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Preface

This preface introduces the ARM720T and its reference documentation. It contains the 
following sections:

• About this document on page xii

• Further reading on page xv

• Feedback on page xvi.
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About this document

This document is a technical reference manual for the ARM720T.

Intended audience

This document has been written for experienced hardware and software engineers who 
might or might not have experience of the architecture, configuration, integration, and 
instruction sets with reference to the ARM product range.

Using this manual

This document is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the ARM720T.

Chapter 2 Programmer’s Model

Read this chapter for a description of the 32-bit ARM and 16-bit Thumb 
instruction sets.

Chapter 3 Configuration

Read this chapter for a description of how the operation and 
configuration of the ARM720T is controlled.

Chapter 4 Instruction and Data Cache

Read this chapter for an overview of the mixed instruction and data 
cache.

Chapter 5 Write Buffer

Read this chapter for a description of how you can enhance the system 
performance of the ARM720T by using the write buffer.

Chapter 6 Memory Management Unit

Read this chapter for a description of the functions and use of the memory 
management unit.
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Chapter 7 Debug Interface

Read this chapter for a description of the hardware extensions used for 
advanced debugging.

Chapter 8 EmbeddedICE Logic

Read this chapter for a description of the integrated on-chip debug 
support for the ARM720T core.

Chapter 9 Bus Clocking

Read this chapter for a description of the ARM720T bus interface.

Chapter 10 AMBA Interface

Read this chapter for a description of the functions and operation of the 
ARM720T bus master.

Chapter 11 AMBA Test

Read this chapter for a description of the ARM720T test features.

Chapter 12 Trace Interface Port

Read this chapter for a description of the Embedded Trace Macrocell 
support for the ARM720T.

Appendix A Signal Descriptions

Read this appendix for a list of all ARM720T interface signals.

Typographical conventions

The following typographical conventions are used in this document:

bold Highlights ARM processor signal names, and interface elements 
such as menu names. Also used for terms in descriptive lists, 
where appropriate.

italic Highlights special terminology, cross-references, and citations.

typewriter Denotes text that can be entered at the keyboard, such as 
commands, file names and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The 
underlined text can be entered instead of the full command or 
option name.
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typewriter italic

Denotes arguments to commands or functions where the argument 
is to be replaced by a specific value.

typewriter bold
Denotes language keywords when used outside example code.

Timing diagram conventions

This manual contains one or more timing diagrams. The following key explains the 
components used in these diagrams. Any variations are clearly labeled when they occur. 
Therefore, no additional meaning must be attached unless specifically stated.

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value 
within the shaded area at that time. The actual level is unimportant and does not affect 
normal operation.

Clock

Bus stable

HIGH to LOW

Transient

Bus to high impedance

Bus change

HIGH/LOW to HIGH

High impedance to stable bus
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Further reading

This section lists publications by ARM Limited, and by third parties.

ARM periodically provides updates and corrections to its documentation. See 
http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at: 
http://www.arm.com/DevSupp/Sales+Support/faq.html

ARM publications

This document contains information that is specific to the ARM720T. Refer to the 
following documents for other relevant information:

• ARM Architecture Reference Manual (ARM DDI 0100)

• AMBA Specification (ARM IHI 0001)

• ETM7 Technical Reference Manual (ARM DDI 0158)

• ARM7TDMI Technical Reference Manual (ARM DDI 0029).

Other publications

This section lists relevant documents published by third parties.

• Standard Test Access Port and Boundary Scan Architecture (IEEE Std. 
1149.1.1990).
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Feedback

ARM Limited welcomes feedback both on the ARM720T, and on the documentation.

Feedback on the ARM720T

If you have any comments or suggestions about this product, please contact your 
supplier giving:

• the product name

• a concise explanation of your comments.

Feedback on the ARM720T documentation

If you have any comments about this document, please send email to 
errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
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Chapter 1
Introduction

This chapter provides an introduction to the ARM720T. It contains the following 
sections:

• About the ARM720T on page 1-2

• Coprocessors on page 1-4

• About the instruction set on page 1-5.
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1.1 About the ARM720T

The ARM720T is a general-purpose 32-bit microprocessor with 8KB cache, enlarged 
write buffer, and Memory Management Unit (MMU) combined in a single chip. The 
CPU within the ARM720T is the ARM7TDMI. The ARM720T is software-compatible 
with the ARM processor family.

