Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0			1	1			0	0	C 16	1	1	-	-
Operation:	$(\mathrm{Y}) \leftarrow(\mathrm{A})$													Grouping: Register to register transfer			
														Description: Transfers the contents of register A to register Y.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

WRST (Watchdog timer ReSeT)																		
Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	1	0	1	0	0	0	0		2	A	0		1	1	-	$($ WDF1 $)=1$
Opera- $($ WDF1 $)=1 ?$ tion: $($ WDF1 $) \leftarrow 0$															Grouping: Other operation			
															Description: Clears (0) to the WDF1 flag and skips the next instruction when watchdog timer flag WDF1 is " 1 ". When the WDF1 flag is " 0 ", executes the next instruction. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction.			

XAM j (eXchange Accumulator and Memory data)

XAMD j (eXchange Accumulator and Memory data and Decrement register Y and skip)

XAMI j (eXchange Accumulator and Memory data and Increment register Y and skip)

Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	1	0	1		1	0					2	E	j 16	1	1	-	$(\mathrm{Y})=0$
Opera- $(\mathrm{A}) \leftarrow \rightarrow(\mathrm{M}(\mathrm{DP}))$ tion: $(\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j})$ $\mathrm{j}=0$ to 15 $(\mathrm{Y}) \leftarrow(\mathrm{Y})+1$														Grouping: RAM to register transfer			
														Description: After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y . As a result of addition, when the contents of register Y is 0 , the next instruction is skipped. When the contents of register Y is not 0 , the next instruction is executed.			

MACHINE INSTRUCTIONS (INDEX BY TYPES)

Para meter Type of instructi ons	Mnemonic	Instruction code												$\begin{array}{\|l\|} \hline \\ \hline \\ \hline \end{array}$		Function
			D8	D7	D6	D5	D4	D3	D2	Do	Hexadecim al notation					
	TAB	0	0	0	0	0	1	1	1	10		1	E	1	1	$(\mathrm{A}) \leftarrow(\mathrm{B})$
	TBA	0	0	0	0	0	0	1	1	10		0	E	1	1	$(\mathrm{B}) \leftarrow(\mathrm{A})$
	TAY	0	0	0	0	0	1	1	1	11		1	F	1	1	$(\mathrm{A}) \leftarrow(\mathrm{Y})$
	TYA	0	0	0	0	0	0	1	1	00		0	C	1	1	$(\mathrm{Y}) \leftarrow(\mathrm{A})$
	TEAB	0	0	0	0	0	1	1	0	10		1	A	1	1	$\begin{aligned} & \left(\mathrm{E}_{7}-\mathrm{E}_{4}\right) \leftarrow(\mathrm{B}) \\ & \left(\mathrm{E}_{3}-\mathrm{E}_{0}\right) \leftarrow(\mathrm{A}) \end{aligned}$
	TABE	0	0	0	0	1	0	1	0	10		2	A	1	1	$\begin{aligned} & (B) \leftarrow\left(\mathrm{E}_{7}-\mathrm{E}_{4}\right) \\ & (\mathrm{A}) \leftarrow\left(\mathrm{E}_{3}-\mathrm{E}_{0}\right) \end{aligned}$
	TDA	0	0	0	0	1	0	1	0	$0 \quad 1$		2	9	1	1	$(\mathrm{DR2}-\mathrm{DR} 0) \leftarrow\left(\mathrm{A}_{2}-\mathrm{A}_{0}\right)$
	TAD	0	0	0	1	0	1	0	0	01		5	1	1	1	$\begin{aligned} & \left(\mathrm{A}_{2}-\mathrm{A}_{0}\right) \leftarrow\left(\mathrm{DR} 2-\mathrm{DR}_{0}\right) \\ & \left(\mathrm{A}_{3}\right) \leftarrow 0 \end{aligned}$
	TAZ	0	0	0	1	0	1	0	0	11		5	3	1	1	$\begin{aligned} & \left(\mathrm{A}_{1}, \mathrm{~A}_{0}\right) \leftarrow\left(\mathrm{Z}_{1}, \mathrm{Z}_{0}\right) \\ & \left(\mathrm{A}_{3}, \mathrm{~A}_{2}\right) \leftarrow 0 \end{aligned}$
	TAX	0	0	0	1	0	1	0	0	10		5	2	1	1	$(\mathrm{A}) \leftarrow(\mathrm{X})$
	TASP	0	0	0	1	0	1	0	0	00		5	0	1	1	$\begin{aligned} & \left(\mathrm{A}_{2}-\mathrm{A}_{0}\right) \leftarrow\left(\mathrm{SP}_{2}-\mathrm{SP}_{0}\right) \\ & \left(\mathrm{A}_{3}\right) \leftarrow 0 \end{aligned}$
	LXY x, y	1	1	X3 \times	x2		x0	y3	y2	y1 y0		x	y	1	1	$\begin{aligned} & (X) \leftarrow x x=0 \text { to } 15 \\ & (Y) \leftarrow y y=0 \text { to } 15 \end{aligned}$
	LZ z	0	0	0	1	0	0	1	0	Z1 z0		4	8 +2	1	1	(Z) $\leftarrow \mathrm{zz}=0$ to 3
	INY	0	0	0	0	0	1	0	0	11		1	3	1	1	$(\mathrm{Y}) \leftarrow(\mathrm{Y})+1$
	DEY	0	0	0	0	0	1	0	1	11		1	7	1	1	$(\mathrm{Y}) \leftarrow(\mathrm{Y})-1$
	TAM j	1	0	1	1	0	0	j	j	j j		C	j	1	1	$\begin{aligned} & (A) \leftarrow(M(D P)) \\ & (X) \leftarrow(X) E X O R(j) \\ & j=0 \text { to } 15 \end{aligned}$
	XAM j	1	0	1	1	0	1	j	j	j j		D	j	1	1	$\begin{aligned} & (A) \leftarrow(M(D P)) \\ & (X) \leftarrow(X) \operatorname{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \end{aligned}$
	XAMD j	1	0	1	1	1	1	j	j	j j		F	j	1	1	$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{M}(\mathrm{DP})) \\ & (\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \\ & (\mathrm{Y}) \leftarrow(\mathrm{Y})-1 \end{aligned}$
	XAMI j	1	0	1	1	1	0	j	j	j j		E	j	1	1	$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{M}(\mathrm{DP})) \\ & (\mathrm{X}) \leftarrow(\mathrm{X}) \mathrm{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \\ & (\mathrm{Y}) \leftarrow(\mathrm{Y})+1 \end{aligned}$
	TMA j	1	0	1	0	1	1	j	j	j j		B		1	1	$\begin{aligned} & (\mathrm{M}(\mathrm{DP})) \leftarrow(\mathrm{A}) \\ & (\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \end{aligned}$

