ARM720T

(Rev 3)
Technical Reference Manual

ARM

ARM DDI 0192A

ARM720T
Technical Reference Manual

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

Release information
Change history

Date Issue Change

September 2000 A First release

Proprietary notice
ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedI CE, M odel Gen, Multi-ICE, PrimeCell,
ARM7TDMI,ARM7TDMI-S,ARM9TDMI, ARM9E-S, ARM946E-S, ARM966E-S, ETM7,ETM9, TDMI,
and STRONG are trademarks of ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither thewhole nor any part of the information contained in, or the product described in, this document may
be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM Limited in good faith.
However, al warrantiesimplied or expressed, including but not limited to implied warranties or
merchantability, or fitness for purpose, are excluded.

This document isintended only to assist the reader in the use of the product. ARM Limited shall not beliable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Figure 7-3 on page 7-10 reprinted with permission |IEEE Std. 1149.1-1990. | EEE Standard Test Access Port
and Boundary Scan Architecture Copyright 1997,1998, 2000, by IEEE. The |EEE disclaims any
responsibility or liability resulting from the placement and use in the described manner.

Document confidentiality status

This document is Open Access. This means there is no restriction on the distribution of the information.

Product status

The information in this document is Fina (information on a devel oped product).

ARM web address

http://ww. arm com

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Contents
ARM720T Technical Reference Manual

LiSt Of TADIES ..o s vii
LiST Of FIQUIES ..ottt be e ix
Preface
ADOUL thiS AOCUMENT ...ttt Xii
Further reading XV
FEEUDACK ...ttt ettt ettt Xvi
Chapter 1 Introduction
11 ADOUL the ARMT720T ...ttt ettt
1.2 Coprocessors
1.3 About the instruction set
Chapter 2 Programmer’s Model
2.1 Processor operating Statescovviuuiiireeeiiiiiiiee e 2-2
2.2 Memory formats......
23 Instruction length
2.4 D= 1= 4V 1= TP PRRRPP
25 OPErating MOUES ..eceiuveieeiiiee it e siee ettt et e st e e s srtee e ssee e s snreeeessbeeessrbeeenes
2.6 Registers
2.7 The program status registers

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. iii

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

2.8 (et =T o o] 1SR OUPR 2-16

2.9 Relocation of low virtual addresses by the FCSE PID............cccccccevvininnen. 2-22
2.10 RSB et 2-23
211 Implementation-defined behavior of inStructions...............ccccccvvenieiiiennen. 2-24
Configuration

3.1 ADOUL CONFIGUIALION.eeiiiee et ee e e e e e e e e s e e e e e s e nnees 3-2
3.2 Internal CoprocesSOr INSIIUCIONSuuiiiiiiee et 3-3
3.3 REGISTEIS .ttt ettt e sttt et e b e e e e nree e et 3-4

Instruction and Data Cache

4.1 About the instruction and data cache ... 4-2
4.2 1 @Y o 1 SRS
4.3 IDC enable, disable, and reset

4.4 IDC disable for secure applications

Write Buffer
51 About the WIite DUFFEIuiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee 5-2
5.2 Write buffer OpPerationcccoo i 5-3

Memory Management Unit

6.1 ADOUL the MMU ..ottt
6.2 MMU program accessible regiSterscccvevveiiiiccieiee e
6.3 Address translation process

6.4 Level 1 descriptor

6.5 Page table descriptor...........

6.6 ST =Tot o] g o L= Yol] o] (o (SRR
6.7 Translating section referenNCeScccccuvviiiie i
6.8 Level 2 descriptor .
6.9 Translating small page referencCesccccccvviiiieiie i
6.10 Translating large page references.........cccceviuiiiiiiiiiiiee e
6.11 MMU faults and CPU aborts...........c........

6.12 Fault address and fault status registers...

6.13 Domain access controlccccceeveennee. "
6.14 Fault checking SEqQUENCE...........ccoiiiiiie e
6.15 EXternal @DOITSooiiiiiii s
6.16 Interaction of the MMU, IDC, and write buffercccccccvvevvv.

Debug Interface

7.1 About the debug INterfaceoovveiieiii e 7-2
7.2 DEDUQG SYSIEMS ...

7.3 Entering debug state

7.4 Scan chains and JTAG INEIMACEccocveeiiiieiiiee e 7-9
7.5 RESEL ...ttt ettt

7.6 Public instructions...
7.7 Test data registers..
7.8 ARM7TDM core clocks

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

7.9 Determining the core and SysStem State..........ccccovvvieeiieieiniiie e

7.10 The PC during debug........ccvvieieieiii e
7.11 Priorities and eXCePLIONScuiiiiiiiiiiee ettt
7.12 Scan interface tiMiNgcccooviviiiiiieie e

7.13 Scan and debug signals used by the embedded trace logic

EmbeddedICE Logic
8.1 About EmbeddedICE Logic

8.2 The watchpoint registers.........

8.3 Programming breakpoints.......

8.4 Programming watchpoints.......

8.5 The debug CONtrol FEQISIENccee e
8.6 Debug StatUS FEOISTENviiiiiiiieiiiiee ettt e e sraeeeenes
8.7 Coupling breakpoints and watchpoints ...

8.8 Debug communications channel...........cccccoeiiiiiiei e

Bus Clocking

9.1 About the ARM720T bus interface............oooeeeieeiii e 9-2
9.2 Fastbus extension
9.3 StaNAArd MOOE ...eeeieiiciiieiee e e e e e e e e e s e e rrar e e e e e s e aarees

AMBA Interface
10.1 About the AMBA INterface............ccccooeoiiii e, 10-2
10.2 ASB bus interface signals

10.3 (@363 [1Y/ 1= USSR
10.4 AdAressiNg SIGNAISveeeeiiiiiiiie e a e e e
10.5 Memory request signals

10.6 Data signal timing

10.7 Slave response signals...........

10.8 Maximum sequential length

10.9 REA-IOCK-WIILE ...ttt e e
10.10 Little-endian and big-endian operation....

10.11 Multi-master OPEratiONc..uveecireeiiieeeeitieeesree e sree e sbae e e sr e e e e staeeenneneeasens
10.12 BUS MASLEr NANAOVETccuuiiiiiiiie et
10.13 Default BUS MASIEN........ccuiiiiee et
AMBA Test

111 Slave operation, teSt MOUEc.eeevieeiiciee e
11.2 F N Y 2 O I =S A 1310 Lo = PSS

11.3 ARM7TDM core test mode
11.4 RAM test mode
115 TAG test mode........
11.6 MMU test mode
11.7 Test regiSter MAPPINGccvvieiiiiee e e et eeseae e nneees

Trace Interface Port
121 ABOUL the ETM oo 12-2

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. v

12.2 ETM INEErfACE ...oooiiiiiiiceecc s 12-3
Appendix A Signal Descriptions

Al AMBA INterface SigNalSceeeiiiiiiiiieeiiie e A-2

A2 Coprocessor interface SIGNAIScccvveiiiiiiiie e A-5

A3 JTAG SIGNAIS ...t A-7

A4 DeDUGQET SIGNAIS........eiieiiiiiiiie e A-9

A5 Embedded trace macrocell interface signalS...........ccooeveiinieeniiciiinieenen, A-10

A.6 Miscellaneous SigNalS............ceveeeeeiiieiiieeeeseeee e

A7 Additional signal outputs

INAEX e

Vi Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

List of Tables

ARM720T Technical Reference Manual

Table 1-1
Table 1-2
Table 1-3
Table 1-4
Table 1-5
Table 1-6
Table 1-7
Table 1-8
Table 1-9
Table 1-10
Table 1-11
Table 1-12
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 3-1
Table 3-2
Table 3-3
Table 6-1
Table 6-2
Table 6-3
Table 6-4

L)V (03 = o 1= 1-5
ARM iNStrUCtION SUMMAIYvvvieiiiieeeiiieeeiiie et e e e siaeeeane 1-8
Addressing mode 2

Addressing mode 2 (privileged)cccveireeeiiii e 1-12
Addressing MOAE 3uiiiiiiiiiiiie ettt e eeeaee

Addressing mode 4 (load)...
Addressing mode 4 (store).....
Addressing mode 5
(@] o 1T = T (o b2 PO PR PURT
[T= (o PRSPPI
Condition fields
Thumb iNStrUCtION SUMIMATYcccoviiiiiieeeee e ee e e e
ARM720T Modes Of OPErationcceeeiieeeiiiieeiiiie e
PSR mode bit values..............c........
Exception entry and exit
Exception vector addresses............
Cache and MMU control reQiStErcccuveeiiiiie e svee s
(0= To] g LT o =T - 1o o ISP
TLB operations........cccccveeeiicivieeeeennnne

MMU program accessible registers
Interpreting level 1 descriptor bits [1:0].......cccoocveiiieiieiieree e
Interpreting access permission (AP) bits
Interpreting page table entry bits 1:0........cccooeiiiiieiiiiieiiieeeeceeee 6-12

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. vii

Table 6-5
Table 6-6
Table 6-7
Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 8-1
Table 8-2
Table 8-3
Table 10-1
Table 11-1
Table 11-2
Table 11-3
Table 11-4
Table A-1
Table A-2
Table A-3
Table A-4
Table A-5
Table A-6

Priority encoding of fault Statuscccocveeiiiiie i 6-19
Interpreting access bits in domain access control register................. 6-21
Valid MMU, IDC and write buffer combinations
Scan chain number allocationcccceevieniinncenn.
ARM720T scan interface timing
Scan chain 0, signals and positions
Scan and debug signals used by the ETM
Function and mapping of EmbeddedICE registers..........c.cccccovvervennnen. 8-4
MAS[1:0] signal encoding
IFEN Signal CONLIOlevviiieee e e e
BTRAN[1:0] €NCOAINGceeiitiiiaiiiiiiiitie e e e e eiee e
RAM test mode address packet bit positions

TAG test mode TAG CTL packet bit positions
Status packet bit positions bits [31:0]cc..eoevvveeennn.

Control packet bit positions bits [31:0]........ccccvevieriiiiieniiinieceeeeneen
AMBA signal deSCHPLIONScvvveeiiieeeiiieeesieeeeiee s siree e e e sreee e
Coprocessor interface signal descriptions
JTAG signal deSCrPLIONSccviiiiieiiieiie et
Debugger signal descriptionscccovieiieriieie e
ETM interface signal descriptions
Miscellaneous signal descriptionscccccvcveeeiiieeeniiee e

Viii Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

List of Figures
ARM720T Technical Reference Manual

Figure 1-1
Figure 1-2
Figure 1-3
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 6-1
Figure 6-2

121 oTed Qe [F= Vo = U 1SS
ARM instruction set formatscccooeiiieiiiinii e
Thumb instruction set formats
Big-endian addresses of bytes with words............cccccoovvviiee i, 2-3
Little-endian addresses of bytes with wordscccccovveieiinciiicnnne. 2-4
Register organization in ARM state.................

Register organization in Thumb state
Mapping of Thumb state registers onto ARM state registers
Program status register format............ccccoouieeiiiiie e
MRC and MCR bit pattern
ID register read
DT 1S (=] T (= PSR
REQISLEN L FEAT. ... eieuieiieiiiie ettt ettt et e et e e
Register 1 write ..
Register 2........
Register 3........
Register 4
Register 5
Register 6
Register 13 with 0pcode_2=0cooviviiiiiiiiiiiiee e
Register 13 with 0pcode_2=1c.coovviiiiiiiiiiieiiiiie e
Translation table base register...........cccceeiniiiiiinienne

Accessing the translation table first level descriptors

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ix

Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9
Figure 7-10
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 9-1
Figure 9-2
Figure 9-3
Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4
Figure 10-5
Figure 10-6
Figure 10-7
Figure 11-1
Figure 11-2
Figure 11-3
Figure 11-4
Figure 11-5
Figure 12-1
Figure 12-2

LeVel 1 deSCHPIOIS ..oiiiiiieiieie ettt e ees
Section translationccceeeue.
Page table entry, level 2 descriptor ...
Small page translation....................
Large page translation.............cccouviieieieeeiece e

Domain access control register format...........ccccceeveveciieeeeeeecciiiineeenn 6-21
Sequence for checking faultscccoooieiiiiiiiiiic e 6-22
Typical debug SYStEMoiiiiiiii e 7-4
ARM7TDM scan chain arrangementccccceoveccieeeeeeeeeciiien e 7-6

Test access port (TAP) controller state transitions............cccccceeeeeeenes
ID code register format..........cccoevcvevveeeeiiiiieeeeeeee

INPUE SCAN CEIL....vvveeiiiiie et
Clock switching on entry to debug state
Scan general timing
Reset period tiMiNg........c.coouiiiiiiiiiieie e
Output enable and disable times due to HIGHZ TAP instruction 7-36
Output enable and disable times due to data scanning...................... 7-37
ARM7TDMI TAP controller and EmbeddedICE..............ccccoviiiiiniiennns 8-2
EmbeddedICE block diagram...........cccovieiieineiiiieiie e
Watchpoint control value and mask format
Debug control register format...........ccccevveieeeiiiieeens
Debug status register format ...
Debug control and status register structure
Debug comms control register............cccvevrieiiieniee e

Conceptual device clocking using the fastbus extension 9-3
Conceptual device clocking in standard modeccocccvvveeeeeevinnnnnn. 9-5
Relationship of FCLK and BCLK in synchronous mode........................ 9-7
Simple SINGIE-CYCIE ACCESS.......uuviiiiiiiiiiiiiee e 10-4
Simple sequential ACCESSueviiiiiiiiiiiie e 10-5
Minimum interval between bus accesses...........cccceevviieiiiiieeniiieenns 10-6
Use of the BWAIT pin to stop ARM720T for 1 BCLK cycle............... 10-11

Little-endian addresses of bytes within words
Big-endian addresses of bytes within words

Bus master handovercccocoiiiiiniieee e

Running a test vector on the processor core...........

State machine for ARM720T and ARM7TDMI test........ccccceeeeevvinneen. 11-3
.State machine for RAM test MOde.........cccvveeeeiiiiiiiiie e
State machine for TAG test mode
State machine for MMU test mode.....
ETM interface signal timing
ETMCLK POWET SAVING ...t veveieeeeeeiiiiieeeesssieeeeeeesssnnaeeeeeeeennnnneneeeens

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Preface

This preface introduces the ARM720T and its reference documentation. It contains the
following sections:

. About this document on page xii
. Further reading on page xv
. Feedback on page xvi.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. Xi

Preface

About this document

This document is atechnical reference manual for the ARM720T.

Intended audience

This document has been written for experienced hardware and software engineers who
might or might not have experience of the architecture, configuration, integration, and
instruction sets with reference to the ARM product range.

Using this manual

This document is organized into the following chapters:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Introduction
Read this chapter for an introduction to the ARM720T.
Programmer’s Model

Read this chapter for adescription of the 32-bit ARM and 16-bit Thumb
instruction sets.

Configuration

Read this chapter for a description of how the operation and
configuration of the ARM720T is controlled.

Instruction and Data Cache

Read this chapter for an overview of the mixed instruction and data
cache.

Write Buffer

Read this chapter for a description of how you can enhance the system
performance of the ARM720T by using the write buffer.

Memory Management Unit

Read this chapter for adescription of the functionsand use of the memory
management unit.

Xii Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Appendix A

Typographical conventions

Preface

Debug Interface

Read this chapter for a description of the hardware extensions used for
advanced debugging.

EmbeddedI CE Logic

Read this chapter for a description of the integrated on-chip debug
support for the ARM720T core.

Bus Clocking
Read this chapter for a description of the ARM720T businterface.
AMBA Interface

Read this chapter for a description of the functions and operation of the
ARM720T bus master.

AMBA Test
Read this chapter for a description of the ARM720T test features.
Trace Interface Port

Read this chapter for a description of the Embedded Trace Macrocell
support for the ARM720T.

Sgnal Descriptions
Read this appendix for alist of all ARM720T interface signals.

The following typographical conventions are used in this document:

bold

italic

typewiter

typewiter

Highlights ARM processor signal names, and interface elements
such as menu names. Also used for terms in descriptive lists,
where appropriate.

Highlights specia terminology, cross-references, and citations.

Denotes text that can be entered at the keyboard, such as
commands, file names and program names, and source code.

Denotes a permitted abbreviation for acommand or option. The
underlined text can be entered instead of the full command or
option name.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. Xiii

Preface

typewiter italic
Denotesargumentsto commands or functionswhere the argument
isto be replaced by a specific value.

typewiter bold
Denotes language keywords when used outside example code.
Timing diagram conventions

This manual contains one or more timing diagrams. The following key explains the
componentsused in these diagrams. Any variationsare clearly |abeled when they occur.
Therefore, no additional meaning must be attached unless specifically stated.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

T

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

Xiv Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Further reading

ARM publications

Other publications

Preface

This section lists publications by ARM Limited, and by third parties.

ARM periodically provides updates and corrections to its documentation. See
http://ww. ar m comfor current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at:
http://ww. arm com DevSupp/ Sal es+Support/faq. ht m

This document contains information that is specific to the ARM720T. Refer to the
following documents for other relevant information:

. ARM Architecture Reference Manual (ARM DDI 0100)

« AMBA Secification (ARM IHI 0001)

. ETM7 Technical Reference Manual (ARM DDI 0158)

. ARM7TDMI Technical Reference Manual (ARM DDI 0029).

This section lists relevant documents published by third parties.

. Sandard Test Access Port and Boundary Scan Architecture (IEEE Std.
1149.1.1990).

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. XV

Preface

Feedback

ARM Limited welcomes feedback both on the ARM720T, and on the documentation.

Feedback on the ARM720T

If you have any comments or suggestions about this product, please contact your

supplier giving:
. the product name
. a concise explanation of your comments.

Feedback on the ARM720T documentation

If you have any comments about this document, please send email to
errata@rm comgiving:

. the document title

. the document number

. the page number(s) to which your comments refer

. a concise explanation of your comments.

General suggestions for additions and improvements are al so welcome.

XVi Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

ARM DDI 0192A

Chapter 1

Introduction

This chapter provides an introduction to the ARM720T. It contains the following
sections:

. About the ARM720T on page 1-2
. Coprocessors on page 1-4
. About the instruction set on page 1-5.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

1-1

Introduction

1.1 About the ARM720T

The ARM720T is a general-purpose 32-bit microprocessor with 8KB cache, enlarged
write buffer, and Memory Management Unit (MMU) combined in asingle chip. The
CPU withinthe ARM720T isthe ARM7TDMI. The ARM720T is software-compatible
with the ARM processor family.

The on-chip mixed data and instruction cache, together with the write buffer,
substantially raise the average execution speed and reduce the average amount of
memory bandwidth required by the processor. This allows the external memory to
support additional processors or Direct Memory Access (DMA) channelswith minimal
performance loss.

Theallocation of virtual addresses with different task |Dsimprove performance in task
switching operations with the cache enabled. These relocated virtual addresses are
monitored by the Embedded| CE block.

The MMU supports a conventional two-level, page-table structure and a number of
extensionsthat makeit ideal for embedded control, UNIX, and object-oriented systems.

The memory interface is designed to allow the performance potential to be realized
without incurring high costs in the memory system. Speed-critical control signals are
pipelined to allow system control functionsto be implemented in standard |ow-power
logic, and these control signals permit the exploitation of paged mode access offered by
industry-standard DRAMs.

The ARM720T is provided with an Embedded Trace Macrocell (ETM) interface that
brings out the required signals from the ARM core to the periphery of the ARM720T.
This allows you to connect a standard ETM7 macrocell.

ARMT720T isafully static part and has been designed to minimize power requirements.
This makesit ideal for portable applications where both features are essential.

The ARM720T architecture is based on Reduced Instruction Set Computer (RISC)
principles. The instruction set and related decode mechanism are greatly simplified
compared with microprogrammed Complex Instruction Set Computers (CISCs).

A block diagram of the ARM720T is shown in Figure 1-1 on page 1-3.

1-2

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Introduction

Virtual address bus
JTAG debug
interface
\ 4 \ 4 \ 4
ARM7TDMI |
MMU 8 KB cache CPU
< » ETM interface
A A A
. Coprocessor
Internal data "~ interface
bus
\ 4 v 4
Data and Control and System
address clocking control
buffers logic coprocessor
AMBA
interface
A
v
AMBA bus
interface

ARM DDI 0192A

Figure 1-1 Block diagram

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

1-3

Introduction

1.2 Coprocessors

The ARM720T has aninternal coprocessor designated CP15 for internal control of the
device (see Registers on page 3-4).

The ARM720T also includes a port for the connection of on-chip coprocessors. These
alow extension of the ARM720T functionality in an architecturally consistent manner.

1-4

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Introduction

1.3 About the instruction set

Theinstruction set comprises ten basic instruction types:

. Two types use the on-chip arithmetic logic unit, barrel shifter, and multiplier to
perform high-speed operations on the datain a bank of 31 registers, each 32 bits
wide.

. Three types of instruction control the data transfer between memory and the
registers.
— oneoptimized for flexibility of addressing
— onefor rapid context switching
— onefor swapping data.

. Two instructions control the flow and privilege level of execution.

. Three types are dedicated to the control of external coprocessors. These allow
you to extend the functionality of the instruction set off-chip in an open and
uniform way.

The ARM instruction set is a good target for compilers of many different high-level
languages. Where required for critical code segments, assembly code programming is
also straightforward, unlike some RISC processors that depend on sophisticated
compiler technology to manage complicated instruction interdependencies.

13.1 Format summary

This section provides a summary of the ARM and Thumb instruction sets:
. ARM instruction set on page 1-6
. Thumb instruction set on page 1-15.

A key to theinstruction set tablesislisted in Table 1-1.

The ARM7TDMI is an implementation of the ARMvAT architecture. For a complete
description of both instruction sets, see the ARM Architecture Reference Manual.

Table 1-1 Key to tables

Description
{cond} Refer to Table 1-11 on page 1-15.
<Qpr nd2> Refer to Table 1-9 on page 1-14.
{field} Refer to Table 1-10 on page 1-14.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 1-5

Introduction

Table 1-1 Key to tables (continued)

S Sets condition codes (optional).

B Byte operation (optional).

H Halfword operation (optional).

T Forces address trandlation. Cannot be used with pre-indexed addresses.

<a_node2> Refer to Table 1-3 on page 1-11.

<a_node2P> Refer to Table 1-4 on page 1-12.

<a_node3> Refer to Table 1-5 on page 1-12.

<a_node4L> Refer to Table 1-6 on page 1-13.

<a_node4S> Refer to Table 1-7 on page 1-13.

<a_node5> Refer to Table 1-8 on page 1-14.

#32bit_Inm A 32-bit constant, formed by right-rotating an 8-bit value by an even
number of bits.

<reglist> A commarseparated list of registers, enclosed in braces ({ and}).

1.3.2 ARM instruction set

This section gives an overview of the ARM instructions available. For full details of
these instructions, refer to the ARM Architecture Reference Manual.

The ARM ingtruction set formats are shown at Figure 1-2 on page 1-7.

1-6 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Introduction

3130 29 28 27 26 25 24 23 2221201918 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Dataprocessihd | cond |00 |1 op s Rn Rd rotate immediate
Dataprocessnd | cond |0|0|0| opcode |S Rn Rd |shiftimmediate| shift | O Rm
Dataprocessingregister | cond | 0|0 |0| opcode |S Rn Rd Rs 0 | shift | 1 Rm
Mutiply| cond | 0|0|0[0|0|0|A|S Rd Rn Rs 110(0/1 Rm
Mutiplylong| cond |0 |0|0|0[1|U[A[S| RdHi RdLo Rn 110(0/1 Rm
Move from status register cond 0|0|0(1]|0|R|O]|O SBO Rd SBZ
M°Veimm5diate“r’;£tfr cond 0/0[1/1|0|R|1|0| Mask SBO rotate ‘ immediate
Move regtert S tey| cond [0]0]0/1/0[R|[1]|0| Mask SBO sBz 0| Rm
Branchexchange| cong |0 |0|0|1/0(0|1|0| SBO sBO seo |ofojo[1] Rm
Loadistore immediate | cond | 0| 1|0|P|U|B/W|L Rn Rd immediate
Load/store register offset cond 0O|1|/1|/P|U|BW|L Rn Rd shift immediate| shift | 0 Rm
o e bye| cond [0/0|0/P|U[1/W|L| Rn Rd | Highoffset| 1|S |H|1| Low offset
o e | cond | 0/0|0|P U0 WL Rn Rd SBZ [1|S|H|1 Rm
Swap/swap byte cond 0(0|0(1|0|B|0O|O Rn Rd SBZ 1/0/0/1 Rm
Load/store multiple cond 1/0/0|P|U|S|W|L Rn Register list
C°pr°°§;sc‘;:ﬁ:g cond 1111110 op1 CRn CRd cp_num op2 |0 CRm
Coprocessorreg®erl cond |1]1[1/0| op1 |L| CRn Rd cp_num | op2 |1| CRm
Coprocessorloadand| cong | 1|10 |P U‘N‘W L Rn CRd cp_num 8_bit_offset
Branch andbranch with | cond 1|01 |L 24_bit_offset
Software interrupt cond 11111 swi_number
Undefined cond 011 xx‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘1‘x‘x‘x‘x

31302928 27 26 25 24 23 222120191817 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Figure 1-2 ARM instruction set formats

Note

Some instruction codes are not defined but do not cause the Undefined instruction trap
to be taken. For example, amultiply instruction with bit 6 changed to al. Y ou must not
use these instructions, as their action might change in future ARM implementations.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 1-7

Introduction

The ARM instruction set summary islisted in Table 1-2.

Table 1-2 ARM instruction summary

Operation Assembler

Move Move MOV{cond}{S} Rd, <Oprnd2>
Move NOT MYN{ cond}{S} Rd, <Oprnd2>
Move SPSR to register MRS{ cond} Rd, SPSR
Move CPSR to register MRS{ cond} Rd, CPSR
Move register to SPSR MSR{ cond} SPSR{field}, Rm
Move register to CPSR MSR{ cond} CPSR{field}, Rm
Moveimmediateto SPSR flags ~ MSR{cond} SPSR f, #32bit_Inm
Moveimmediateto CPSR flags ~ MSR{cond} CPSR f, #32bit_Inm

Arithmetic Add ADD{cond}{S} Rd, Rn, <Oprnd2>
Add with carry ADC{cond}{S} Rd, Rn, <Oprnd2>
Subtract SUB{cond}{S} Rd, Rn, <Oprnd2>
Subtract with carry SBC{ cond}{S} Rd, Rn, <Qprnd2>
Subtract reverse subtract RSB{ cond}{S} Rd, Rn, <Oprnd2>
Subtract reverse subtract with RSC{cond}{S} Rd, Rn, <Oprnd2>
carry
Multiply MJUL{cond}{S} Rd, Rm Rs
Multiply accumulate M.A{cond}{S} Rd, Rm Rs, Rn
Multiply unsigned long UMJLL{cond}{S} RdLo, RdHi, Rm
Multiply unsigned accumulate UMLAL{cond}{S} RdLo, RdHi, Rm
long
Multiply signed long SMULL{cond}{S} RdLo, RdHi, Rm
Multiply signed accumulate SMLAL{cond}{S} RdLo, RdHi, Rm
long
Compare CwWP{cond} Rd, <Qprnd2>
Compare negative CMN{ cond} Rd, <Oprnd2>

1-8 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Introduction

Table 1-2 ARM instruction summary (continued)

Operation Assembler
Logical Test TST{cond} Rn, <Oprnd2>
Test equivalence TEQ{ cond} Rn, <Oprnd2>
AND AND{ cond}{S} Rd, Rn, <Qprnd2>
EOR EOR{cond}{S} Rd, Rn, <Oprnd2>
ORR ORR{cond}{S} Rd, Rn, <Oprnd2>
Bit clear Bl C{cond}{S} Rd, Rn, <Oprnd2>
Branch Branch B{cond} | abel
Branch with link BL{ cond} | abel
Branch, and exchange BX{ cond} Rn
instruction set
L oad Word LDR{ cond} Rd, <a_nopde2>
Word with User Mode privilege LDR{cond}T Rd, <a_node2P>
Byte LDR{cond}B Rd, <a_node2>

Byte with User Mode privilege

LDR{ cond} BT Rd, <a_npbde2P>

Byte signed LDR{ cond}SB Rd, <a_node3>
Halfword LDR{cond}H Rd, <a_node3>
Halfword signed LDR{cond} SH Rd, <a_node3>
Multiple

Block data operations

Increment before

LDM cond} I B Rd{!}, <reglist>{"}

Increment after

LDM cond} I A Rd{!}, <reglist>{"}

Decrement before

LDM cond} DB Rd{!}, <reglist>{"}

Decrement after

LDM cond} DA Rd{!}, <reglist>{"}

Stack operations

LDM cond} <a_node4lL> Rd{!}, <reglist>

Stack operations, and restore
CPSR

LDM cond} <a_node4lL> Rd{!}, <reglist+pc>"

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 1-9

Introduction

Table 1-2 ARM instruction summary (continued)

Operation Assembler
User registers LDM cond} <a_node4lL> Rd{!}, <reglist>"

Store Word STR{cond} Rd, <a_npde2>
Word with User Mode privilege STR{cond} T Rd, <a_npde2P>
Byte STR{cond} B Rd, <a_node2>
Byte with User Mode privilege STR{ cond} BT Rd, <a_node2P>
Halfword STR{cond}H Rd, <a_node3>
Multiple
Block data operations
Increment before STM cond}I B Rd{!}, <reglist>{"}
Increment after STM cond} | A Rd{!}, <reglist>{"}
Decrement before STM cond} DB Rd{!}, <reglist>{"}
Decrement after STM cond} DA Rd{!}, <reglist>{"}
Stack operations STM cond} <a_npde4S> Rd{!}, <reglist>
User registers STM cond} <a_npbde4S> Rd{!}, <reglist>"

Swap Word SWp{cond} Rd, Rm [Rn]
Byte SWP{cond}B Rd, Rm [Rn]

Coprocessors Data operations CDP{cond} p<cpnun®, <opl> CRd, CRn, CRm <op2>
Move to ARM reg from coproc MRC{ cond} p<cpnunm®, <opl> Rd, CRn, CRm <op2>
Move to coproc from ARM reg MCR{ cond} p<cpnun®, <opl> Rd, CRn, CRm <op2>
Load LDC{ cond} p<cpnun®, CRd, <a_node5>
Store STC{ cond} p<cpnun®k, CRd, <a_node5>

Software SW 24bit_|Imm

Interrupt

1-10 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Addressing mode 2 islisted in Table 1-3.

Introduction

Table 1-3 Addressing mode 2

Addressing mode 2 <a_node2>

Immediate offset [Rn, #+/-12bit_Of fset]

Regjister offset [Rn, +/-Rnj

Scaled register offset [Rn, +/-Rm LSL #5bit_shift_inm
[Rn, +/-Rm LSR #5bit_shift_imj
[Rn, +/-Rm ASR #5bit_shift_imj
[Rn, +/-Rm ROR #5bit_shift_imj
[Rn, +-Rm RRX

Pre-indexed offset

Immediate [Rn, #+/-12bit_Offset]!

Register [Rn, +/-Rnm!

Scaled register [Rn, +/-Rm LSL #5bit_shift_imj!
[Rn, +/-Rm LSR #5bit_shift_inmi!
[Rn, +/ -Rm ASR #5bit_shift_inmmi!
[Rn, +/-Rm ROR #5bit_shift_imj!
[Rn, +/-Rm RRX!

Post-indexed offset

Immediate [Rn], #+/-12bit_Ofset

Register [Rn], +/-Rm

Scaled register [Rn], +/-Rm LSL #5bit_shift_inmm

[Rn]

+/-Rm LSR #5bit_shift_inm

[Rn]

+/-Rm ASR #5bit_shift_i m

[Rn]

+/-Rm ROR #5bit_shift_imm

[Rn,

+/ - Rm RRX]

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

1-11

Introduction

Addressing mode 2 (privileged) islisted in Table 1-4.