The on-chip mixed data and instruction cache, together with the write buffer, 
substantially raise the average execution speed and reduce the average amount of 
memory bandwidth required by the processor. This allows the external memory to 
support additional processors or Direct Memory Access (DMA) channels with minimal 
performance loss.

The allocation of virtual addresses with different task IDs improve performance in task 
switching operations with the cache enabled. These relocated virtual addresses are 
monitored by the EmbeddedICE block.

The MMU supports a conventional two-level, page-table structure and a number of 
extensions that make it ideal for embedded control, UNIX, and object-oriented systems. 

The memory interface is designed to allow the performance potential to be realized 
without incurring high costs in the memory system. Speed-critical control signals are 
pipelined to allow system control functions to be implemented in standard low-power 
logic, and these control signals permit the exploitation of paged mode access offered by 
industry-standard DRAMs.

The ARM720T is provided with an Embedded Trace Macrocell (ETM) interface that 
brings out the required signals from the ARM core to the periphery of the ARM720T. 
This allows you to connect a standard ETM7 macrocell.

ARM720T is a fully static part and has been designed to minimize power requirements. 
This makes it ideal for portable applications where both features are essential.

The ARM720T architecture is based on Reduced Instruction Set Computer (RISC) 
principles. The instruction set and related decode mechanism are greatly simplified 
compared with microprogrammed Complex Instruction Set Computers (CISCs).

A block diagram of the ARM720T is shown in Figure 1-1 on page 1-3.
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Figure 1-1 Block diagram
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1.2 Coprocessors

The ARM720T has an internal coprocessor designated CP15 for internal control of the 
device (see Registers on page 3-4).

The ARM720T also includes a port for the connection of on-chip coprocessors. These 
allow extension of the ARM720T functionality in an architecturally consistent manner.
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1.3 About the instruction set

The instruction set comprises ten basic instruction types:

• Two types use the on-chip arithmetic logic unit, barrel shifter, and multiplier to 
perform high-speed operations on the data in a bank of 31 registers, each 32 bits 
wide.

• Three types of instruction control the data transfer between memory and the 
registers:

— one optimized for flexibility of addressing

— one for rapid context switching

— one for swapping data.

• Two instructions control the flow and privilege level of execution.

• Three types are dedicated to the control of external coprocessors. These allow 
you to extend the functionality of the instruction set off-chip in an open and 
uniform way.

The ARM instruction set is a good target for compilers of many different high-level 
languages. Where required for critical code segments, assembly code programming is 
also straightforward, unlike some RISC processors that depend on sophisticated 
compiler technology to manage complicated instruction interdependencies.

1.3.1 Format summary

This section provides a summary of the ARM and Thumb instruction sets:

• ARM instruction set on page 1-6

• Thumb instruction set on page 1-15.

A key to the instruction set tables is listed in Table 1-1.

The ARM7TDMI is an implementation of the ARMv4T architecture. For a complete 
description of both instruction sets, see the ARM Architecture Reference Manual.

Table 1-1 Key to tables

Description

{cond} Refer to Table 1-11 on page 1-15.

<Oprnd2> Refer to Table 1-9 on page 1-14.

{field} Refer to Table 1-10 on page 1-14.
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1.3.2 ARM instruction set

This section gives an overview of the ARM instructions available. For full details of 
these instructions, refer to the ARM Architecture Reference Manual.

The ARM instruction set formats are shown at Figure 1-2 on page 1-7.

S Sets condition codes (optional).

B Byte operation (optional).

H Halfword operation (optional).

T Forces address translation. Cannot be used with pre-indexed addresses.

<a_mode2> Refer to Table 1-3 on page 1-11.

<a_mode2P> Refer to Table 1-4 on page 1-12.

<a_mode3> Refer to Table 1-5 on page 1-12.

<a_mode4L> Refer to Table 1-6 on page 1-13.

<a_mode4S> Refer to Table 1-7 on page 1-13.

<a_mode5> Refer to Table 1-8 on page 1-14.

#32bit_Imm A 32-bit constant, formed by right-rotating an 8-bit value by an even 
number of bits.

<reglist> A comma-separated list of registers, enclosed in braces ( { and } ).