Skip condition		Detailed description
- - - - - - - - - - - - -	- - - - - - - - - - - - - -	Transfers the contents of register B to register A. Transfers the contents of register A to register B. Transfers the contents of register Y to register A . Transfers the contents of register A to register Y. Transfers the contents of register B to the high-order 4 bits ($\mathrm{E}_{3}-\mathrm{E}_{0}$) of register E , and the contents of register A to the low-order 4 bits ($\mathrm{E}_{3}-\mathrm{E}_{0}$) of register E . Transfers the high-order 4 bits (E7-E4) of register E to register B, and low-order 4 bits of register E to register A. Transfers the contents of the low-order 3 bits ($\mathrm{A}_{2}-\mathrm{A}_{0}$) of register A to register D . Transfers the contents of register D to the low-order 3 bits (A2-A0) of register A. " 0 " is stored to the bit 3 (Аз) of register A. Transfers the contents of register Z to the low-order 2 bits (A_{1}, A_{0}) of register A. " 0 " is stored to the high-order 2 bits ($\mathrm{A} 3, \mathrm{~A} 2$) of register A . Transfers the contents of register X to register A . Transfers the contents of stack pointer (SP) to the low-order 3 bits ($\mathrm{A}_{2}-\mathrm{A}_{0}$) of register A . " 0 " is stored to the bit 3 (Аз) of register A.
Continuous description - $(Y)=0$ $(Y)=15$	- - - - - -	Loads the value x in the immediate field to register X , and the value y in the immediate field to register Y . When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped. Loads the value z in the immediate field to register Z . Adds 1 to the contents of register Y . As a result of addition, when the contents of register Y is 0 , the next instruction is skipped. When the contents of register Y is not 0 , the next instruction is executed. Subtracts 1 from the contents of register Y . As a result of subtraction, when the contents of register Y is 15 , the next instruction is skipped. When the contents of register Y is not 15 , the next instruction is executed.
- $(Y)=15$ $(Y)=0$	-	After transferring the contents of $M(D P)$ to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X . After exchanging the contents of $M(D P)$ with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X . After exchanging the contents of $M(D P)$ with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y . As a result of subtraction, when the contents of register Y is 15 , the next instruction is skipped. When the contents of register Y is not 15 , the next instruction is executed. After exchanging the contents of $M(D P)$ with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X . Adds 1 to the contents of register Y . As a result of addition, when the contents of register Y is 0 , the next instruction is skipped. when the contents of register Y is not 0 , the next instruction is executed. After transferring the contents of register A to M(DP), an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X .

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Note 1.M34571G4: $p=0$ to 31, M34571G6: $p=0$ to 47 and M34571GD: $p=0$ to 127.

Skip condition		Detailed description
Continuous description	-	Loads the value n in the immediate field to register A . When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped. Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in address (DR2 DR1 DR $1 A_{3} A_{2} A_{1} A_{0}$)2 specified by registers A and D in page p. When UPTF is 1 , Transfers bits 9 , 8 to the low-order 2 bits (DR1, DRo) of register D, and " 0 " is stored to the least significant bit (DR2) of register D. When this instruction is executed, 1 stage of stack register (SK) is used.
-	-	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	-	Adds the value n in the immediate field to register A, and stores a result in register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.
-	-	Takes the AND operation between the contents of register A and the contents of $M(D P)$, and stores the result in register A.
-	-	Takes the OR operation between the contents of register A and the contents of $M(D P)$, and stores the result in register A.
-	1	Sets (1) to carry flag CY.
-	0	Clears (0) to carry flag CY.
$(C Y)=0$	-	Skips the next instruction when the contents of carry flag CY is " 0 ". Executes the next instruction when the contents of carry flag CY is " 1 ". The contents of carry flag CY remains unchanged.
-	-	Stores the one's complement for register A's contents in register A.
-	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
-	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
-	-	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
$\begin{gathered} (M j(D P))=0 \\ j=0 \text { to } 3 \end{gathered}$	-	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of $M(D P)$ is " 0 ". Executes the next instruction when the contents of bit j of $\mathrm{M}(\mathrm{DP})$ is " 1 ".

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Note 1.M34571G4: $p=0$ to 31, M34571G6: $p=0$ to 47 and M34571GD: $p=0$ to 127.

\begin{tabular}{|c|c|c|}
\hline Skip condition \& \& Detailed description \\
\hline \[
(\mathrm{A})=(\mathrm{M}(\mathrm{DP}))
\]
\[
\begin{gathered}
(A)=n \\
n=0 \text { to } 15
\end{gathered}
\] \& \& \begin{tabular}{l}
Skips the next instruction when the contents of register A is equal to the contents of M(DP). \\
Executes the next instruction when the contents of register \(A\) is not equal to the contents of M(DP). \\
Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field.
\end{tabular} \\
\hline -
-
-
- \& -
-
-

- \& | Branch within a page : Branches to address a in the identical page. |
| :--- |
| Branch out of a page : Branches to address a in page p . |
| Branch out of a page : Branches to address (DR2 DR1 DRo $\left.A_{3} A_{2} A_{1} A_{0}\right) 2$ specified by registers D and A in page p . |

\hline -

-
-
- \& -
-
-
- \& | Call the subroutine in page 2 : Calls the subroutine at address a in page 2 . |
| :--- |
| Call the subroutine : Calls the subroutine at address a in page p. |
| Call the subroutine : Calls the subroutine at address (DR2 DR1 DRo $\left.A_{3} A_{2} A_{1} A_{0}\right) 2$ specified by registers D and A in page p. |

\hline No conditional skip \& | - |
:---:
-
:---
Returns each value of data pointer ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$), carry flag, skip status, NOP mode status by the continuous description of the LA/LXY instruction, register A and register B to the states just before interrupt.
Returns from subroutine to the routine called the subroutine.
Returns from subroutine to the routine called the subroutine, and skips the next instruction at with no condition.

\hline
\end{tabular}

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Skip condition		Detailed description
-	-	Transfers the high-order 4 bits of prescaler to register B.
		Transfers the low-order 4 bits of prescaler to register A .
-	-	Transfers the contents of register B to the high-order 4 bits of prescaler and prescaler reload register RPS. Transfers the contents of register A to the low-order 4 bits of prescaler and prescaler reload register RPS.
-	-	Transfers the high-order 4 bits (T17-T14) of timer 1 to register B. Transfers the low-order 4 bits (T13-T10) of timer 1 to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1L. Transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1L.
-	-	Transfers the contents of register B to the high-order 4 bits (R17-R14) of reload register R1, and the contents of register A to the low-order 4 bits (R13-R10) of reload register R1.
-	-	Transfers the high-order 4 bits (T27-T24) of timer 2 to register B. Transfers the low-order 4 bits (T23-T20) of timer 2 to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload register R2L. Transfers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2L.
-	-	Transfers the high-order 4 bits (T37-T34) of timer 3 to register B . Transfers the low-order 4 bits (T33-T30) of timer 3 to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 3 and timer 3 reload register R3L. Transfers the contents of register A to the low-order 4 bits of timer 3 and timer 3 reload register R3L.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 3 reload register R3H. Transfers the contents of register A to the low-order 4 bits of timer 3 reload register R3H.
-	-	Transfers the contents of timer 3 reload register R3L to timer 3.
$\mathrm{V} 12=0:(\mathrm{T} 1 \mathrm{~F})=1$	-	When $\mathrm{V} 12=0$: Clears (0) to the T1F flag and skips the next instruction when timer 1 interrupt request flag T1F is " 1 ". When the T1F flag is " 0 ", executes the next instruction. When $\mathrm{V} 12=1$: This instruction is equivalent to the NOP instruction. (V12: bit 2 of interrupt control register V1)
$\mathrm{V} 13=0:(\mathrm{T} 2 \mathrm{~F})=1$	-	When V13 $=0$: Clears (0) to the T2F flag and skips the next instruction when timer 2 interrupt request flag T2F is " 1 ". When the T2F flag is " 0 ", executes the next instruction. When $\mathrm{V} 13=1$: This instruction is equivalent to the NOP instruction. (V13: bit 3 of interrupt control register V1)
$\mathrm{V} 20=0:(\mathrm{T} 3 \mathrm{~F})=1$	-	When $\mathrm{V} 20=0$: Clears (0) to the T3F flag and skips the next instruction when timer 3 interrupt request flag T3F is " 1 ". When the T3F flag is " 0 ", executes the next instruction. When $\mathrm{V} 20=1$: This instruction is equivalent to the NOP instruction. (V20: bit 0 of interrupt control register V2)