Table 1-4 Addressing mode 2 (privileged)

Addressing mode 2 (privileged) <a_node2P>

Immediate offset [Rn, #+/-12bit_Offset]
Register offset [Rn, +/-Rn
Scaled register offset [Rn, +/-Rm LSL #5bit_shift_imj

[Rn, +/-Rm LSR #5bit_shift_inmi

[Rn, + -Rm ASR #5bit_shift_imj

[Rn, + -Rm ROR #5bit_shift_immi

[Rn, +/-Rm RRX]

Post-indexed offset

Immediate [Rn], #+/-12bit_Offset
Register [Rn], +/-Rm
Scaled register [Rn], +/-Rm LSL #5bit_shift_inm

[Rn], +/-Rm LSR #5bit_shift_imm

[Rn], +/-Rm ASR #5bit_shift_imm

[Rn], +/-Rm ROR #5bit_shift_imm

[Rn, +/-Rm RRX

Addressing mode 3 islisted in Table 1-5.

Table 1-5 Addressing mode 3

Addressing mode 3 - signed byte, and halfword data transfer <a_node3>

Immediate offset [Rn, #+/-8bit_Ofset]
Pre-indexed [Rn, #+/-8bit_Offset]!
Post-indexed [Rn], #+/-8bit_Ofset

1-12 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Introduction

Table 1-5 Addressing mode 3 (continued)

Register [Rn, + -R
Pre-indexed [Rn, +/-Rmi!
Post-indexed [Rn], +/-Rm

Addressing mode 4 (load) islisted in Table 1-6.

Table 1-6 Addressing mode 4 (load)

Addressing mode 4 (Load) <a_node4L>

Addressing mode

Stack type

1A Increment after

FD Full descending

1B Increment before

ED Empty descending

DA Decrement after

FA Full ascending

DB Decrement before

EA Empty ascending

Addressing mode 4 (store) islisted in Table 1-7.

Table 1-7 Addressing mode 4 (store)

Addressing mode 4 (Store) <a_npde4S>

Addressing mode

Stack type

1A Increment after

EA Empty ascending

1B Increment before

FA Full ascending

DA Decrement after

ED Empty descending

DB Decrement before

FD Full descending

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 1-13

Introduction

Addressing mode 5 islisted in Table 1-8.

Table 1-8 Addressing mode 5

Addressing mode 5 - coprocessor data transfer <a_node5>

Immediate offset [Rn, #+/-(8bit_Offset*4)]
Pre-indexed [Rn, #+/-(8bit_Offset*4)]!
Post-indexed [Rn], #+/-(8bit_Offset*4)

Operand 2 islisted in Table 1-9.

Table 1-9 Operand 2

Operand 2 <Opr nd2>

Immediate value

#32bit | mm

Logica shift left

Rm LSL #5bit_I nm

Logical shift right

Rm LSR #5bit _| nm

Arithmetic shift right

Rm ASR #5bit_I nm

Rotate right Rm ROR #5bi t _I nm
Register Rm
Logical shift left Rm LSL Rs
Logical shift right Rm LSR Rs
Arithmetic shift right Rm ASR Rs
Rotate right Rm ROR Rs
Rotate right extended Rm RRX
Fields arelisted in Table 1-10.
Table 1-10 Fields
Field {fi el d}
Suffix Sets
_c Control field mask bit (bit 3)

1-14

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Introduction

Table 1-10 Fields (continued)

f Flags field mask bit (bit 0)
s Status field mask bit (bit 1)
x Extension field mask bit (bit 2)

Condition fields are listed in Table 1-11.

Table 1-11 Condition fields

Condition field {cond}

Suffix Description Condition(s)

EQ Equal Z set

NE Not equal Z clear

cs Unsigned higher, or same C set

cCc Unsigned lower Cclear

M Negative N set

PL Positive, or zero N clear

VS Overflow V set

vC No overflow V clear

HI Unsigned higher C set, Z clear

LS Unsigned lower, or same C clear, Z set

CGE Greater, or equal N=V (N and V set or N and V clear)

LT Lessthan N<>V (N set and V clear) or (N clear and V set)

GT Greater than Z clear, N=V (N and V set or N and V clear)

LE Less than, or equal Z set or N<>V (N set and V clear) or (N clear and V
set)

AL Always Always

1.3.3 Thumb instruction set

This section gives an overview of the Thumb instructions available. For full details of
these instructions, see the ARM Architecture Reference Manual.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 1-15

Introduction

The Thumb instruction set formats are shown in Figure 1-3.

1514 131211 10 09 08 07 06 05 04 03 02 01 00

Move shifted register |01| [0 0| 0| Op Offset5 Rs Rd
| Rn/
Add and subtract (02| (0|0 |0 |1|1]|1[Op Rs Rd
offset3
Move, compare, add, an_d subt_ract 03| l0/o|1]| op Rd Offset8
immediate
ALU operation (04| |0(1]0(0|0|0 Op Rs Rd
High register operations and branch 05/ 10/1]0/0|0|1| Op H1H2 Rs/Hs | RdHd
exchange
PC-relative load (06| |O| 1|0 |01 Rd Word8
Load and store with relative offset (07| [0|1|0[1|L|B|0 Ro Rb Rd
Load and store sign-extended byte and 08l lol110l1/HIs!|1 Ro Rb Rd
halfword
Load and store with immediate offset (09| (0|1 |1 |B|L Offsets Rb Rd
Load and store halfword 10| |10 |0 |0 |L Offset5 Rb Rd
SP-relative load and store |11/ |1 /0|0 |1 |L Rd Word8
Load address (12| |1|0|1|0SP| Rd Word8
Add offset to stack pointer |{13| |1/0|1|/1(0]0|0|0|S SWord7
Push and pop registers {14/ |1|0|1|1|L|1|0|R Rlist
Multiple load and store |15 |1|1|{0|0|L Rb Rlist
Conditional branch |16 |11 |0 |1 Cond Softset8
Software interrupt |17 |1 {10111 |1 [1 Value8
Unconditional branch {18/ |1|1[1|0|0 Offset11
Long branch with link {19 |11 1|1 |H Offset

1514 131211 10 09 08 07 06 05 04 03 02 01 00

Figure 1-3 Thumb instruction set formats

1-16 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

The Thumb instruction set summary is listed in Table 1-12.

Introduction

Table 1-12 Thumb instruction summary

Operation Assembler
Move Immediate MOV Rd, #8bit_Inmm
Highto Low MOV Rd, Hs
Low to High MOV Hd, Rs
Highto High MOV Hd, Hs
Arithmetic Add ADD Rd, Rs, #3bit_lnmm
Add Low, and Low ADD Rd, Rs, Rn
Add Highto Low ADD Rd, Hs
Add Low to High ADD Hd, Rs
Add Highto High ADD Hd, Hs
Add Immediate ADD Rd, #8bit_Inmm
Add Valueto SP ADD SP, #7bit_lnmm
ADD SP, #-7bit_|mm
Add with carry ADC Rd, Rs
Subtract SUB Rd, Rs, Rn
SUB Rd, Rs, #3bit_lnmm
Subtract Immediate SUB Rd, #8bit_Inm
Subtract with carry SBC Rd, Rs
Negate NEG Rd, Rs
Multiply MUL Rd, Rs
Compare Low, and Low CWP Rd, Rs
Compare Low, and High CMP Rd, Hs
Compare High, and Low CWP Hd, Rs
Compare High, and High CMP Hd, Hs
Compare Negative CW Rd, Rs
Compare Immediate CWP Rd, #8bit_Imm
Logical AND AND Rd, Rs
EOR EOR Rd, Rs
OR ORR Rd, Rs
Bit clear BIC Rd, Rs
Move NOT MN Rd, Rs
Test bits TST Rd, Rs

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

1-17

Introduction

Table 1-12 Thumb instruction summary (continued)

Operation Assembler
Shift/Rotate Logical shift left LSL Rd, Rs, #5bit_shift_imm
LSL Rd, Rs
Logical shift right LSR Rd, Rs, #5bit_shift_inmm
LSR Rd, Rs
Arithmetic shift right ASR Rd, Rs, #5bit_shift_imm
ASR Rd, Rs
Rotate right ROR Rd, Rs
Branch Conditional
if Z set BEQ | abel
if Z clear BNE | abel
if Cset BCS | abel
if Cclear BCC | abel
if N set BM | abel
if N clear BPL | abel
if V set BVS | abel
if V clear BVC | abel
if C set, and Z clear BHI | abel
if Cclear, and Z set BLS | abel
if N set, and V set, or BCE | abel
if N clear, and V clear
if N set, and V clear, or BLT | abel
if N clear, and V set
if Z clear, and N, or V set, or BGT | abel
if Z clear,and N, or V clear
if Z set, or BLE | abel
N set, and V clear, or
N clear, and V set
Unconditional B | abel
Long branch with link BL | abel
Optional state change
to addressheldin Lo reg BX Rs
to address held in Hi reg BX Hs

1-18

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

ARM DDI 0192A

Introduction

Table 1-12 Thumb instruction summary (continued)

Operation Assembler
L oad With immediate offset
word LDR Rd, [Rb, #7bit_offset]
halfword LDRH Rd, [Rb, #6bit_offset]
byte LDRB Rd, [Rb, #5bit_offset]
With register offset
word LDR Rd, [Rb, Ro]
halfword LDRH Rd, [Rb, Ro]
signed halfword LDRSH Rd, [Rb, Ro]
byte LDRB Rd, [Rb, Ro]
signed byte LDRSB Rd, [Rb, Ro]
PC-relative LDR Rd, [PC, #10bit_Offset]
SP-relative LDR Rd, [SP, #10bit_Offset]
Address
using PC ADD Rd, PC, #10bit_Offset
using SP ADD Rd, SP, #10bit_Offset
Multiple LDM A Ro!, <reglist>
Store With immediate offset
word STR Rd, [Rb, #7bit_offset]
halfword STRH Rd, [Rb, #6bit_offset]
byte STRB Rd, [Rb, #5bit_offset]
With register offset
word STR Rd, [Rb, Ro]
halfword STRH Rd, [Rb, Ro]
byte STRB Rd, [Rb, Ro]
SP-relative STR Rd, [SP, #10bit_offset]
Multiple STM A Rb!, <reglist>
Push/Pop Push registers onto stack PUSH <reglist>

Push LR, and registers onto
stack

PUSH <reglist, LR>

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 1-19

Introduction

Table 1-12 Thumb instruction summary (continued)

Operation Assembler
Pop registers from stack POP <reglist>
Pop registers, and PC from POP <reglist, PC>
stack
Software SW 8bit_Inmm
Interrupt

1-20 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Chapter 2

Programmer’s Model

This chapter describes the ARM720T programmer’s model. It contains the following
sections:

. Processor operating states on page 2-2

. Memory formats on page 2-3

. Instruction length on page 2-5

. Data types on page 2-6

. Operating modes on page 2-7

. Registers on page 2-8

. The Thumb state register set is a subset of the ARM state set. You have direct
access to: on page 2-10

. The program status registers on page 2-13

. Exceptions on page 2-16

. Reset on page 2-23

. Relocation of low virtual addresses by the FCSE PID on page 2-22

. I mplementation-defined behavior of instructions on page 2-24.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 2-1

Programmer’s Model

2.1 Processor operating states

From the programmer point of view, the ARM720T can bein one of two states:

ARM state This executes 32-bit, word-aligned ARM instructions.

Thumb state This operates with 16-bit, halfword-aligned Thumb instructions.
In this state, the PC uses hit 1 to select between aternate
halfwords.

Note

Transition between these two states does not affect the processor mode or the contents
of the registers.

2.1.1 Switching state

Entering Thumb state

Entry into Thumb state can be achieved by executing aBX instruction with the state bit
(bit 0) set in the operand register.

Transition to Thumb state also occurs automatically on return from an exception, for
example, Interrupt ReQuest (IRQ), Fast Interrupt reQuest (FIQ), UNDEF, ABORT,
and SoftWare Interrupt (SWI) if the exception was entered with the processor in Thumb
state.

Entering ARM state
Entry into ARM state happens:

. On execution of the BXinstruction with the state bit clear in the operand register.

. On the processor taking an exception, for example, IRQ, FIQ, RESET, UNDEF,
ABORT, and SWI. In this case, the PC is placed in the link register of the
exception mode, and execution starts at the vector address of the exception.

2-2

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

2.2 Memory formats

Programmer’s Model

The bigend bit in the Control Register selects whether the ARM720T treats words in
memory as being stored in big-endian or little-endian format. See Chapter 3
Configuration for more information on the Control Register.

ARM720T views memory as alinear collection of bytes numbered upwards from zero.
Bytes 0 to 3 hold the first stored word, bytes 4 to 7 the second. and bytes 8 to 11 the
third. ARM720T can treat words in memory as being stored as follows:

. Big-endian format
. Little-endian format on page 2-4.

Big-endian format

In big-endian format, the most significant byte of aword is stored at the lowest
numbered byte and the | east significant byte at the highest numbered byte. Byte 0 of the
memory system is therefore connected to data lines 31 to 24. Thisis shown in Figure
2-1.

31 24 23 16 15 8 7 Word

address
Higher address 8 9 10 11 8
4 5 6 7 4
Lower address 0 1 2 3 0

OMost significant byte is at lowest address
OWord is addressed by byte address of most significant byte

Figure 2-1 Big-endian addresses of bytes with words

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 2-3

Programmer’s Model

2.2.2 Little-endian format
In little-endian format, the lowest numbered byte in aword is considered the |east
significant byte of the word, and the highest numbered byte the most significant. Byte
0 of the memory system is therefore connected to datalines 7 to 0. Thisis shown in
Figure 2-2.
31 2423 16 15 8 7 o Word
address
Higher address 11 10 9 8 8
7 6 5 4 4
Lower address 3 2 1 0 0
OLeast significant byte is at lowest address
(OWord is addressed by byte address of least significant byte
Figure 2-2 Little-endian addresses of bytes with words
2-4 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Programmer’s Model

2.3 Instruction length

Instructions are:
. 32 bitslong in ARM state
. 16 bitslong in Thumb state.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 2-5

Programmer’s Model

2.4 Datatypes

The ARM720T supports the following data types:
. byte (8-bit)

. halfword (16-hit)

. word (32-hit).

Y ou must align these as follows:

. word quantities to 4-byte boundaries

. halfwords quantities to 2-byte boundaries

. byte quantities can be placed on any byte boundary.

2-6 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

2.5 Operating modes

Programmer’s Model

The ARM720T supports seven modes of operation aslisted in Table 2-1.

Table 2-1 ARM720T modes of operation

Mode Type Description

User usr The normal ARM program execution state

FIQ fiq Designed to support a data transfer or channel process
IRQ irq Used for genera -purpose interrupt handling
Supervisor sve Protected mode for the operating system

Abort mode abt

Entered after a Data Abort or instruction Prefetch Abort

System sys

A privileged User mode for the operating system

Undefined und

Entered when an Undefined Instruction is executed

Changing modes

M ode changes can be made under software control, by external interrupts or during
exception processing. Most application programs execute in User mode. The non-User
modes, known as privileged modes, are entered in order to service interrupts or
exceptions, or to access protected resources.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 2-7

Programmer’s Model

2.6 Registers

ARMT720T has atotal of 37 registers:
. 31 general -purpose 32-hit registers
. Six status registers.

These registers cannot all be seen at once. The processor state and operating mode
dictate which registers are avail able to the programmer.

2.6.1 The ARM state register set

In ARM state, 16 general registers and one or two statusregistersare visible at any one
time. In privileged (non-User) modes, mode-specific banked registers are switched in.
Figure 2-3 on page 2-9 shows which registers are available in each mode. The banked
registers are marked with a shaded triangle.

The ARM state register set contains 16 directly accessible registers, RO to R15. All of
these, except R15, are general-purpose, and can be used to hold either data or address
values. In addition to these, R16 is used to store status information:

Register 14 R14isused asthe subroutinelink register. Thisreceivesacopy of
R15when aBranch and Link (BL) codeinstructionisexecuted. At
all other timesit can be treated as a genera -purpose register. The
corresponding banked registers R14_svc, R14 irq, R14 fiq,

R14 abt, and R14_und aresimilarly used to hold thereturn values
of R15 when interrupts and exceptions arise, or when BL
instructions are executed within interrupt or exception routines.

Register 15 R15 holds the Program Counter (PC). In ARM state, bits[1:0] of
R15 are zero and bits [31:2] contain the PC. In Thumb state, bit
[O] iszero and bits [31:1] contain the PC.

Register 16 R16 isthe Current Program Status Register (CPSR). This
contains condition code flags and the current mode bits.

2-8 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Interrupt modes

FIQ mode has seven banked registers mapped to R8-14 (R8_fig-R14 fig). In ARM
state, many FIQ handlers do not have to save any registers. User, IRQ, Supervisor,
Abort, and Undefined modes each have two banked registers mapped to R13 and R14,
allowing each of these modes to have a private stack pointer and link registers.

ARM state general registers and program counter

Programmer’s Model

System and User FlQ Supervisor Abort IRQ Undefined
r0 r0 r0 r0 r0 r0
r1 r1 r1 r r1 r1
r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3
r4 r4 r4 r4 r4 r4
5 r5 5 5 r5 5
6 ré r6 6 r6 r6
r7 r7 r7 r7 r7 r7
r8 r8_fiq r8 r8 r8 r8
9 r9_fiq r9 r9 r9 r9
r10 r10_fiq r10 r10 r10 r10
r11 r11_fiq r11 r11 r11 r11
r12 r12_fiq r12 r12 r12 r12
r13 r13_fiq r13_svc r13_abt r13_irq r13_und
r14 r14_fiq r14_svc r14_abt r14_irq r14_und
r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC)

ARM state program status registers
’ CPSR ‘ CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

B = banked register

Figure 2-3 Register organization in ARM state

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

2-9

Programmer’s Model

2.6.

2 The Thumb state register set

The Thumb state register set isasubset of the ARM state set. Y ou have direct accessto:
. eight general registers, (RO-R7)
. the PC

. a Stack Pointer (SP) register

. aLink Register (LR)
. the CPSR.

There are banked SPs, LRs, and Saved Process Satus Registers (SPSRs) for each

privileged mode. Thisis shown in Figure 2-4.

Thumb state general registers and program counter

System and User FlQ Supervisor Abort IRQ Undefined
r0 r0 r0 r0 r0 r0
r1 r1 r1 r1 r1 r1
r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3
r4 r4 r4 r4 r4 r4
r5 r5 r5 r5 r5 r5
r6 ré ré r6 ré r6
r7 r7 r7 r7 r7 r7
SP SP_fiq SP_svc SP_abt SP_irq SP_und
LR LR_fiq LR _svc LR_abt LR irq LR _und
PC PC PC PC PC PC
Thumb state program status registers
| CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR _irg SPSR_und

Il = banked register

Figure 2-4 Register organization in Thumb state

2-10

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

ARM DDI 0192A

Programmer’s Model

2.6.3 Therelationship between ARM and Thumb state registers

The Thumb state registers relate to the ARM state registersin the following ways:

Thumb state RO-R7, and ARM state RO-R7 are identical

Thumb state CPSR and SPSRs, and ARM state CPSR and SPSRs are identical
Thumb state SP maps onto ARM state R13

Thumb state LR maps onto ARM state R14

Thumb state PC maps onto ARM state PC (R15).

This relationship is shown in Figure 2-5.

Thumb state ARM state
r0 > ro IR
r1 > r1
r2 > r2
r3 > r3 Low
4 > r4 registers
r5 > r5
ré > ré
r7 > r7 1/
r8 ™
r9
r10
r11 High
r12 registers
SP > SP (r13)
LR > LR (r14)
PC > PC(r15) |
CPSR > CPSR
SPSR > SPSR

Figure 2-5 Mapping of Thumb state registers onto ARM state registers

2.6.4 Accessing high registers in Thumb state

In Thumb state, registers R8-R15 (the high registers) are not part of the standard
register set. However, the assembly language programmer has limited access to them,
and can use them for fast temporary storage.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 2-11

Programmer’s Model

A value can betransferred from aregister in therange RO—R7 (alow register) toahigh
register, and from a high register to alow register, using special variants of the MOV
instruction. High register values can also be compared against or added to low register
valueswith the CvP and ADD instructions. Seethe ARM Ar chitecture Reference Manual
for details on high register operations.

2-12 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Programmer’s Model

2.7 The program status registers

The ARM720T contains a CPSR, and five SPSRsfor use by exception handlers. These
registers:

. hold information about the most recently performed ALU operation

. control the enabling and disabling of interrupts

. set the processor operating mode.

The arrangement of bitsis shown in Figure 2-6.

Condition
code flags Reserved Control bits
| | . | . | \
31 30 29 28 27 26 25 24 23 8 7 6 54 3 2 10
N|z|c|v|o|o]o] oo 0| 1| F | T |M4M3M2M1]MO
Overflow Mode bits
——— Carry or borrow or extend ———— State bit
—— Zero —— FIQ disable
—— Negative or less than IRQ disable

Figure 2-6 Program status register format

2.7.1 The condition code flags

TheN, Z, C, and V bits are the condition code flags. These can be changed as aresult
of arithmetic and logical operations, and tested to determine whether an instruction
executes.

In ARM state, all instructions can be executed conditionally. In Thumb state, only the
Branch instruction is capable of conditional execution. See the ARM Architecture
Reference Manual for details.

2.7.2 The control bits

The bottom eight bits of a PSR (incorporating |, F, T, and M[4:0]) are known
collectively asthe contral bits. These change when an exception arises. If the processor
is operating in a privileged mode, they can also be manipulated by software.

| and F bits These are the interrupt disable bits. When set, these disable the
IRQ and FIQ interrupts respectively.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 2-13

Programmer’s Model

TheT bit Thisreflectsthe operating state. When thisbit is set, the processor
is executing in Thumb state, otherwise it is executing in ARM

state. Thisisreflected onthe TBIT external signal. Software must
never change the state of the TBIT in the CPSR. If this happens,

the processor then enters an unpredictable state.

M[4:0] bits These are the mode bits. These determine the processor operating
mode, as shown in Table 2-2. Not all combinations of the mode
bits define avalid processor mode. Only those explicitly

described can be used.

Note

If you program any illegal value into the mode bits, M[4:0], then the processor enters
an unrecoverable state. If this occurs, apply reset.

2.7.3 Reserved bits

The remaining bitsin the PSRs are reserved. When changing flag or control bits of a
PSR, you must ensure that these unused bits are not altered. Also, your program must
not rely on them containing specific values, because in future processors they might
read as one or zero.

Table 2-2 PSR mode bit values

M[4:0] Mode Visible Thumb state registers Visible ARM state registers
10000 User R7 to RO, R14 to RO,
LR, SP PC, CPSR
PC, CPSR
10001 FIQ R7 to RO, R7 to RO,
LR fig, SP_fiq R14 fiq..R8 fiq,
PC, CPSR, SPSR_fiq PC, CPSR, SPSR_fiq
10010 IRQ R7 to RO, R12 to RO,
LR irg, SP_irq R14 irg, R13 irq,
PC, CPSR, SPSR_irq PC, CPSR, SPSR_irq
10011 Supervisor R7 to RO, R12 to RO,
LR_svc, SP_svc, R14 svc, R13 svc,
PC, CPSR, SPSR_svc PC, CPSR, SPSR_svc
2-14 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Programmer’s Model

Table 2-2 PSR mode bit values (continued)

M[4:0] Mode Visible Thumb state registers Visible ARM state registers
10111 Abort R7 to RO, R12 to RO,
LR _aht, SP_abht, R14 abt..R13 abt,
PC, CPSR, SPSR_aht PC, CPSR, SPSR_abt
11011 Undefined R7 to RO R12 to RO,
LR _und, SP_und, R14 und, R13 und,
PC, CPSR, SPSR_und PC, CPSR, SPSR_und
11111 System R7 to RO, R14 to RO,
LR, SP PC, CPSR
PC, CPSR

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 2-15

Programmer’s Model

2.8 Exceptions

Exceptions arise whenever the normal flow of a program has to be halted temporarily,
for example to service an interrupt from a peripheral. Before an exception can be
handled, the current processor state must be preserved so that the original program can
resume when the handler routine has finished.

Several exceptions can arise at the same time. If this happens, they are dealt within a
fixed order. See Exception priorities on page 2-21.

2.8.1 Action on entering an exception
When handling an exception, the ARM720T:

1. Preservesthe address of the next instruction in the appropriate LR.

a If the exception has been entered from ARM state, the address of the next
instruction is copied into the LR (that is, current PC+4 or PC+8 depending
on the exception, See Table 2-3 on page 2-17 for details).

b. If the exception has been entered from Thumb state, the value written into
the LR isthe current PC, offset by avalue so that the program resumes
from the correct place on return from the exception. This means that the
exception handler does not have to determine which state the exception
was entered from.

For example, in the case of SWI:

MOVS PC, Rl14_svc

always returns to the next instruction regardless of whether the SWI was

executed in ARM or Thumb state.

2. Copiesthe CPSR into the appropriate SPSR.
3. Forcesthe CPSR mode hits to a val ue which depends on the exception.
4, Forcesthe PC to fetch the next instruction from the relevant exception vector.

It can also set the interrupt disable flagsto prevent otherwise unmanageabl e nestings of
exceptions.

If the processor isin Thumb state when an exception occurs, it automatically switches
into ARM state when the PC is |oaded with the exception vector address.

2-16 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

2.8.2 Action on leaving an exception

On completion, the exception handler:

Programmer’s Model

1. Movesthe LR, minus an offset where appropriate, to the PC. The offset varies
depending on the type of exception.

2. Copiesthe SPSR back to the CPSR.

3. Clearstheinterrupt disable flags, if they were set on entry.

Note

An explicit switch back to Thumb state is never necessary, because restoring the CPSR
from the SPSR automatically setsthe T bit to the value it held immediately prior to the

exception.

2.8.3 Exception entry and exit summary

Table 2-3 summarizes the PC value preserved in the relevant R14 on exception entry,

and the recommended instruction for exiting the exception handler.

Table 2-3 Exception entry and exit

Exception Return Instruction

Previous State

ARM R14_x Thumb R14_x

BLa MV PC, Rl14 PC+4 PC+2
SWwia MOVS PC, R14_svc PC+4 PC+2
UDEF2 MOVS PC, R14_und PC+4 PC+2
FIQb SUBS PC, R14 fiq, #4 PC+4 PC+4
IRQP SUBS PC, R14_irq, #4 PC+4 PC+4
PABT2 SUBS PC, Rl14_abt, #4 PC+4 PC+4
DABTe SUBS PC, R14_abt, #8 PC+8 PC+8
RESETd NA - -

aWhere PC isthe address of the BL/SWI/Undefined I nstruction fetch that had

the Prefetch Abort.

b.Where PC isthe address of the instruction that was not executed because the

FIQ or IRQ took priority.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

2-17

Programmer’s Model

c.Where PC is the address of the Load or Store instruction that generated the
Data Abort.
d.The value saved in R14_svc upon reset is unpredictable.

284 Fast interrupt request

The FIQ exception is designed to support a data transfer or channel process. In ARM
state it has sufficient private registers to remove the necessity for register saving,
minimizing the overhead of context switching.

FIQ is externally generated by taking the nFIQ input LOW. nFIQ and nIRQ are
considered asynchronous, and a cycle delay for synchronization isincurred before the
interrupt can affect the processor flow.

Irrespective of whether the exception was entered from ARM or Thumb state, aFIQ
handler must leave the interrupt by executing:

SUBS PC, R14_fiq, #4

FIQ can be disabled by setting the CPSR F flag.

Note

Thisisnot possiblefrom User mode. If the Fflagisclear, ARM720T checksfor aLOW
level on the output of the FIQ synchronizer at the end of each instruction.

2.8.5 Interrupt request

The IRQ exception isanormal interrupt caused by aLOW level on the nIRQ input.
IRQ has alower priority than FIQ and is masked out when a FIQ sequence is entered.
It can be disabled at any time by setting the | bit in the CPSR, though this can only be
done from a privileged (non-User) mode.

Irrespective of whether the exception was entered from ARM or Thumb state, an IRQ
handler must return from the interrupt by executing:

SUBS PC, Rl14_irq, #4
2.8.6 Abort

An abort indicates that the current memory access cannot be completed. It can be
signaled either by the protection unit, or by the external BERROR input. The
ARMT720T checks for the abort exception during memory access cycles.

There are two types of abort:

Prefetch Abort This occurs during an instruction prefetch.

2-18 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Programmer’s Model

Data Abort This occurs during a data access.

If a Prefetch Abort occurs, the prefetched instruction is marked asinvalid, but the
exception is not taken until the instruction reaches the head of the pipeline. If the
instruction is not executed, for example because a branch occurswhileitisin the
pipeline, the abort does not take place.

If a Data Abort occurs, the action taken depends on the instruction type:

1. Single datatransfer instructions (LDR, STR) write-back modified base registers,
the Abort handler must be aware of this.

2. Theswap instruction (SWP) is aborted as though it had not been executed.

3. Block datatransfer instructions (LDM STM) complete. If write-back is set, the
base is updated. If the instruction attempts to overwrites the base with data (that
is, it hasthe base in the transfer list), the overwriting is prevented. All register
overwriting is prevented after an abort isindicated. This means, in particular,
that R15 (always the last register to be transferred) is preserved in an aborted
LDMinstruction.

After fixing the reason for the abort, the handler must execute thefollowing irrespective
of the state (ARM or Thumb):

SUBS PC, R14_abt, #4 for a Prefetch Abort, or
SUBS PC, R14_abt, #8 for a Data Abort

This restores both the PC and the CPSR, and retries the aborted instruction.

Note

There are restrictions on the use of the external abort signal. See External aborts on
page 6-25.

2.8.7 Software interrupt

The SWI instruction is used for entering Supervisor mode, usually to request a
particular supervisor function. A SWI handler must return by executing the following
irrespective of the state (ARM or Thumb):

MOV PC, R14_svc

This restores the PC and CPSR, and returns to the instruction following the SWI.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 2-19

Programmer’s Model

2.8.8 Undefined instruction

When ARM720T comes across an instruction that it cannot handle, it takes the
undefined instruction trap. This mechanism can be used to extend either the Thumb or
ARM instruction set by software emulation.

After emulating the failed instruction, the trap handler must execute the following
irrespective of the state (ARM or Thumb):

MOVS PC, R14_und

This restores the CPSR and returns to the instruction following the Undefined

Instruction.

2.8.9 Exception vectors

The ARM720T can have exception vectors mapped to either low or high addresses,
controlled by the V bit in the control register (See Register 1, control register on

page 3-5). Table 2-4 lists the exception vector addresses.

Table 2-4 Exception vector addresses

High address Low address Exception Mode on entry
O0xFFFFO000 0x00000000 Reset Supervisor
OxFFFF0004 0x00000004 Undefined instruction Undefined
OxFFFF0008 0x00000008 Software interrupt Supervisor
OxFFFFO00C 0x0000000C Abort (prefetch) Abort
OxFFFF0O010 0x00000010 Abort (data) Abort
OxFFFF0014 0x00000014 Reserved Reserved
OxFFFF0O018 0x00000018 IRQ IRQ
OxFFFFO01C 0x0000001C FIQ FIQ

Note

The low addresses are those generated by the processor core before relocation.

2-20

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

ARM DDI 0192A

Programmer’s Model

2.8.10 Exception priorities

When multiple exceptions arise at the same time, afixed priority system determinesthe
order in which they are handled:

1 Reset (highest priority).

2 Data Abort.

3. FQ.

4. IRQ.

5 Prefetch Abort.

6 Undefined Instruction, SWI (lowest priority).

2.8.11 Exception restrictions

Undefined Instruction and SWI are mutually exclusive, because they each correspond
to particular (non-overlapping) decodings of the current instruction.