Table 1-1 Key to tables (continued)
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Figure 1-2 ARM instruction set formats
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0 1 0 P U B W L Rn Rd immediate

Load/store register offset 0 1 1 P U B W L Rn Rd shift immediate shift 0

Swap/swap byte 0 0 0 1 0 B 0 0 Rn Rd 1 0 0 1SBZ Rm

Undefined

cond

cond

cond

cond

cond

cond

cond

cond

cond

cond

cond

cond

cond

cond

cond

cond

cond

cond

cond

0 0 1 op S Rn Rd rotate immediatecond

0 1 1 x 1x x x x x x x x x x x x x x x x x x x x x x xcond
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The ARM instruction set summary is listed in Table 1-2.

Table 1-2 ARM instruction summary

Operation Assembler

Move Move MOV{cond}{S} Rd, <Oprnd2>

Move NOT MVN{cond}{S} Rd, <Oprnd2>

Move SPSR to register MRS{cond} Rd, SPSR

Move CPSR to register MRS{cond} Rd, CPSR

Move register to SPSR MSR{cond} SPSR{field}, Rm

Move register to CPSR MSR{cond} CPSR{field}, Rm

Move immediate to SPSR flags MSR{cond} SPSR_f, #32bit_Imm

Move immediate to CPSR flags MSR{cond} CPSR_f, #32bit_Imm

Arithmetic Add ADD{cond}{S} Rd, Rn, <Oprnd2>

Add with carry ADC{cond}{S} Rd, Rn, <Oprnd2>

Subtract SUB{cond}{S} Rd, Rn, <Oprnd2>

Subtract with carry SBC{cond}{S} Rd, Rn, <Oprnd2>

Subtract reverse subtract RSB{cond}{S} Rd, Rn, <Oprnd2>

Subtract reverse subtract with 
carry

RSC{cond}{S} Rd, Rn, <Oprnd2>

Multiply MUL{cond}{S} Rd, Rm, Rs

Multiply accumulate MLA{cond}{S} Rd, Rm, Rs, Rn

Multiply unsigned long UMULL{cond}{S} RdLo, RdHi, Rm, Rs

Multiply unsigned accumulate 
long

UMLAL{cond}{S} RdLo, RdHi, Rm, Rs

Multiply signed long SMULL{cond}{S} RdLo, RdHi, Rm, Rs

Multiply signed accumulate 
long

SMLAL{cond}{S} RdLo, RdHi, Rm, Rs

Compare CMP{cond} Rd, <Oprnd2>

Compare negative CMN{cond} Rd, <Oprnd2>
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Logical Test TST{cond} Rn, <Oprnd2>

Test equivalence TEQ{cond} Rn, <Oprnd2>

AND AND{cond}{S} Rd, Rn, <Oprnd2>

EOR EOR{cond}{S} Rd, Rn, <Oprnd2>

ORR ORR{cond}{S} Rd, Rn, <Oprnd2>

Bit clear BIC{cond}{S} Rd, Rn, <Oprnd2>

Branch Branch B{cond} label

Branch with link BL{cond} label

Branch, and exchange 
instruction set

BX{cond} Rn

Load Word LDR{cond} Rd, <a_mode2>

Word with User Mode privilege LDR{cond}T Rd, <a_mode2P>

Byte LDR{cond}B Rd, <a_mode2>

Byte with User Mode privilege LDR{cond}BT Rd, <a_mode2P>

Byte signed LDR{cond}SB Rd, <a_mode3>

Halfword LDR{cond}H Rd, <a_mode3>

Halfword signed LDR{cond}SH Rd, <a_mode3>

Multiple

Block data operations

Increment before LDM{cond}IB Rd{!}, <reglist>{^}

Increment after LDM{cond}IA Rd{!}, <reglist>{^}

Decrement before LDM{cond}DB Rd{!}, <reglist>{^}

Decrement after LDM{cond}DA Rd{!}, <reglist>{^}

Stack operations LDM{cond}<a_mode4L> Rd{!}, <reglist>

Stack operations, and restore 
CPSR

LDM{cond}<a_mode4L> Rd{!}, <reglist+pc>^

Table 1-2 ARM instruction summary (continued)

Operation Assembler
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User registers LDM{cond}<a_mode4L> Rd{!}, <reglist>^