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Para meter Type of instructi ons	Mnemonic	Instruction code																	Function	
		D9	D8 D	D7	D6	D5	D	D4	D3	D2 D	D1	Do		Hexa al no	$\begin{aligned} & \text { adeo } \\ & \text { otati } \end{aligned}$					
	IAP0	1	0	0	1	1	0	0	0	0	0	0		2	6	0	1	1	$(\mathrm{A}) \leftarrow(\mathrm{P} 0)$	
	OPOA	1	0	0	0	1	0	0	0	0	0	0		2	2	0	1	1	$(\mathrm{PO}) \leftarrow(\mathrm{A})$	
	IAP1	1	0	0	1	1	0	0	0	0	0	1		2	6	1	1	1	$(\mathrm{A}) \leftarrow(\mathrm{P} 1)$	
	OP1A	1	0	0	0	1	0	0	0	0	0	1		2	2	1	1	1	$(\mathrm{P} 1) \leftarrow(\mathrm{A})$	
	IAP2	1	0	0	1	1	0	0	0	0	1	0		2	6	2	1	1	$\begin{aligned} & \left(\mathrm{A}_{1}, \mathrm{~A}_{0}\right) \leftarrow\left(\mathrm{P} 21, \mathrm{P}_{2} 0\right) \\ & \left(\mathrm{A}_{3}, \mathrm{~A}_{2}\right) \leftarrow 0 \end{aligned}$	
	OP2A	1	0	0	0	1	0	0	0	0	1	0		2	2	2	1	1	$(\mathrm{P} 21, \mathrm{P} 20) \leftarrow\left(\mathrm{A}_{1}, \mathrm{~A}_{0}\right)$	
	IAP3	1	0	0	1	1	0	0	0	0	1	1		2	6	3	1	1	$\begin{aligned} & \left(\mathrm{A}_{1}, \mathrm{~A}_{0}\right) \leftarrow\left(\mathrm{P} 3_{1}, \mathrm{P} 3_{0}\right) \\ & \left(\mathrm{A}_{3}, \mathrm{~A}_{2}\right) \leftarrow 0 \end{aligned}$	
	OP3A	1	0	0	0	1	0	0	0	0	1	1		2	2	3	1	1	$(\mathrm{P} 31, \mathrm{P} 30) \leftarrow\left(\mathrm{A}_{1}, \mathrm{~A}_{0}\right)$	
	CLD	0	0	0	0	0	1	1	0	0	0	1		0	1	1	1	1	(D) $\leftarrow 1$	
	RD	0	0	0	0	0	1	1	0	10	0	0		0	1	4	1	1	$\begin{aligned} & (D(Y)) \leftarrow 0 \\ & (Y)=0 \text { to } 4 \end{aligned}$	
	SD	0	0	0	0	0	1	1	0	10	0	1		0	1	5	1	1	$\begin{aligned} & (\mathrm{D}(\mathrm{Y})) \leftarrow 1 \\ & (\mathrm{Y})=0 \text { to } 4 \end{aligned}$	
	SZD	0	0	0	0	1	0	0	0	10	0	0		0	2	4	2	2	$\begin{aligned} & (\mathrm{D}(\mathrm{Y}))=0 ? \\ & (\mathrm{Y})=0 \text { to } 4 \end{aligned}$	
		0	0	0	0	1	0	0	1	0	1	1		0	2	B				
	RCP	1	0	1	0	0	0	0	1	10	0	0		2	8	C	1	1	$(\mathrm{C}) \leftarrow(0)$	
	SCP	1	0	1	0	0	0	0	1	10	0	1		2	8	D	1	1	$(\mathrm{C}) \leftarrow(1)$	
	TFROA	1	0	0	0	1	0	0	1	0	0	0		2	2	8	1	1	$(\mathrm{FRO}) \leftarrow(\mathrm{A})$	
	TFR1A	1	0	0	0	1	0	0	1	0	0	1		2	2	9	1	1	$(\mathrm{FR} 1) \leftarrow(\mathrm{A})$	
	TAPU0	1	0	0	1	0	1	1	0	1	1	1		2	5	7	1	1	$(\mathrm{A}) \leftarrow(\mathrm{PUO})$	
	TPU0A	1	0	0	0	1	0	0	1	10	0	1		2	2	D	1	1	$(\mathrm{PUO}) \leftarrow(\mathrm{A})$	
	TAPU1	1	0	0	1	0	1	1	1	1	1	0		2	5	E	1	1	$(\mathrm{A}) \leftarrow(\mathrm{PU1} 1)$	
	TPU1A	1	0	0	0	1	0	0	1	1	1	0		2	2	E	1	1	$(\mathrm{PU1}) \leftarrow(\mathrm{A})$	
	TAPU2	1	0	0	1	0	1	1	1	1	1	1		2	5	F	1	1	$(\mathrm{A}) \leftarrow(\mathrm{PU} 2)$	
	TPU2A	1	0	0	0	1	0	0	1	1	1	1		2	2	F	1	1	$(\mathrm{PU} 2) \leftarrow(\mathrm{A})$	
	IAK	1	0	0	1	1		0	1	1	1	1		2	6		1	1	$\begin{aligned} & (\mathrm{A} 0) \leftarrow(\mathrm{K}) \\ & (\mathrm{A} 3-\mathrm{A} 1) \leftarrow 0 \end{aligned}$	