If aData Abort occursat the sametimeasaFIQ, and FIQs are enabled, the CPSR F flag
isclear, ARM720T entersthe Data Abort handler and then immediately proceedsto the
FIQ vector. A normal return from FIQ causes the Data Abort handler to resume
execution. Placing Data Abort at a higher priority than FIQ is necessary to ensure that
the transfer error does not escape detection. The time for this exception entry must be
added to worst-case FIQ latency calculations.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 2-21

Programmer’s Model

2.9

Relocation of low virtual addresses by the FCSE PID

The ARM720T provides amechanism, Fast Context Switch Extension (FCSE), to
trangdlate virtual addressesto physical addresses based on the current value of the FCSE
Process | Dentifier (PID).

Thevirtual address produced by the processor core going to the IDC and MMU can be
relocated if it liesin the bottom 32M B of thevirtual address. That is, virtual addressbits
[31:25] = b0000000 by the substitution of the seven bits[31:25] of the FCSE PID
register in the CP15 coprocessor.

A change to the FCSE PID exhibits similar behavior to adelayed branch if:

. the two instructions fetched immediately following an instruction to change the
FCSE PID are fetched with arelocation to the previous FCSE PID

. the addresses of the instructions being fetched lie within the range of addresses
to be relocated.

On reset, the FCSE PID register bits [31:25] are set to b0000000, disabling all
relocation. For this reason, the low address reset exception vector is effectively never
relocated by this mechanism.

Note

All addresses produced by the processor core undergo thistrandation if they liein the
appropriate address range. Thisincludes the exception vectorsif they are configured to
liein the bottom of the virtual memory map. This configuration is determined by the
V bit in the CP15 control register.

2-22

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

2.10 Reset

Programmer’s Model

When the BnRES signal goes LOW, ARM720T:

1
2
3.
4
5

Abandons the executing instruction.

Flushes the cache and Trand ation Lookaside Buffer (TLB).
Disables the Write Buffer (WB), cache, and MMU.

Resets the FCSE PID.

Continues to fetch instructions from incrementing word addresses.

When BNnRES goes HIGH again, the ARM720T:

1

Overwrites R14_svc and SPSR_svc by copying the current values of the PC and
CPSR into them. The value of the saved PC and SPSR is not defined.

Forces M[4:0] to 10011 (Supervisor mode), setsthe | and F bitsin the CPSR,
and clearsthe CPSR T bit.

Forces the PC to fetch the next instruction from the low reset exception vector.

Resumes execution in ARM state.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 2-23

Programmer’s Model

2.11

2111

2.11.2 Early termination

Implementation-defined behavior of instructions

The ARM Architectural Reference Manual defines the instruction set of the ARM720T:

Indexed Addressing on a Data Abort

See Indexed Addressing on a Data Abort for the behavior of the ARM720T

instructions for those features which are denoted as being
implementation-defined in that manual .

See Early termination for those features that define signed and unsigned early

termination on the ARM720T.

In the event of aData Abort with pre-indexed or post-indexed addressing, the value | eft
in Rn is defined to be the updated base register value for the following instructions:

On the ARM720T, early termination is defined as:

LDC
LDM
LDR
LDRB
LDRBT
LDRH
LDRSB
LDRSH
LDRT
STC
STM
STR
STRB
STRBT
STRH
STRT.

MLA, MUL

Signed early termination.
SMULL, SMLAL Signed early termination.
UMULL, UMLAL Unsigned early termination.

2-24

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

ARM DDI 0192A

Chapter 3

Configuration

This chapter describes the configuration of the ARM720T. It contains the following
sections.

. About configuration on page 3-2
. Internal coprocessor instructions on page 3-3
. Registers on page 3-4.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 3-1

Configuration

3.1 About configuration

The operation and configuration of ARM720T is controlled:

directly using coprocessor instructions
indirectly using the MMU page tables.

The coprocessor instructions manipulate a number of on-chip registers which control
the configuration of the following:

3.1.1 Compatibility

cache

write buffer

MMU

other configuration options.

To ensure backwards compatibility of future CPUs:

3.1.2 Notation

all reserved or unused hits in registers and coprocessor instructions must be
programmed to O

invalid registers must not be read or written

the following bits must be programmed to O:
— Register 1, bitg[31:14] and bits[12:10]
— Register 2, bitg[13:0]

— Register 5, bitg31:9]

— Register 7, bitg31:0]

— Register 13 FCSE PID, hits[24:0].

Throughout this section, the following terms and abbreviations are used:

Unpredictable (UNP)

If specified for reads, the data returned when reading from this
location is unpredictable. It can have any value.

If specified for writes, writing to this location causes
unpredictable behavior or change in device configuration.

Should Be Zero (SBZ)

When writing to thislocation, all bits of this field should be zero.

3-2

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Configuration

3.2 Internal coprocessor instructions

The ARM720T instruction set allows specialized additiona instructions to be
implemented using coprocessors. These are separate processing units that are coupled
to the ARM720T processor.

Note

The CP15 register map might change in future ARM processors. Y ou are strongly
recommended to structure software so that any code accessing CP15 is contained in a
single module. It can then be updated easily.

CP15 registers can only be accessed with MRC and MCR instructionsin a privileged
mode. Theinstruction bit pattern of the MCR and MRC instructionsis shown in Figure
3-1.

3130292827 262524 232221201918 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Cond 17 1 1 0 opcode_1|L CRn Rd 1 1 1 1 |opcode_2| 1 CRm

Figure 3-1 MRC and MCR bit pattern

CDP, LDC, and STC instructions, as well as unprivileged MRC and MCR instructions
to CP15 cause the Undefined Instruction trap to be taken.

The CRn field of MRC and MCR instructions specifies the coprocessor register to
access. The CRm field and opcode_2 fields specify a particular action when addressing
some registers.

In al instructions accessing CP15:
. the opcode_1 field should be zero (SBZ).

. the opcode_2 and CRm fields should be zero except when accessing registers 7,
8, and 13 when the specified values must be used to select the desired cache,
TLB, or process identifier operations.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 3-3

Configuration

3.3 Registers
ARM720T contains registers that control the cache and MMU operation. These
registers are accessed using CPRT instructions to CP15 with the processor in a
privileged mode.
Only some of registers RO to R15 are valid. An accessto an invalid register causes
neither the access nor an undefined instruction trap, and therefore must never be carried
out.
Table 3-1 Cache and MMU control register
Register Register reads Register writes
0 ID register Reserved
1 Control Control
2 Trandation table base Trandation table base
3 Domain access control Domain access control
4 Reserved Reserved
5 Fault status Fault status
6 Fault address Fault address
7 Reserved Cache operations
8 Reserved TLB operations
9-12 Reserved Reserved
13 Process identifier Process identifier
14-15 Reserved Reserved
3.3.1 Register 0, ID register
Reading from CP15 register 0 returns the value:
0x41807203
Note
The final nibble represents the core revision.
3-4 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Configuration

The CRm and opcode_2 fields should be zero when reading CP15 register 0. Thisis
shown in Figure 3-2.

3130292827 262524 232221201918 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0100/0O0O0OT1T/1T0O0O00O0O0OO0O|O011

-

0010/00O0O0O0O0T11

Figure 3-2 ID register read

Writing to CP15 register O is unpredictable. ID register writeis shown in Figure 3-3.

3130292827 262524 232221201918 17 161514 13 1211 10 09 08 07 06 05 04 03 02 01 00

UNP

Figure 3-3 ID register write

3.3.2 Register 1, control register

Reading from CP15 register 1 reads the control bits. The CRm and opcode 2 fields
should be zero when reading CP15 register 1. Register 1 read is shown in Figure 3-4.

313029 28 27 26 2524 232221201918 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

UNP ‘v‘ UNP ‘R‘S‘B‘L‘D‘P‘W‘C‘A‘M‘
Figure 3-4 Register 1 read

Writing to CP15 register 1 setsthe control bits. The CRm and opcode_2 fields must be
zero when writing CP15 register 1. Register 1 writeis shown in Figure 3-5.

313029 28 27 26 2524 23 2221201918 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

UNP/SBZ V%’;;/RSBLDPWCAM

Figure 3-5 Register 1 write

All defined control bits are set to zero on reset. The control bits have the following
functions:

M Bit 0 MMU enable/disable:
0=MMU disabled
1=MMU enabled.

ABit1 Alignment fault enable/disable:
0 = Address Alignment Fault Checking disabled
1 = Address Alignment Fault Checking enabled.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 3-5

Configuration

CBit2 Cache enable/disable;
0 = Ingtruction and/or Data Cache (IDC) disabled
1 = Ingtruction and/or Data Cache (IDC) enabled.

W Bit 3 Write buffer enable/disable:
0 = Write Buffer disabled
1 = Write Buffer enabled.

P Bit4 When read, returns 1. When written, isignored.
DBit5 When read, returns 1. When written, isignored.
L Bit 6 When read, returns 1. When written, isignored.
B Bit 7 Big-endian/little-endian:

0 = Little-endian operation
1 = Big-endian operation.

SBit 8 System protection:
Modifies the MMU protection system.

R Bit 9 ROM protection:
Modifies the MMU protection system.

Bits12:10 When read, this returns an unpredictable value. When written, it
should be zero, or avalue read from these bits on the same
processor.

Note

Using aread-write-modify sequence when modifying this register providesthe greatest
future compatibility.

V Bit 13 Location of exception vectors:
0 = low addresses
1 = high addresses.

Bits31:14 When read, this returns an unpredictable value. When written, it
should be zero, or avalue read from these bits on the same
processor.

Enabling the MMU

Y ou must take careif the translated address differs from the untranslated address,
because the instructions following the enabling of the MMU are fetched using no
address translation. Enabling the MMU can be considered as a branch with delayed
execution.

3-6

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Configuration

A similar situation occurs when the MMU is disabled. The correct code sequence for
enabling and disabling the MMU is given in Interaction of the MMU, IDC, and write
buffer on page 6-26.

If the cache and write buffer are enabled when the MMU is not enabled, the results are
unpredictable.

3.3.3 Register 2, translation table base register

Reading from CP15 register 2 returns the pointer to the currently active first-level
translation table in bits [31:14] and an unpredictable valuein bits[13:0]. The CRm and
opcode 2 fields should be zero when reading CP15 register 2.

Writing to CP15 register 2 updates the pointer to the currently active first-level
translation table from the value in bits [31:14] of the written value. Bits [13:0] should
be zero. The CRm and opcode_2 fields should be zero when writing CP15 register 2.
Register 2 is shown in Figure 3-6.

313029 28 27 26 2524 232221201918 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Translation base table UNP/SBZ

Figure 3-6 Register 2

3.3.4 Register 3, domain access control register
Reading from CP15 register 3 returns the value of the domain access control register.
Writing to CP15 register 3 writes the value of the domain access control register.

The domain access control register consists of 16 2-bit fields, each of which definesthe
access permissions for one of the 16 domains (D15-D0).

The CRm and opcode_2 fields should be zero when reading or writing CP15 register 3.
Thisis shown in Figure 3-7.

313029 28 27 26 2524 232221201918 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

‘D15‘D14‘D13‘D12‘D11‘D10‘D9‘D8‘D7‘D6‘D5‘D4‘D3‘D2‘D1‘DO‘

Figure 3-7 Register 3

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 3-7

Configuration

3.3.5 Register 4, reserved

Register 4 isreserved. Reading CP15 register 4 isunpredictable. Writing CP15 register
4 isunpredictable. Thisis shown in Figure 3-8.

313029 28 27 26 2524 232221201918 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

UNP

Figure 3-8 Register 4

3.3.6 Register 5, fault status register

Reading CP15 register 5 returns the value of the Fault Satus Register (FSR). The FSR
contains the source of the last data fault.

Note
Only the bottom 9 bits are returned. The upper 23 bits are unpredictable.

The FSR indicates the domain and type of access being attempted when an abort

occurred:

Bit 8 Thisisawaysread as zero. Bit 8 isignored on writes.

Bits[7:4] These specify which of the 16 domains (D15-D0) was being
accessed when a fault occurred.

Bits[3:1] Theses indicate the type of access being attempted.

The encoding of these bitsis shown in Fault address and fault status registers on
page 6-19. The FSR is only updated for data faults, not for prefetch faults.

Writing CP15 register 5 setsthe FSR to the value of the datawritten. Thisisuseful when
adebugger hasto restorethe value of the FSR. The upper 24 bitswritten should be zero.

The CRm and opcode 2 fields should be zero when reading or writing CP15 register 5.
Register 5 is shown in Figure 3-9.

313029 28 27 26 2524 23 222120191817 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

UNP/SBZ ‘ 0 ‘ Domain

Status ‘

Figure 3-9 Register 5

3-8 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Configuration

3.3.7 Register 6, Fault Address Register

Reading CP15 register 6 returns the value of the Fault Address Register (FAR). The
FAR holds the virtual address of the access that was attempted when a fault occurred.
The FAR isonly updated for data faults, not for prefetch faults.

Writing CP15 register 6 sets the FAR to the value of the data written. Thisis useful
when a debugger has to restore the value of the FAR.

The CRm and opcode_2 fields should be zero when reading or writing CP15 register 6.
Register 6 is shown in Figure 3-10.

313029 28 27 26 2524 23 222120191817 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Fault address

Figure 3-10 Register 6

Note
Register 6 contains amodified virtual address if the FCSE PID register is nonzero.

3.3.8 Register 7, cache operations

Writing to CP15 register 7 manages the unified instruction and data cache of the
ARM720T. Only one cache operation is defined using the following opcode 2 and
CRm fieldsin the MCR instruction that writes the CP15 register 7.

—— Caution
The Invalidate ID cache function invalidates al cache data. Use this with caution.

Register 7 isshown in Table 3-2.

Table 3-2 Cache operation

Function

opcode_2 value CRm value Data Instruction

Invalidate ID cache

0b000 0b0111 SBZ MCR p15, 0, Rd, c7, c7, O

Reading from CP15 register 7 is undefined.

3.3.9 Register 8, TLB operations

Writing to CP15 register 8 controls the Translation Lookaside Buffer (TLB). The
ARM720T implements a unified instruction and data TLB.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 3-9

Configuration

Two TLB operations are defined, and the function to be performed selected by the
opcode_2 and CRm fieldsin the MCR instruction used to write CP15 register 8. Thisis

listed in Table 3-3.
Table 3-3 TLB operations
Function opcode_2value CRmvalue Data Instruction
Invalidate TLB 0b000 0b0111 SBZ MCR p15, O, Rd, c8, c7, O
Invalidate TLB 0b001 0b0111 Virtual Address MCR p15, O, Rd, c8, c7, 1
single entry

Reading from CP15 register 8 is undefined.
The Invalidate TLB function invalidates all of the unlocked entriesin the TLB.

The Invalidate TLB single entry function invalidates any TLB entry corresponding to
the Virtual Address givenin Rd.

Note
Register 8 contains a modified virtual addressif the FCSE PID register is nonzero.

3.3.10 Registers 9to 12, reserved

Accessing any of these registers is undefined. Writing to any of these registersis
undefined.

3.3.11 Register 13, process identifier

Two independent process identifier registers can be accessed using register 13:
. Fast context switch extension process identifier on page 3-11
. Trace process identifier on page 3-11.

3-10

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Configuration

Fast context switch extension process identifier

Reading from CP15 register 13 with opcode_2=0 returns the value of the FCSE PID.
Thisisshown in Figure 3-11.

313029 28 27 26 2524 232221201918 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

FCSE PID UNP/SBZ

Figure 3-11 Register 13 with opcode_2=0

Note
Only bits [31:25] are returned. The remaining 25 bits are unpredictable.

Writing to CP15 register 13 with opcode_2=0 updates the FCSE PID from the valuein
bits [31:25]. Bits[24:0] should be zero. The FCSE PID is set to b0000000 on Reset.

The CRm and opcode_2 should be zero when reading or writing the FCSE PID.

Changing FCSE PID

Y ou must take care when changing the FCSE PID because the following instructions
have been fetched with the previous FCSE PID. In this way, changing the FCSE PID
has similarities with a branch with delayed execution. See Relocation of low virtual
addresses by the FCSE PID on page 2-22.

Trace process identifier

A 32-bit read/write register is provided to hold a Trace PROCess | Dentifier (PROCID)
up to 32-bitsin length visibleto the ETM7. Thisis achieved by reading from or writing
to the CP15 register 13 with opcode_2 = 1 as shown in Figure 3-12.

313029 28 27 26 2524 232221201918 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Trace PROCID

Figure 3-12 Register 13 with opcode_2=1

Signal PROCIDWR is exported to notify the ETM7 that the Trace PROCID has been
written.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 3-11

Configuration

3.3.12 Registers 14-15, reserved

Accessing any of these registersis undefined. Writing to any of these registersis
undefined.

3-12 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Chapter 4
Instruction and Data Cache

This chapter describes the instruction and data cache. It contains the following sections:
. About the instruction and data cache on page 4-2

. IDC validity on page 4-4

. IDC enable, disable, and reset on page 4-5

. IDC disable for secure applications on page 4-6.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 4-1

Instruction and Data Cache

4.1 About theinstruction and data cache

The cache only operates on awrite-through basiswith aread-miss all ocation policy and
arandom replacement algorithm.

41.1 IDC operation
The ARM720T contains an 8K B mixed Instruction and Data Cache (IDC).

TheCbitinthe ARM720T control register and the cachable bitinthe MMU pagetables
only affect loading datainto the cache. The cacheisaways searched regardless of these
two bits. If the datais found then it is used, so when the cache is disabled, it must also
be flushed.

The IDC has 512 lines of 16 bytes (four words), arranged as a 4-way set-associative
cache, and usesthe virtual addresses generated by the processor core after rel ocation by
the FCSE PID as appropriate. The IDC isawaysreloaded aline at atime (four words).
It can be enabled or disabled using the ARM720T control register and is disabled on
BnRES.

The operation of the cacheisfurther controlled by the Cachable bit (C bit) stored in the
MMU pagetable (see Chapter 6 Memory Management Unit). For thisreason, the MMU
must be enabled in order to use the IDC. However, the two functions can be enabled
simultaneously, with a single write to the control register.

4.1.2 Cachable bit

The C bit determines whether data being read can be placed in the IDC and used for
subsequent read operations. Typically, main memory is marked as cachable to improve
system performance, and I/O space is marked as noncachable to stop the data being
stored in the ARM720T cache.

For example, if the processor ispolling ahardwareflag in 1/O space, it isimportant that
the processor is forced to read data from the external peripheral, and not a copy of the
initial data held in the cache. The cachable bit can be configured for both pages and
sections.

Cachable reads (C=1)

A line fetch of four wordsis performed when a cache miss occurs in a cachable area of
memory, and it is randomly placed in a cache bank.

Uncachable reads (C=0)

An external memory access is performed and the cache is not written.

4-2 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Instruction and Data Cache

4.1.3 Read-lock-write
The IDC treats the read-lock-write instruction as a special case:

Read phase Always forces aread of external memory, regardless of whether
the data is contained in the cache.

Write phase Istreated as anormal write operation. If the datais already in the
cache, the cache is updated.

Externally, the two phases are flagged as indivisible by asserting the BL OK signal.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 4-3

Instruction and Data Cache

4.2 IDC validity

The IDC operates with virtual addresses, so you must ensure that its contents remain
consistent with the virtual to physical mappings performed by the MMU. If the memory
mappings are changed, the IDC validity must be ensured.

421 Software IDC flush

Theentire IDC can be marked asinvalid by writing to the cache operationsregister R7.
The cacheis flushed immediately the register is written, but the following two
instruction fetches can come from the cache before the register is written.

4.2.2 Doubly-mapped space

Because the cache works with virtual addresses, it isassumed that every virtual address
maps to adifferent physical address. If the same physical location is accessed by more
than one virtual address, the cache cannot maintain consistency. Each virtual address
has a separate entry in the cache, and only one entry can be updated on a processor write
operation.

To avoid any cache inconsistencies, both doubly-mapped virtual addresses must be
marked as uncachable.

4-4 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Instruction and Data Cache

4.3 |IDC enable, disable, and reset

ThelDCisautomatically disabled and flushed on BhnRES. Once enabled, cachableread
accesses cause lines to be placed in the cache.

To enablethe IDC:
1. Make surethat the MMU isenabled first by setting bit 0 in the control register.

2. EnabletheIDC by setting bit 2 in the control register. The MMU and IDC can be
enabled simultaneously with a single write to the control register.

Todisablethe IDC:
1. Clear bit 2 in the control register.

2. Perform aflush by writing to the cache operations register.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 4-5

Instruction and Data Cache

4.4 IDC disable for secure applications

Y ou can disable the IDC in certain secure applications. Thisis achieved by forcing the
IDC to miss without triggering alinefill.

Caution

Y ou are strongly advised not to use this feature in normal applications. When the
CACHEDI Ssignal is not being used then it must be held LOW.

To disablethe IDC:

1. Disablethe MMU by writing to CP15 register 1 using an MCR and setting bit O
LOW.

2. Input the special signal, CACHEDIS.

When CACHEDI Sis asserted, held HIGH, it masks out some cache signalsto disable
the cache RAM banks and stop a cache hit being generated as a consequence.

Note
. Y ou must disable the MMU before CACHEDI Sis asserted.
. Y ou must not enable the MMU until after CACHEDI S is deasserted.
. ARM does not support the use of this feature.

4-6

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Chapter 5
Write Buffer

This chapter describes the write buffer. It contains the following sections:
. About the write buffer on page 5-2
. Write buffer operation on page 5-3.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

5-1

Write Buffer

5.1 About the write buffer

The ARM720T write buffer is provided to improve system performance. It can buffer
up to eight words of data, and four independent addresses. It can be enabled or disabled
using the W hit, bit 3, in the ARM720T control register. The buffer is disabled and
flushed on reset.

The operation of the write buffer is further controlled by the Bufferable (B) bit, which
is stored in the MMU page tables. For this reason, the MMU must be enabled before
using the write buffer. The two functions can, however, be enabled simultaneously,
with asingle write to the control register.

For awrite to use the write buffer, both the W bit in the control register and the B bit in
the corresponding page table must be set.

Note

Itisnot possible to abort buffered writes externally. The BERROR pin is ignored.
Areas of memory that can generate aborts must be marked as unbufferablein the MMU
page tables.

5.1.1 Bufferable bit

This bit controls whether a write operation uses or does not use the write buffer.
Typicaly, main memory is bufferable and 1/0 space unbufferable. The B bit can be
configured for both pages and sections.

5-2

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Write Buffer

5.2 Write buffer operation

When the CPU performs a write operation, the trandation entry for that addressis
inspected and the state of the B bit determinesthe subsequent action. If the write buffer
isdisabled using the ARM720T control register, buffered writes are treated in the same
way as unbuffered writes.

To enable the write buffer:
1. Ensurethe MMU isenabled by setting bit O in the control register.

2. Enablethe write buffer by setting bit 3 in the control register. The MMU and
write buffer can be enabled simultaneously with a single write to the control
register.

To disable the write buffer, clear bit 3 in the control register.

Note
. Any writes aready in the write buffer complete normally.
. The write buffer will attempt awrite operation as long as there is data present.

5.2.1 Bufferable write

If thewrite buffer is enabled and the processor performs awriteto abufferable area, the
datais placed in the write buffer at FCLK speeds, or BCLK speeds if running with
fastbus extension, and the CPU continues execution. The write buffer then performsthe
external writein parallel.

If the write buffer isfull (either because there are already eight words of datain the
buffer, or because there is no slot for the new address), the processor is stalled until
there is sufficient space in the buffer.

5.2.2 Unbufferable write

If the write buffer is disabled or the CPU performs awrite to an unbufferable area,
the processor isstalled until thewrite buffer empties and thewrite completesexternally.
This might require synchronization and several external clock cycles.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 5-3

Write Buffer

5.2.3

Read-lock-write

Thewrite phase of aread-lock-write sequenceistreated as an unbuffered write, even if
it ismarked as buffered.

Note

A single write requires one address slot and one data slot in the write buffer. A
sequential write of n words requires one address slot and n data slots. Thetota of eight
data dotsin the buffer can be used as required. For example, there can be three
nonsequential writes and one sequential write of five words in the buffer, and the
processor could continue as normal, A fifth write or a sixth word in the fourth write
stalls the processor until the first write has completed.

5-4

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Chapter 6

Memory Management Unit

Thischapter describesthe Memory Management Unit (MMU). It containsthefollowing
sections:

. About the MMU on page 6-2

. MMU program accessible registers on page 6-4

. Address translation process on page 6-5

. Level 1 descriptor on page 6-7

. Page table descriptor on page 6-8

. Section descriptor on page 6-9

. Translating section references on page 6-11

. Level 2 descriptor on page 6-12

. Trandating small page references on page 6-14

. Trangating large page references on page 6-16

. MMU faults and CPU aborts on page 6-18

. Fault address and fault status registers on page 6-19
. Domain access control on page 6-21

. Fault checking sequence on page 6-22

. External aborts on page 6-25

. Interaction of the MMU, IDC, and write buffer on page 6-26.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 6-1

Memory Management Unit

6.1 About the MMU
The MMU performs two primary functions:
. tranglates virtual addresses into physical addresses
. controls memory access permissions.
The MMU hardware required to perform these functions consists of:
. aTLB
. access control logic
. tranglation table walking logic.
When the MMU isturned off, as happens on reset, the virtual addressis output directly
onto the physical address bus.
Note
The MMU works with virtual addresses after any relocation by the FCSE PID.
6.1.1 Memory accesses
The MMU supports memory accesses based on Sections or Pages:
Sections Are 1IMB blocks of memory.
Pages Two different page sizes are supported:
. Small pages consist of 4KB blocks of memory. Additional
access control mechanisms are extended to 1KB subpages.
. Large pages consist of 64KB blocks of memory. Large
pages are supported to allow mapping of alarge region of
memory while using only asingle entry in the TLB.
Additional access control mechanisms are extended to
16K B subpages.
6.1.2 Domains
The MMU also supports the concept of domains. These are areas of memory that can
be defined to possess individual access rights. The domain access control register
specifies access rights for up to 16 separate domains.
6.1.3 TLB
The TLB caches 64 translated entries. During most memory accesses, the TLB provides
the translation information to the access control logic:
6-2 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Memory Management Unit

. If the TLB contains atrandated entry for the virtual address, the access control
logic determines if accessis permitted.

. If accessis permitted, the MMU outputs the appropriate physical address
corresponding to the virtual address.

. If accessis not permitted, the MMU signals the CPU to abort.

If the TLB misses (it does not contain atrandated entry for the virtual address), the
tranglation table walking hardware is invoked to retrieve the trandation information
from atrandation tablein physical memory. Onceretrieved, thetrans ation information
is placed into the TLB, possibly overwriting an existing value. The entry to be
overwritten is chosen by cycling sequentially through the TLB locations.

Note

The TLB must be flushed whenever the virtual to physical address mappings are
changed.

6.1.4 Effect of reset

For information on the effect of reset, see Reset on page 2-23.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 6-3

Memory Management Unit

6.2 MMU program accessible registers
The ARM720T processor provides several 32-bit registers that determine the operation
of the MMU.
Dataiswritten to and read from the MMU registers using the ARM CPU MRC and MCR
COprocessor instructions.
A brief description of the registersis given in Table 6-1. Each register is discussed in
more detail in its relevant section.
Table 6-1 MMU program accessible registers
Register Description
Tranglation table Holds the physical address of the base of the trandlation table
base maintained in main memory. This base must reside on a 16KB
boundary.
Domain access Consists of 16 2-bit fields, each of which defines the access
control permissions for one of the 16 domains (D15-DO0).
TLB operations Allowsindividual or al TLB entries to be marked asinvalid.
Fault status Indicates the domain and type of access being attempted when an abort
occurred.
Bits[7:4] specify which of the 16 domains (D15-D0) was being
accessed when a fault occurred.
Bits[3:1] indicate the type of access being attempted.
The encoding of these bitsis different for internal and externa faults
(asindicated by bit 0 in the register) and is shown in Table 6-5 on
page 6-19.
Fault address Holds the virtual address of the access which was attempted when a
fault occurred.
The FSR and FAR are only updated for data faults, not for prefetch faults.
6-4 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Memory Management Unit

6.3 Address translation process

The MMU trand ates virtual addresses generated by the CPU after relocation by the
FCSE PID into physical addressesto accessexternal memory. It also derivesand checks
the access permission. Trandlation information, that consists of both the address
trangation data and the access permission data, resides in atranslation table located in
physical memory.

The MMU provides the logic required to:
. traverse this translation table
. obtain the translated address
. check the access permission.

There arethreeroutes by which the address transl ation, and therefore permission check,
takes place. The route taken depends on whether the address has been marked as a
section-mapped access or a page-mapped access. There are two sizes of page-mapped
access, large pages and small pages. However, the transl ation process aways starts out
in the same way, as described in Trand ation table base, with alevel onefetch. A
section-mapped access only requires alevel one fetch, but a page-mapped access a so
requires alevel two fetch.

6.3.1 Translation table base

The tranglation process is initiated when the TLB does not contain an entry for the
requested virtual address. The Trandlation Table Base (TTB) register pointsto the base
of atablein physical memory that contains:

. section and page descriptors
. section or page descriptors.

The 14 low-order bits of the TTB Register should be zero asillustrated in Figure 6-1.

313029 2827 26 252423222120191817 16 1514 13 1211 10 09 08 07 06 05 04 03 02 01 00

Translation table base SBZ

Figure 6-1 Translation table base register

Note
The table must reside on a 16KB boundary.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 6-5

Memory Management Unit

6.3.2 Level 1 fetch
Bits[31:14] of the TTB register are concatenated with bits[31:20] of thevirtual address
to produce a 30-bit address. This address selects a 4-byte trand ation table entry that is
afirst level descriptor for either a section or a page. Bit 1 of the returned descriptor
specifies whether it isfor asection or page. Thisis shown in Figure 6-2.
Virtual address
31 20 19 00
Table index Section index
Translation table base
31 1413 00
Translation base SBZ
18 12
31 v 14 13 02 01 00
Translation base Table index 0|0
First level descriptor
31 00
Figure 6-2 Accessing the translation table first level descriptors
6-6 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Memory Management Unit

6.4 Level 1 descriptor

Thelevel 1 descriptor returned is either a page table descriptor or a section descriptor,
anditsformat variesaccordingly. Figure 6-3illustratesthe format of level 1 descriptors.

31 20 19 1211 10 09 08 05 04 03 02 01 00
00 Fault
Page table base address Domain |1 01 Page
Section base address SBZ AP » Domain |1|C|B|1|0| Section
1|1]| Reserved

\; SBzZ

Figure 6-3 Level 1 descriptors

Thetwo least significant bits indicate the descriptor type and validity, and are
interpreted as listed in Table 6-2.

Table 6-2 Interpreting level 1 descriptor bits [1:0]

Value Meaning Notes
00 Invaid Generates a section translation fault
01 Page Indicates that this is a page descriptor
10 Section Indicates that thisis a section descriptor
11 Reserved Reserved for future use

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 6-7

Memory Management Unit

6.5 Page table descriptor

The bits used for the page table descriptor are as follows:

Bits[3:2] Are always written as 0.

Bit [4] Must be written to 1 for backward compatibility.

Bits[8:5] Specify one of the 16 possible domains, held in the domain access
control register, that contain the primary access controls.

Bit [9] Is always written as 0.

Bits[31:10] Form the base for referencing the pagetable entry. The pagetable

index for the entry isderived from thevirtual addressasillustrated
in Figure 6-6 on page 6-15.

If a page table descriptor is returned from the level one fetch, alevel two fetch is
initiated as described in Section descriptor on page 6-9.