Store Word STR{cond} Rd, <a_mode2>

Word with User Mode privilege STR{cond}T Rd, <a_mode2P>

Byte STR{cond}B Rd, <a_mode2>

Byte with User Mode privilege STR{cond}BT Rd, <a_mode2P>

Halfword STR{cond}H Rd, <a_mode3>

Multiple

Block data operations

Increment before STM{cond}IB Rd{!}, <reglist>{^}

Increment after STM{cond}IA Rd{!}, <reglist>{^}

Decrement before STM{cond}DB Rd{!}, <reglist>{^}

Decrement after STM{cond}DA Rd{!}, <reglist>{^}

Stack operations STM{cond}<a_mode4S> Rd{!}, <reglist>

User registers STM{cond}<a_mode4S> Rd{!}, <reglist>^

Swap Word SWP{cond} Rd, Rm, [Rn]

Byte SWP{cond}B Rd, Rm, [Rn]

Coprocessors Data operations CDP{cond} p<cpnum>, <op1>, CRd, CRn, CRm, <op2>

Move to ARM reg from coproc MRC{cond} p<cpnum>, <op1>, Rd, CRn, CRm, <op2>

Move to coproc from ARM reg MCR{cond} p<cpnum>, <op1>, Rd, CRn, CRm, <op2>

Load LDC{cond} p<cpnum>, CRd, <a_mode5>

Store STC{cond} p<cpnum>, CRd, <a_mode5>

Software 
Interrupt

SWI 24bit_Imm

Table 1-2 ARM instruction summary (continued)

Operation Assembler
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Addressing mode 2 is listed in Table 1-3.

Table 1-3 Addressing mode 2

Addressing mode 2 <a_mode2>

Immediate offset [Rn, #+/-12bit_Offset]

Register offset [Rn, +/-Rm]

Scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]

[Rn, +/-Rm, LSR #5bit_shift_imm]

[Rn, +/-Rm, ASR #5bit_shift_imm]

[Rn, +/-Rm, ROR #5bit_shift_imm]

[Rn, +/-Rm, RRX]

Pre-indexed offset

Immediate [Rn, #+/-12bit_Offset]!

Register [Rn, +/-Rm]!

Scaled register [Rn, +/-Rm, LSL #5bit_shift_imm]!

[Rn, +/-Rm, LSR #5bit_shift_imm]!

[Rn, +/-Rm, ASR #5bit_shift_imm]!

[Rn, +/-Rm, ROR #5bit_shift_imm]!

[Rn, +/-Rm, RRX]!

Post-indexed offset

Immediate [Rn], #+/-12bit_Offset

Register [Rn], +/-Rm

Scaled register [Rn], +/-Rm, LSL #5bit_shift_imm

[Rn], +/-Rm, LSR #5bit_shift_imm

[Rn], +/-Rm, ASR #5bit_shift_imm

[Rn], +/-Rm, ROR #5bit_shift_imm

[Rn, +/-Rm, RRX]
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Addressing mode 2 (privileged) is listed in Table 1-4.

Addressing mode 3 is listed in Table 1-5.

Table 1-4 Addressing mode 2 (privileged)

Addressing mode 2 (privileged) <a_mode2P>

Immediate offset [Rn, #+/-12bit_Offset]

Register offset [Rn, +/-Rm]

Scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]

[Rn, +/-Rm, LSR #5bit_shift_imm]

[Rn, +/-Rm, ASR #5bit_shift_imm]

[Rn, +/-Rm, ROR #5bit_shift_imm]

[Rn, +/-Rm, RRX]

Post-indexed offset

Immediate [Rn], #+/-12bit_Offset

Register [Rn], +/-Rm

Scaled register [Rn], +/-Rm, LSL #5bit_shift_imm

[Rn], +/-Rm, LSR #5bit_shift_imm

[Rn], +/-Rm, ASR #5bit_shift_imm

[Rn], +/-Rm, ROR #5bit_shift_imm

[Rn, +/-Rm, RRX]

Table 1-5 Addressing mode 3

Addressing mode 3 - signed byte, and halfword data transfer <a_mode3>

Immediate offset [Rn, #+/-8bit_Offset]

Pre-indexed [Rn, #+/-8bit_Offset]!

Post-indexed [Rn], #+/-8bit_Offset
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Addressing mode 4 (load) is listed in Table 1-6.

Addressing mode 4 (store) is listed in Table 1-7.

Register [Rn, +/-Rm]

Pre-indexed [Rn, +/-Rm]!