Skip condition	$\begin{aligned} & \text { خ } \\ & \text { O } \\ & \text { त } \\ & \text { त } \\ & \text { त } \end{aligned}$	Detailed description
-	-	Transfers the input of port P0 to register A.
-	-	Outputs the contents of register A to port P0.
-	-	Transfers the input of port P1 to register A.
-	-	Outputs the contents of register A to port P1.
-	-	Transfers the input of port P 2 to the low-order 2 bits $\left(\mathrm{A}_{1}, \mathrm{~A}_{0}\right)$ of register A . " 0 " is stored to the high-order 2 bits ($\mathrm{A}_{3}, \mathrm{~A}_{2}$) of register A .
-	-	Outputs the contents of the low-order 2 bits ($\mathrm{A}_{1}, \mathrm{~A}_{0}$) of register A to port P2.
-	-	Transfers the input of port P3 to the low-order 2 bits ($\mathrm{A}_{1}, \mathrm{~A}_{0}$) of register A . " 0 " is stored to the high-order 2 bits (A_{3}, A_{2}) of register A.
-	-	Outputs the contents of the low-order 2 bits ($\mathrm{A}_{1}, \mathrm{~A}_{0}$) of register A to port P3.
-	-	Sets (1) to port D.
-	-	Clears (0) to a bit of port D specified by register Y .
-	-	Sets (1) to a bit of port D specified by register Y.
$\begin{aligned} & (D(Y))=0 \\ & Y=0 \text { to } 4 \end{aligned}$	-	Skips the next instruction when a bit of port D specified by register Y is "0". Executes the next instruction when a bit of port D specified by register Y is " 1 ".
-	-	Clears (0) to port C.
-	-	Sets (1) to port C.
-	-	Transfers the contents of register A to port output structure control register FR0.
-	-	Transfers the contents of register A to port output structure control register FR1.
-	-	Transfers the contents of pull-up control register PU0 to register A.
-	-	Transfers the contents of register A to pull-up control register PU0.
-	-	Transfers the contents of pull-up control register PU1 to register A.
-	-	Transfers the contents of register A to pull-up control register PU1.
-	-	Transfers the contents of pull-up control register PU2 to register A.
-	-	Transfers the contents of register A to pull-up control register PU2.
-	-	Transfers the input of port K to the least significant bit (Ao) of register A . " 0 " is stored to the high-order 3 bits ($\mathrm{A}_{3}-\mathrm{A}_{1}$) of register A .

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Note 1.This instruction cannot be used for the M34571G4/G6.

Skip condition	〕 O ® ¢ İ U U	Detailed description
- - - - - - - - -	- - - - - - - - -	Transfers the contents of key-on wakeup control register K0 to register A. Transfers the contents of register A to key-on wakeup control register KO. Transfers the contents of key-on wakeup control register K1 to register A. Transfers the contents of register A to key-on wakeup control register K1. Transfers the contents of key-on wakeup control register K2 to register A. Transfers the contents of register A to key-on wakeup control register K2. Transfers the contents of key-on wakeup control register L1 to register A. Transfers the contents of register A to key-on wakeup control register L1.
$\begin{gathered} (\mathrm{P})=1 \\ (\mathrm{WDF} 1)=1 \\ \\ - \\ - \\ - \\ - \\ \mathrm{V} 23=0 \end{gathered}$	- - - - - - - - - - - - - - -	Transfers the contents of clock control register MR to register A. Transfers the contents of register A to clock control register MR. No operation; Adds 1 to program counter value, and others remain unchanged. Puts the system in RAM back-up state by executing the POF instruction after executing the EPOF instruction. Operations of all functions are stopped. Makes the immediate after POF instruction valid by executing the EPOF instruction. Skips the next instruction when the P flag is " 1 ". After skipping, the P flag remains unchanged. Executes the next instruction when the P flag is " 0 ". Clears (0) to the WDF1 flag and skips the next instruction when watchdog timer flag WDF1 is " 1 ". When the WDF1 flag is " 0 ", executes the next instruction. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction. Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction. System reset occurs. Clears (0) to the high-order bit reference enable flag UPTF. Sets (1) to the high-order bit reference enable flag UPTF. When V23 = 0 : Skips the next instruction when voltage detector interrupt request flag VDF is " 1 ". The VDF flag is not cleared to "0". When the VDF flag is " 0 ", executes the next instruction. When $\mathrm{V} 23=1$: This instruction is equivalent to the NOP instruction. Sets referring data area to pages 0 to 63 when the TABP p instruction is executed. This instruction is valid only for the TABP p instruction. Sets referring data area to pages 64 to 127 when the TABP p instruction is executed. This instruction is valid only for the TABP p instruction.