6-8 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Memory Management Unit

6.6 Section descriptor

Address data is described as:

C (Cachable) Indicatesthat dataat thisaddressis placed inthe cacheif the cache
is enabled.
B (Bufferable) Indicates that data at this address is written through the write

buffer if the write buffer is enabled.

Note

The meaning of the C and B bits might change in later ARM processors. You are
strongly recommend to structure software so that code that manipulatesthe MMU page
tablesis contained in asingle module. It can then be updated easily when you port it to
adifferent ARM processor.

The bits used for the page table descriptor are asfollows:
Bits[3:2] (C, B) Control the cache and write buffer related functions.
Bit [4] Must be written to 1 for backward compatibility.

Bits[8:5] Specify one of the 16 possible domains held in the domain access
control register that contain the primary access controls.

Bit [9] Is always written as 0.

Bits[11:10] (AP) Specify the access permissionsfor this section and are interpreted
aslisted in Table 6-3 on page 6-10. Their interpretation depends
on the setting of the Sand R bits, control register bits8 and 9. The
domain access control specifies the primary access control. The
AP bits only have an effect in client mode. Refer to Domain
access control on page 6-21.

Bits[19:12] Are always written as 0.
Bits[31:20] Form the corresponding bits of the physical addressfor the IMB
section.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 6-9

Memory Management Unit

Table 6-3 Interpreting access permission (AP) bits

Supervisor User
AP Permission Permission Notes
00 No access No access Any access generates a permission fault
00 Read only No access Supervisor read only permitted
00 Read only Read only Any write generates a permission fault
00 Reserved Reserved Reserved
01 Read/write No access Access alowed only in Supervisor mode
10 Read/write Read only Writes in User mode cause permission fault
1 Read/write Read/write All access types permitted in both modes
XX Reserved Reserved Reserved
6-10 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Memory Management Unit

6.7 Translating section references

Figure 6-4 shows the compl ete section translation sequence.

Note

The access permissions contained in the level 1 descriptor must be checked before the
physical addressis generated.

Virtual address

31 2019 00
Table index Section index
[
Translation table base
31 1413 00
Translation base SBZ
18 12
31 v 1413 v 02 01 00
Translation base Table index 0|0
) . SBzZ
First level descriptor
31 2019 1211 10 09 08 05 04 03 02 01 00
Section base address SBz AP | & Domain |[1|C|B|1]|0
20
12
31 v 20 19 v 00
Section base address Section index

Figure 6-4 Section translation

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 6-11

Memory Management Unit

6.8 Level 2 descriptor
If the level one fetch returns a page table descriptor, this provides the base address of
the page table to be used. The page table isthen accessed as described in Figure 6-6 on
page 6-15, and a page table entry, or level 2 descriptor, isreturned. Thisin turn can
define either asmall page or alarge page access. Figure 6-5 shows the format of level
2 descriptors.
31 16 15 12 11 10 09 08 07 06 05 04 03 02 01 00
0|0 Fault
Large page base address SBZ ap3 | ap2 | ap1 | ap0 |C|B| 0|1 |Large Page
Small page base address ap3 | ap2 | ap1 | ap0 |[C|B| 1|0 | Small page
111| Reserved
Figure 6-5 Page table entry, level 2 descriptor
Thetwo least significant bits indicate the page size and validity, and are interpreted as
listed in Table 6-4.
Table 6-4 Interpreting page table entry bits 1:0
Value Meaning Notes
00 Invalid Generates a page translation fault
01 Large page Indicates that thisis a 64KB page
10 Small page Indicates that thisis a4KB page
11 Reserved Reserved for future use
The remaining bits are interpreted as follows:
Bit [2] B, bufferable, indicatesthat data at this addressiswritten through
the write buffer if the write buffer is enabled.
Bit [3] C, cacheable, indicates that data at this addressis placed in the
IDC if the cacheis enabled.
Bits[11:4] Specify the access permissions (ap3—ap0) for the four subpages.
Interpretation of these bitsislisted in Table 6-2 on page 6-7.
Bits[15:12] Are programmed as O for large pages.
6-12 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Memory Management Unit

Bits[31:12] Small pages.
Bits[31:16] Large pages.
Note

Small and large pages form the corresponding bits of the physical address, that isthe
physical page number. The page index is derived from the virtual address asillustrated
in Figure 6-6 on page 6-15 and Figure 6-7 on page 6-17.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 6-13

Memory Management Unit

6.9 Translating small page references

Figure 6-6 illustrates the compl ete translation sequence for a4KB small page. Page
translation involves one additional step beyond that of asection trandation. Thelevel 1
descriptor is the page table descriptor, and this points to the level 2 descriptor, or page
table entry. As the access permissions are now contained in the level 2 descriptor they
must be checked before the physical addressis generated. The sequence for checking
access permissions is described in Fault checking sequence on page 6-22.

6-14 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Memory Management Unit

Virtual address

31 20 19 12 11 00
Table index L2 table index Page index
[
Translation table base
31 14 13 00
Translation base SBzZ
18 12
31 v 14 13 v 02 01 00
Translation base Table index 0|0
) . SBZ
First level descriptor
31 10 09 08 05 04 03 02 01 00
Page table base address 4" Domain |1|SBZ |0 |1
8
31 v 10 09 v 0100
Page table base address L2 table index 0|0

Second level descriptor

31 12 11 10 09 08 07 06 05 04 03 02 01 00
Page base address ap3 | ap2 | ap1 | ap0 [C(B|1]0
12
Physical address
31 v 1211 v 00
Page base address Page index

Figure 6-6 Small page translation

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 6-15

Memory Management Unit

6.10 Translating large page references

Figure 6-7 illustrates the compl ete translation sequence for a 64K B large page. As the
upper four bits of the pageindex and low-order four bits of the page tableindex overlap,
each page table entry for alarge page must be duplicated 16 times, in consecutive
memory locations, in the page table.

6-16 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Memory Management Unit

Virtual address

31 20 19 16 15 00
Table index L.2 table Page index
index
[
Translation table base
31 14 13 00
Translation base SBZ
18 12
31 v 14 13 v 02 01 00
Translation base Table index 0|0
. . SBz
First level descriptor
31 10 09 08 05 04 03 02 01 00
Page table base address A" Domain |1/SBZ|0|1
8
31 v 10 09 v 0100
Page table base address L2 table index 00

Second level descriptor

31 16 15 12 11 10 09 08 07 06 05 04 03 02 01 00
Page base address SBzZ ap3 | ap2 | ap1 | ap0 (C|B|0|1
12
Physical address
31 v 16 15 v 00
Page base address Page index

Figure 6-7 Large page translation

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 6-17

Memory Management Unit

6.11 MMU faults and CPU aborts

The MMU generates four types of faults:
. aignment fault

. translation fault

. domain fault

. permission fault.

In addition, an external abort can be raised on external data access.

The access control mechanisms of the MMU detect the conditions that produce these
faults. If afault is detected astheresult of amemory access, the MMU abortsthe access
and signalsthe fault condition to the CPU. The MMU is also capabl e of retaining status
and address information about the abort. The CPU recognizes two types of abort that
are treated differently by the MMU:

. Data Aborts

. Prefetch Aborts.

If the MMU detects an access violation, it does so before the external memory access
takes place, and it therefore inhibits the access. External aborts do not necessarily
inhibit the external access, as described in External aborts on page 6-25.

If the ARM720T is operating in fastbus mode an internally aborting access can cause
the address on the external address bus to change, even though the external bus cycle
has been canceled. The addressthat is placed on the busisthe transl ation of the address
that caused the abort, though in the case of atrand ation fault the value of this address
is undefined. No memory access is performed to this address.

6-18

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Memory Management Unit

6.12 Fault address and fault status registers

Aborts resulting from data accesses, Data Aborts are acted upon by the CPU
immediately, and the MM U places an encoded 4-bit value FS[3:0], along with the 4-bit
encoded domain number, in the FSR.

In addition, the virtual processor address which caused the dataabort islatched into the
FAR. If an access violation simultaneously generates more than one source of abort,
they are encoded in the priority listed in Table 6-5.

Table 6-5 Priority encoding of fault status

Priority Source

FS[3:0] [[;C:’g]'a'” FAR

Highest Alignment

00x12a Invalid Vadid

Buserror (translation) level 1 1100 Invalid Valid

Level 2 1110 valid Valid

Tranglation section 0101 Invalid Valid

Page 0111 Valid Valid

Domain section 1001 valid valid

Page 1011 Valid Valid

Permission section 1101 vaid Valid

Page 1111 valid valid

Bus error (linefetch) section 0100 Vdid Contains the address of the start of the linefetch

Page 0110 valid Contains the address of the start of the linefetch
Lowest Bus error (other) section 1000 Vdid Valid

Page 1010 valid Valid

a X isundefined, and can be read as zero or one.

Note

Any abort masked by the priority encoding can be regenerated by fixing the primary
abort and restarting the instruction.

CPU instructions are prefetched, so a Prefetch Abort simply flags the instruction as it
enters the instruction pipeline. Only when, and if, the instruction is executed does it
cause an abort. An abort is not acted upon if the instruction is not used, that is, it is

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 6-19

Memory Management Unit

branched around. Because instruction Prefetch Aborts might not be acted upon, the
MMU status information is not preserved for the resulting CPU abort. For a Prefetch
Abort, the MMU does not update the FSR or FAR.

The sectionsthat follow describe the various access permissions and control s supported
by the MMU and describe how these are interpreted to generate faults.

Note
The FAR will contain amodified virtual addressif the process identifier register is
nonzero.

6-20 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Memory Management Unit

6.13 Domain access control

MMU accesses are primarily controlled through domains. There are 16 domains, and
each has a 2-bit field to define it.

Two basic kinds of users are supported:
Clients Use adomain.
Managers Control the behavior of the domain.

The domains are defined in the domain access control register. Figure 6-8 illustrates
how the 32 bits of the register are allocated to define the 16 2-bit domains.

3130292827 26252423222120191817 161514 13 1211 10 09 08 07 06 05 04 03 02 01 00

‘15‘14‘13‘12‘11‘10‘9‘8‘7‘6‘5‘4‘3‘2‘1‘0‘
Figure 6-8 Domain access control register format

Table 6-6 lists how the bits within each domain are interpreted to specify the access
permissions.

Table 6-6 Interpreting access bits in domain access control register

Value Meaning Notes

00 Noaccess Any access generates a domain fault.

01 Client Accesses are checked against the access permission bitsin the section or page descriptor.
10 Reserved Reserved. Currently behaves like the no access mode.

11 Manager Accesses are not checked against the access permission bits so a permission fault cannot be

generated.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 6-21

Memory Management Unit

6.14 Fault checking sequence

The sequence the MMU usesto check for access faultsis slightly different for sections
and pages. Figure 6-9 illustrates the sequence for both types of access.

Virtual address

Check address _ Alignment
. Misaligned
alignment fault
Section i
. . Get level 1
translation Invalid |Je—— h
fault descriptor

Section Page

!

Page
tgl;altep:ngte —»CInvalid)—» translation

% i fault

Section No access(00) Check domain o access(00) Page
domain fage.

Reserved(10) status Reserved(10)
S y fault
* v
Section Page

A 4

@er(on
j’?n(:igz;g)n Violation Check access Check access Violation Sel:r?; izz?oen
P fault permissions permissions P fault

Physical address

Figure 6-9 Sequence for checking faults

Descriptions of the conditions that generate each of the faults are provided as follows:

6-22 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Memory Management Unit

. Alignment fault

. Trandation fault

. Domain fault

. Permission fault on page 6-24.

6.14.1 Alignment fault

If alignment fault is enabled (bit 1 in the control register set), the MMU generates an
alignment fault on any dataword access without aword-aligned address, irrespective of
whether the MMU isenabled or not. In other words, if either of virtual addressbits[1:0]
are not 0, the alignment fault is enabled.

An alignment fault is not generated on any instruction fetch, nor on any byte access.

Note

If the access generates an alignment fault, the access sequence aborts without reference
to further permission checks.

6.14.2 Translation fault

6.14.3 Domain fault

There are two types of trandation fault:

Section Is generated if the level 1 descriptor is marked asinvalid. This
happens if bitg[1:0] of the descriptor are both 0, or both 1.

Page Is generated if the page table entry is marked asinvalid. This
happens if bitg[1:0] of the entry are both O, or both 1.

There are two types of domain fault:
Section The domain is checked when the level 1 descriptor is returned.
Page. The domain is checked when the page table entry is returned.

In both cases, the level 1 descriptor holds the 4-bit domain field that selects one of the
16 2-bit domainsin the domain access control register. The two bits of the specified
domain are then checked for access permissions as listed in Table 6-3 on page 6-10.

If the specified accessis either no access (00) or reserved (10), either a section domain
fault or page domain fault occurs.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 6-23

Memory Management Unit

6.14.4 Permission fault

Permission fault is checked at the same time as domain fault. If the 2-bit domain field
returns Client (01), the permission access check isinvoked as follows:

There are two types of permission fault:

. section
. subpage.
Section

If the level 1 descriptor defines a section-mapped access, the AP bits of the descriptor
define whether or not the accessis allowed according to Table 6-3 on page 6-10.
Interpretation depends on the setting of the S bit (control register bit 8). If the accessis
not allowed, a section permission fault is generated.

Subpage

If the level 1 descriptor defines a page-mapped access then the level 2 descriptor
specifies four access permission fields (ap3 to ap0), each corresponding to one quarter
of the page:
. For small pages:

— ap3isselected by the top 1KB of the page

— apOisselected by the bottom 1KB of the page.
. For large pages:

— ap3isselected by the top 16KB of the page

— apOisselected by the bottom 16KB of the page.

The selected AP bits are then interpreted in exactly the same way as for a section (see
Table 6-3 on page 6-10. The only difference is that the fault generated is a subpage
permission fault.

6-24

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Memory Management Unit

6.15 External aborts

In addition to the MM U-generated aborts, ARM720T has an external abort pin,
BERROR, which can be used to flag an error on an external memory access. However,
not all accesses can be aborted in thisway, so use this pin with great care. This section
describes the restrictions.

The following accesses can be aborted and restarted safely. The external access stops
on the next cycle if any of the following are aborted:

. reads

. unbuffered writes

. level 1 descriptor fetch

. level 2 descriptor fetch

. read-lock-write sequence.

In the case of aread-lock-write sequence in which the read aborts, the write does not
happen.

6.15.1 Cachable reads (linefetches)

A linefetch can be safely aborted on any word in the transfer.

If an abort occurs during the linefetch, the cacheis purged, so it does not containinvalid
data.

If the abort happens on aword that has been requested by the ARM720T, it is aborted,
otherwise the cache lineis purged but program flow is not interrupted. Thelineis
therefore purged under all circumstances.

6.15.2 Buffered writes

Buffered writes cannot be externally aborted. Therefore, the system must be configured
so that it does not attempt buffered writes to areas of memory that are capable of
flagging an external abort.

Note

Areas of memory that can generate an external abort on alocation that has previously
been read successfully must not be marked as cachable or unbufferable. This appliesto
both the MMU page tables and the configuration register. If al writesto an area of
memory abort, it is recommended that you mark it asread-only inthe MMU, otherwise
mark it as uncachable and unbufferable.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 6-25

Memory Management Unit

6.16 Interaction of the MMU, IDC, and write buffer

TheMMU, IDC, and WB can be enabled or disabled independently. However, in order
for the write buffer or the cache to be enabled the MM U must also be enabled. There
are no hardware interlocks on these restrictions, so invalid combinations cause
undefined results. Valid buffer combinations are listed in Table 6-7.

Table 6-7 Valid MMU, IDC and write buffer combinations

MMU IDC WB
Off Off Off
On Off Off
On On Off
On Off On
On On On

The procedures described in Enabling the MMU and Disabling the MMU on page 6-27
must be observed.

6.16.1 Enabling the MMU
To enable the MMU:
1. Program the translation table base and domain access control registers
2. Programlevel 1 and level 2 page tables as required.
3. Enablethe MMU by setting bit 0 in the control register.

Note

Y ou must take care if the translated address differs from the untranslated address
because the two instructions following the enabling of the MMU have been fetched
using flat translation. Enabling the MM U might be considered as a branch with delayed
execution. A similar situation occurs when the MMU is disabled. Consider the
following code sequence:

MOV R1, #0x1

MCR 15, 0, R1, 0, O; Enabl e MV

Fetch Fl at

Fetch Fl at

Fetch Transl at ed

6-26 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Memory Management Unit

6.16.2 Disabling the MMU

To disablethe MMU:

1. Disablethe WB by clearing bit 3 in the control register.
2. Disablethe IDC by clearing bit 2 in the control register.
3. Disablethe MMU by clearing bit 0 in the control register.

You can disable al three functions simultaneously.

Note

If the MMU is enabled, then disabled and subsequently re-enabled, the contents of the
TLB arepreserved. If these are now invalid, you must flush the TL B before re-enabling
the MMU.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 6-27

Memory Management Unit

6-28 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Chapter 7
Debug Interface

This chapter describes the ARM720T advanced debug interface. It contains the
following sections:

. About the debug interface on page 7-2

. Debug systems on page 7-4

. Entering debug state on page 7-7

. Scan chains and JTAG interface on page 7-9

. Reset on page 7-11

. Public instructions on page 7-12

. Test data registers on page 7-16

. ARM7TDM core clocks on page 7-23

. Determining the core and system state on page 7-25
. The PC during debug on page 7-30

. Priorities and exceptions on page 7-34

. Scan interface timing on page 7-35

. Scan and debug signals used by the embedded trace logic on page 7-42.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

Debug Interface

7.1 About the debug interface

In this chapter ARM7TDM refersto the ARM7TDMI core excluding the

EmbeddedI CE Logic. The ARM7TDM debug interface is based on IEEE Std.
1149.1-1990, Sandard Test Access Port and Boundary-Scan Architecture. Refer to this
standard for an explanation of the termsused in this chapter and for adescription of the
TAP controller states.

7.1.1 Debug extensions

ARM7TDM contains hardware extensions for advanced debugging features. These are
intended to ease the development of application software, operating systems, and the
hardware itself.

The debug extensions allow you to stop the core either on a given instruction fetch
(breakpoint) or data access (watchpoint), or asynchronously by a debug-request. When
this happens, ARM7TDM issaid to bein debug state. At this point, theinterna state of
the core and the external state of the system can be examined. Once examination is
complete, the core and system state can be restored and program execution resumed.

Debug state

ARM7TDM isforced into debug state either by a request on one of the external debug
interface signals, or by an internal functional unit known as Embedded| CE Logic. Once
in debug state, the core isolates itself from the memory system. The core can then be
examined while all other system activity continues as normal.

Internal state

Theinternal state of the ARM7TDM isexamined through aJJTAG-style serial interface,
that allowsinstructionsto be serially inserted into the pipeline of the core without using
the external data bus. When in debug state, a STore Multiple (STM can be inserted into
the instruction pipeline and this dumps the contents of the ARM7TDM registers. This
data can be serially shifted out without affecting the rest of the system.

7.1.2 Pullup resistors

The |EEE 1149.1 standard effectively requiresthat XTDI, XnTRST, and XTM S have
internal pullup resistors. In order to minimize static current draw, these resistors are not
fitted to ARM7TDM. Accordingly, the four inputs to the test interface (the above three
signals plus XTCK) must all be driven to good logic levels to achieve normal circuit
operation.

7-2

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Debug Interface

7.1.3 Instruction register
Theinstruction register is four bitsin length.

Thereis no parity bit. The fixed value |oaded into the instruction register during the
CAPTURE-IR controller state is b0O001.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 7-3

Debug Interface

7.2 Debug systems

The ARM7TDM forms one component of a debug system that interfaces from the
high-level debugging performed by the user to the low-level interface supported by
ARM7TDM. Figure 7-1 shows atypical debug system.

Host computer running
debugger
Debug host
4 4
Protocol
converter
h A

Debug

Development system | target
containing ARM7TDM

Figure 7-1 Typical debug system

A debug system typically has three parts:

. Debug host

. Protocol converter

. resume program execution. on page 7-5.

7.2.1 Debug host

Thisisacomputer, for example apersona computer, running a software debugger such
as Arm Debugger for Windows (ADW). The debug host allows you to issue high level
commands such as setting breakpoints, or examining the contents of memory.

7.2.2 Protocol converter

The protocol converter interfaces between the high-level commands issued by the
debug host and the |low-level commands of the ARM720T JTAG interface. Typically it
interfaces to the host through an interface such as an enhanced parallel port.

7-4 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

7.2.3 ARM720T

Debug Interface

The ARM720T has hardware extensions that ease debugging at the lowest level. The
debug extensions:

. allow you to stall the core from program execution
. examine the coreinternal state

. examine the state of the memory system

. resume program execution.

The ARM720T containsthe ARM7TDM core. The mgjor blocks of the ARM7TDM
core are:

The ARM CPU core
This has hardware support for debug.

The EmbeddedI CE Logic
Thisisaset of registers and comparators used to generate debug
exceptions (such as breakpoints). This unit is described in
Chapter 8 Embedded| CE Logic.

The TAP controller
This controls the action of the scan chainsusing a JTAG serial
interface.

The anatomy of ARM7TDM is shown in Figure 7-2 on page 7-6 with the ARM720T
system control processor.

The debug host and the protocol converter are system-dependent.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 7-5

Debug Interface

ARM7TDM
EmbeddedICE

Scan chain 2 %

e

ARM7TDM
—

Scan chain 0

processor

{Scan chain 1

System control
processor

Scan chain 15

ARM7TDM TAP controller

Figure 7-2 ARM7TDM scan chain arrangement

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

ARM DDI 0192A

Debug Interface

7.3 Entering debug state

ARM7TDM isforced into debug state after a breakpoint, watchpoint, or debug request.
Y ou can program the conditions under which a breakpoint or watchpoint occur using
EmbeddedI CE Logic. Alternatively, external logic can monitor the address and data
bus, and flag breakpoints and watchpoints using the BREAKPOINT pin.

7.3.1 Entering debug state on breakpoint

After an instruction has been breakpointed, the core does not enter debug state
immediately. Instructions are marked as being breakpointed as they enter the
ARMT7TDM instruction pipeline. Therefore ARM7TDM only enters debug state when
and if the instruction reaches the execute stage of the pipeline.

There are two reasons why a breakpointed instruction might not cause ARM7TDM to
enter debug state:

. A branch precedes the breakpointed instruction. When the branch is executed,
the instruction pipeline is flushed and the breakpoint is canceled.

. An exception has occurred. Again, the instruction pipelineis flushed and the
breakpoint is canceled. However, the normal way to exit from an exception isto
branch back to the instruction that would have executed next. Thisinvolves
refilling the pipeline, and so the breakpoint can be re-flagged.

When a breakpointed conditional instruction reaches the Execute stage of the pipeline,
the breakpoint is always taken and ARM7TDM enters debug state, regardless of
whether the condition was met.

Breakpointed instructions are not executed. Instead, ARM7TDM enters debug state, so
that when the internal state is examined, the state befor e the breakpointed instruction is
seen. Once examination is compl ete, the breakpoint must be removed and program
execution restarted from the previously breakpointed instruction.

7.3.2 Entering debug state on watchpoint

Watchpoints occur on data accesses. A watchpoint is always taken, but the core might
not enter debug stateimmediately. In al cases, the current instruction does complete. If
thisis amulti-word load or store (LDMor STM), many cycles can elapse before the
watchpoint is taken.

Watchpoints are similar to Data Aborts. The differenceisthat if a Data Abort occurs,
although the instruction completes, all subseguent changesto ARM7TDM state are
prevented. This allows the cause of the abort to be cured by the abort handler, and the

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 7-7

Debug Interface

instruction re-executed. In the case of awatchpoint, the instruction completes and al
changes to the core state occur (load datais written into the destination registers, and
base writeback occurs). Therefore, the instruction does not have to be restarted.

Watchpoints are alwaystaken. If an exception is pending when awatchpoint occurs, the
core enters debug state in the mode of that exception.

7.3.3 Entering debug state on debug-request

ARM7TDM can aso be forced into debug state on debug request. This can be done
either through Embedded] CE programming (see Chapter 8 EmbeddedI CE Logic), or by
the assertion of the DBGRQ pin. This pin is an asynchronous input and is therefore
synchronized by logic inside ARM7TDM before it takes effect. Following
synchronization, the core normally enters debug state at the end of the current
instruction. However, if the current instruction is a busy-waiting accessto a
coprocessor, the instruction terminates and ARM7TDM enters debug state
immediately. Thisis similar to the action of nIRQ and nFI Q.

7-8

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Debug Interface

7.4 Scan chains and JTAG interface

Therearethree JTAG style scan chainsinside ARM7TDM and an additional scan chain
inside ARM720T. These allow testing, debugging, and Embedded| CE programming.

In addition, support is provided for further scan chains outside of ARM720T. Unused
scan chains can be used for Application-Specific Integrated Circuit (ASIC) boundary
scan or for ASIC test. The control signals provided for this are described later.

The scan chains are controlled from a JTAG-style Test Access Port (TAP) controller.
For further details of the JTAG specification, refer to IEEE Standard 1149.1-1990
Sandard Test Access Port and Boundary-Scan Architecture.

Note
The scan cells are not fully JTAG-compliant, see Scan limitations for a description of
the limitations on their use.

7.4.1 Scan limitations

Thethree ARM7TDM scan paths are referred to as scan chain 0, 1, and 2. These are
shown in Figure 7-2 on page 7-6. Scan chain functions are described bel ow:

. Scan chain 0 allows access to the entire periphery of the ARM7TDM core,
including the data bus. The scan chain functions allow inter-device testing
(EXTEST) and serial testing of the core (INTEST). The order of the scan chain
(from SDIN to SDOUT) is:

— databusbits0to 31
— thecontrol signals
— theaddress bus bits 31to 0.

. Scan chain 1 is asubset of the signals that are accessible through scan chain 0.
Accessto the core data bus D[31:0], and the BREAK POINT signal isavailable
serialy. There are 33 bitsin this scan chain. The order is (from serial datain to
out):

— databus bits 0 through 31
— BREAKPOINT

. Scan chain 2 alows access to the Embedded| CE Logic registers. See Chapter 8
EmbeddedI CE Logic for details.

. Scan chain 15 allows access to the system control coprocessor registers.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 7-9

Debug Interface

7.4.2 The JTAG state machine

Theprocessof serial test and debug isbest explainedin conjunction withthe JTAG state
machine. Figure 7-3 shows the state transitions that occur in the TAP controller. The
state numbers are a so shown on the diagram.

Test-Logic Reset \
|

OxF
tms=1 tms=0
Run-Test/Idle tms=1 Select-DR-Scan \ims=1 Select-IR-Scan tms=1
0xC 0x7 0x4
tms=0 A tms=0 tms=0

tms=1 Capture-DR tms=1 Capture-IR

0x6 OxE

tms=1

tms=0 tms=0

tms=1

o
W

tms=1 tms=1
tms=0 tms=0
Pause-DR Pause-IR
0x3 0xB
me=1 tms=0 po— tms=0

tms=0 Exit2-DR tms=0 Exit2-IR
0x0 0x8

tms=1 tms=1

Update-DR Update-IR
0x5 0xD
tms=1 tms=0
tms=1
A tms=0
<

Figure 7-3 Test access port (TAP) controller state transitions

From |IEEE Std. 1149.1-1999, Copyright 1997, 1998, 2000 |EEE. All rights reserved.

7-10 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

7.5 Reset

Debug Interface

Theboundary-scan interfaceincludes astate machine controller, the TAP controller. To
forcethe TAP controller into the correct state after power-up of the device, areset pulse
must be applied to the XnTRST signal.

If the boundary scan interface isto be used, XnTRST must be driven LOW, and then
HIGH again. If the boundary scan interface is not to be used, the XnTRST input can be
tied permanently LOW.

Note
A clock on XTCK isnot necessary to reset the device.

The action of reset isas follows:

1. System modeis selected (the boundary scan chain cells do not intercept any of
the signals passing between the external system and the core).

2. ThelDCODE instruction is selected. If the TAP controller is put into the
SHIFT-DR state and XTCK is pulsed, the contents of the ID register are clocked
out of XTDO.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 7-11

Debug Interface

7.6 Public instructions

The public instructions are listed in this section. In the descriptions that follow, XTDI
and XTM S are sampled on therising edge of XTCK and all output transitions on
XTDO occur as aresult of the falling edge of XTCK.

7.6.1 EXTEST (0000)

Thisinstruction placesthe selected scan chainin test mode. It connectsthe selected scan
chain between XTDI and XTDO.

When the instruction register is loaded with EXTEST, all the scan cells are placed in
their test mode of operation.

CAPTURE-DR Inputs from the system logic and outputs from the output scan
cellsto the system are captured by the scan cells.

SHIFT-DR The previously captured test data is shifted out of the scan chain
using XTDO, while new test datais shifted in through the XTDI
input. This datais applied immediately to the system logic and
system pins.

7.6.2 SCAN_N (0010)

This instruction connects the scan path select register between XTDI and XTDO. On
reset, scan chain 3 is selected by default. The scan path select register isfour bitslong
in this implementation, athough no finite length is specified.

CAPTURE-DR The fixed value 1000 is loaded into the register.

SHIFT-DR The ID number of the desired scan path is shifted into the scan
path select register.
UPDATE-DR The scan register of the selected scan chain is connected between

XTDI and XTDO, and remains connected until a subsequent
SCAN_N instruction isissued.

7.6.3 INTEST (1100)

Thisinstruction placesthe selected scan chainin test mode. It connectsthe selected scan
chain between XTDI and XTDO.

When theinstruction register isloaded with thisinstruction, al the scan cells are placed
in their test mode of operation.

Single-step operation is possible using the INTEST instruction.

7-12 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Debug Interface

CAPTURE-DR Thevalueof the dataapplied from the corelogic to the output scan
cells, and thevalue of the data applied from the system logic to the
input scan cellsis captured.

SHIFT-DR The previously captured test datais shifted out of the scan chain
using the XTDO pin, while new test datais shifted in using the
XTDI pin.

7.6.4 IDCODE (1110)

Thisinstruction connects the device I Dentification (ID) register between X TDI and
XTDO. The ID register is a 32-hit register that allows the manufacturer, part number,
and version of acomponent to be determined through the TAP. See ARM7TDM device
identification code register on page 7-16 for details of the ID register format.

When theinstruction register isloaded with thisinstruction, all the scan cellsare placed
in their normal, System, mode of operation:

CAPTURE-DR The device identification code is captured by the ID register.

SHIFT-DR The previously captured device identification code is shifted out
of the ID register using the XTDO pin, while datais shifted in
through the XTDI pininto the ID register.

UPDATE-DR The ID register is unaffected.

7.6.5 BYPASS (1111)

Thisinstruction connects a 1-hit shift register, the bypass register, between XTDI and
XTDO. When thisinstruction is loaded into the instruction register, all the scan cells
are placed in their normal, system, mode of operation. Thisinstruction has no effect on
the system pins.

CAPTURE-DR A logic 0 is captured by the bypass register.

SHIFT-DR Test datais shifted into the bypass register through XTDI and out
through XTDO after adelay of one XTCK cycle.

Note
. Thefirst bit shifted out is a zero.
. All unused instruction codes default to the bypass instruction.

UPDATE-DR The bypass register is not affected.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 7-13

Debug Interface

7.6.6 CLAMP (0101)

Thisinstruction connects a 1-bit shift register, the bypass register, between XTDI and
XTDO. When thisinstruction isloaded into the instruction register, the state of all the
output signalsisdefined by the values previously loaded into the currently loaded scan
chain.

Note

Thisinstruction must only be used when scan chain 0 isthe currently selected scan
chain.

CAPTURE-DR A logic 0 is captured by the bypass register.

SHIFT-DR Test datais shifted into the bypass register using XTDI and out
using XTDO after adelay of one XTCK cycle.