Post-indexed [Rn], +/-Rm

Table 1-6 Addressing mode 4 (load)

Addressing mode 4 (Load) <a_mode4L>

Addressing mode Stack type

IA Increment after FD Full descending

IB Increment before ED Empty descending

DA Decrement after FA Full ascending

DB Decrement before EA Empty ascending

Table 1-7 Addressing mode 4 (store)

Addressing mode 4 (Store) <a_mode4S>

Addressing mode Stack type

IA Increment after EA Empty ascending

IB Increment before FA Full ascending

DA Decrement after ED Empty descending

DB Decrement before FD Full descending

Table 1-5 Addressing mode 3 (continued)
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Addressing mode 5 is listed in Table 1-8.

Operand 2 is listed in Table 1-9.

Fields are listed in Table 1-10.

Table 1-8 Addressing mode 5

Addressing mode 5 - coprocessor data transfer <a_mode5>

Immediate offset [Rn, #+/-(8bit_Offset*4)]

Pre-indexed [Rn, #+/-(8bit_Offset*4)]!

Post-indexed [Rn], #+/-(8bit_Offset*4)

Table 1-9 Operand 2

Operand 2 <Oprnd2>

Immediate value #32bit_Imm

Logical shift left Rm LSL #5bit_Imm

Logical shift right Rm LSR #5bit_Imm

Arithmetic shift right Rm ASR #5bit_Imm

Rotate right Rm ROR #5bit_Imm

Register Rm

Logical shift left Rm LSL Rs

Logical shift right Rm LSR Rs

Arithmetic shift right Rm ASR Rs

Rotate right Rm ROR Rs

Rotate right extended Rm RRX

Table 1-10 Fields

Field {field}

Suffix Sets

_c Control field mask bit (bit 3)
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Condition fields are listed in Table 1-11.

1.3.3 Thumb instruction set

This section gives an overview of the Thumb instructions available. For full details of 
these instructions, see the ARM Architecture Reference Manual.

_f Flags field mask bit (bit 0)

_s Status field mask bit (bit 1)

_x Extension field mask bit (bit 2)

Table 1-11 Condition fields

Condition field {cond}

Suffix Description Condition(s)

EQ Equal Z set

NE Not equal Z clear

CS Unsigned higher, or same C set

CC Unsigned lower C clear

MI Negative N set

PL Positive, or zero N clear

VS Overflow V set

VC No overflow V clear

HI Unsigned higher C set, Z clear

LS Unsigned lower, or same C clear, Z set

GE Greater, or equal N=V (N and V set or N and V clear)

LT Less than N<>V (N set and V clear) or (N clear and V set)

GT Greater than Z clear, N=V (N and V set or N and V clear)

LE Less than, or equal Z set or N<>V (N set and V clear) or (N clear and V 
set)

AL Always Always

Table 1-10 Fields (continued)
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The Thumb instruction set formats are shown in Figure 1-3.

Figure 1-3 Thumb instruction set formats
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The Thumb instruction set summary is listed in Table 1-12.

Table 1-12 Thumb instruction summary

Operation Assembler

Move Immediate MOV Rd, #8bit_Imm

High to Low MOV Rd, Hs

Low to High MOV Hd, Rs

High to High MOV Hd, Hs

Arithmetic Add ADD Rd, Rs, #3bit_Imm

Add Low, and Low ADD Rd, Rs, Rn

Add High to Low ADD Rd, Hs

Add Low to High ADD Hd, Rs

Add High to High ADD Hd, Hs

Add Immediate ADD Rd, #8bit_Imm

Add Value to SP ADD SP, #7bit_Imm
ADD SP, #-7bit_Imm

Add with carry ADC Rd, Rs

Subtract SUB Rd, Rs, Rn
SUB Rd, Rs, #3bit_Imm

Subtract Immediate SUB Rd, #8bit_Imm

Subtract with carry SBC Rd, Rs

Negate NEG Rd, Rs

Multiply MUL Rd, Rs

Compare Low, and Low CMP Rd, Rs

Compare Low, and High CMP Rd, Hs

Compare High, and Low CMP Hd, Rs

Compare High, and High CMP Hd, Hs

Compare Negative CMN Rd, Rs

Compare Immediate CMP Rd, #8bit_Imm

Logical AND AND Rd, Rs

EOR EOR Rd, Rs

OR ORR Rd, Rs

Bit clear BIC Rd, Rs

Move NOT MVN Rd, Rs

Test bits TST Rd, Rs
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Shift/Rotate Logical shift left LSL Rd, Rs, #5bit_shift_imm
LSL Rd, Rs