INSTRUCTION CODE TABLE

	$\begin{array}{c\|} \hline \mathrm{D}_{1} \\ \mathrm{D} 4 \end{array}$	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111	$\left\|\begin{array}{c} 010000 \\ \text { to } \\ 01111 \end{array}\right\|$	$\left\|\begin{array}{c} 011000 \\ \text { to } \\ 011111 \end{array}\right\|$
Do	Hex, notation	00	01	02	03	04	05	06	07	08	09	OA	0B	OC	OD	OE	OF	10-17	18-F
0000	0	NOP	BLA	$\begin{gathered} \hline \text { SZB } \\ 0 \end{gathered}$	BMLA	RBK	TASP	$\begin{gathered} \mathrm{A} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{LA} \\ 0 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 0 \end{array}$	$\begin{array}{\|c} \text { TABP } \\ 16 \end{array}$	$\begin{gathered} \mathrm{TABP} \\ 32^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 48^{* \star} \end{gathered}$	BML	BML	BL	BL	BM	B
0001	1	SRST	CLD	$\begin{gathered} \hline \text { SZB } \\ 1 \end{gathered}$	-	SBK	TAD	$\begin{gathered} \\ \hline \text { A } \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{LA} \\ 1 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 1 \end{gathered}$	$\begin{array}{\|c} \text { TABP } \\ 17 \end{array}$	$\begin{gathered} \mathrm{TABP} \\ 33^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 49^{* *} \end{gathered}$	BML	BML	BL	BL	BM	B
0010	2	POF	-	$\begin{gathered} \text { SZB } \\ 2 \end{gathered}$	-	-	TAX	$\begin{aligned} & \text { A } \\ & 2 \end{aligned}$	$\begin{gathered} \text { LA } \\ 2 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 2 \end{array}$	$\begin{array}{\|c} \text { TABP } \\ 18 \end{array}$	$\begin{array}{\|c} \mathrm{TABP} \\ 34^{*} \end{array}$	$\begin{gathered} \text { TABP } \\ 50^{* *} \end{gathered}$	BML	BML	BL	BL	BM	B
0011	3	SNZP	INY	$\begin{gathered} \hline \text { SZB } \\ 3 \end{gathered}$	-	-	TAZ	$\begin{gathered} \hline A \\ 3 \end{gathered}$	$\begin{gathered} \hline \mathrm{LA} \\ 3 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 3 \end{array}$	$\begin{gathered} \text { TABP } \\ 19 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 35^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 51^{* *} \end{gathered}$	BML	BML	BL	BL	BM	B
0100	4	DI	RD	SZD	-	RT	TAV1	$\begin{aligned} & \hline \text { A } \\ & 4 \end{aligned}$	$\begin{gathered} \hline \text { LA } \\ 4 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 4 \end{array}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 20 \end{array}$	$\begin{gathered} \mathrm{TABP} \\ 36^{\star} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 52^{* *} \end{gathered}$	BML	BML	BL	BL	BM	B
0101	5	EI	SD	SEAn	-	RTS	TAV2	$\begin{gathered} \mathrm{A} \\ 5 \end{gathered}$	$\begin{gathered} \text { LA } \\ 5 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 5 \end{array}$	$\begin{gathered} \text { TABP } \\ 21 \end{gathered}$	$\begin{array}{\|c} \mathrm{TABP} \\ 37^{*} \end{array}$	$\begin{gathered} \mathrm{TABP} \\ 53^{* *} \end{gathered}$	BML	BML	BL	BL	BM	B
0110	6	RC	-	SEAM	-	RTI	-	$\begin{gathered} \hline A \\ 6 \end{gathered}$	$\begin{gathered} \mathrm{LA} \\ 6 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 6 \end{array}$	$\begin{gathered} \text { TABP } \\ 22 \end{gathered}$	$\begin{gathered} \mathrm{TABP} \\ 38^{*} \end{gathered}$	$\begin{gathered} \mathrm{TABP} \\ 54^{* *} \end{gathered}$	BML	BML	BL	BL	BM	B
0111	7	SC	DEY	-	-	-	-	$\begin{aligned} & \hline \text { A } \\ & 7 \end{aligned}$	$\begin{gathered} \hline \text { LA } \\ 7 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 7 \end{array}$	$\begin{gathered} \text { TABP } \\ 23 \end{gathered}$	$\begin{gathered} \mathrm{TABP} \\ 39^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 55^{* *} \end{gathered}$	BML	BML	BL	BL	BM	B
1000	8	-	AND	-	SNZO	$\begin{gathered} \mathrm{LZ} \\ 0 \end{gathered}$	RUPT	$\begin{aligned} & \hline \text { A } \\ & 8 \end{aligned}$	$\begin{gathered} \hline \text { LA } \\ 8 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 8 \end{array}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 24 \end{array}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 40^{*} \end{array}$	$\begin{array}{\|c} \text { TABP } \\ 56^{* *} \end{array}$	BML	BML	BL	BL	BM	B
1001	9	-	OR	TDA	SNZ1	$\begin{gathered} \mathrm{LZ} \\ 1 \end{gathered}$	SUPT	$\begin{gathered} \hline \text { A } \\ 9 \end{gathered}$	$\begin{gathered} \mathrm{LA} \\ 9 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 9 \end{array}$	$\begin{array}{c\|} \hline \text { TABP } \\ 25 \end{array}$	$\begin{gathered} \mathrm{TABP} \\ 41^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 57^{* *} \end{gathered}$	BML	BML	BL	BL	BM	B
1010	A	AM	TEAB	TABE	$\begin{gathered} \hline \text { SNZI } \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{LZ} \\ 2 \end{gathered}$	-	$\begin{gathered} \hline \text { A } \\ 10 \end{gathered}$	$\begin{gathered} \text { LA } \\ 10 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 10 \end{array}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 26 \end{array}$	$\begin{gathered} \text { TABP } \\ 42^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 58^{* *} \end{gathered}$	BML	BML	BL	BL	BM	B
1011	B	AMC	-	-	$\begin{gathered} \hline \text { SNZI } \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{LZ} \\ 3 \end{gathered}$	EPOF	$\begin{gathered} \mathrm{A} \\ 11 \end{gathered}$	$\begin{gathered} \hline \text { LA } \\ 11 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 11 \end{array}$	$\begin{gathered} \text { TABP } \\ 27 \end{gathered}$	$\begin{array}{\|c} \mathrm{TABP} \\ 43^{*} \end{array}$	$\begin{gathered} \text { TABP } \\ 59^{* *} \end{gathered}$	BML	BML	BL	BL	BM	B
1100	C	TYA	CMA	-	-	$\begin{gathered} \mathrm{RB} \\ 0 \end{gathered}$	$\begin{gathered} \hline \mathrm{SB} \\ 0 \end{gathered}$	$\begin{gathered} \hline \mathrm{A} \\ 12 \end{gathered}$	$\begin{aligned} & \mathrm{LA} \\ & 12 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 12 \end{array}$	$\begin{array}{c\|} \hline \text { TABP } \\ 28 \end{array}$	$\begin{gathered} \mathrm{TABP} \\ 44^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 60^{* *} \end{gathered}$	BML	BML	BL	BL	BM	B
1101	D	-	RAR	-	-	$\begin{gathered} \hline \mathrm{RB} \\ 1 \end{gathered}$	$\begin{gathered} \hline \mathrm{SB} \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { A } \\ 13 \end{gathered}$	$\begin{gathered} \hline \text { LA } \\ 13 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 13 \end{array}$	$\begin{gathered} \text { TABP } \\ 29 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 45^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 61^{* *} \end{gathered}$	BML	BML	BL	BL	BM	B
1110	E	TBA	TAB	-	TV2A	$\begin{gathered} \mathrm{RB} \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { SB } \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{A} \\ 14 \end{gathered}$	$\begin{gathered} \text { LA } \\ 14 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 14 \end{array}$	$\begin{gathered} \text { TABP } \\ 30 \end{gathered}$	$\begin{array}{\|c} \hline \text { TABP } \\ 46^{*} \end{array}$	$\begin{aligned} & \text { TABP } \\ & 62^{* *} \end{aligned}$	BML	BML	BL	BL	BM	B
1111	F	-	TAY	SZC	TV1A	$\begin{gathered} \mathrm{RB} \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{SB} \\ 3 \end{gathered}$	$\begin{gathered} \hline \mathrm{A} \\ 15 \end{gathered}$	$\begin{aligned} & \hline \mathrm{LA} \\ & 15 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 15 \end{array}$	$\begin{array}{c\|} \hline \text { TABP } \\ 31 \end{array}$	$\begin{array}{\|c} \hline \text { TABP } \\ 47^{*} \end{array}$	$\begin{gathered} \text { TABP } \\ 63^{* *} \end{gathered}$	BML	BML	BL	BL	BM	B

The above table shows the relationship between machine language codes and machine language instructions. D3-Do show the low-order 4 bits of the machine language code, and D9-D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "-."

The codes for the second word of a two-word instruction are described below.

	The second word		
BL	10	Oaaa aaaa	
BML	10	Oaaa aaaa	
BLA	10	Op00	pppp
BMLA	10	Op00	pppp
SEA	00	0111	nnnn
SZD	00	0010	1011

- *, **, and *** cannot be used in the M34571G4.
- ** and $* * *$ cannot be used in the M34571G6.
- A page referred by the TABP instruction can be switched by the SBK and RBK instructions in the M34571GD.
The pages which can be referred by the TABP instruction after the RBK instruction is executed are 0 to 63 .
The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 127 (Ex. TABP 0 TABP 64).
When the SBK instruction is not used, the pages which can be referred by the TABP instruction are 0 to 63 .