Note
Thefirst bit shifted out is a zero.

UPDATE-DR The bypass register is not affected.

7.6.7 HIGHZ (0111)

This instruction connects a 1-bit shift register, the bypass register, between XTDI and
XTDO. When thisinstruction is loaded into the instruction register, the address bus,
A[31:0], the data bus, D[31:0], plus nRW, nOPC, LOCK, MAS[1:0], and nTRANS
are all driven to the high impedance state and the external HIGHZ signal is driven
HIGH. Thisisasif the signal TBE had been driven LOW.

CAPTURE-DR A logic 0 is captured by the bypass register.

SHIFT-DR Test datais shifted into the bypass register using XTDI and out
using XTDO after adelay of one XTCK cycle.

Note
Thefirst bit shifted out is azero.

UPDATE-DR The bypass register is not affected.

7-14

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Debug Interface

7.6.8 CLAMPZ (1001)

Thisinstruction connects a 1-bit shift register, the bypass register, between XTDI and
XTDO. When thisinstruction is loaded into the instruction register, all the 3-state
outputs are placed in their inactive state, but the data supplied to the outputs is derived
from the scan cells. The purpose of thisinstruction isto ensure that, during production
test, each output can be disabled when its data valueis either alogic O or alogic 1.

CAPTURE-DR A logic 0 is captured by the bypass register.

SHIFT-DR Test datais shifted into the bypass register through X TDI and out
through XTDO after adelay of one XTCK cycle.

Note
Thefirst bit shifted out will be a zero.

UPDATE-DR The bypass register is not affected.

7.6.9 RESTART (0100)

This instruction restarts the processor on exit from debug state. It connects the bypass
register between XTDI and XTDO, and the TAP controller behaves asiif the bypass
instruction had been loaded. The processor resynchronizes back to the memory system
once the RUN-TEST/IDLE state is entered.

7.6.10 SAMPLE/PRELOAD (0011)

Thisinstruction isincluded for production test only, and must never be used.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 7-15

Debug Interface

7.7 Test dataregisters

Y ou can connect five test data registers between XTDI and XTDO:

. This register bypasses the device during scan testing by providing a path
between XTDI and XTDO. The bypass register is 1 bit in length.

. ARM7TDM deviceidentification code register

. Thisregister changes the current TAP instruction. The register is four bitsin
length. on page 7-17

. Thisregister changes the current active scan chain. The register is4 bitsin
length. on page 7-17

. These allow serial access to the core logic, and to Embedded! CE Logic for
programming purposes. They are described in this section and shown in Figure

7-5 on page 7-19. on page 7-18.

These are described in the following sections.

7.7.1 Bypass register

Thisregister bypassesthe device during scan testing by providing apath between XTDI

and XTDO. The bypass register is 1 bit in length.

Operating mode

When the BY PASS instruction is the current instruction in the instruction register,
serial dataistransferred from XTDI to XTDO in the SHIFT-DR state with adelay of

one XTCK cycle.

Thereisno parallel output from the bypass register.

A logic Oisloaded from the parallel input of the bypass register in the CAPTURE-DR

state.

7.7.2 ARM7TDM device identification code register

This register reads the 32-bit device ID code. No programmabl e supplementary
identification codeis provided. The register is 32 bitsin length.

The format of the ID register is shown in Figure 7-4.

31 28 27

12 1 10

Version

Part number

Manufacturer identity |1

Figure 7-4 ID code register format

7-16 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Debug Interface

Contact your supplier for the correct device identification code.

Operating mode

When the IDCODE instruction is current, the ID register is selected as the serial path
between XTDI and XTDO.

Thereis no parallel output from the ID register.

The 32-bit device identification code is loaded into the ID register from its parallel
inputs during the CAPTURE-DR state.

7.7.3 Instruction register

Thisregister changes the current TAP instruction. Theregister is four bitsin length.

Operating mode

When in the SHIFT-IR state, the instruction register is selected as the serial path
between XTDI and XTDO.

During the CAPTURE-IR state, the value 0001 binary is loaded into thisregister. This
isshifted out during SHIFT-IR Least Significant Bit (L SB) first, whileanew instruction
isshiftedin (LSB first).

During the UPDATE-IR state, the value in the instruction register becomesthe current
instruction.

On reset, IDCODE becomes the current instruction.

7.7.4 Scan chain select register

Thisregister changes the current active scan chain. The register is4 bitsin length.

Operating mode

After SCAN_N has been selected as the current instruction, when in the SHIFT-DR
state, the scan chain select register is selected as the serial path between XTDI and
XTDO.

During the CAPTURE-DR state, the value 1000 binary isloaded into thisregister. This
is shifted out during SHIFT-DR (L SB first), whileanew valueis shifted in (LSB first).

During the UPDATE-DR state, the value in the register selects a scan chain to become
the currently active scan chain. All further instructions, such asINTEST, then apply to
that scan chain.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 7-17

Debug Interface

The currently selected scan chain only changes when a SCAN_N instructionis
executed, or areset occurs. On reset, scan chain 3 is selected as the active scan chain.

The number of the currently selected scan chain is reflected on the SCREG[3:0]
outputs. Y ou can use the TAP controller to drive external scan chainsin addition to
those within the ARM7TDM macrocell. Y ou must assign the external scan chain a
number and control signals for it can be derived from SCREG[3:0], IR[3:0],
TAPSM[3:0], TCK1, and TCK2.

Thelist of scan chain numbers allocated by ARM arelisted in Table 7-1. An externd
scan chain can take any other number. The serial data stream to be applied to the
external scan chain is made present on SDINBS. The serial data back from the scan
chain must be presented to the TAP controller on the SDOUTBS input.

The scan chain present between SDINBS and SDOUTBS s connected between XTDI
and X TDO whenever scan chain 3isselected, or when any of the unassigned scan chain
numbersis selected. If there is more than one external scan chain, a multiplexor must
be built externally to apply the desired scan chain output to SDOUTBS. The
multiplexor can be controlled by decoding SCREG[3:0].

Table 7-1 Scan chain number allocation

Scan chain number Function

0 Macrocell scan test

1 Debug

2 Embedded| CE programming

3 Reserved (externa boundary scan)
4 Reserved

8 Reserved

15 System control coprocessor

7.7.5 Scan chains 0, 1, 2, and 15

These allow seria access to the core logic, and to Embedded| CE Logic for
programming purposes. They are described in this section and shown in Figure 7-5 on
page 7-19.

Scan chains 0 and 1 allow access to the processor core for test and debug. They have
the following lengths:

. Scan chain 0, 105 hits

7-18

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Debug Interface

. Scan chain 1, 33 bits.

Each scan chain cell consists of a seria register and a multiplexor. The scan cells
perform two basic functions:

Capture For input cells, the capture stage involves copying the val ue of the
system input to the core into the serial register.
For output cells, capture involves placing the value of acore
output into the serial register.

Shift For input cells, during shift, thisvalueisoutput serially. Thevalue
applied to the core from an input cell is either the system input or
the contents of the serial register, and thisis controlled by the
multiplexor.

For output cells, during shift, thisvalueis serialy output as
before. The value applied to the system from an output cell is
either the core output, or the contents of the serial register.

Serial data out

System data in 0
Ll 4’
Data to core
CAPTURE clock Shift 1
> register >
latch
SHIFT clock -
I Test enable

Serial data in

Figure 7-5 Input scan cell

All the control signalsfor the scan cells are generated internally by the TAP controller.
The action of the TAP controller is determined by the current instruction, and the state
of the TAP state machine. Thisis described in Operating modes on page 7-20.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 7-19

Debug Interface

7.7.6

Operating modes

The scan chains have three basic modes of operation, selected by the various TAP
controller instructions:

SYSTEM mode Thescan cellsareidle. System datais applied to inputs, and core

outputs are applied to the system.

INTEST mode The coreisinternally tested. The data serially scanned inis

applied to the core, and the resulting outputs are captured in the
output cells and scanned out.

EXTEST mode Data is scanned onto the core outputs and applied to the external

system. System input datais captured in the input cells and then
shifted out.

Note

The scan cells are not fully JTAG-compliant because they do not have an update
stage. Therefore, while datais being moved around the scan chain, the contents
of the scan cell are not isolated from the output. Therefore the output from the
scan cell to the core or to the external system can change on every scan clock.

This does not affect ARM7TDM because itsinterna state does not change until
itis clocked. However, the rest of the system has to be aware that every output
can change asynchronousdly as data is moved around the scan chain. External
logic must ensure that this does not harm the rest of the system.

Scan chain 0

Scan chain O isintended primarily for inter-device testing (EXTEST), and testing the
core (INTEST). Scan chain O is selected using the SCAN_N instruction.

Serial testing the core

INTEST alowsserial testing of the core. The TAP controller must be placed in INTEST
mode after scan chain O has been selected:

During CAPTURE-DR, the current outputs from the core logic are captured in
the output cells.

During SHIFT-DR, this captured datais shifted out while anew serial test
pattern is scanned in, applying known stimuli to the inputs.

During RUN-TEST-IDLE, the coreis clocked. The TAP controller must only
spend one cyclein RUN-TEST-IDLE.

7-20

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

7.7.7 Scan chain 1

Debug Interface

The whole operation can then be repeated.

See ARM7TDM core clocks on page 7-23 for details of the core clocks during test and
debug.

Inter-device testing

EXTEST alowsinter-device testing. Thisis useful for verifying the connections
between devices on acircuit board. The TAP controller must be placed in EXTEST
mode after scan chain 0 has been selected:

. During CAPTURE-DR, the current inputs to the core logic from the system are
captured in the input cells.

. During SHIFT-DR, this captured data is shifted out while anew serial test
pattern is scanned in, applying known values on the core outputs.

. During UPDATE-DR, the value shifted into the data bus D[31:0] scan cells
appears on the outputs. For al other outputs, the value appears asthe dataiis
shifted round.

Note

During RUN-TEST/IDLE, the core is not clocked.

The operation can then be repeated. The ordering of signals on scan chain Oislisted in
Table 7-3 on page 7-37.

The primary usefor scan chain 1 isfor debugging, although it can be used for EXTEST
on thedata bus. Scan chain 1 is selected using the SCAN_N TAP controller instruction.
Debugging is similar to INTEST, and the procedure described above for scan chain 0
must be followed.

Scan chain length and purpose

This scan chain is 33 bits long.32 bits are for the data value, plus an additional bit for
the scan cell on the BREAKPOINT coreinput. This 33rd bit serves four purposes:

1. Under normal INTEST test conditions, it allows a known value to be scanned
into the BREAKPOINT input.

2. During EXTEST test conditions, the value applied to the BREAKPOINT input
from the system can be captured.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 7-21

Debug Interface

3. While debugging, the value placed in the 33rd bit determines whether
ARMT7TDM synchronizes back to system speed before executing theinstruction.
See System-speed access on page 7-32 for more information.

4, After ARM7TDM has entered debug state, the first time this bit is captured and
scanned out, its value tells the debugger whether the core entered debug state is
due to a breakpoint (bit 33 LOW), or awatchpoint (bit 33 HIGH).

7.7.8 Scan chain 2

Thisscan chain allows you to access the EmbeddedI CE Logic registers. The scan chain
is 38 bitsin length.

The order of the scan chain from XTDI to XTDO is;
. read/write

. register address bits 4 to 0

. datavalue bits31to 0

See Figure 8-2 on page 8-5 for more information.

To access this seria register, scan chain 2 must first be selected using the SCAN_N
TAP controller instruction. The TAP controller must then be place in INTEST mode:

. No action istaken during CAPTURE-DR.

. During SHIFT-DR, adata value is shifted into the serial register. Bits 32 to 36
specify the address of the Embedded| CE Logic register to be accessed.

. During UPDATE-DR, this register is either read or written depending on the
value of bit 37 (0 = read). Refer to Chapter 8 Embedded| CE Logic for further
details.

7.7.9 Scan chain 15

This scan chain allows access to the system control coprocessor registers. Scan chain
15 is selected using the SCAN_N TAP controller instruction. This scan chain is 33 bits
long. 32 bitsarefor the data or instruction value plus an additional bit that identifiesthe
value asinstruction (1) or data (0). This scan chain must only be used during INTEST.
The order of the scan chain from XTDI to XTDO is:

+ CPDATA[0:3]]

. instruction or dataflag.

7-22

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Debug Interface

7.8 ARM7TDM core clocks

ARM7TDM has two clocks:
. the memory clock, MCLK, generated by the ARM720T
. an internally XTCK-generated clock, DCLK.

During normal operation, the coreis clocked by MCLK, and internal logic holds
DCLK LOW.

There are two cases in which the clocks switch:
. during debugging
. during testing.

7.8.1 Clock switch during debug

When ARM7TDM isinthedebug state, the coreisclocked by DCLK under the control
of the TAP state machine, and M CLK can free run. The selected clock is output on the
signal ECLK for use by the external system.

Note

When the CPU coreis being debugged and is running from DCLK, nWAIT has no
effect.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 7-23

Debug Interface

When ARM7TDM enters debug state, it must switch from MCLK to DCLK. Thisis
handled automatically by logic in the ARM7TDM. On entry to debug state,
ARM7TDM asserts DBGACK inthe HIGH phase of MCLK. The switch between the
two clocks occurs on the next falling edge of MCLK. Thisis shown in Figure 7-6.

.

MCLK

DBGACK

DCLK

ECLK

Multiplexor
switching point

Figure 7-6 Clock switching on entry to debug state

ARM7TDM isforced to use DCLK asthe primary clock until debugging is complete.
On exit from debug, the core must be allowed to synchronize back to M CLK . Thismust
be done in the following sequence:

1. Thefinal instruction of the debug sequence must be shifted into the data bus
scan chain and clocked in by asserting DCLK.

2. Atthispoint, BY PASS must be clocked into the TAP instruction register.

3. ARM7TDM now automatically resynchronizes back to MCLK and starts
fetching instructions from memory at M CLK speed.

See Exit from debug state on page 7-28 for more information.

7-24 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Debug Interface

7.9 Determining the core and system state

When ARM7TDM isin debug state, you can examine the core and system state. This
is done by forcing load and store multiples into the instruction pipeline.

7.9.1 Determining ARM or Thumb state

Before the core and system state can be examined, the debugger must first determine
whether the processor wasin Thumb or ARM state when it entered debug. Y ou can
achieve thisby examining bit 4 of the Embedded| CE L ogic debug statusregister. If this
isHIGH, the core was in Thumb state when it entered debug.

7.9.2 Determining the state of the core

If the processor has entered debug state from Thumb state, the simplest course of action
isfor the debugger to force the core back into ARM state. Once thisis done, the
debugger can always execute the same sequence of instructions to determine the
processor state.

While in debug state, only the following instructions can legally be scanned into the
instruction pipeline for execution:

. all data-processing instructions, except TEQP
. al load, store, load multiple, and store multiple instructions
. MSR and MRS.

Moving to ARM state

To force the processor into ARM state, the following sequence of Thumb instructions
must be executed on the core:

STR RO, [RO] ; Save RO before use
MOV RO, PC ; Copy PCinto RO

STR RO, [RO] ; Now save the PCin RO
BX PC ; Jump into ARM state
MOV R8, R8 ;. NOP

MOV R8, R8; NOP

Asall Thumbinstructionsareonly 16 bitslong, the simplest method when shifting them
into scan chain 1 isto repeat the instruction twice.

For example, the encoding for BX R0 is0x4700. Therefore, if 0x47004700 is shifted
into scan chain 1, the debugger does not have to keep track of which half of the bus the
processor expects to read the data from.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 7-25

Debug Interface

From this point on, the processor state can be determined by the sequences of ARM
instructions described In ARM state.

In ARM state
Once the processor isin ARM state, the first instruction executed istypically:

STM RO, {RO- R15}

This makes the contents of the registers visible on the data bus. These values can then
be sampled and shifted out.

Note

The use of RO asthe base register for STMisfor illustration only. Any register can be
used.

Accessing banked registers

After determining the valuesin the current bank of registers, you might want to access
the banked registers. This can only be done by changing mode. Usually, amode change
can only occur if the coreis already in a privileged mode. However, while in debug
state, a mode change from any mode into any other mode can occur.

Note
The debugger must restore the original mode before exiting debug state.

For example, assumethat the debugger isasked to return the state of the USER and FIQ
mode registers, and debug state was entered in Supervisor mode.

The instruction sequence might be as listed below:

STM RO, {RO-R15} Save current registers

MRS RO, CPSR

STR RO, RO; Save CPSR to determ ne current node
Bl C RO, Ox1F; Cl ear nobde bits

ORR RO, 0x10; Sel ect user node

MSR CPSR, RO; Ent er USER node

STM RO, {R13, R14}; Save register not previously visible
ORR RO, 0xO01; Sel ect FI Q node

MSR CPSR, RO; Enter FI Q node

STM RO, {R8-R14}; Save banked FlI Q registers

7-26

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Debug Interface

All these instructions are said to execute at debug speed. Debug speed is much slower
than system speed because between each core clock, 33 scan clocks occur to shift inan
instruction, or shift out data. Executing instructions more slowly than usual is
acceptable for accessing the core state because ARM7TDM isfully static. However,
this same method cannot be used for determining the state of the rest of the system.

7.9.3 Determining system state

To meet the dynamic timing requirements of the memory system, any attempt to access
system state must occur synchronously with it. Therefore, ARM7TDM must be forced
to synchronize back to system speed. Thisis controlled by the 33rd bit of scan chain 1.

Y ou can place any instruction in scan chain 1 with bit 33, the BREAKPT bit, LOW.
Thisinstruction is then executed at debug speed. To execute an instruction at system
speed, the instruction prior to it must be scanned into scan chain 1 with bit 33 set HIGH.

After the system speed instruction has been scanned into the data bus and clocked into
the pipeline, the BY PASS instruction must be loaded into the TAP controller. This
makes the ARM7TDM automatically synchronize back to MCLK, the system clock,
executes the instruction at system speed, and then re-enters debug state and switches
itself back to the internally generated DCL K. When the instruction has completed,
DBGACK isHIGH and the core switches back to DCLK. At this point, INTEST can
be selected in the TAP controller, and debugging can resume.

To determine that a system speed instruction has compl eted, the debugger must look at
bothDBGACK and nMREQ. In order to accessmemory, ARM7TDM drivesnM REQ
LOW after it has synchronized back to system speed. Thistransition is used by the
memory controller to arbitrate whether ARM7TDM can have the busin the next cycle.
If the busis not available, ARM7TDM can have its clock stalled indefinitely.

Therefore, the only way to tell that the memory access has completed, isto examinethe
state of bothnM REQ and DBGACK . When both are HIGH, the access has completed.
Thedebugger normally uses Embedded| CE L ogic to control debugging, and by reading
the EmbeddedI CE Logic status register, the state of NMREQ and DBGACK can be
determined. Refer to Chapter 8 Embedded| CE Logic for more details.

Using system speed load multiples and debug speed store multiples, the system memory
state can be fed back to the debug host.

Restrictions

There are restrictions on which instructions can have the 33rd bit set. The only valid
instructions where this bit can be set are;

. loads
. stores

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 7-27

Debug Interface

. load multiple
. store multiple.

See also Exit from debug state.

When ARM7TDM returns to debug state after a system speed access, bit 33 of scan
chain 1isset HIGH. This gives the debugger information about why the core entered
debug state the first time this scan chain is read.

7.9.4 Determining system control coprocessor state

To access the system control coprocessor registers, debug state must be entered by a
breakpoint, watchpoint, or debug request. This ensures that the ARM7TDM core stops
execution of code that might be dependent on the system control coprocessor.

Scan chain 15 can then be selected using the SCAN_N instruction.

Instructions can then be scanned down the scan chain asif being executed from the
ARM7TDM core. Asthe ARM7TDM isidlewhile scan chain 15 isbeing accessed, you
must provide the register data using the scan chain. The instruction prior to the data
must have the instruction or data flag cleared.

The data operation requires an additional clock from the TAP controller. This can be
achieved by remaining in the RUN-TEST-IDLE state for an additional XTCK cycle.

7.9.5 Exit from debug state

Leaving debug state involves:

1. Restoring ARM7TDM internal state.

2. Branching to the next instruction to be executed.
3. Synchronizing back to MCLK.

After restoring internal state, abranch instruction must be loaded into the pipeline. See
The PC during debug on page 7-30 for details on calculating the branch.

Bit 33 of scan chain 1 is used to force ARM7TDM to resynchronize back to MCLK.
The penultimate instruction of the debug sequence is scanned in with bit 33 set HIGH.
Thefinal instruction of the debug sequenceisthe branch, and thisis scanned in with bit
33 LOW. The coreis then clocked to load the branch into the pipeline. Now, the
RESTART instruction is selected in the TAP controller.

When the state machine entersthe RUN-TEST-IDLE state, the scan chain reverts back
to system mode and clock resynchronization to MCLK occurs within ARM7TDM.
ARM7TDM then resumes normal operation, fetching instructions from memory. This

7-28

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Debug Interface

delay, until the state machineisin the RUN-TEST-IDLE state, allows conditions to be
set up in other devicesin a multiprocessor system without taking immediate effect.
Then, when the RUN-TEST-IDLE stateis entered, all the processors resume operation
simultaneously.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 7-29

Debug Interface

7.10 The PC during debug

7.10.1 Breakpoint

The debugger must keep track of what happens to the PC so that ARM7TDM can be
forced to branch back to the place at which program flow was interrupted by debug.
There are five cases when this occurs:

. Entry to the debug state from a breakpoint advances the PC by four addresses,
or 16 bytes. Each instruction executed in debug state advances the PC by one
address, or four bytes. The normal way to exit from debug state after a
breakpoint is to remove the breakpoint, and branch back to the previously
breakpointed address.

. Returning to program execution after entering debug state from a watchpoint is
done in the same way as the procedure described above. Debug entry adds four
addresses to the PC, and every instruction adds one address. The differenceis
that because the instruction that caused the watchpoint has executed, the
program returns to the next instruction. on page 7-31

. Watchpoint with another exception on page 7-31

. Debug request on page 7-32

. System-speed access on page 7-32.

A summary of the method used to determine the return addressis provided in Summary
of return address cal culations on page 7-33.

Entry to the debug state from a breakpoint advances the PC by four addresses, or

16 bytes. Each instruction executed in debug state advances the PC by one address, or
four bytes. The normal way to exit from debug state after a breakpoint isto remove the
breakpoint, and branch back to the previously breakpointed address.

For example, if ARM7TDM entered debug state from a breakpoint set on a given
address and two debug-speed instructions were executed, a branch of minus seven
addresses must occur. Four are for debug entry, plus two for the instructions, plus one
for the final branch.

The following sequence shows the data scanned into scan chain 1. Thisis Most
Sgnificant Bit (MSB) first, and so thefirst digit is the value placed in the BREAKPT
bit, followed by the instruction data:

0 E0802000; ADD R2, RO, RO
1 E1826001; ORR R6, R2, R1
0 EAFFFFF9; B -7 (2s conpl erment)

7-30

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

7.10.2 Watchpoint

Debug Interface

Oncein debug state, aminimum of twoinstructionsmust be executed beforethe branch,
although these can both be NOPs, for example:

MOV RO, RO

For small branches, the final branch can be replaced by a subtract with the PC as the
destination:

SUB PC, PC, #28

Returning to program execution after entering debug state from awatchpoint isdonein
the same way as the procedure described above. Debug entry adds four addressesto the
PC, and every instruction adds one address. The difference is that because the
instruction that caused the watchpoint has executed, the program returns to the next
instruction.

7.10.3 Watchpoint with another exception

If awatchpointed access simultaneously causesaDataAbort, ARM7TDM enters debug
state in abort mode. Entry into debug is held off until the core has changed into abort
mode, and fetched the instruction from the abort vector.

A similar sequenceisfollowed when an interrupt, or any other exception, occurs during
awatchpointed memory access. ARM7TDM enters debug state in the exception mode,
and so the debugger must check to see whether this happened. The debugger can deduce
whether an exception occurred by looking at the current and previous mode, in the
CPSR and SPSR, and the value of the PC. If an exception does take place, you must
give the user the choice of whether to service the exception before debugging.

Exiting from debug state

Exiting debug state if an exception occurred is slightly different from the other cases.
Here, entry to debug state causes the PC to be incremented by three addresses rather
than four, and this must be taken into account in the return branch cal culation. For
exampl e, suppose that an abort occurred on awatchpointed access and ten instructions
had been executed to determine this. The following sequence can be used to return to
program execution:

0 E1A00000; MOV RO, RO
1 E1A00000; MOV RO, RO
0 EAFFFFFO; B -16

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 7-31

Debug Interface

Thisforces abranch back to the abort vector, causing the instruction at that location to
be refetched and executed.

Note

After the abort service routine, the instruction that caused the abort and watchpoint is
re-executed. This generates the watchpoint and ARM7TDM enters debug state again.

7.10.4 Debug request

Entry into debug state through a debug request is similar to a breakpoint. However,
unlike a breakpoint, the last instruction has completed execution and so must not be
refetched on exit from debug state. Therefore, entry to debug state adds three addresses
to the PC, and every instruction executed in debug state adds one.

For example, suppose that you invoke a debug request, and decide to return to program
execution straight away. The following sequence can be used:

0 E1A00000; MV RO, RO
1 ELA00000; MV RO, RO
0 EAFFFFFA;, B -6

This restores the PC, and restarts the program from the next instruction.

7.10.5 System-speed access

If asystem-speed accessis performed during debug state, the value of the PC is
increased by three addresses. As system-speed instructions access the memory system,
aborts can take place. If an abort occurs during a system-speed memory access,
ARM7TDM enters abort mode before returning to debug state.

Thisissimilar to an aborted watchpoint except that the problem is much harder to fix,

because the abort was not caused by an instruction in themain program, and the PC does
not point to the instruction that caused the abort. An abort handler usually looks at the
PC to determine the instruction which caused the abort, and therefore the abort address.
In this case, the value of the PC isinvalid, but the debugger must know what location

was being accessed. Therefore, the debugger can be written to help the abort handler fix
the memory system.

7-32

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Debug Interface

7.10.6 Summary of return address calculations
The calculation of the branch return address can be summarized as follows:

. For normal breakpoint and watchpoint, the branch is:

(4+N+39)

. For entry through debug request (DBGRQ), or watchpoint with exception, the
branchis:
(83+N+39)

where:

. N isthe number of debug speed instructions executed, including the final branch

. Sisthe number of system speed instructions executed.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 7-33

Debug Interface

7.11 Priorities and exceptions

Because the normal program flow is broken when a breakpoint or a debug request
occurs, debug can be considered as being another type of exception. Some of the
interaction with other exceptionsis been described in Entering debug state on page 7-7
and The PC during debug on page 7-30. This section summarizes these priorities.

7.11.1 Breakpoint with Prefetch Abort

7.11.2 Interrupt

7.11.3 Data Aborts

When a breakpointed instruction fetch causes a Prefetch Abort, the abort is taken and
the breakpoint is disregarded. Usually, Prefetch Aborts occur when, for example, an
access is made to avirtual address that does not physically exist, and the returned data
isthereforeinvalid.

In this case, the normal action of the operating system isto swap in the page of memory
and return to the previously invalid address. Here, when the instruction is fetched, and
providing the breakpoint is activated (it might be data-dependent), ARM7TDM enters
debug state.

In this case, the Prefetch Abort takes higher priority than the breakpoint.

When ARM7TDM enters debug state, interrupts are automatically disabled. If
interrupts are disabled during debug, ARM7TDM is never forced into an interrupt
mode. Interrupts only have this effect on watchpointed accesses. They areignored at all
times on breakpoints.

If an interrupt is pending during the instruction prior to entering debug state,
ARM7TDM enters debug state in the mode of the interrupt. So, on entry to debug state,
the debugger cannot assume that ARM7TDM isin the expected mode of the program.
It must check the PC, the CPSR, and the SPSR to fully determine the reason for the
exception.

Debug takes higher priority than theinterrupt, although ARM7TDM remembersthat an
interrupt has occurred.

When a Data Abort occurs on awatchpointed access, ARM7TDM entersdebug statein
abort mode. Therefore, the watchpoint has higher priority than the abort athough, asin
the case of interrupt, ARM7TDM remembers that the abort happened.

7-34

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Debug Interface

7.12 Scan interface timing

Figure 7-7 and Table 7-2 provide general scan timing information.

XTCK]
Tosc o Tosen »
XTMS >< ><
XTDI ; ;
XTDO >< ><
T, y
Data in ‘ >< ‘ ><
Tbsss A Tbssh
Data out >< >< >< ><
S T - S T
Toss « oo
Figure 7-7 Scan general timing
Table 7-2 ARM720T scan interface timing

Symbol Parameter
Tosc XTCK low period
Thsch XTCK high period
Thsis XTDI, XTM S setup to XTCK
Thosih XTDI, XTM S hold from XTCK,
Thson XTDO hold time from XTCK+
Thsod XTCKsto XTDO valid

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 7-35

Debug Interface

Table 7-2 ARM720T scan interface timing (continued)

Symbol Parameter

Thsss? 1/0 signal setup to XTCK,

Tossh? 1/0 signad hold from XTCK,

Thsdh Data output hold time from X TCK
Thsdd XTCK to data output valid

Tos Reset period

Thse Output enable time

Tos Output disable time

aFor correct data latching, the 1/0O signals (from the core and pads) must be
setup and held with respect to the rising edge of XTCK inthe CAPTURE-DR
state of the INTEST and EXTEST instructions

Contact your supplier for AC timing parameter values.

Figure 7-8 shows the Ty (reset period timing) parameter.

nTRST

T

bsr

Figure 7-8 Reset period timing

Figure 7-9 shows the T parameter (output enabletime) and Tps, (OUtput disabletime)
when the HIGHZ TAP instruction is loaded into the instruction register.

XTCK
+ T, +
ALl \
Dfl— /

- T

bse

|

Figure 7-9 Output enable and disable times due to HIGHZ TAP instruction

7-36

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Debug Interface

Figure 7-10 shows the Ty parameter (output enable time) and Tps, (OUtput disable
time) when data scanning.

XTCK _I— —

d + Tbsz Tbse d “
ALl N\ [
ofl— 7/ n

Figure 7-10 Output enable and disable times due to data scanning

Table 7-3 lists the signals and positions for scan chain O.