Logical shift right LSR Rd, Rs, #5bit_shift_imm
LSR Rd, Rs

Arithmetic shift right ASR Rd, Rs, #5bit_shift_imm
ASR Rd, Rs

Rotate right ROR Rd, Rs

Branch Conditional

if Z set BEQ label

if Z clear BNE label

if C set BCS label

if C clear BCC label

if N set BMI label

if N clear BPL label

if V set BVS label

if V clear BVC label

if C set, and Z clear BHI label

if C clear, and Z set BLS label

if N set, and V set, or
if N clear, and V clear

BGE label

if N set, and V clear, or
if N clear, and V set

BLT label

if Z clear, and N, or V set, or
if Z clear, and N, or V clear

BGT label

if Z set, or
N set, and V clear, or
N clear, and V set

BLE label

Unconditional B label

Long branch with link BL label

Optional state change

to address held in Lo reg BX Rs

to address held in Hi reg BX Hs

Table 1-12 Thumb instruction summary (continued)

Operation Assembler
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Load With immediate offset

word LDR Rd, [Rb, #7bit_offset]

halfword LDRH Rd, [Rb, #6bit_offset]

byte LDRB Rd, [Rb, #5bit_offset]

With register offset

word LDR Rd, [Rb, Ro]

halfword LDRH Rd, [Rb, Ro]

signed halfword LDRSH Rd, [Rb, Ro]

byte LDRB Rd, [Rb, Ro]

signed byte LDRSB Rd, [Rb, Ro]

PC-relative LDR Rd, [PC, #10bit_Offset]

SP-relative LDR Rd, [SP, #10bit_Offset]

Address

using PC ADD Rd, PC, #10bit_Offset

using SP ADD Rd, SP, #10bit_Offset

Multiple LDMIA Rb!, <reglist>

Store With immediate offset

word STR Rd, [Rb, #7bit_offset]

halfword STRH Rd, [Rb, #6bit_offset]

byte STRB Rd, [Rb, #5bit_offset]

With register offset

word STR Rd, [Rb, Ro]

halfword STRH Rd, [Rb, Ro]

byte STRB Rd, [Rb, Ro]

SP-relative STR Rd, [SP, #10bit_offset]

Multiple STMIA Rb!, <reglist>

Push/Pop Push registers onto stack PUSH <reglist>

Push LR, and registers onto 
stack

PUSH <reglist, LR>

Table 1-12 Thumb instruction summary (continued)

Operation Assembler
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Pop registers from stack POP <reglist>

Pop registers, and PC from 
stack

POP <reglist, PC>

Software 
Interrupt

SWI 8bit_Imm

Table 1-12 Thumb instruction summary (continued)

Operation Assembler
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Chapter 2
Programmer’s Model

This chapter describes the ARM720T programmer’s model. It contains the following 
sections:

• Processor operating states on page 2-2

• Memory formats on page 2-3

• Instruction length on page 2-5

• Data types on page 2-6

• Operating modes on page 2-7

• Registers on page 2-8

• The Thumb state register set is a subset of the ARM state set. You have direct 
access to: on page 2-10

• The program status registers on page 2-13

• Exceptions on page 2-16

• Reset on page 2-23

• Relocation of low virtual addresses by the FCSE PID on page 2-22

• Implementation-defined behavior of instructions on page 2-24.
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2.1 Processor operating states

From the programmer point of view, the ARM720T can be in one of two states:

ARM state This executes 32-bit, word-aligned ARM instructions.

Thumb state This operates with 16-bit, halfword-aligned Thumb instructions. 
In this state, the PC uses bit 1 to select between alternate 
halfwords.

Note

Transition between these two states does not affect the processor mode or the contents 
of the registers.

2.1.1 Switching state

Entering Thumb state 

Entry into Thumb state can be achieved by executing a BX instruction with the state bit 
(bit 0) set in the operand register.

Transition to Thumb state also occurs automatically on return from an exception, for 
example, Interrupt ReQuest (IRQ), Fast Interrupt reQuest (FIQ), UNDEF, ABORT, 
and SoftWare Interrupt (SWI) if the exception was entered with the processor in Thumb 
state.