INSTRUCTION CODE TABLE

	$\begin{gathered} \text { D9- } \\ \text { D44 } \end{gathered}$	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	110000 to 111111
$\left\lvert\, \begin{aligned} & D_{3}- \\ & D_{0} \end{aligned}\right.$	Hex, notation	20	21	22	23	24	25	26	27	28	29	2A	2B	2 C	2D	2E	2F	30-3F
0000	0	-	TW3A	OPOA	T1AB	-	-	IAPO	TAB1	$\begin{gathered} \text { SNZT } \\ 1 \end{gathered}$	-	WRST	$\begin{gathered} \text { TMA } \\ 0 \end{gathered}$	$\begin{array}{\|c} \hline \text { TAM } \\ 0 \end{array}$	$\begin{array}{\|c} \hline \text { XAM } \\ 0 \end{array}$	$\begin{gathered} \text { XAMI } \\ 0 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 0 \end{gathered}$	LXY
0001	1	-	-	OP1A	T2AB	-	-	IAP1	TAB2	$\begin{gathered} \hline \text { SNZT } \\ 2 \end{gathered}$	-	-	$\begin{gathered} \hline \text { TMA } \\ 1 \end{gathered}$	$\begin{array}{\|c} \hline \text { TAM } \\ 1 \end{array}$	$\begin{array}{\|c} \hline \text { XAM } \\ 1 \end{array}$	$\begin{gathered} \text { XAMI } \\ 1 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 1 \end{gathered}$	LXY
0010	2	-	TW5A	OP2A	T3AB	-	TAMR	IAP2	TAB3	$\begin{array}{\|c\|} \hline \text { SNZT } \\ 3 \end{array}$	-	-	$\begin{gathered} \hline \text { TMA } \\ 2 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TAM } \\ 2 \end{array}$	$\begin{array}{\|c} \hline \text { XAM } \\ 2 \end{array}$	$\begin{gathered} \text { XAMI } \\ 2 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 2 \end{gathered}$	LXY
0011	3	-	-	OP3A	-	-	TAI1	IAP3	-	-	-	-	$\begin{gathered} \hline \text { TMA } \\ 3 \end{gathered}$	$\begin{array}{\|c} \hline \text { TAM } \\ 3 \end{array}$	$\begin{array}{\|c} \hline \text { XAM } \\ 3 \end{array}$	$\begin{gathered} \text { XAMI } \\ 3 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 3 \end{gathered}$	LXY
0100	4	-	TK1A	-	T3R3L	-	TAI2	-	-	-	-	-	$\begin{gathered} \hline \text { TMA } \\ 4 \end{gathered}$	$\begin{array}{\|c} \hline \text { TAM } \\ 4 \end{array}$	$\begin{array}{\|c} \hline \text { XAM } \\ 4 \end{array}$	$\begin{gathered} \text { XAMI } \\ 4 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 4 \end{gathered}$	LXY
0101	5	-	TK2A	-	TPSAB	-	-	-	TABPS	-	-	-	$\begin{gathered} \hline \text { TMA } \\ 5 \end{gathered}$	$\begin{array}{\|c} \hline \text { TAM } \\ 5 \end{array}$	$\begin{array}{\|c} \hline \text { XAM } \\ 5 \end{array}$	$\begin{gathered} \text { XAMI } \\ 5 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 5 \end{gathered}$	LXY
0110	6	-	TMRA	-	-	-	TAKO	-	-	-	-	-	$\begin{gathered} \text { TMA } \\ 6 \end{gathered}$	$\begin{array}{\|c} \hline \text { TAM } \\ 6 \end{array}$	$\begin{array}{\|c} \hline \text { XAM } \\ 6 \end{array}$	$\begin{gathered} \text { XAMI } \\ 6 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 6 \end{gathered}$	LXY
0111	7	-	TI1A	-	-	-	TAPUO	-	-	-	-	-	$\begin{gathered} \hline \text { TMA } \\ 7 \end{gathered}$	$\begin{array}{\|c} \hline \text { TAM } \\ 7 \end{array}$	$\begin{array}{\|c} \hline \text { XAM } \\ 7 \end{array}$	$\begin{gathered} \text { XAMI } \\ 7 \end{gathered}$	$\begin{array}{\|c} \hline \text { XAMD } \\ 7 \end{array}$	LXY
1000	8	-	TI2A	TFROA	-	-	-	-	-	-	-	-	$\begin{gathered} \mathrm{TMA} \\ 8 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TAM } \\ 8 \end{array}$	$\begin{array}{\|c} \hline \text { XAM } \\ 8 \end{array}$	$\begin{gathered} \text { XAMI } \\ 8 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 8 \end{gathered}$	LXY
1001	9	-	-	TFR1A	-	-	TAK1	-	-	-	-	-	$\begin{gathered} \text { TMA } \\ 9 \end{gathered}$	$\begin{array}{\|c} \hline \text { TAM } \\ 9 \end{array}$	$\begin{array}{\|c\|} \hline \text { XAM } \\ 9 \end{array}$	$\begin{gathered} \text { XAMI } \\ 9 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 9 \end{gathered}$	LXY
1010	A	TL1A	-	-	-	TAL1	TAK2	-	-	SNZVD	-	TPAA	$\begin{gathered} \text { TMA } \\ 10 \end{gathered}$	$\begin{array}{\|c} \hline \text { TAM } \\ 10 \end{array}$	$\begin{gathered} \text { XAM } \\ 10 \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 10 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 10 \end{gathered}$	LXY
1011	B	-	TKOA	-	-	TAW1	-	-	-	-	-	-	$\begin{gathered} \hline \text { TMA } \\ 11 \end{gathered}$	$\begin{array}{\|c} \hline \text { TAM } \\ 11 \end{array}$	$\begin{gathered} \text { XAM } \\ 11 \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 11 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XAMD } \\ 11 \end{array}$	LXY
1100	C	-	-	-	-	TAW2	-	-	-	RCP	DWDT	-	$\begin{gathered} \hline \text { TMA } \\ 12 \end{gathered}$	$\begin{array}{\|c} \hline \text { TAM } \\ 12 \end{array}$	$\begin{gathered} \text { XAM } \\ 12 \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 12 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 12 \end{gathered}$	LXY
1101	D	-	-	TPU0A	TЗНАВ	TAW3	-	-	-	SCP	-	-	$\begin{gathered} \hline \text { TMA } \\ 13 \end{gathered}$	$\begin{array}{\|c} \hline \text { TAM } \\ 13 \end{array}$	$\begin{array}{\|c} \hline \text { XAM } \\ 13 \end{array}$	$\begin{gathered} \text { XAMI } \\ 13 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{XAMD} \\ 13 \end{array}$	LXY
1110	E	TW1A	-	TPU1A	-	-	TAPU1	-	-	-	-	-	$\begin{gathered} \mathrm{TMA} \\ 14 \end{gathered}$	$\begin{array}{\|c} \hline \text { TAM } \\ 14 \end{array}$	$\begin{gathered} \hline \text { XAM } \\ 14 \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 14 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XAMD } \\ 14 \end{array}$	LXY
1111	F	TW2A	-	TPU2A	TR1AB	TAW5	TAPU2	IAK	-	-	-	-	$\begin{gathered} \text { TMA } \\ 15 \end{gathered}$	$\begin{array}{\|c} \hline \text { TAM } \\ 15 \end{array}$	$\begin{array}{\|c} \hline \text { XAM } \\ 15 \end{array}$	$\begin{array}{\|c} \hline \text { XAMI } \\ 15 \end{array}$	$\begin{gathered} \text { XAMD } \\ 15 \end{gathered}$	LXY

The above table shows the relationship between machine language codes and machine language instructions. D3-Do show the low-order 4 bits of the machine language code, and D9-D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "-."