Table 7-3 Scan chain 0, signals and positions

Number Signal Type

1 D[O] Input/output
2 D[1] Input/output
3 D[2] Input/output
4 D[3] Input/output
5 D[4] Input/output
6 D[5] Input/output
7 D[6] Input/output
8 D[7] Input/output
9 D[8] Input/output
10 D[9] Input/output
11 D[10] Input/output
12 D[11] Input/output
13 D[12] Input/output
14 D[13] Input/output
15 D[14] Input/output
16 D[15] Input/output

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 7-37

Debug Interface

Table 7-3 Scan chain 0, signals and positions (continued)

Number Signal Type

17 D[16] I nput/output
18 D[17] I nput/output
19 D[18] I nput/output
20 D[19] I nput/output
21 D[20] I nput/output
22 D[21] I nput/output
23 D[22] I nput/output
24 D[23] I nput/output
25 D[24] I nput/output
26 D[25] I nput/output
27 D[26] I nput/output
28 D[27] I nput/output
29 D[28] I nput/output
30 D[29] I nput/output
31 D[30] I nput/output
32 D[31] I nput/output
33 BREAKPT Input

34 NENIN Input

35 NENOUT Output

36 LOCK Output

37 BIGEND Input

38 DBE Input

39 MAS[0] Output

40 MAS[1] Output

41 BL[OQ] Input

7-38

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

ARM DDI 0192A

Debug Interface

Table 7-3 Scan chain 0, signals and positions (continued)

Number Signal Type
42 BL[1] Input
43 BL[2] Input
44 BL[3] Input
45 DCTL2 Output
46 nRW Output
47 DBGACK Output
438 CGENDBGACK Output
49 nFIQ Input
50 nIRQ Input
51 NRESET Input
52 ISYNC Input
53 DBGRQ Input
54 ABORT Input
55 CPA Input
56 nOPC Output
57 IFEN Input
58 nCPI Output
59 NMREQ Output
60 SEQ Output
61 NTRANS Output
62 CPB Input
63 nM[4] Output
64 nM[3] Output
65 nM[2] Output
66 nM[1] Output

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

7-39

Debug Interface

Table 7-3 Scan chain 0, signals and positions (continued)

Number Signal Type

67 nM[Q] Output
68 nEXEC Output
69 ALE Input

70 ABE Input

71 APE Input

72 TBIT Output
73 nWAIT Input

74 A[31] Output
75 A[30] Output
76 A[29] Output
7 A[28] Output
78 A[27] Output
79 A[26] Output
80 A[25] Output
81 Al24] Output
82 A[23] Output
83 A[22] Output
84 A[21] Output
85 A[20] Output
86 A[19] Output
87 A[18] Output
88 A[17] Output
89 A[16] Output
90 A[15] Output
91 A[14] Output

7-40

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

ARM DDI 0192A

Debug Interface

Table 7-3 Scan chain 0, signals and positions (continued)

Number Signal Type

92 A[13] Output
93 A[12] Output
94 A[11] Output
95 A[10] Output
96 A[9] Output
97 A[8] Output
o8 Al7] Output
99 A[6] Output
100 A[5] Output
101 Al4] Output
102 A[3] Output
103 Al2] Output
104 Al1] Output
105 A[0] Output

a DCTL is not described in this datasheet. DCTL is an output from the

processor used to control the unidirectional data out latch, DOUT[31:0]. This
signal is not visible from the periphery of ARM7TDM.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

7-41

Debug Interface

7.13 Scan and debug signals used by the embedded trace logic

The signalslisted in Table 7-4 exist on the ARM720T and are used to configure and
control the ETM. Refer to the ETM7 Technical Reference Manual for moreinformation
on scan chain connection between the ARM720T core and ETM7, and DBGRQ

Table 7-4 Scan and debug signals used by the ETM

Signal Type
DBGRQ Input
XnTRST Input
SDOUTBS Input
XTCK Input
XTDI Input
XTMS Input
RANGEOUTO Output
RANGEOUT1 Output

7-42

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

ARM DDI 0192A

Chapter 8
EmbeddedICE Logic

This chapter describes the ARM720T EmbeddedI CE Logic. It contains the following

sections.

. About Embedded| CE Logic on page 8-2

. The watchpoint registers on page 8-4

. Programming breakpoints on page 8-9

. Programming watchpoints on page 8-11

. The debug control register on page 8-13

. Debug status register on page 8-15

. Coupling breakpoints and watchpoints on page 8-17
. Debug communications channel on page 8-19.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

8-1

EmbeddedICE Logic

8.1

About EmbeddedICE Logic

The ARM7TDM Embedded| CE Logic, referred to as Embedded| CE, provides
integrated on-chip debug support for the ARM7TDM core.

In this chapter ARM7TDM refersto the ARM7TDMI core excluding the
Embedded| CE L ogic. EmbeddedI CE is programmed in a serial fashion using the
ARM7TDM TAP controller. It consists of two real-timewatchpoint units, together with
acontrol and status register. Y ou can program one or both watchpoint units to halt the
execution of instructions by the ARM7TDM core using the BREAKPT signal.

Two independent registers, debug control and debug status, provide overall control of
Embedded| CE operation. Figure 8-1 shows the relationship between the core,
EmbeddedI CE, and the TAP controller.

ARM7TDM

DBGRAQI

v

««——DBGRQI
A[31:0]—»
D[31:0] —»
nOPC—p
NRW-——p
TBIT——»
———MAS[1:0] —»
NTRANS —»
———DBGACKI—
«— BREAKPTI——
«——IFEN
ECLK——»
nMREQ—p

EmbeddedICE
Logic

«——EXTERN1 —
«——EXTERNO —
——RANGEOUTO0—»
——RANGEOUT1—»
———DBGACK—»
«—BREAKPOINT —
««——DBGRQ
««——DBGEN

SDOUT SDIN CONTROL

XnTRST—p

TAP

4—XTCK
4—XTMS
—XTDI
XTDO——»

Figure 8-1 ARM7TDMI TAP controller and EmbeddedICE

8-2

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

ARM DDI 0192A

EmbeddedICE Logic

Execution is halted when a match occurs between the values programmed into
EmbeddedI CE and the values currently appearing on the address bus, data bus, and
various control signals. Any bit can be masked so that its value does not affect the
comparison.

Note
. Only those signals that are pertinent to Embedded| CE are shown.

. Inthe ARM720T, the Embedded! CE module is connected directly to the
ARM7TDM core and therefore functions on the virtual address of the processor
after relocation by the FCSE PID.

Either of the two real-time watchpoint units can be configured to be a watchpoint
(monitoring data accesses) or a breakpoint (monitoring instruction fetches). Y ou can
make watchpoints and breakpoints data-dependent.

8.1.1 Disabling EmbeddedICE
Y ou can disable EmbeddedI CE by wiring the DBGEN input LOW.

When DBGEN is LOW, BREAKPOINT and DBGRQ to the core are forced LOW,
DBGACK from the ARM7TDM isalso forced LOW, and the IFEN input to the core
isforced HIGH, enabling interrupts to be detected by ARM7TDM.

When DBGEN is LOW, EmbeddedI CE is aso put into alow-power mode.

8.1.2 EmbeddedICE timing

The EXTERN1 and EXTERNO inputs are sampled by Embedded| CE on the falling
edge of ECLK. Therefore you must allow sufficient set-up and hold time for these
signals.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 8-3

EmbeddedICE Logic

8.2 The watchpoint registers

The two watchpoint units, known as watchpoint 0 and watchpoint 1. Each contain three

pairs of registers:

. address value and address mask

. data value and data mask

. control value and control mask.

Each register isindependently programmable and hasits own address, aslisted in Table

8-1.
Table 8-1 Function and mapping of EmbeddedICE registers

Address Width Function
00000 3 Debug control
00001 5 Debug status
00100 6 Debug comms control register
00101 32 Debug comms data register
01000 32 Watchpoint 0 address value
01001 32 Watchpoint 0 address mask
01010 32 Watchpoint O data value
01011 32 Watchpoint O data mask
01100 9 Watchpoint 0 control value
01101 8 Watchpoint O control mask
10000 32 Watchpoint laddress value
10001 32 Watchpoint 1 address mask
10010 32 Watchpoint 1 data value
10011 32 Watchpoint 1 data mask
10100 9 Watchpoint 1 control value
10101 8 Watchpoint 1 control mask

8-4 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

EmbeddedICE Logic

8.2.1 Programming and reading watchpoint registers

A register is programmed by scanning data into the Embedded| CE scan chain using
scan chain 2. The scan chain consists of a 38-bit shift register comprising:

. a 32-bit datafield

. a5-bit addressfield

. aread/write bit.

Thisis shown in Figure 8-2.

Scan chain
register
—¢ Update
Read/write
4 Address
Address decoder
0
31
32 >
Value | Mask Comparator —| + —
Data Breakpoint
> condition
A[31:0] —>
D[31:0] —»|
Control —»|
0
l Watchpoint registers and comparators

XTDI XTDO

Figure 8-2 EmbeddedICE block diagram

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 8-5

EmbeddedICE Logic

8.2.2

8.2.3

The data to be written is scanned into the 32-bit data field, the address of the register
into the 5-bit addressfield, and a 1 into the read/write bit.

A register isread by scanning its addressinto the addressfield and scanning a0 into the
read/write bit. The 32-bit datafield isignored. The register addresses are shown in
Table 8-1 on page 8-4.

Note
A read or write takes place when the TAP controller enters the UPDATE-DR state.

Using the mask registers

For each value register in aregister pair, thereis a mask register of the same format.
Setting a bit to 1 in the mask register has the effect of disregarding the corresponding
bit in the value register in the comparison. For example, if awatchpoint is required on
aparticular memory location but the datavalueisirrelevant, you can program the data
mask register to Ox FFFFFFFF, all bitsset to 1, to maketheentire databusfield ignored.

Note

The mask is an XNOR mask rather than a conventional AND mask. When a mask bit
isset to 1, the comparator for that bit position always matches, irrespective of thevalue
register or the input value.

Setting the mask bit to 0 means that the comparator only matchesiif the input value
matches the value programmed into the value register.

The control registers

Control value and control mask registers are mapped identically in the lower 8 bits.
Bit 8 of the control value register isthe ENABLE bit, which cannot be masked. The
control value and mask format is shown in Figure 8-3.

8

6 5 4 3 2 1 0

ENABLE | RANGE

CHAIN | EXTERN | nTRANS nOPC MASI1] MASIO0] nRW

Figure 8-3 Watchpoint control value and mask format
The bits have the following functions:

nRW Compares against the not-read/write signal from the corein order
to detect the direction of bus activity. nRW is O for aread cycle
and 1 for awrite cycle.

8-6

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

MAS[1:0]

nOPC

NnTRANS

EXTERN

CHAIN

RANGE

EmbeddedICE Logic

Compares against the MAS[1:0] signal from the core in order to
detect the size of busactivity. Theencoding isshownin Table 8-2.

Table 8-2 MAS[1:0] signal encoding

Bit 1 Bit 0 Data size
0 0 byte

0 1 halfword
1 0 word

1 1 (reserved)

Detectsif the current cycleisan instruction fetch (nOPC =0) or a
data access (NOPC = 1).

Compares against the not-translate signal from the corein order to
distinguish between User mode (nTRANS = 0) and non-User
mode (NTRANS = 1) accesses.

Is an external input to EmbeddedI CE that allows the watchpoint
to be dependent upon an external condition. The EXTERN input
for watchpoint Oislabeled EXTERNO and the EXTERN input for
watchpoint 1 islabeled EXTERN1. Thisis known as nUSER on
ARM720T and has an allocated output.

Can be connected to the chain output of another watchpoint in
order to implement, for example, debugger requests of the form
breakpoint on address YYY only when in process XXX.

Inthe ARM7TDM EmbeddedI CE, the CHAINOUT output of
watchpoint 1 is connected to the CHAIN input of watchpoint 0.
The CHAINOUT output is derived from alatch. The
address/control field comparator drives the write enable for the
latch and the input to the latch is the value of the datafield
comparator. The CHAINOUT latch is cleared when the control
value register iswritten or when XnTRST isLOW.

Can be connected to the range output of another watchpoint
register. Inthe ARM7TDM Embedded| CE, the RANGEOUT
output of watchpoint 1 is connected to the RANGE input of
watchpoint 0. This allows the two watchpoints to be coupled for
detecting conditions that occur simultaneously, for example, in
range-checking.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 8-7

EmbeddedICE Logic

ENABLE Only existsin the value register and it cannot be masked. If a
watchpoint match occurs, the BREAKPOINT signal is asserted
only when the ENABLE bit is set.

For each of the bits[8:0] in the control val ue register, thereisacorresponding bit in the
control mask register. This removes the dependency on particular signals.

8-8 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

EmbeddedICE Logic

8.3 Programming breakpoints

Breakpoints can be classified as hardware breakpoints or software breakpoints:

Hardware These typically monitor the address value and can be set in any

code, evenin codethat isin ROM or code that is self-modifying.

Software These monitor a particular bit pattern being fetched from any

address. Therefore you can use one Embedded| CE watchpoint to
support any number of software breakpoints. Software
breakpoints can usually only be set in RAM because an
instruction has to be replaced by the special bit pattern chosen to
cause a software breakpoint.

8.3.1 Hardware breakpoints

To make awatchpoint unit cause hardware breakpoints on instruction fetches:

1

Program its address val ue register with the address of the instruction to be
breakpointed.

Program the breakpoint bits for each state as follows:
a ARM, set bits[1:0] of the address mask register to one.
b. Thumb, set bit O of the address mask to one.

In both cases, the remaining bits are set to zero.

Program the data value register only if you require a data-dependent breakpoint,
that is, only if the actua instruction code fetched must be matched as well asthe
address. If the data valueis not required, program the data mask register to
OxFFFFFFFF, all bitsto one, otherwise program it to 0x00000000.

Program the control value register with nOPC = zero.
Program the control mask register with nOPC = zero, al other bitsto one.

If you have to make the distinction between User and non-User mode instruction
fetches, program the nTRANS value and mask bits as above.

If required, program the EXTERN, RANGE, and CHAIN bitsin the same way.

8.3.2 Software breakpoints

To make awatchpoint unit cause software breakpoints, that is, on instruction fetches of
aparticular bit pattern:

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 8-9

EmbeddedICE Logic

N o g A

Program its address mask register to 0x FFFFFFFF, all bits set to one, so that the
addressis disregarded.

Program the data value register with the particular bit pattern that has been
chosen to represent a software breakpoint.

For a Thumb software breakpoint, the 16-bit pattern must be repeated in both
halves of the data value register. For example, if the bit pattern is 0x DFFF, then
0x DFFFDFFF must be programmed. When a 16-bit instruction is fetched,
EmbeddedI CE only compares the valid half of the data bus against the contents
of the data value register. In thisway, a single watchpoint register can be used to
catch software breakpoints on both the upper and lower halves of the data bus.

Program the data mask register to 0x00000000.
Program the control value register with nOPC = zero.
Program the control mask register with nOPC = zero, all other bits to one.

If you have to make the distinction between User and non-User mode instruction
fetches, program the nTRANSbit in the control value and control mask registers
accordingly.

If required, program the EXTERN, RANGE, and CHAIN bitsin the same way.

Note

The address value register does not have to be programmed.

Setting the breakpoint

To set the software breakpoint:

1
2.

Read the instruction at the desired address and storeit.

Write the special bit pattern representing a software breakpoint at the address.

Clearing the breakpoint

To clear the software breakpoint, restore the instruction to the address.

8-10

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

EmbeddedICE Logic

8.4 Programming watchpoints

This section contains examples of how to program the watchpoint register to generate
breakpoints and watchpoints. Many other ways of programming the registers are
possible. For instance, simple range breakpoints can be provided by setting one or more
of the address mask bits.

To make awatchpoint unit cause watchpoints, that is, on data accesses:

1. Program its address value register with the address of the data access to be
watchpointed.

2. Program the address mask register to 0x00000000.

3. Program the datavalue register only if you require a data-dependent watchpoint,
that is, only if the actual datavalue read or written must be matched as well as
the address. If the data value isirrelevant, program the data mask register to
OxFFFFFFFF (al bits set to one) otherwise program it to 0x00000000.

4. Program the control value register with:
a nOPC = one.
b. nRW =zerofor aread.
c. nRW =onefor awrite.
d. MASY1:0] with the value corresponding to the appropriate data size.

5. Program the control mask register with:
a nOPC = zero.
b nRW = zero.
c. MAY1:0] = zero.
d all other bitsto zero.

Note

NRW or MAS[1:0] can be set to oneif both reads and writes or data size accesses are
to be watchpointed respectively.

6. If you have to make the distinction between User and non-User mode data
accesses, program the nTRANS bit in the control value and control mask
registers accordingly.

7. If required, program the EXTERN, RANGE, and CHAIN bits in the same way.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 8-11

EmbeddedICE Logic

8.4.1

Programming restriction

The Embedded| CE watchpoint units must only be programmed when the clock to the
core is stopped. Y ou can achieve this by putting the core into the debug state.

The reason for this restriction is that if the core continuesto run at ECLK rates when
EmbeddedI CE is being programmed at XTCK rates, it is possible for the
BREAKPOINT signal to be asserted asynchronously to the core.

This restriction does not apply if MCLK and XTCK are driven from the same clock,
or if it isknown that the breakpoint or watchpoint condition can only occur some time
after Embedded| CE has been programmed.

Note
This restriction does not apply to the debug control or status registers.

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

EmbeddedICE Logic

8.5 The debug control register

8.5.1 DBGRQ

8.5.2 DBGACK

The debug control register is 3 bits wide.

. If the register is accessed for awrite, with the read/write bit HIGH, the control
bits are written.

. If the register is accessed for aread, with the read/write bit LOW, the control bits

areread.
The functions of the register bits are shown in Figure 8-4 and described as follows:
. DBGRQ
. DBGACK

. INTDIS on page 8-14.

2 1 0
INTDIS DBGRQ DBGACK

Figure 8-4 Debug control register format

Bits 1 and O alow you to force the values on DBGRQ and DBGACK.

As shown in Figure 8-6 on page 8-16, the value stored in bit 1 of the control register is
synchronized and then ORed with the external DBGRQ before being applied to the
processor. The output of this OR gateisthe signal DBGRQI which is brought out
externally from the macrocell.

The synchronization between control bit 1 and DBGRQI assists in multiprocessor
environments. The synchronization latch only opens when the TAP controller state
machineisinthe RUN-TEST-IDLE state. This allows an enter debug condition to be
set up in all the processorsin the system whilethey are still running. Once the condition
isset upinall the processors, you can then applied it to them simultaneously by entering
the RUN-TEST-IDLE state.

In the case of DBGACK, the value of DBGACK from the coreis ORed with the value
held in bit O to generate the external value of DBGACK seen at the periphery of
ARMT7TDM. This allows the debug system to signal to the rest of the system that the
coreisstill being debugged even when system-speed accesses are being performed. The
internal DBGACK signal from the coreis LOW.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 8-13

EmbeddedICE Logic

8.5.3 INTDIS

If bit 2, INTDIS, is asserted, the interrupt enable signal, | FEN, of the coreis forced
LOW. Therefore all interrupts (IRQ and FIQ) are disabled during debugging
(DBGACK =1) or if theINTDI Shit isasserted. The | FEN signal isdriven aslisted in

Table 8-3.

Table 8-3 IFEN signal control

DBGACK INTDIS IFEN
0 0 1
1 X 0
X 1 0

8-14 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

8.6 Debug status register

EmbeddedICE Logic

The debug status register is 5 bits wide:

. if it isaccessed for awrite, with the read/write bit set HIGH, the status bits are

written

. if it isaccessed for aread, with the read/write bit LOW, the status bits are read.

The debug status register is shown in Figure 8-5:.

4

3 2 1 0

TBIT

nMREQ IFEN DBGRQ DBGACK

Figure 8-5 Debug status register format

The function of each bit in thisregister is as follows:

Bitsl1and O

Bit 2

Bit 3

Bit 4

Allow the values on the synchronized versions of DBGRQ and
DBGACK to beread.

Allows the state of the core interrupt enable signal, IFEN, to be
read. Asthe capture clock for the scan chain can be asynchronous
to the processor clock, the DBGACK output from the coreis
synchronized before being used to generate the IFEN status bit.

Allows the state of the NMREQ signal from the core,
synchronized to XTCK to be read. This allows the debugger to
determine that a memory access from the debug state has
completed.

Allows TBIT to beread. This enables the debugger to determine
what state the processor isin, and which instructions to execute.

The structure of the debug status register is shown in Figure 8-6 on page 8-16.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 8-15

EmbeddedICE Logic

Debug Debug
control status

register register
TBIT ——p Synch » Bit4

(from core)

NnMREQ ——»{ Synch Bit 3
(from core)
DBGACK ———
(from core) + > IFEN
o (to core)
Bit 2
Bit 1 » Synch »
y + » DBGRQI

(to core and
ARM7TDMI output)

DBGRQ Synch — | Bit1
(from ARM7TDMI input)

Bit 0
+ L » DBGACK
> (to ARM7TDMI
output)
DBGACK » Synch Bit 0
(from core)

Figure 8-6 Debug control and status register structure

8-16 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

EmbeddedICE Logic

8.7 Coupling breakpoints and watchpoints

8.7.1 CHAINOUT

Y ou can couple watchpoint units 1 and O together using the CHAIN and RANGE
inputs:

. CHAIN enableswatchpoint O to be triggered only if watchpoint 1 has previously
matched

. RANGE enables simple range checking to be performed by combining the
outputs of both watchpoints.

Example 8-1 Coupling breakpoints and watchpoints

Let:

Av[31:0] be the value in the address value register.

An{ 31: 0] be the value in the address mask register.

Al 31: 0] be the address bus from the ARM7TDM.

Dv[31: 0] be the value in the data value register.

Dn{ 31: 0] be the value in the data mask register.

D 31: 0] be the data bus from the ARM7TDM.

Cv[8: 0] be the value in the control value register.

Cni 7: Q] be the value in the control mask register.

d 9: 0] be the combined control bus from the ARM7TDM, other

watchpoint registers and the EXTERN signal.

The CHAINOUT signal isthen derived as follows:

WHEN (({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR
{An{31:0],Cn{ 4:0]} == Ox1FFFFFFFFF)

CHAI NOUT = ((({Dv[31:0],CQv[7:5]} XNOR {D[{31:0],[7:5]}) OR
{Dn{31:0],0n{7:5]}) == Ox7FFFFFFFF)

The CHAINOUT output of watchpoint register 1 providesthe CHAIN input to

watchpoint 0. This allows for quite complicated configurations of breakpoints and
watchpoints. For example, consider the request by a debugger to breakpoint on the
instruction at location YY'Y when running process XXX in a multiprocess system.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 8-17

EmbeddedICE Logic

8.7.2 RANGEOUT

If the current process ID is stored in memory, you can implement the above function
with awatchpoint and breakpoint chained together. The watchpoint addressis set to a
known memory location containing the current process ID. The watchpoint datais set
to the required process ID and the ENABLE bit is set to off.

The address comparator output of the watchpoint drives the write enable for the

CHAINOUT latch, the input to the latch being the output of the data comparator from
the same watchpoint. The output of the latch drivesthe CHAIN input of the breakpoint
comparator. Theaddress Y Y'Y isstoredin the breakpoint register and whenthe CHAIN
input is asserted, and the breakpoint address matches, the breakpoint triggers correctly.

The RANGEOUT signal isthen derived asfollows:

RANGEQUT = ((({Av[31:0],Cv[4:0]} XNOR {A[31:0],4:0]}) OR
{An{ 31:0],Cn{4:0]}) == OXFFFFFFFFF) AND ((({Dv[31:0],Cv[7:5]}
XNOR {D[31: 0], 7:5]}) OR {Dnj31:0],Cn{7:5]}) == Ox7FFFFFFFF)

The RANGEOUT output of watchpoint register 1 provides the RANGE input to
watchpoint register 0. Thisallowsyou to couple two breakpoints together to form range
breakpoints.

Note
Selectable ranges are restricted to being powers of 2.

If abreakpoint isto occur when the addressisin the first 256 bytes of memory, but not
in the first 32 bytes, the watchpoint registers must be programmed as follows:

1. Watchpoint 1 is programmed with an address value of 0x00000000 and an
address mask of 0x0000001F. The ENABLE bitiscleared. All other watchpoint
1 registers are programmed as normal for a breakpoint. An address within the
first 32 bytes causes the RANGE output to go HIGH but the breakpoint is not
triggered.

2. Watchpoint 0 is programmed with an address value of 0x00000000 and an
address mask of 0x000000FF. The ENABLE bit is set and the RANGE bit
programmed to match a 0. All other watchpoint O registers are programmed as
normal for a breakpoint.

If watchpoint O matches but watchpoint 1 does not (that is, the RANGE input to
watchpoint 0 is 0), the breakpoint is triggered.

8-18

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

EmbeddedICE Logic

8.8 Debug communications channel

The ARM7TDM Embedded| CE contains a communication channel for passing
information between the target and the host debugger. Thisisimplemented as
coprocessor 14.

The communications channel consists of:
. a 32-bit wide comms data read register
. a 32-bit wide comms data write register

. a 6-bit wide comms control register for synchronized handshaking between the
processor and the asynchronous debugger.

These registerslivein fixed locations in the EmbeddedI CE memory map (as shown in
Table 8-1 on page 8-4) and are accessed from the processor using MCR and MRC
instructions to coprocessor 14.

8.8.1 Debug communications channel registers

The debug comms control register is read-only and allows synchronized handshaking
between the processor and the debugger. The register format is shown in Figure 8-7.

313029 2827 26 2524 232221201918 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0/0|0(1 W|R

Figure 8-7 Debug comms control register
The function of each register bit is:

Bits[31:28] Contain afixed pattern that denotes the Embedded| CE version
number, in this case 0001.

Bit [1] Denotes whether the comms data write register is free from the
processor point of view.

From the processor point of view:

If the Comms data write register is free (W=0), new data can be
written.

If it is not free (W=1), the processor must poll until W=0.

From the debugger point of view, if W=1 then new data has been
written which can then be scanned out.

Bit [Q] Denotesif thereis some new datain the comms dataread register.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 8-19

EmbeddedICE Logic

From the processor point of view:
If R=1, there is some new data which can be read using an MRC
instruction.

From the debugger point of view:

If R=0, the comms data read register is free and new data can be
placed there through the scan chain.

If R=1, this denotes that data previously placed there through the
scan chain has not been collected by the processor and so the
debugger must wait.

From the debugger point of view, the registers are accessed using the scan chain in the
usual way. From the processors point of view, these registers are accessed using
coprocessor register transfer instructions.

Instructions

The following instructions must be used:

Thisinstruction returns the debug comms control register into Rd:

MRC CP14, 0, Rd, C0, CO

This instruction writes the value in Rn to the comms data write register:

MCR CP14, 0, Rn, C1, Q0

Thisinstruction returns the debug data read register into Rd:

MRC CP14, 0, Rd, C1, Q0

Note

As the Thumb instruction set does not contain coprocessor instructions, it is
recommended that these are accessed using SWI instructions when in Thumb state.

8.8.2 Communications using the comms channel

Communication between the debugger and the processor occurs as follows:;

8-20

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

EmbeddedICE Logic

1. When the processor wishes to send a message to EmbeddedI CE, it first checks
that the comms data write register is free for use. Thisis done by reading the
debug comms control register to check that the W bit is clear:

a. Ifitisclear, the comms datawrite register is empty and a message is
written by aregister transfer to the coprocessor. The action of this data
transfer automatically setsthe W bit.

b. Ifitisset, thisimpliesthat previously-written data has not been picked up
by the debugger and the processor must poll until the W bit is clear.

2. Because the data transfer occurs from the processor to the comms data write
register, the W bit is set in the debug comms control register.

3. When the debugger polls this register, it sees a synchronized version of both the
R and W hit:
a. When the debugger sees that the W bit is set, it can read the comms data
write register and scan the data out.
b. Theaction of reading this data register clears the W bit of the debug
comms control register. At this point, the communications process will
begin again.

8.8.3 Message transfer

Message transfer from the debugger to the processor is carried out in asimilar fashion
to Communications using the comms channel on page 8-20:

1. Thedebugger pollsthe R bit of the debug comms control register:
a If theR bitisLOW, the dataread register is free and so data can be placed
there for the processor to read.

b. If theR bitisset, previously deposited data has not yet been collected and
so the debugger must wait.

2. When the comms data read register is free, datais written there using the scan
chain. The action of thiswrite setsthe R bit in the debug comms control register.

3. When the processor pollsthis register, it seesan MCLK synchronized version:

a IftheRbitisset, thisdenotesthat thereis datawaiting to be collected, and
this can be read using a CPRT load. The action of thisload clears the R bit
in the debug comms control register.

b. If theR hitisclear, this denotes that the data has been taken and the
process can now be repeated.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 8-21

EmbeddedICE Logic

8-22 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Chapter 9

Bus Clocking

This chapter describes the bus interface clocking. It contains the following sections:
. About the ARM720T bus interface on page 9-2

. Fastbus extension on page 9-3

. Standard mode on page 9-5.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 9-1

Bus Clocking

9.1 About the ARM720T bus interface

The ARM720T bus interface can be operated using either:
. the standard mode of operation
. the new fastbus extension.

Asthe ARM720T isafully static design, you can stop the clock indefinitely in either
mode of operation.

Note

Take care to ensure that the memory system does not dissipate power in the state in
which it is stopped.

9.11 Standard mode

For designs using low-cost, low-speed memory, and if operation of the core at a faster
speed is required, it is recommended that you use standard mode.

This mode consists of:
. two clocks, FCLK and BCLK
. synchronous or fully asynchronous operation.

9.1.2 Fastbus extension

For new designs, you can operate the device using the fastbus extension. In fastbus
mode, the device is clocked off asingle clock, and the busis operated at the same
frequency as the core. This allows the bus interface to be clocked faster than if the
deviceis operated in standard mode. It is recommended that you use this mode of
operation in systems with high-speed memory and a single clock.

This mode consists of :
. single device clock
. increased maximum BCLK frequency.

9-2

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Bus Clocking

9.2 Fastbus extension

Using the fastbus extension, the ARM 720T has asingle input clock, BCLK. This
clocks theinternals of the device, and qualified by BWAIT, controls the memory
interface as shown in Figure 9-1.

CPU Cache

BCLK _
BWAIT— D—' Bus interface

Figure 9-1 Conceptual device clocking using the fastbus extension

When operating the device with XFASTBUS HIGH, theinputs FCLK and XSnA are
not used.

Note

To prevent unwanted power dissipation, ensure that they do not float to an undefined
level. New designs must tie these signals LOW for compatibility with future products.

9.2.1 Using BWAIT

The BWAIT signd insertsentire BCLK cyclesinto the bus cycletiming. BWAIT can
only changewhen BCLK isLOW, and extends the memory access by inserting BCLK
cyclesinto the access while BWAIT is asserted.

Figure 10-4 on page 10-11 shows the use of BWAI T in more detail.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 9-3

Bus Clocking

Memory cycles

Itis preferable to use BWAIT to extend memory cycles, rather than stretching BCLK
externally to the device because it is possible for the core to be accessing the cache
while bus activity is occurring. This allows the maximum performance, as the core can
continue execution in parallel with the memory bus activity. All BCLK cycles are
available to the CPU and cache, regardless of the state of BWAIT.

In some circumstances, it isdesirableto stretch BCL K phasesto match memory timing
that is not an integer multiple of BCLK. There are certain cases where thisresultsin a
higher performance than using BWAIT to extend the access by an integer number of
cycles.

CPU and cache operation

CPU and cache operation can only continue in parallel with buffered writesto the
external bus. For all read accesses, the CPU is stalled until the bus activity has
completed. So, if read accesses can be achieved faster by stretching BCLK rather than
using BWAIT, thisresultsin improved performance. An example of where this can be
useful isto interface to a ROM which has a cycletime of 2.5 timesthe BCLK period.

9-4

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Bus Clocking

9.3 Standard mode

Using the standard mode of operation, without the fastbus extension, and XFASTBUS
tied LOW, the ARM720T has two input clocks:

. FCLK
. BCLK.

The bus interface is aways controlled by the memory clock, BCLK, qualified by
BWAIT. However, the core and cache are clocked by the fast clock, FCLK.

In standard mode, the FCLK frequency must be greater than or equal to the BCLK
frequency at all times. This relationship must be maintained on a cycle-by-cycle basis.

9.3.1 Memory access

When running in this mode, you can stretch memory access cycles by:
. using BWAIT
. by stretching phases of BCLK.

The resulting performance is determined by the access time, regardless of which
method is used. Thisis shown in Figure 9-2.

CPU Cache

FCLK———— T ?

BCLK————

BWAIT Bus interface

T
v

Figure 9-2 Conceptual device clocking in standard mode

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 9-5

Bus Clocking

9.3.2 Synchronous and asynchronous modes

When not using the fastbus extension, the ARM720T bus interface has two distinct
modes of operation:

. synchronous
. asynchronous.

These are selected by tying XSnA either HIGH or LOW.

FCLK and BCLK
The two modes differ in the relationship between FCLK and BCLK:

. In asynchronous mode (XSnA LOW), the clocks can be completely
asynchronous and of unrelated frequency.

. In synchronous mode (XSnA HIGH), BCLK can only make transitions before
the falling edge of FCLK.