Entering ARM state

Entry into ARM state happens:

• On execution of the BX instruction with the state bit clear in the operand register.

• On the processor taking an exception, for example, IRQ, FIQ, RESET, UNDEF, 
ABORT, and SWI. In this case, the PC is placed in the link register of the 
exception mode, and execution starts at the vector address of the exception.
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2.2 Memory formats

The bigend bit in the Control Register selects whether the ARM720T treats words in 
memory as being stored in big-endian or little-endian format. See Chapter 3 
Configuration for more information on the Control Register.

ARM720T views memory as a linear collection of bytes numbered upwards from zero. 
Bytes 0 to 3 hold the first stored word, bytes 4 to 7 the second. and bytes 8 to 11 the 
third. ARM720T can treat words in memory as being stored as follows:

• Big-endian format

• Little-endian format on page 2-4.

2.2.1 Big-endian format

In big-endian format, the most significant byte of a word is stored at the lowest 
numbered byte and the least significant byte at the highest numbered byte. Byte 0 of the 
memory system is therefore connected to data lines 31 to 24. This is shown in Figure 
2-1.

Figure 2-1 Big-endian addresses of bytes with words
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2.2.2 Little-endian format

In little-endian format, the lowest numbered byte in a word is considered the least 
significant byte of the word, and the highest numbered byte the most significant. Byte 
0 of the memory system is therefore connected to data lines 7 to 0. This is shown in 
Figure 2-2.

Figure 2-2 Little-endian addresses of bytes with words
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2.3 Instruction length

Instructions are:

• 32 bits long in ARM state

• 16 bits long in Thumb state.
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2.4 Data types

The ARM720T supports the following data types:

• byte (8-bit)

• halfword (16-bit)

• word (32-bit).

You must align these as follows:

• word quantities to 4-byte boundaries

• halfwords quantities to 2-byte boundaries

• byte quantities can be placed on any byte boundary.
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2.5 Operating modes

The ARM720T supports seven modes of operation as listed in Table 2-1.

Changing modes

Mode changes can be made under software control, by external interrupts or during 
exception processing. Most application programs execute in User mode. The non-User 
modes, known as privileged modes, are entered in order to service interrupts or 
exceptions, or to access protected resources.

Table 2-1 ARM720T modes of operation

Mode Type Description

User usr The normal ARM program execution state

FIQ fiq Designed to support a data transfer or channel process

IRQ irq Used for general-purpose interrupt handling

Supervisor svc Protected mode for the operating system 

Abort mode abt Entered after a Data Abort or instruction Prefetch Abort

System sys A privileged User mode for the operating system

Undefined und Entered when an Undefined Instruction is executed
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2.6 Registers

ARM720T has a total of 37 registers:

• 31 general-purpose 32-bit registers

• six status registers.

These registers cannot all be seen at once. The processor state and operating mode 
dictate which registers are available to the programmer.

2.6.1 The ARM state register set

In ARM state, 16 general registers and one or two status registers are visible at any one 
time. In privileged (non-User) modes, mode-specific banked registers are switched in. 
Figure 2-3 on page 2-9 shows which registers are available in each mode. The banked 
registers are marked with a shaded triangle.

The ARM state register set contains 16 directly accessible registers, R0 to R15. All of 
these, except R15, are general-purpose, and can be used to hold either data or address 
values. In addition to these, R16 is used to store status information:

Register 14 R14 is used as the subroutine link register. This receives a copy of 
R15 when a Branch and Link (BL) code instruction is executed. At 
all other times it can be treated as a general-purpose register. The 
corresponding banked registers R14_svc, R14_irq, R14_fiq, 
R14_abt, and R14_und are similarly used to hold the return values 
of R15 when interrupts and exceptions arise, or when BL 
instructions are executed within interrupt or exception routines.

Register 15 R15 holds the Program Counter (PC). In ARM state, bits [1:0] of 
R15 are zero and bits [31:2] contain the PC. In Thumb state, bit 
[0] is zero and bits [31:1] contain the PC.

Register 16 R16 is the Current Program Status Register (CPSR). This 
contains condition code flags and the current mode bits.
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Interrupt modes

FIQ mode has seven banked registers mapped to R8-14 (R8_fiq-R14_fiq). In ARM 
state, many FIQ handlers do not have to save any registers. User, IRQ, Supervisor, 
Abort, and Undefined modes each have two banked registers mapped to R13 and R14, 
allowing each of these modes to have a private stack pointer and link registers.