The codes for the second word of a two-word instruction are described below.

	The second word
BL	10 Oaaa aaaa
BML	10 Oaaa aaaa
BLA	10 Op00 pppp
BMLA	10 Op00 pppp
SEA	000011 nnnn
SZD	00 0010 1011

Electrical characteristics

Absolute maximum ratings

Table 25 Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
VDD	Supply voltage	-	-0.3 to 6.5	V
VI	Input voltage P0, P1, P2o/INT0, P21/INT1, P3, D0-D3, D4/CNTR0, K, $\overline{R E S E T}$, XIN	-	-0.3 to VdD +0.3	V
Vo	Output voltage P0, P1, P2, P3, D0-D3, D4/CNTR0, $\overline{\text { RESET }}$	Output transistors in cut-off state	-0.3 to VdD+0.3	V
Vo	Output voltage C, Xout	-	-0.3 to VDD+0.3	V
Pd	Power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	300	mW
Topr	Operating temperature range	-	-20 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature range	-	-40 to 125	${ }^{\circ} \mathrm{C}$

Recommended operating conditions

Table 26 Recommended operating conditions $1\left(\mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $85^{\circ} \mathrm{C}$, $\mathrm{VDD}=1.8$ to 5.5 V , unless otherwise noted)

Note 1.The average output current is the average value during 100 ms .

Table 27 Recommended operating conditions $2\left(\mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 5.5 V , unless otherwise noted)

Symbol	Parameter	Conditions		Limits			Unit
				Min.	Typ.	Max.	
f (Xin)	Oscillation frequency (with a ceramic resonator)	Through mode	$\mathrm{VDD}=4.0 \mathrm{~V}$ to 5.5 V			6	MHz
			$\mathrm{V} D \mathrm{~d}=2.7 \mathrm{~V}$ to 5.5 V			4.4	
			$\mathrm{VDD}=2.0 \mathrm{~V}$ to 5.5 V			2.2	
			$\mathrm{V} D \mathrm{D}=1.8 \mathrm{~V}$ to 5.5 V			1.1	
		Internal frequency divided by 2	$\mathrm{VdD}=2.7 \mathrm{~V}$ to 5.5 V			6	
			$\mathrm{VDD}=2.0 \mathrm{~V}$ to 5.5 V			4.4	
			$\mathrm{VDD}=1.8 \mathrm{~V}$ to 5.5 V			2.2	
		Internal frequency divided by 4,8	$\mathrm{VDD}=2.0 \mathrm{~V}$ to 5.5 V			6	
			VDD $=1.8 \mathrm{~V}$ to 5.5 V			4.4	
f (Xin)	Oscillation frequency (with an external clock input)	Through mode	$\mathrm{VDD}=4.0 \mathrm{~V}$ to 5.5 V			4.8	MHz
			$\mathrm{VDD}=2.7 \mathrm{~V}$ to 5.5 V			3.2	
			$\mathrm{VDD}=2.0 \mathrm{~V}$ to 5.5 V			1.6	
			$\mathrm{VDD}=1.8 \mathrm{~V}$ to 5.5 V			0.8	
		Internal frequency divided by 2	$\mathrm{VDD}=2.7 \mathrm{~V}$ to 5.5 V			4.8	
			VDD $=2.0 \mathrm{~V}$ to 5.5 V			3.2	
			$\mathrm{VDD}=1.8 \mathrm{~V}$ to 5.5 V			1.6	
		Internal frequency divided by 4,8	$\mathrm{VDD}=2.0 \mathrm{~V}$ to 5.5 V			4.8	
			$\mathrm{VDD}=1.8 \mathrm{~V}$ to 5.5 V			3.2	
f(CNTR)	Timer external input frequency	CNTR0, CNTR1				f(STCK)/6	Hz
tw(CNTR)	Timer external input period ("H" and "L" pulse width)	CNTR0, CNTR1		3/f(STCK)			s
TPON	Power-on reset circuit valid supply voltage rising time (Note 1)	$\mathrm{V} D \mathrm{D}=0 \rightarrow 1.8 \mathrm{~V}$				100	$\mu \mathrm{s}$

Note 1. If the rising time exceeds the maximum rating value, connect a capacitor between the RESET pin and Vss at the shortest distance, and input " L " level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

Fig 71. System clock (STCK) operating condition map

Electrical characteristics

Table 28 Electrical characteristics $1\left(\mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $85^{\circ} \mathrm{C}$, VDD $=1.8$ to 5.5 V , unless otherwise noted)