In systems where a satisfactory relationship exists between FCLK and BCLK,
synchronization penalties can be avoided by selecting the synchronous mode of
operation.

Asynchronous mode

Inthismode, FCLK and BCLK can be completely asynchronous. Y ou must select this
mode by tying XSnA LOW when the two clocks are of unrelated frequency.

Thereis asynchronization penalty whenever the internal core clock switches between
thetwo input clocks. This penalty is symmetrical, and varies between zero and awhole
period of the clock to which the coreis resynchronizing:

. when changing from FCLK to BCLK, the average resynchronization penalty is
half aBCLK period

. when changing from BCLK to FCLK, the average resynchronization penalty is
half an FCLK period.

9-6

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Bus Clocking

Synchronous mode

Y ou select this mode by tying XSnA HIGH. In this mode, thereis atightly defined
relationship between FCLK and BCLK, inthat BCLK can only make transitions on
the falling edge of FCL K. Somejitter between the two clocksis permitted, but BCL K
must meet the setup and hold requirements relativeto FCLK. Thisis shown in Figure

9-3.
FCLK
¢ felkl o felkh
BCLK X

— —
Tfmh Tfms -

Figure 9-3 Relationship of FCLK and BCLK in synchronous mode

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 9-7

Bus Clocking

9-8 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Chapter 10
AMBA Interface

This chapter describes the operation of the AMBA bus interface. It contains the
following sections:

. About the AMBA interface on page 10-2

. ASB bus interface signals on page 10-3

. Cycle types on page 10-4

. Addressing signals on page 10-7

. Memory request signals on page 10-8

. Data signal timing on page 10-9

. Save response signals on page 10-10

. Maxi mum sequential length on page 10-12
. Read-lock-write on page 10-13

. Little-endian and big-endian operation on page 10-14
. Multi-master operation on page 10-17

. Bus master handover on page 10-19

. Default bus master on page 10-21.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 10-1

AMBA Interface

10.1 About the AMBA interface

In normal operation, the ARM720T is an Advanced System Bus (ASB) bus master. As
a bus master it performs a subset of the possible ASB cycle types.

The ASB isfurther described in the AMBA Specification.

10-2 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

AMBA Interface

10.2 ASB bus interface signals
The signals in the ASB interface can be grouped into four categories:

Addressing BA[31:0]
BWRITE
BSIZE[1:0]
BLOK
BPROTI[1:Q].

Memory request BTRAN[1:0].
Data sampled BD[31:0].

Slave response BERROR
BWAIT
BLAST.

In addition to the signals provided above, there are also three controls communicating
with control logic in the system:

AGNT Selects the ARM as a bus master.
AREQ Indicates that the ARM720T requires bus mastership.
DSEL Selectsthe ARM as a bus slave.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 10-3

AMBA Interface

10.3 Cycle types

10.3.1 Single-word

In normal operation, the ARM720T bus interface can perform two types of cycle:
. address cycles
. sequentia cycles.

These cycles are differentiated by the pipelined signal BTRAN][1:0]. Conventionally,
cycles are considered to start from the falling edge of BCLK, and thisis how they are
shown in al diagrams.

These cycle types are a subset of the possible ASB cycle types. Other cycle types can
beforced by the use of the slave response signal's. See the AMBA Specification for more
details.

The addressing and memory request signals are pipelined ahead of the data addressing
by a phase, half acycle, and BTRANJ[1:0] by one cycle. This advance information
allows the implementation of efficient memory systems.

memory access

A simple single-word memory accessis shown in Figure 10-1.

BOLK || | | |
BTRAN[1:0] __)- - - {Address) - - {__seq) - Address)- -)-
BA[31:0]
BSIZE(0] XX
BLOCK
I S s D
AR RLIAE & Eves

Figure 10-1 Simple single-cycle access

The access starts with the address being broadcast. Y ou can be use this for decoding,
but the access is not committed until BTRAN[1:0], bus transaction type, signalsa
sequential cyclein the following HIGH phase of BCLK. Thisindicates that the next
cycleisamemory access cycle.

In this example, BTRANJ1:0] returns to address after asingle cycle, indicating that
thereis a single memory access cycle, followed by an address cycle. The datais
transferred on the falling edge of BCLK at the end of the sequential cycle.

10-4

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

AMBA Interface

Therefore, a memory access consists of:
. an address cycle, with avalid address
. amemory cycle with the same address.

Theinitial addresscycleallowsthe memory controller moretimeto decode the address.
See Table 10-1 on page 10-8 for the encoding of BTRAN[1:0].

10.3.2 Sequential accesses

ARM720T can perform sequential bursts of accesses. These consist of:

. an address cycle and a sequentia cycle, as shown previously

. further sequential cyclesto either:
— incrementing word addresses, that is, a, at+4, a+8 for example
— halfword addresses, that is, a, at+2, at+4 for example.

Figure 10-2 shows that after theinitial address cycle, the addressis pipelined by half a
bus cycle from the data.

Note

BTRAN]J1:0] is pipelined by a bus cycle from the data. If BWAIT isbeing used to
stretch cycles, BTRAN[1:0] no longer refersto the next BCLK cycle, but rather to the
next bus cycle. See BWAIT on page 10-10 for more information.

BCLK | | | | |

BTRAN][1:0] >— - -< Address)— - -< Seq >— - -< Seq >— - —< Address >— - —< >
BA[31:0]

BWRITE X Address XX Address+a X

BSIZE[1:0]
BLOK

BD[B1:0] -«)---------- L pata 1 y{X pataz y--------

Idle Memory Memory Idle
‘ Cycle >< Cycle > Cycle —»>< Cycle >

Figure 10-2 Simple sequential access

Sequential bursts can occur on word or halfword accesses, and are always in the same
direction, that is, read, BWRITE LOW, or write, BWRITE HIGH.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 10-5

AMBA Interface

A memory controller must always qualify the use of the address with BTRAN[1:0].
There are circumstances in which a new address can be broadcast on the address bus,
but BTRAN[1:0] does not signal a sequential access. This only happens when an
internal, protection unit generated, abort occurs.

10.3.3 Bus accesses

The minimum interval between bus accesses can occur after a buffered write. In this
case, there might only be a single address cycle between two memory cyclesto
nonsequential addresses. This meansthat the address for the second accessis broadcast
on BA[31:0] during the HIGH phase of the final memory cycle of the buffered write.
Thisis shown in Figure 10-3.

BCLK || | | | |

BTRAN[1:0] :>—--<Address>-—-< Seq) - < Address »- - { Seq Y-)

BA[31:0]
BSE\l/EV[';;TOE] XAddress 1 (buffered write)X:X Address 2 (read) X
BLOCK

BD[31ZO] D— -) —=-=-= - - -« X Writedata) = = = = = - = = « X Read data)

¢ Idle I<7Memory»I Idle I<7Memory$

cycle cycle cycle cycle

Figure 10-3 Minimum interval between bus accesses

Thisisthe closest case of back-to-back cycles on the bus, and the memory controller
must be designed to handle this case. In high-speed systems, one solution isto use
BWAIT to increase the decode and access time available for the second access.

Note

Memory and peripheral strobes must not be direct decodes of the address bus. Thiscan
result in them changing during the last cycle of awrite burst.

10-6

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

AMBA Interface

10.4 Addressing signals

Memory accesses can be read or write, and are differentiated by the signal BWRITE.

BWRITE cannot change during a sequential access, so if aread from address A is
followed immediately by awrite to address (A+4), the write to address (A+4) is
performed on the bus as a nonsequential access.

In the same way, any memory access can be aword, a halfword, or abyte. These are
differentiated by the signal BSIZE[1:0]. Again, BSIZE[1:0] can not change during
sequential accesses. It isnot possible to perform sequential byte accesses.

To reduce system power consumption, the addressing signals are | eft with their current
values at the end of an access, until the next access occurs.

After abuffered write, there might be only a single address cycle between the two
memory cycles. Inthis case, the next nonsequential addressisbroadcast inthelast cycle
of the previous access. Thisis the worst case for address decoding, as shown in Figure
10-3 on page 10-6.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 10-7

AMBA Interface

10.5 Memory request signals

Thememory request signals, BTRAN][1:0], are pipelined by one bus cycle, and refer to
the next bus cycle.

Note

Y ou must take care when depipelining these signalsif BWAIT is being used, asthey
awaysrefer tothefollowing buscycle, rather than thefollowingBCLK cycle. BWAIT
stretches the bus cycle by an integer number of BCLK cycles. See BWAIT on

page 10-10. Table 10-1 lists BTRAN[1:0] encoding

Table 10-1 BTRAN[1:0] encoding

BTRAN[1:0] Cycle type Description Remarks

00 Address Address transfer -
oridlecycle

01 - Reserved

10 Nonsequential Nonsequential This cycle can only occur as aresult of the slave response
datatransfer cycle signals. In normal operation, ARM720T does not generate

this cycle type.

1 Sequential Sequential data -

transfer cycle

10-8 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

AMBA Interface

10.6 Data signal timing

During aread access, the datais sampled on the falling edge of BCLK at the end of the
sequential cycle. During awrite access, the data on BD[31:0] istimed off thefalling
edge of BCLK at the start of the memory cycle. If BWAIT isbeing used to stretch this
cycle, thedataisvalid from thefaling edge of BCLK at the end of the previous cycle,
when BWAIT was HIGH. See BWAIT on page 10-10.

Note
In alow-power system, you must ensure that the databus is not allowed to float to an
undefined level. This causes power to be dissipated in the inputs of devices connected
to the bus. Thisis particularly important when a system is put into alow-power sleep
mode. It is recommended that one set of databus driversin the system are left enabled
during sleep to hold the bus at a defined level.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 10-9

AMBA Interface

10.7 Slave response signals

10.7.1 BERROR

There are two main dave response signals:
. BERROR
. BWAIT

Other slave response combinations, including bus last and bus retract, are described in
the AMBA Specification.

TheBERROR signal issampled on therising edge of BCLK during asequential cycle,
on both read and write accesses. The effect of BERROR on the operation of the
ARM720T is described in Exceptions on page 2-16.

BERROR can be flagged on any sequential cycle. However, it isignored on buffered
writes, which cannot be aborted.

Linefetches

The effect of BERROR during linefetches is dightly different to that during other
access. During alinefetch the ARM720T fetches four words of data, regardless of
which words of data were requested by the ARM core, and the rest of the words are
fetched speculatively:

. if BERROR is asserted on aword that was requested by the ARM core, the
abort functions normally

. if the abort is signaled on aword that was not requested by the ARM core, the
accessis not aborted, and program flow is not interrupted.

Regardless of which word was aborted, the line of datais not placed in the cache as it
is assumed to contain invalid data.

10.7.2 BWAIT
Y ou can use the BWAIT pin to extend memory accesses in whole cycle increments.
BWAIT isdriven by the sel ected slave during the LOW phase of BCLK. When aslave
cannot complete an access in the current cycle, it drivesBWAIT HIGH to stall the
ARM720T.

10-10 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

AMBA Interface

BWAIT does not prevent changesin BTRAN[1:0] and write data on BD[31:0] during
the cyclein which it was asserted HIGH. Changes in these signals are then prevented
until the BCLK HIGH phase after BWAIT wastaken LOW. The addressing signalsdo
not change from therising BCLK edge when BWAIT goes HIGH, until the next
BCLK HIGH phase after BWAIT returns LOW.

In Figure 10-4, the heavy barsindicate the cycle for which signals are stable as aresult
of asserting BWAIT.

BCLK | []

BWAIT -1 oo 1

BTRAN[1:0] —— Address

BA[31:0]
BWRITE X
BSIZE[31:0]
BLOK

BD[31:0]
Write

i S a—
Read

Figure 10-4 Use of the BWAIT pin to stop ARM720T for 1 BCLK cycle

The signal BTRANJ1:0] is pipelined by one bus cycle. This pipelining must be taken
into account when these signalsare being decoded. Thevaueof BTRAN[1:0] indicates
whether the next bus cycle is adata cycle or an address cycle.

Asbuscyclesare stretched by BWAI T, the boundary between bus cyclesisdetermined
by the falling edge of BCLK when BWAIT was sampled as LOW on therising edge
of BCLK. A useful general ruleisto sample the value of BTRAN[1:0] on the falling
edge of BCLK only when BWAIT was LOW on the previous rising edge of BCLK.

When BWAIT isused to stretch a sequential cycle, BTRANJ[1:0] returnsto signaling
addressduring thefirst phase of the sequential cycleif asingleword accessisoccurring.
Inthiscase, itisimportant that the memory controller does not interpret that an address
cycleissignaled when it is a stretched memory cycle.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 10-11

AMBA Interface

10.8 Maximum sequential length

The ARM720T can perform sequential memory accesses whenever the cycleis of the
same type as the previous cycle (for example, read/write), and the addresses are
consecutive. However, sequential accesses are interrupted on a 256-word boundary.

If asequential accessis performed over a 256-word boundary, the access to word 256
isturned into a nonsequential access, and further accesses continue sequentially as
before.

Thissimplifiesthe design of the memory controller. Provided that peripheralsand areas
of memory are aligned to 256-word boundaries, sequential bursts are always local to
one peripheral or memory device. This meansthat all accessesto adevice aways start
with a nonsequential access.

A DRAM controller can take advantage of the fact that sequential cycles are always
within a DRAM page, provided the page size is greater than 256.

10-12 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

AMBA Interface

10.9 Read-lock-write

The read-lock-write sequence is generated by a SWP instruction.

The BLOK signal indicates that the two accesses must be treated as an atomic unit. A
memory controller must ensure that no other bus activity is allowed to happen between
the accesses when BL OK is asserted. When the ARM720T has started a
read-lock-write sequence, it cannot be interrupted until it has completed.

On the bus, the sequence consists of:
. aread access
. awrite access to the same address.

This sequence is differentiated by the BLOK signal. BLOK:
. goes HIGH in the HIGH phase of BCLK at the start of the read access
. always goes LOW at the end of the write access.

Theread cycleis aways performed as a single, nonsequential, external read cycle,
regardless of the contents of the cache.

Thewrite isforced to be unbuffered, so that it can be aborted if necessary.

The cache is updated on the write.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 10-13

AMBA Interface

10.10 Little-endian and big-endian operation

The ARM720T treats words in memory as being stored in big-endian or little-endian
format depending on the value of the bigend bit in the control register (see Memory
formats on page 2-3).

Load and store are the only instructions affected by the endianness. Refer to the ARM
Architecture Reference Manual for details of the LDR and STRinstructions.
10.10.1 Little-endian format

In little-endian format:
. the lowest-numbered byte in aword is considered to be the |east significant
. the highest-numbered byte is the most significant.

Byte zero of the memory system must be connected to data lines seven to zero
(BD[7:0]) in this format.

Little-endian format is shown in Figure 10-5.

31 24 23 16 15 8 7 Word

address
Higher address 11 10 9 8 8
7 6 5 4 4
Lower address 3 2 1 0 0

OLeast significant byte is at lowest address
OWord is addressed by byte address of least significant byte

Figure 10-5 Little-endian addresses of bytes within words

10.10.2 Big-endian format

In big-endian format:
. the most significant byte of aword is stored at the lowest-numbered byte
. the least significant byte is stored at the highest-numbered byte.

Byte zero of the memory system must therefore be connected to datalines 31 to 24
(BD[31:24]).

10-14 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

AMBA Interface

Big-endian format is shown in Figure 10-6.

31 24 23 16 15 8 7 Word

address
Higher address 8 9 10 11 8
4 5 6 7 4
Lower address 0 1 2 3 0

OMost significant byte is at lowest address
OWord is addressed by byte address of most significant byte

Figure 10-6 Big-endian addresses of bytes within words

10.10.3 Word operations

All word operations expect the data to be presented on data bus inputs 31 to 0. The
external memory system ignores the bottom two bits of the addressif aword operation
isindicated.

10.10.4 Halfword operations

A halfword store, STRH repeats the bottom 16 bits of the source register twice across
databusoutputs 31 to 0. Theexternal memory system must activate the appropriate byte
subsystems to store the data.

Little-endian operation

A halfword load, LDRH, expects the data on data bus inputs 15 to O if the supplied
addressis on aword boundary, or on databusinputs 31 to 16 if it isaword address plus
two bytes. The selected halfword is placed in the bottom 16 bits of the destination
register. The other two bytes on the databus are ignored (see Figure 10-5 on

page 10-14).

Big-endian operation

A halfword load, LDRH, expects the data on data bus inputs 31 to 16 if the supplied
addressis on aword boundary, or on databusinputs 15 to O if it isaword address plus
two bytes. The selected halfword is placed in the bottom 16 bits of the destination
register. The other two bytes on the databus are ignored, see Figure 10-6 on page 10-15.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 10-15

AMBA Interface

10.10.5 Byte operations

A bytestore, STRB, repeats the bottom eight bits of the source register four times across
data bus outputs 31 to 0. The external memory system activates the appropriate byte
subsystem to store the data.

Because ARM720T duplicates the byte to be written across the databus and internally
rotates bytes after reading them from the databus, a 32-bit memory system only requires
to have control logic to enable the appropriate byte. Y ou do not have to rotate or shift

the data externally.

To ensure that all of the databus is driven during a byte read, it is valid to read aword
back from the memory.

Little-endian operation

A byte load, LDRB, expects the data on data bus inputs seven to zero if the supplied
addressison aword boundary, on databusinputs 15to 8 if it isaword address plus one
byte, and so on. The selected byte is placed in the bottom eight bits of the destination
register. The other three bytes on the databus are ignored (see Figure 10-5 on

page 10-14).

Big-endian operation

A byteload, LDRB, expects the data on data bus inputs 31 to 24 if the supplied address
ison aword boundary, on data businputs 23 through 16 if it isaword address plus one
byte, and so on. The selected byte is placed in the bottom eight bits of the destination
register. The other three bytes on the databus are ignored (see Figure 10-6 on

page 10-15).

10-16

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

AMBA Interface

10.11 Multi-master operation

10.11.1 Arbitration

The AMBA bus specification supports multiple bus masters on the high performance
ASB. A simple two wire request and grant mechanism is implemented between the
arbiter and each bus master. The arbiter ensures that only one bus master is active on
the bus and also ensures that when no masters are requesting the bus, a default master
is granted.

The specification al so supportsashared lock signal. Thisallows bus mastersto indicate
that the current transfer isindivisible from the following transfer and prevents other bus
masters from gaining access to the bus until the locked transfers have compl eted.

Efficient arbitration isimportant to reduce dead-time between successive mastersbeing
active on the bus. The bus protocol supports pipelined arbitration, so that arbitration for
the next transfer is performed during the current transfer.

The arbitration protocol is defined, but the prioritization is flexible and | eft to the
application. Typically, the test interface is given the highest priority to ensure test
access under al conditions. Every system must a soinclude adefault bus master, which
is granted the bus when no bus masters are requesting it.

Therequest signal, AREQ, from each bus master to the arbiter indicates that the bus
master requires the bus. The grant signal from the arbiter to the bus master, AGNT,
indicates that the bus master is currently the highest priority master requesting the bus.

The bus master:
. must drive the BTRAN signals during BCLK HIGH when AGNT isHIGH

. is granted when AGNT isHIGH and BWAIT is LOW on arising edge of
BCLK.

The shared buslock signal, BL OK, indicatesto the arbiter that thefollowing transfer is
indivisible from the current transfer and no other bus master can be given accessto the
bus.

A bus master must alwaysdriveavalid level onthe BL OK signal when granted the bus
to ensure the arbitration process can continue, even if the bus master is not performing
any transfers.

The arbiter functions are:
1. Busmasters assert AREQ during the HIGH phase of BCLK.
2. Thearbiter samples all AREQ signals on the falling edge of BCLK.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 10-17

AMBA Interface

3. During the LOW phase of BCLK, the arbiter also samplesthe BLOK signal and
then asserts the appropriate AGNT signal:

a. If BLOK isLOW, the arbiter grants the highest priority bus master
b. If BLOK isHIGH, the arbiter keeps the same bus master granted.

The arbiter can update the grant signals every bus cycle. However, a new bus master
can only become granted and start driving the bus when the current transfer completes,
asindicated by BWAIT being LOW. Therefore, it is possiblefor the potential next bus
master to change during waited transfers.

TheBLOK signal isignored by the arbiter during the single cycle of handover between
two different bus masters.

If no bus masters are requesting the bus, the arbiter must grant the default bus master.
The arbitration protocol is defined, but the prioritization is flexible and | eft to the
application. A simplefixed-priority scheme can be used. Alternatively, amore complex
scheme can be implemented if required by the application.

10-18 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

AMBA Interface

10.12 Bus master handover

Bus master handover occurs when abus master, which is not currently granted the bus,
becomes the new granted bus master.

A bus master becomes granted when AGNT isHIGH and BWAIT isLOW. AGNT
HIGH indicatesthe bus master iscurrently the highest priority master requesting the bus
and BWAIT LOW indicates the previous transfer has completed. Figure 10-7 shows
the bus master handover process.

4—00—»4—C1—><—02—>:<—c3—>4—c4—>

<4——Previous transfergbgd— New master granted —p»
BCLK | | | |

AREQ [/

AGNT [] :

BTRAN[1:0] — ATRAN y—(A-TRAN Y— A-T.RAN —s-TRaN Y—
BA[31:0] Previous transfer address)—(Address X

BDI[31:0] Previous transfer data . %—@

BERROR :
BLAST { Wait) { Wait } { Done) { Done) { Done)
BWAIT Last Decoder Slave
transfer drives drives
completes response response

Figure 10-7 Bus master handover

]
)

1. When AGNT isasserted, abus master must drive the BTRAN signals during
BCLK HIGH. This can continue for many cyclesif the previous transfer is
waited.

2. Prior to handover, BTRAN must indicate an address-only cycle as the new bus
master must commence with an address-only cycle to allow for bus turnaround.

3. When the previous transfer completes, the new bus master is granted.

4. Inthelast clock HIGH phase of the previoustransfer, the address bus stops being
driven by the previous bus master.

5. Thenew bus master startsto drive the address bus and control signals during the
clock LOW phase.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 10-19

AMBA Interface

6. Thefirst transfer can then commence in the following bus cycle.

During awaited transfer, bus master handover can be delayed and it is possible that the
AGNT to aparticular bus master might be asserted and then negated, if another higher
priority bus master then requests the bus before the current transfer has compl eted.

10-20 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

AMBA Interface

10.13 Default bus master

Every system must be designed with asingle default bus master, which is granted when
no other bus master is requesting the bus. The default bus master is responsible for
driving the following signals to ensure the bus remains active:

. BTRAN must be driven to indicate address-only transfer
. BLOK must be driven LOW.

Note
If the ARM720T isto be the default bus master then the AREQ signal from the
ARM720T must not be used.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 10-21

AMBA Interface

10-22 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Chapter 11
AMBA Test

This chapter describes the AMBA test features of the ARM720T. It contains the
following sections:

. Save operation, test mode on page 11-2
. ARM720T test mode on page 11-3

. ARM7TDM core test mode on page 11-5
. RAM test mode on page 11-6

. TAG test mode on page 11-8

. Test register mapping on page 11-11.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

AMBA Test

11.1 Slave operation, test mode

When the block is selected as a slave, you can write and read test vectors to the core

using the AMBA test methodology.

The ARM720T provides four test modes for this purpose:

. ARM720T test mode on page 11-3

. ARM7TDM core test mode on page 11-5

. RAM test mode on page 11-6

. TAG test

mode on page 11-8.

To apply test vectorsto the ARM720T, the ARM 720T block must have been desel ected
asamaster (AGNT goes LOW). The Test Interface Controller (TIC) becomes the bus
master, and the ARM720T is selected asaslave using thesignal DSEL . Thisplacesthe

ARM720T into test mode, and allows access to the test registers.

Thetestsare sequenced by thetest state machineinthe AMBA interface. Thisgenerates

the appropriate control signals for the test modes.

A sample test sequence is shown in Figure 11-1.

BCLK

TREQA

TREQB

BD[31:0]

Slave
state

CTRL
inputs

MCLKENABLE

ECLK

P
«

One test cycle

\ 4

\

/

\

>—O< Ctrlin >—O< Data in >—<:>< Status >—<:><Address>—

:>< CTRL-IN X DATA-IN X STAT-OUT X ADDR-OUT XTURNAROUNDX CTRL-IN

\
/

X

—

1

/

\

Figure 11-1 Running a test vector on the processor core

11-2 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

ARM DDI 0192A

AMBA Test

11.2 ARM720T test mode

The ARM720T test mode tests the functionality of the:
. cache control logic

. write buffer

. protection unit

. cache.

To perform this test control/stimuli are applied to the control register (see Table 11-4
on page 11-13).

Data packets are read or written as appropriate and the address and status are read back
(see Table 11-3 on page 11-11).

The sequencing for thistest modeisshown in Figure 11-2. Thisisthe default test mode,
and is selected when bits[31:29] of the control register are set LOW (see Table 11-4 on

page 11-13).
Reset —» INACTIVE |¢—

A 4

CONTROL

DATA IN DATA OUT

STAT OUT

A 4

ADDR OUT
A
TURNAROUND

Figure 11-2 State machine for ARM720T and ARM7TDMI test

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 11-3

AMBA Test

MCLKENABLE isaninternal signal that controlsthe clocking of the ARM720T and
is asserted only in the Datal n and DataOut status.

11-4 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

AMBA Test

11.3 ARM7TDM core test mode

The ARM7TDMI test places the ARM720T into a test mode so that the signals of the
ARMT7TDM arevisibleto the AMBA interface. In this mode, the rest of ARM720T is
held in reset. The ARM720T is placed in the mode by setting bit 31 of the control
register (see Table 11-4 on page 11-13).

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 11-5

AMBA Test

11.4 RAM test mode

The RAM test mode performs an intensive test of the RAM arrays, to provide full
coverage of bit faults. In this test mode, the rest of the ARM720T isheld in reset and
direct accessis provided to the data, address, and control signals of the RAM.

To accommodate this, an alternative test sequenceis used as shown in Figure 11-3.

INACTIVE \4

Reset y

4
CONTROL

)

ADDRESS

4>< DATA OUT)
4
< TURNAROUND)—

Figure 11-3 .State machine for RAM test mode

/L/\J\
NN

C DATAIN

I

In this test mode, the RAM control signals are derived from unused address bits, as
shown in Table 11-1.

Table 11-1 RAM test mode address packet bit positions

S:g(rgtszn RAM signal Description

[24:23] MAS[1:0] RAM access size

22 RSEQ RAM sequentia signal

21 IMMED Immediate write signal, controls write pipeline, and

selects between RAM SEL[3:0] and SETSEL [3:0]

11-6 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

AMBA Test

Table 11-1 RAM test mode address packet bit positions

Qggkr:tszit RAM signal Description

20 WRITE RAM write strobe

19 READ RAM read strobe

[18:15] RAMSEL[3:0] RAM bank select signal, used when IMMED is LOW
[14:11] SETSEL[3:0] RAM bank select signal, used when IMMED isHIGH
[10:0] ADDRJ[10:0] RAM address

To enter RAM test mode, bits 29 and 28 of the control packet must be set. This places
the ARM720T into RAM test mode, and forcesthe RAM to be clocked from the FCL K
input.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 11-7

AMBA Test

11.5 TAG test mode

The TAG test mode performs an intensive test of all of the cells of the TAG array, and
teststhe TAG comparators. In thistest mode, the rest of the ARM720T isheld in reset
and direct accessis provided to the data, address, and control signals of the RAM as
shown in Figure 11-4. In this test mode the TAG control signals are derived from the
TAG CTL packet aslisted in Table 11-2 on page 11-9.

To enter TAG test mode, you must set bits 30 and 28 of the control packet. This places
the ARM720T into TAG test mode, and forcesthe TAG to be clocked from the FCLK

input.
INACTIVE >«

4

CONTROL)

4

ADDRESS >&

Reset

4

TAG CTL

4

STATUS

4

TURNAROUND)—

Figure 11-4 State machine for TAG test mode

f\/\\/\\/\f\l\

11-8

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

AMBA Test

Table 11-2 TAG test mode TAG CTL packet bit positions

-rl)—l:((:;kgrtl)_it TAG signal Description

[11:8] FLUSH[3:0] When asserted each hit flushes the appropriate TAG
arrays

[7:4] TAGSEL[3:0] Tagsdect signal, each bit selectsa TAG array

2 WRITE TAG write strobe

1 READ TAG read strobe

0 VALID Valid input, the value on VAL I D iswritten into the

valid cell inthe array on awrite.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 11-9

AMBA Test

11.6 MMU test mode

The MMU test mode performs an intensive test of all the cellsin the TLB array, and
tests the protection mechanism. In this test mode the rest of the ARM720T isheld in
reset and direct accessis provided to the data, control, and translated address of the
MMU as shown in Figure 11-5.

In this test mode, the MMU control signals are derived from the MMU CM packet.

To enter MMU test mode, you must set bits 28 and 27 of the control packet. This places
the ARM720T into MMU test mode and forcesthe MMU to be clocked fromthe FCLK
input.

Reset INACTIVE

CONTROL

MMU DATA

MMU STATUS

TURNAROUND

/\/\H\—/\f\A

e
)

MU CONTROL -
)
)
)

Figure 11-5 State machine for MMU test mode

11-10

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

11.7 Test register mapping

AMBA Test

The test registers are defined in the following tables:

Table 11-3
Table 11-4 on page 11-13.

Table 11-3 Status packet bit positions bits [31:0]

Bit ARM7TDMI test ARM720T test
31 BUSDIS -
Busdisable
30 SCREG[3] SCREGI[3]
Scan chain register Scan chain register
29 SCREG[2] SCREG[2]
Scan chain register Scan chain register
28 SCREG[1] SCREG[1]
Scan chain register Scan chain register
27 SCREGI[Q] SCREGI[Q]
Scan chain register Scan chain register
26 HIGHZ HIGHZ
HIGHZ instruction in TAP controller HIGHZ instructionin TAP controller
25 nTDOEN nTDOEN
not TDO enable not XTDO enable
24 DBGRQI DBGRQI
Internal debug request Internal debug request
23 RANGEOUTO RANGEOUTO
|CEbreaker rangeoutO |CEbreaker rangeoutO
22 RANGEOUT1 RANGEOUT1
| CEbreaker rangeoutl | CEbreaker rangeout1
21 COMMRX COMMRX
Communications channel receive Communications channel receive
20 COMMTX COMMTX
Communications channel transmit Communications channel transmit
19 DBGACK DBGACK
Debug acknowledge Debug acknowledge

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

11-11

AMBA Test

Table 11-3 Status packet bit positions bits [31:0] (continued)

Bit ARM7TDMI test ARM720T test
18 TDO XTDO
Test data out Test data out
17 nENOUTa NENOUT
Not enable output Not enable output
16 NENOUTIb PROTWATCHI3]
Not enable output Protection unit test output
15 TBIT PROTWATCH]I[2]
Thumb state Protection unit test output
14 nCPI -
Not coprocessor instruction
13 nM [4] CAMWATCH[2]
Not processor mode Replacement test output
12 nM[3] CAMWATCH[1]
Not processor mode Replacement test output
1 nM[2] CAMWATCHI[0]
Not processor mode Replacement test output
10 nM[1] IDCWATCH[3]
Not processor mode Cache test output
9 nM[0] IDCWATCH[2]
Not processor mode Cache test output
8 NTRANS IDCWATCH[1]
Not memory trandate Cache test output
7 nEXEC IDCWATCH[0]
Not executed Cache test output
6 LOCK LOCK
L ocked operation Locked operation
5 MAS[1] MAS[1]
Memory access size Memory access size
4 MAS[0] MAS[0]
Memory access size Memory access size
3 nOPC NENDOUT
Not op-code fetch Not enable output

11-12 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

ARM DDI 0192A

AMBA Test

Table 11-3 Status packet bit positions bits [31:0] (continued)

Bit ARM7TDMI test ARM720T test
2 nRW nRW
Not read/write Not read/write
1 NnMREQ NnMREQ
Not memory request Not memory request
0 SEQ SEQ

Sequential address

Sequential address

anENOUT isonly valid during the data access cycle, so MCLKENABLE isused to
clock atransparent latch that captures the correct state.

b.nENOUTI asnENOUT.