Symbol	Parameter		Test conditions		Limits			Unit		
			Min.	Typ.	Max.					
VOH	" H " level output voltage	P3, D0-D4 CNTRO			$V \mathrm{DD}=5 \mathrm{~V}$	$\mathrm{IOH}=-10 \mathrm{~mA}$	3			V
			$\mathrm{IOH}=-3 \mathrm{~mA}$	4.1						
			$\mathrm{V} D \mathrm{~L}=3 \mathrm{~V}$	$\mathrm{IOH}=-5 \mathrm{~mA}$	2.1					
				$\mathrm{IOH}=-1 \mathrm{~mA}$	2.4					
VOH	"H" level output voltage	C CNTR1	$\mathrm{VDD}=5 \mathrm{~V}$	IOL $=-20 \mathrm{~mA}$	3			V		
				$\mathrm{IOL}=-6 \mathrm{~mA}$	4.1					
			$\mathrm{V} D \mathrm{D}=3 \mathrm{~V}$	IOL $=-10 \mathrm{~mA}$	2.1					
				$\mathrm{IOL}=-3 \mathrm{~mA}$	2.4					
VoL	"L" level output voltage	$\begin{aligned} & \hline \text { P0, P1, P2, P3, Do-D4 } \\ & \text { RESET, C, CNTR0, CNTR1 } \end{aligned}$	$\mathrm{V} D \mathrm{D}=5 \mathrm{~V}$	$\mathrm{IOL}=15 \mathrm{~mA}$			2	V		
				$\mathrm{IOL}=5 \mathrm{~mA}$			0.9			
			$\mathrm{VDD}=3 \mathrm{~V}$	$\mathrm{IOL}=9 \mathrm{~mA}$			1.4			
				$\mathrm{IOL}=3 \mathrm{~mA}$			0.9			
IIH	"H" level input current	P0, P1, P2, P3, D0-D4, K RESET, INTO, INT1 CNTR0	V I $=\mathrm{VDD}$				2	$\mu \mathrm{A}$		
IIL	"L" level input current	$\begin{aligned} & \hline \text { P0, P1, P2, P3, D0-D4, K } \\ & \text { RESET, INTO, INT1 } \\ & \text { CNTR0 } \end{aligned}$	$\begin{aligned} & \mathrm{V} \mathrm{~V}=\mathrm{OV} \\ & \mathrm{P} 0, \mathrm{P} 1, \mathrm{P} 2 \\ & \text { No pull-up } \end{aligned}$				-2	$\mu \mathrm{A}$		
RPU	Pull-up resistor value	$\frac{\mathrm{P} 0, \mathrm{P} 1, \mathrm{P} 2}{\mathrm{RESET}}$	V I $=0 \mathrm{~V}$	$\mathrm{V} D \mathrm{D}=5 \mathrm{~V}$	30	60	125	$\mathrm{k} \Omega$		
				$\mathrm{V} D \mathrm{D}=3 \mathrm{~V}$	50	120	250			
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis	(RESET, INT0, INT1	VDD $=5 \mathrm{~V}$			1		V		
			VDD $=3 \mathrm{~V}$			0.4				
$\mathrm{V}_{\mathrm{T}+\text { - }} \mathrm{V} \mathrm{T}^{-}$	Hysteresis	CNTR0	$\mathrm{VDD}=5 \mathrm{~V}$			0.2		V		
			$\mathrm{VDD}=3 \mathrm{~V}$			0.2				
IDD	Supply current	at active mode (with a ceramic resonator) (Note 1)	$\begin{aligned} & \mathrm{VDD}=5 \mathrm{~V} \\ & \mathrm{f}(\mathrm{XIN})=6 \mathrm{MHz} \\ & \mathrm{f}(\mathrm{RING})=\text { stop } \end{aligned}$	$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 8$		1.2	2.4	mA		
				$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 4$		1.3	2.6			
				$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 2$		1.6	3.2			
				f (STCK) $=\mathrm{f}(\mathrm{XIN})$		2.2	4.4			
			$\begin{aligned} & \mathrm{VDD}=3 \mathrm{~V} \\ & \mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz} \\ & \mathrm{f}(\mathrm{RING})=\text { stop } \end{aligned}$	$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 8$		0.3	0.6	mA		
				$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 4$		0.4	0.8			
				$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 2$		0.6	1.2			
				$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{XIN})$		0.8	1.6			
		at RAM back-up mode (POF instruction execution)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$			0.1	3	$\mu \mathrm{A}$		
			VDD $=5 \mathrm{~V}$				10			
			$\mathrm{VDD}=3 \mathrm{~V}$				6			

Note 1.The voltage drop detection circuit operation current (IRST) is added.

Voltage drop detection circuit characteristics

Table 29 Voltage drop detection circuit characteristics ($\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
VRST-	Detection voltage (reset occurs) (Note 1)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		1.65		V
		$-20^{\circ} \mathrm{C} \leq \mathrm{Ta}<0^{\circ} \mathrm{C}$	1.6		2.2	
		$0^{\circ} \mathrm{C} \leq \mathrm{Ta}<50^{\circ} \mathrm{C}$	1.3		2.1	
		$50^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$	1.1		1.8	
VRST+	Detection voltage (reset release) (Note 2)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		1.75		V
		$-20^{\circ} \mathrm{C} \leq \mathrm{Ta}<0^{\circ} \mathrm{C}$	1.7		2.3	
		$0^{\circ} \mathrm{C} \leq \mathrm{Ta}<50^{\circ} \mathrm{C}$	1.4		2.2	
		$50^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$	1.2		1.9	
VINT	Detection voltage (Interrupt occurs) (Note 3)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		1.85		V
		$-20^{\circ} \mathrm{C} \leq \mathrm{Ta}<0^{\circ} \mathrm{C}$	1.8		2.4	
		$0^{\circ} \mathrm{C} \leq \mathrm{Ta}<50^{\circ} \mathrm{C}$	1.5		2.3	
		$50^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$	1.3		2.2	
VRST+ - VRST-	Detection voltage hysteresis			0.1		V
IRST	Voltage drop detection circuit operation current (Note 4)	$\mathrm{VDD}=5 \mathrm{~V}$		40	80	$\mu \mathrm{A}$
		$\mathrm{VDD}=3 \mathrm{~V}$		20	40	
		VDD $=1.65 \mathrm{~V}$		7	15	
TRST	Detection time (Note 5)	VDD \rightarrow (VRST- -0.1V)		0.2	1.2	ms

Note 1.The detection voltage (VRST-) is defined as the voltage when reset occurs when the supply voltage (VDD) is falling.
Note 2.The detection voltage (VRST+) is defined as the voltage when reset is released when the supply voltage (VDD) is rising from reset occurs.
Note 3.When the supply voltage goes lower than the detection voltage (VINT), the voltage drop detection circuit interrupt request flag (VDF) is set to "1"
Note 4.IRST is added to IDD (power current).
Note 5.The detection time (TRST) is defined as the time until reset occurs when the supply voltage (VDD) is falling to [VRST- -0.1V].
Basic timing diagram

PACKAGE OUTLINE

REVISION HISTORY	4571 Group Datasheet

Rev.	Date	Description	
		Page	Summary
1.00	Feb. 20, 2006	-	First edition issued
1.01	Apr. 18, 2007	$\begin{gathered} \hline 1 \\ 4 \\ 6 \\ 30 \\ 31 \\ \\ 32 \\ 37 \\ 47 \\ 48 \\ 49 \\ 51 \\ 59 \\ 64 \\ 69 \\ 86 \\ 112 \\ 122 \end{gathered}$	FEATURES: Description revised Table 2: Subroutine nesting added Table 5: Port P2; P20 \rightarrow P20/INT0, P21 \rightarrow P21/INT1 Table 17: Timer control register W1; CNTR1 input \rightarrow CNTR0 input - Timer control register PA: Description revised - Timer control register W3: Description revised (2) Prescaler: PRS \rightarrow RPS (5) Timer 3: Description revised WATCHDOG TIMER: Description revised Table 21: Title revised Table 22: Title revised Fig 50: Ceramic resonator circuit \rightarrow Ceramic oscillation circuit QzROM Writing Mode added NOTES ON NOISE added Timer control register W1: CNTR1 input \rightarrow CNTR0 input SNZ1: V1 $\underline{0} \rightarrow$ V11 SUPT: Description revised T3HAB: Description revised Table 28: IDD; (with a ceramic oscillator) \rightarrow (with a ceramic resonator)
1.02	May. 25, 2007	All pages	"PRELIMINARY" deleted

RenesasTechnology Corp. Sales strategic Planning Div. Nippon Bldg., 2-6--2, Onte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Notes:

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property warranties or representations with respect to the accuracy or completeness of the information contained
rights or any other rights of Renesas or any third party with respect to the information in this document.
Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples
. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
2. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
3. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products
7 . With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
4. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
(1) artificial life support devices or systems
2) surgical implantations
(3) healthcare intervention (e.g., excision, administration of medication, etc.)
(4) any other purposes that pose a direct threat to human life
 damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage malfunction prevention appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.

Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd

7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd

10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.

Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