Table 11-4 Control packet bit positions bits [31:0]

Bit ARM7TDMI input ARM720T input
31 TESTCPU TESTCPU
ARMT7TDMI test enable ARM7TDMI test enable
30 - TAGTEST
TAG test mode enable
29 - RAMTEST
RAM test mode enable
28 nENIN FORCEFCLK
NOT enableinput Clock select override
27 SDOUTBS MMUTEST
Boundary scan serial output data MMU test mode enable
26 TBE -
Test bus enable
25 APE -
Address pipeline enable
24 BL[3]a -
Byte latch control
23 BL[2]a -

Byte latch control

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998,

2000. All rights reserved. 11-13

AMBA Test

Table 11-4 Control packet bit positions bits [31:0] (continued)

Bit ARM7TDMI input ARM720T input
22 BL[1]a -
Byte latch control
21 BL[O]a -
Byte latch control
20 TMS XTMS
Test mode select Test mode select
19 TDI XTDI
Test datain Test datain
18 TCKb XTCK
Test clock Test clock
17 NTRST XnTRST
Not test reset. Not test reset
16 EXTERN1 EXTERN1
External input 1 External input 1
15 EXTERNO EXTERNO
External input O External input O
14 DBGRQ DBGRQ
Debug request Debug request
13 BREAKPT BREAKPOINT
Breakpoint Breakpoint
12 DBGEN DBGEN
Debug enable Debug enable
11 ISYNC -
Synchronous interrupts
10 BIGEND WINCE EN
Big Endian configuration WinCe enhancements enable
9 CPA CPA
Coprocessor absent Coprocessor absent
8 CPB CPB
Coprocessor busy Coprocessor busy
7 ABEC¢ XSnA
Address bus enable Clock configuration

11-14

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

ARM DDI 0192A

AMBA Test

Table 11-4 Control packet bit positions bits [31:0] (continued)

Bit ARM7TDMI input

ARM720T input

6 ALE ALE

Address latch enable Address latch enable
5 DBEd XFASTBUS

Data bus enable Clock configuration
4 nFIQ nFIQ

Not fast interrupt request. Not fast interrupt request
3 nlRQ nlRQ

Not interrupt request Not interrupt request
2 ABORT ABORT

Memory abort Memory abort
1 nWAITe NnWAIT

Not wait Not wait
0 nRESET nRESET

Not reset Not reset

aANDed with MCLKENABLE, soisonly valid during data access cycle.

b.ANDed with M CLKENABLE and BCLK.

c.Thismust normally be set HIGH, becauseif the busistristated, with ABE LOW, then

it is not possible to read address val ues.

d.DBE tothe ARM7DMT is ANDed with the state machine generated DBE and BCL K

to prevent bus conflict

e ANDed withM CLKENABLE, so that the core state can only change during the data

access cycle.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 11-15

AMBA Test

11-16 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Chapter 12
Trace Interface Port

This chapter describes the ETM support for the ARM720T. It contains the following
sections.

. About the ETM on page 12-2
. ETM interface on page 12-3.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 12-1

Trace Interface Port

12.1 About the ETM

The ETM provides instruction and data trace for the ARM family of processors.
The ETM comprises two parts:

A traceport A trace protocol has been developed to provide areal time trace
capability for ARM processor cores that are embedded in large
Application-Specific Integrated Circuits (ASICs). Because the
ASIC usually contains on-chip memory and other circuitry, itis
not possible for you to determine processor core operation by
observing the ASIC pins. The trace port is necessary for you to
understand processor operation.

Triggering facilities
A specification has been developed that allows you to specify the
exact set of trigger resources necessary for a particular
application. Resources include address and data comparators,
counters, and sequencers.

A software debugger provides you with the interface to the ETM. The debugger allows
al of the ETM facilities to be configured through a JTAG interface. If atrace port has
been implemented then the debugger displays the captured trace information in an
easily understandabl e format.

Y ou can use the JTAG interface for other debugging functions, such as downloading
code or single-stepping through a program.

The ETM compresses the trace information and exports it through the trace port. An
external Trace Port Analyzer (TPA) is used to capture the trace information.

When you have captured the trace then the debugger extracts compressed information
from the TPA and decompresses it to provide a full disassembly of the executed code.
The debugger can also link thisto the original high level code to provide you with
information on how the code was executed on the target system.

12-2

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Trace Interface Port

12.2 ETM interface

The ARM720T trace interface port enables connection of an ARM7 ETM (ETM7)
Rev 1to an ARM720T Rev 3. Thisinterface does not exist on ARM720T Rev 0 to
Rev 2. The ETM7 provides instruction and data trace for the ARM7 family of
processors.

Theinterface is made up as follows:

ETMCLK Isaclock signal output from the ARM720T touseinthe ETM7to
provide synchronization with the clock in the ARM720T core.
Theinternal clock signal used is CPCLK which isinverted to
formthe ETM CLK output.

ETMCLKEN ETMCLK isgated when it entersthe ETM7 by exporting another
signal (ETMCLKEN) from the ARM720T. This signal is based
on the CPnWAIT signal.

ETM<signal> Outputsto the ETM7.
The ETM7 isreset by XnTRST, no extrasignal is used to achieve this.

The ETMCLK output is used by the ETM7 to register the ETM <signal> outputs on
therising edge of ETMCLK.

TheETM interface (ETM <signal>) timingsare shownin Figure 12-1. Thesesignalsall
change in the low phase of ETMCLK.

ETMCLK | set up 4 \hjld
ARM720T outputs >< >< | ><

Figure 12-1 ETM interface signal timing

The ARM720T ETM <signal> descriptions are provided in Embedded trace macrocel |
interface signals on page A-10.

The ETM7 Technical Reference Manual describes how to integrate an ETM7 with the
ARMY7 family of processors.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 12-3

Trace Interface Port

12.2.1 ETMCLK gating for power saving

For lowest power operation, it is essential that the clock provided to the ETM7 is gated
off whenthe ETM7 is powered down. Y ou must insert aclock gate between ARM720T
and ETM7 for this purpose. Thisis shown in Figure 12-2.

ARM720T] PwrowN [ETM7

Figure 12-2 ETMCLK power saving

Note

Y ou must take care during implementation to minimize the delay caused by insertion of
this gate.

12-4 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Appendix A
Signal Descriptions

This chapter describesthe interface signals of the ARM720T. It contains the following
sections:

. AMBA interface signals on page A-2

. Coprocessor interface signals on page A-5

. JTAG signals on page A-7

. Debugger signals on page A-9

. Embedded trace macrocell interface signals on page A-10
. Miscellaneous signals on page A-12.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. A-1

Signal Descriptions

A.1 AMBA interface signals
The AMBA interface signals are listed in Table A-1.

Table A-1 AMBA signal descriptions

Name

Type

Source or destination

Description

AGNT

Arbiter

Access grant.

This signal from the bus arbiter indicates that the
ARM720T iscurrently the highest priority master
requesting the bus. If AGNT isasserted at the end
of atransfer (BWAIT LOW), the master is granted
thebus. AGNT changes during the LOW phase of
BCLK and remains valid through the high phase.

AREQ

Out

Arbiter

Access request.

This signd indicates that the master requiresthe
bus. It changes during the HIGH phase of BCLK.
This signd isintended for use where the
ARM720T is not the lowest priority or default bus
master.

BA[31:0]

Out

Current bus master

Bus address.
Thisisthe system address bus.

BCLK

System (bus) clock.
This clock times all bus transfers.

BD[31:0]

In/out

Bus master

Bidirectional system data bus.

This data busis driven by the current bus master
during write cycles, and by the appropriate bus
slave during read cycles.

BERROR

In/out

System decoder and current bus
master

Bus error.

Thissignal indicates atransfer error by the
selected bus slave using the BERROR signal.
When BERROR isHIGH, atransfer error has
occurred. When BERROR isLOW, the transfer is
successful. Thissignal is also used in combination
with the BLAST signal to indicate a bus retract
operation.

A-2

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Signal Descriptions

Table A-1 AMBA signal descriptions (continued)

Name Type

Source or destination Description

BLAST In/out

System decoder and current bus Busclass.

master This signal isdriven by the selected dave to
indicate if the current transfer must be the last of a
burst sequence. When BLAST is HIGH, the next
bus transfer must allow sufficient time for address
decoding. When BLAST isLOW, the next transfer
can continue as a burst sequence. Thissigna is
also used in combination with the BERROR
signal to indicate a bus retract operation.

BLOK Out

Arbiter Buslock.
When HIGH, this signal indicates that the
following bus transfer is to be indivisible and no
other bus master must be given access to the bus.

BnRES In

Reset state machine Busreset.
This signal indicates the reset status of the bus.

BPROT[1:0] Out

System decoder Bus protections.
These signals provide additional information about
the transfer being performed. All write cycles are
indicated as being Supervisor accesses. These
signas have the same timing as the BA signals.

BSIZE[1:0] Out

Current bus master Bussize.
These signalsindicate the size of the transfer,
which can be byte, halfword, or word. These
signas have the same timing as the address bus.

BTRAN[1:0] Out

Bus master Bus transaction type.
These signalsindicate the type of the next
transaction which can be address-only,
nonsequential, or sequential. These signals are
driven when AGNT is asserted, and are valid
during the HIGH phase of BCLK before the
transfer to which they refer.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. A-3

Signal Descriptions

Table A-1 AMBA signal descriptions (continued)

Name

Type

Source or destination

Description

BWAIT

In/out

System decoder and current bus
master

Bus wait.

This signal isdriven by the selected slave to
indicate if the current transfer can complete. If
BWAIT isHIGH, afurther bus cycleis required.
If BWAIT is LOW, the current transfer can
complete in the current bus cycle.

BWRITE

In/out

Current bus master

Buswrite.

When HIGH, this signal indicates a bus write
cycleand when LOW, aread cycle. Thissigna has
the same timing as the address bus.

DSEL

System decoder

Slave select.
Thissignal putsthe ARM core into a test mode so
that vectors can be written in and out of the core.

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Signal Descriptions

A.2 Coprocessor interface signals

The coprocessor interface signals are listed in Table A-2.

Table A-2 Coprocessor interface signal descriptions

Name Type Description

CPCLK Out Coprocessor clock.
This clock controls the operation of the coprocessor interface.

CPDATA[31:0] Infout Coprocessor data bus.
Dataistransferred to and from the coprocessor using thisbus. Datais valid on thefalling
edge of CPCLK.

CPDBE In Coprocessor data bus enable.
This signal when HIGH, indicates that the coprocessor intends to drive the coprocessor
data bus, CPDATA. If the coprocessor interfaceis not to be used then this signal must be
tied LOW.

CPnWAIT Out Coprocessor not wait.
The coprocessor clock CPCLK is qualified by CPNWAIT to alow the ARM720T to
control the transfer of data on the coprocessor interface.

CPTESTREAD In Coprocessor test read.
This signal can be used for test of a coprocessor, if attached, and must only be used with
the ARM720T held in reset. When HIGH, it enables Data Bus (DB) to be driven on to
CPDATA, and must be held LOW. It must never be asserted at the same time as
CPTESTWRITE.

CPTESTWRITE In Coprocessor test write.
Thissigna can be used for test of a coprocessor, if attached, and must only be used with
the ARM720T held in reset. When HIGH, it enables DB to be driven on to CPDATA,
and must be held LOW. It must never be asserted at the same time as CPTESTREAD.

EXTCPA In External coprocessor absent.
A coprocessor that is capable of performing the operation that ARM720T is requesting,
by asserting nCPI takes EXTCPA LOW immediately. If EXTCPA isHIGH at the end of
the low phase of the cycle in which nCPI went LOW, ARM720T aborts the coprocessor
instruction and takes the undefined instruction trap. If EXTCPA isLOW and remains
LOW, ARM720T busy-waits until EXTCPB is LOW, and then completes the
coprocessor instruction.

EXTCPB In External coprocessor busy.

A coprocessor that is capable of performing the operation that ARM720T is requesting,
by asserting nCPI, but cannot commit to starting it immediately, indicates this by driving
EXTCPB HIGH. When the coprocessor is ready to start it takes EXTCPB LOW.
ARM720T samples EXTCPB at the low phases of each cycle in which nCPI is LOW.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. A-5

Signal Descriptions

Table A-2 Coprocessor interface signal descriptions (continued)

Name Type Description

nOPC Out Not opcode fetch.
When LOW, this signal indicates that the processor is fetching an instruction from
memory. When HIGH, data, if present, is being transferred. This signal is used by the
coprocessor to track the ARM pipeline.

nCPI Out Not coprocessor instruction.
When LOW, this signal indicates that the ARM720T is executing a coprocessor
instruction.

nUSER Out Not User mode.
When LOW, this signal indicates that the processor isin User mode. It isused by a
coprocessor to qualify instructions.

TBIT Out Thumb state.
This signal, when HIGH, indicates that the processor is executing the THUMB
instruction set. When LOW, the processor is executing the ARM instruction set.

A-6 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Signal Descriptions

A.3 JTAG signals

JTAG signal descriptions are listed in Table A-3.

Table A-3 JTAG signal descriptions

Name Type Description

HIGHZ Out This signal denotes that the HI GHZ instruction has been loaded into the TAP controller.

IR[3:0] Out TAP instruction register.
These signalsreflect the current instruction loaded into the TAP controller instruction register.
The signals change on the falling edge of XTCK when the TAP state machineisin the
UPDATE-DR state. You can use these signalsto allow more scan chains to be added using the
ARM720T TAP controller.

RSTCLKBS Out Reset boundary scan clock.
This signal denotes that either the TAP controller state machineisin the RESET state or that
XNTRST has been asserted. You can use thisto reset boundary scan cells outside the
ARM720T.

SCREG[3:0] Out Scan chain register.
These signalsreflect the D number of the scan chain currently selected by the TAP controller.
These signals change on the falling edge of XTCK when the TAP state machineisin the
UPDATE-DR state.

SDINBS Out Boundary scan serial datain.
Thissignal isthe serial datato be applied to an externa scan chain.

SDOUTBS In Boundary scan seria data out.
This signal isthe serial datafrom an external scan chain. It allows asingle XTDO port to be
used. If an external scan chain is not connected, this input must be tied LOW.

TAPSM[3:0] Out Tap controller status.
These signals represent the current state of the TAP controller machine. These signals change
on the rising edge of XTCK and can be used to allow more scan chains to be added using the
ARMT720T TAP controller.

TCK1 Out Test clock one.
Thisclock representsthe HIGH phase of XTCK. TCK1isHIGH when XTCK isHIGH. This
signal can be used to allow more scan chains to be added using the ARM720T TAP controller.

TCK2 Out Test clock two.
This clock represents the LOW phase of XTCK. TCK2isHIGH when XTCK isLOW. You
can usethissignal to allow more scan chainsto be added using the ARM720T TAP controller.
TCK2 isthe non-overlapping complement of TCK 1.

XnTDOEN Out Not test data out output enable.

When LOW, this signal denotes that serial datais being driven out on the XTDO output.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. A-7

Signal Descriptions

Table A-3 JTAG signal descriptions (continued)

Name Type Description
XnTRST In Not test reset.
When LOW, this signal resetsthe JTAG interface.
XTCK In Test clock.
Thissignal isthe JTAG test clock.
XTDI In Test datain.
JTAG test datain signal.
XTDO Out Test data out.
JTAG test data out signal.
XTMS In Test mode select.
JTAG test mode select signal.
A-8 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Signal Descriptions

A.4 Debugger signals

The debugger signal descriptions are listed in Table A-4.

Table A-4 Debugger signal descriptions

Name Type Description
BREAKPOINT In Breakpoint.
Thissignal allows external hardware to halt execution of the processor for debug
purposes. When HIGH, this causes the current memory access to be breakpointed. If
memory access is an instruction Fetch, the core enters debug state if the instruction
reaches the Execute stage of the core pipeline. If the memory accessis for data, the core
enters the debug state after the current instruction completes execution. This alows
extension of the internal breakpoints provided by the EmbeddedI CE module.
COMMRX Out Communication receive full.
When HIGH, thissignal denotes that the comms channel receive buffer contains datafor
the core to read.
COMMTX Out Communication transmit empty.
When HIGH, this signa denotes that the comms channel transmit buffer is empty.
DBGACK Out Debug acknowledge.
When HIGH, this signal denotes that the ARM isin debug state.
DBGEN In Debug enable.
Thissigna allows the debug features of ARM720T to be disabled. When DBGEN is
LOW, it inhibits BREAKPOINT and DBGRQ to the core, DBGACK from the
ARM720T is aways LOW.
DBGRQ In Debug request.
Thissigna causes the core to enter debug state after executing the current instruction.
This allows external hardware to force the core into debug state, in addition to the
debugging features provided by the EmbeddedI CE Logic.
EXTERN [1:0] In External condition.
These signals allow breakpoints and watchpoints to depend on an external condition.
RANGEOUT[1:0] Out Range out.

These signalsindicate that the relevant Embedded! CE watchpoint register has matched
the conditions currently present on the address, data, and control buses. These signals
are independent of the state of the watchpoint enable control bits.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. A-9

Signal Descriptions

A.5 Embedded trace macrocell interface signals
The ETM interface signals are listed in Table A-5.

Table A-5 ETM interface signal descriptions

Output name Type Description

ETMnMREQ Out Not memory request.
When LOW, indicates that the processor requires memory access during the following

cycle.

ETMSEQ Out Sequential address.
When HIGH, indicates that the address of the next memory cycleis related to that of the
last memory cycle. The new addressis one of the following:
. the same as the previous one
. four greater in ARM state
. two greater in Thumb state.

Thissignal can be used, with the low order address lines, to indicate that the next cycle can
use a fast memory mode and bypass the address trandlation system.

ETMnEXEC Out Not executed.
When HIGH, indicates that the instruction in the execution unit is not being executed. For
example it might have failed the condition check code.

ETMnCPI Out Not coprocessor instruction.
When the ARM720T executes a coprocessor instruction, it takesthe ETMnCPI LOW and
waits for aresponse from the coprocessor. The actions taken depend on this response,
which the coprocessor signals on the CPA and CPB inputs.

ETMA[31:0] Out Addresses.
Thisisthe retimed internal address bus.

ETMnOPC Out Not opcode fetch.
When LOW, indicates that the processor is fetching an instruction from memory. When
HIGH, indicates that data, if present, isbeing transferred.

ETMnRW Out Not read/write.
When HIGH, indicates a processor write cycle. When LOW, indicates a processor read
cycle.

ETMCLK Out ETM clock.

Exported clock signal for usein ETM. Internal signal isinverted version of CPCLK. See
Table A-2 on page A-5 for adescription of CPCLK.

A-10 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Signal Descriptions

Table A-5 ETM interface signal descriptions (continued)

Output name

Type

Description

ETMCLKEN

Out

ETM clock enable.

Exported signal used to gate ETM CLK. Internal signa is based on the CPNnWAIT signal
that isfirst phase two latched by CPCLK . This ensuresthat it changes at the start of phase
two, the HIGH phase of CPCLK. It isheld throughout the next phase, that is phase one, the
LOW phase of CPCLK. See Table A-2 on page A-5 for a description of CPnWAIT.

ETMMAS[1:0]

Out

Memory access size.

Indicates the width of the bus transaction to the current address, this signal can take the
following values:

00 = 8-hit

01 = 16-hit

10 = 32-bit

11 isreserved.

The above values are valid for both read and write cycles.

ETMDBGACK

Out

Debug acknowledge.
When HIGH, indicates that the processor isin debug state. When LOW, indicates that the
processor isin normal system state.

ETMD[31:0]

Out

Coprocessor data bus.
Thisisthe retimed internal data bus.

ETMABORT

Out

Memory abort or bus error.
Indicates that a requested access has been disallowed.

ETMCPA

Out

Coprocessor absent handshake.
The coprocessor absent signdl. It is a buffered version of the coprocessor absent signal.

ETMCPB

Out

Coprocessor busy handshake.
The coprocessor busy signdl. It is a buffered version of the coprocessor absent signal.

PROCID[31:0]

Out

Trace PROCID bus.

PROCIDWR

Out

Trace PROCID write.
Indicates to ETM7 that the Trace PROCID, CP15 register 13, has been written.

Note

Thesignal TBIT isaso used asan ETM interface signal. For a description of
TBIT, see Table A-2 on page A-5.

Thesignal BIGEND isalso used asan ETM interface signal. For adescription of
BIGEND, see Table A-6 on page A-12.

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. A-11

Signal Descriptions

A.6 Miscellaneous signals
— Miscellaneous signals used by the ARM720T are listed in Table A-6.

Table A-6 Miscellaneous signal descriptions

Name Type Source or destination Description

BIGEND Out Configuration output Big-endian format.
When thissignal is HIGH, the processor treats bytesin memory
as being in big-endian format. When it is LOW, memory is
treated aslittle-endian.

CACHEDIS* In Configuration input Disable cache.
Thissignal is used to disable the IDC for usein certain
applications. See IDC disable for secure applications on
page 4-6 for adescription of thissignal.

FCLK In External clock source Fast clock input.
This clock is used to clock the ARM core when XFASTBUS s
LOW. During testing, the signal allows efficient testing of the
RAM, TAG, and MMU blocks.

XFASTBUS In Configuration input Bus clocking mode configuration signal.
When HIGH, the ARM720T operates from a single clock,
BCLK. When LOW, selects standard mode operating from two
clocks, BCLK and FCLK.

XnFIQ In Interrupt controller ARM fast interrupt request signal.

XnIRQ In Interrupt controller ARM interrupt request signal.
The interrupt controller mixes several interrupt sources, and
produces XnIRQ.

XSnA In Configuration input Synchronous and not asynchronous configuration pin.

In standard ARM bus mode this signal determines the bus
interface mode and must be wired HIGH or LOW depending on
the desired relationship between FCLK and BCLK. See
Standard mode on page 9-5. This pin isignored when operating

XFASTBUS s high.

aARM does not support the use of this feature.

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

ARM DDI 0192A

Signal Descriptions

A.7 Additional signal outputs

Three additional signal outputs are provided to aid the interface of AMBA signals to
Input and Output pads when building an ARM test chip. These signals are:

. BABE
. WDEN
. BDEN.

Note

ARM advises that these signals are not used.

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. A-13

Signal Descriptions

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

ARM DDI 0192A

Index

Theitemsin thisindex are listed in alphabetic order, with symbols and numerics appearing at the end. The

references given are to page numbers.

A
Abort mode 2-7
Aborts

CPU 6-18

Data 2-19,7-34
indexed addressing 2-24
externa
buffered writes 6-25
cachablereads 6-25
prefetch 2-18
types 2-18
Access faults
checking 6-22
Accessing banked registers 7-26
Addressing signals 10-7
AMBA interface
about 10-2
sgnas A-2

ARM ingtructionset 1-6
addressing mode
five 1-14
four 1-13
three 1-12
two 1-11
two, privileged 1-12
condition fields 1-15
fields 1-14
operandtwo 1-14
ARM state
register organization 2-9
ARM720T
block diagram 1-3
description 1-2
scan chain arrangement 7-5
ASB businterface 10-3

B

Banked registers
accessing 7-26
Big endian
format 10-14
Big endian operation 10-14
Big endian. See memory format

Breakpoints
clearing 8-10
entering debug state from 7-30
programming 8-9
hardware 8-9
software 8-9
setting 8-10
with prefetch abort ~ 7-34
Businterface 9-2
asynchronousmode 9-6
fastbus extension 9-2
standard mode 9-2
synchronous mode 9-7

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

Index-i

Index

Bus master

default 10-21
Bus master handover 10-19
BYPASS

publicinstruction 7-13
Bypassregister 7-16
Byte (datatype) 2-6
Byte operations 10-16

C

CLAMP
publicinstruction 7-14
CLAMPZ
publicinstruction 7-15
Clock switching
debug state 7-23
Communications channel
message transfer 8-21
using 8-20
Condition codeflags 2-13
Configuration
compatibility 3-2
description 3-2
notation 3-2
Control coprocessor state
determining 7-28
Control registers
Registers
control 8-6
Coprocessor 1-4
Coprocessor interface

signds A-5
Coreclocks 7-23
Core state

accessing banked registers 7-25
determining 7-25
moving to ARM state 7-25
CPSR (Current Processor Status
Register) 2-13
format of 2-13
CPU aborts 6-18

Cycletypes
businterface 10-4

D

Datasignal timing 10-9

Datatypes 2-6
alignment 2-6
byte 2-6
halfword 2-6
word 2-6

Debug
host 7-4
program counter ~ 7-30
protocol converter 7-4
reset 7-11
systems 7-4
Debug extensons 7-2
debug state 7-2
internal state 7-2
Debug interface
definition 7-2
Debug request
entering debug statevia 7-32
Debug state
entering 7-7
entering on breakpoint ~ 7-7
entering on debug-request 7-8
entering on watchpoint ~ 7-7
exiting from 7-28
switching clock state 7-23
Debugger
signals A-9

deviceidentification code register 7-16

Domain access control ~ 6-21

Domain access control register
format 6-21
interpreting access bits 6-21

E

Early termination
definition 2-24

EmbeddedI CE

about 8-2
breakpoints 8-9
coupling 8-17

BREAKPT signal 8-2
communications channel ~ 8-19
control registers 8-6
debug control register 8-13
debug statusregister 8-15
definition 8-2
disabling 8-3
TAPcontroller 8-2, 8-6
timing 8-3

ETM
about 12-2
interface 12-3

ETM interface
signals A-10

Exception
entering 2-16
entry and exit summary 2-17
leaving 2-17
priorities 2-21
restrictions 2-21
returning to THUMB state

from 2-17
vectors 2-20, 2-21
addresses 2-20

Externa aborts

Aborts

external 6-25
buffered writes 6-25
cachablereads 6-25

EXTEST

F

public instruction ~ 7-12

Fast Context Switch Extension 2-22
Fastbus extension 9-3

Fault addressregister 6-19

Fault checking 6-22

Fault statusregister 6-19

Faults

alignment 6-23
domain 6-23
permission 6-24
section 6-24
subpage 6-24
transdation 6-23

FCSE

relocation of low virtual
addresses 2-22

FIQ mode 2-7

H

definition 2-18

Halfword operations 10-15
High register

accessing from THUMB state 2-11
description 2-11

HIGHZ

IDC

public instruction 7-14

cacheable bit 4-2
dissble 4-5
disable for secure applications 4-6
enable 4-5
interaction with MMU and write
buffer 6-26
operation 4-2
read-lock-write 4-3
reset 4-5
vaidity 4-4
double-mapped space 4-4
software IDC flush 4-4

IDCODE

publicinstruction 7-13

Index-ii Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

ARM DDI 0192A

Instruction register 7-17

Instructionset 1-5
ARM 1-6
Thumb 1-15

Instruction types 1-5
Internal coprocessor instructions 3-3
Interrupts 7-34
INTEST

publicinstruction 7-12
IRQmode 2-7

definition 2-18

J

JTAG signals A-7
JTAG state machine 7-10

L
Large page references
trandating 6-16
Level 1
descriptor 6-7
fetch 6-6
Level 2
descriptor 6-12
Little endian
format 10-14

operation 10-14
Little endian. See memory format
Low registers 2-12

M

Memory access
use of the BWAIT pin 10-10
Memory format
big endian
description 2-3
little endian
description 2-4
Memory request signals 10-7, 10-8
Miscellaneous signals A-12

MMU
description 6-2
disabling 6-27
domains 6-2
effect of reset 6-3
enabling 3-6, 6-26
faults 6-18
interaction with IDC and write
buffer 6-26
memory accesses 6-2
program accessible registers 6-4
TLB 6-2
Multi master operation 10-17

N

nWAIT pin
useof 10-10

O

Operating modes
Abort
mode 2-7
changing 2-7
FIQ 2-7
IRQ mode 2-7
Supervisor mode 2-7
System mode 2-7
Undefined mode 2-7
User mode 2-7
Operating state
ARM 2-2
reading 2-14
switching 2-2
toARM 2-2
toTHUMB 2-2

THUMB 2-2

P

Page tabl e descriptor
bits 6-8
Program status registers
control bits 2-13
mode bit values 2-14
reserved bits 2-14
Programming watchpoints 8-11
Public instructions ~ 7-12
BYPASS 7-13
CLAMP 7-14
CLAMPZ 7-15
EXTEST 7-12
HIGHZ 7-14
IDCODE 7-13
INTEST 7-12
RESTART 7-15
SAMPLE/PRELOAD 7-15
SCAN_N 7-12

R

Read-lock-write 10-13
Registers 3-4
ARM 2-8
interrupt modes 2-9
BYPASS 7-16
debug communications

Index

channel 8-19
debug control
DBGACK 813
DBGRQ 8-13
INTDIS 8-14
debug status 8-15
devicelID 7-16
fault address 6-19
fault status 6-19
instruction 7-17
MMU 6-4
register 0, ID register 3-4
register 1, control register 3-5
register 13, process identifier
register 3-10
changing FCSEPID 3-11
FCSEPID 3-11
register 2, translation table base
register 3-7
register 3, domain access control
register 3-7
register 4, reserved 3-8
register 5, fault status register 3-8
register 6, fault addressregister 3-9
register 7, cache operations
register 3-9
register 8, translation lookaside buffer
register 3-9
register 9-12, reserved 3-10
relationship between ARM and
Thumb 2-11
scan chain select 7-17
test datatypes 7-16
Thumb 2-10
watchpoint 8-4
programming and reading 8-5
Reset
action of processor on 2-23
RESTART publicinstruction 7-15

Return address calculations 7-33

S

SAMPLE/PRELOAD

publicinstruction 7-15
Scan and debug

signalsused by ETM 7-42
Scanchan0 7-20
Scanchainl 7-21
Scanchain15 7-22
Scanchain2 7-22
Scan chain select register 7-17
Scan Chains 7-18
Scan interfacetiming 7-35
Scan limitations ~ 7-9
SCAN_N

publicinstruction 7-12
Section descriptor 6-9

ARM DDI 0192A

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. Index-iii

Index

Sequential memory accesses
Memory accesses
sequential 10-12
Signals
AMBA interface A-2
coprocessor interface A-5
debugger A-9
ETM interface A-10
JTAG A-7
miscellaneous A-12

Slave operation, test mode 11-2
Slaveresponsesignals 10-10
Small page references
trandating 6-14
Software Interrupt ~ 2-19
Softwareinterrupt 2-19
SPSR (Saved Processor Status
Register) 2-13
format of 2-13
Standard mode 9-5
Supervisor mode 2-7
Swi - 2-19
System mode 2-7
System speed access
during debug state 7-32

System state
determining 7-27

T
T bit(inCPSR) 2-14
Test dataregister types 7-16
Thumb instruction set 1-15
Thumb state 2-2

register organization 2-10
Tranglating references 6-5

Trandating section references 6-11

Trandation tablebase 6-5

U

Undefined instructiontrap ~ 2-20
Undefined mode 2-7
User mode 2-7

w

Watchpoint
registers 8-4

programming and reading 8-5

Watchpoints
entering debug state from 7-31
programming 8-11
programming restriction 8-12
with another exception ~ 7-31
Word operations 10-15

Write buffer

bufferable bit 5-2

definition 5-2

interaction with MMU and

IDC 6-26

operation 5-3
bufferable write 5-3
read-lock-write 5-4
unbufferable write 5-3

Index-iv

Copyright © ARM Limited 1997, 1998, 2000. All rights reserved.

ARM DDI 0192A