Figure 2-3 Register organization in ARM state
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2.6.2 The Thumb state register set

The Thumb state register set is a subset of the ARM state set. You have direct access to:

• eight general registers, (R0–R7)

• the PC

• a Stack Pointer (SP) register

• a Link Register (LR)

• the CPSR.

There are banked SPs, LRs, and Saved Process Status Registers (SPSRs) for each 
privileged mode. This is shown in Figure 2-4.

Figure 2-4 Register organization in Thumb state
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2.6.3 The relationship between ARM and Thumb state registers 

The Thumb state registers relate to the ARM state registers in the following ways: 

• Thumb state R0–R7, and ARM state R0–R7 are identical

• Thumb state CPSR and SPSRs, and ARM state CPSR and SPSRs are identical

• Thumb state SP maps onto ARM state R13

• Thumb state LR maps onto ARM state R14

• Thumb state PC maps onto ARM state PC (R15).

This relationship is shown in Figure 2-5.

Figure 2-5 Mapping of Thumb state registers onto ARM state registers

2.6.4 Accessing high registers in Thumb state

In Thumb state, registers R8–R15 (the high registers) are not part of the standard 
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A value can be transferred from a register in the range R0 – R7 (a low register) to a high 
register, and from a high register to a low register, using special variants of the MOV 
instruction. High register values can also be compared against or added to low register 
values with the CMP and ADD instructions. See the ARM Architecture Reference Manual 
for details on high register operations.
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2.7 The program status registers 

The ARM720T contains a CPSR, and five SPSRs for use by exception handlers. These 
registers:

• hold information about the most recently performed ALU operation

• control the enabling and disabling of interrupts

• set the processor operating mode.

The arrangement of bits is shown in Figure 2-6.

Figure 2-6 Program status register format

2.7.1 The condition code flags

The N, Z, C, and V bits are the condition code flags. These can be changed as a result 
of arithmetic and logical operations, and tested to determine whether an instruction 
executes.

In ARM state, all instructions can be executed conditionally. In Thumb state, only the 
Branch instruction is capable of conditional execution. See the ARM Architecture 
Reference Manual for details.
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The T bit This reflects the operating state. When this bit is set, the processor 
is executing in Thumb state, otherwise it is executing in ARM 
state. This is reflected on the TBIT external signal. Software must 
never change the state of the TBIT in the CPSR. If this happens, 
the processor then enters an unpredictable state.

M[4:0] bits These are the mode bits. These determine the processor operating 
mode, as shown in Table 2-2. Not all combinations of the mode 
bits define a valid processor mode. Only those explicitly 
described can be used. 

Note

If you program any illegal value into the mode bits, M[4:0], then the processor enters 
an unrecoverable state. If this occurs, apply reset.

2.7.3 Reserved bits 

The remaining bits in the PSRs are reserved. When changing flag or control bits of a 
PSR, you must ensure that these unused bits are not altered. Also, your program must 
not rely on them containing specific values, because in future processors they might 
read as one or zero.

Table 2-2 PSR mode bit values

M[4:0] Mode Visible Thumb state registers Visible ARM state registers

10000 User R7 to R0,
LR, SP
PC, CPSR

R14 to R0,
PC, CPSR

10001 FIQ R7 to R0,
LR_fiq, SP_fiq
PC, CPSR, SPSR_fiq

R7 to R0,
R14_fiq..R8_fiq,
PC, CPSR, SPSR_fiq

10010 IRQ R7 to R0,
LR_irq, SP_irq
PC, CPSR, SPSR_irq

R12 to R0,
R14_irq, R13_irq,
PC, CPSR, SPSR_irq

10011 Supervisor R7 to R0,
LR_svc, SP_svc,
PC, CPSR, SPSR_svc

R12 to R0,
R14_svc, R13_svc,
PC, CPSR, SPSR_svc
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10111 Abort R7 to R0,
LR_abt, SP_abt,
PC, CPSR, SPSR_abt

R12 to R0,
R14_abt..R13_abt,
PC, CPSR, SPSR_abt

11011 Undefined R7 to R0
LR_und, SP_und,
PC, CPSR, SPSR_und

R12 to R0,
R14_und, R13_und,
PC, CPSR, SPSR_und

11111 System R7 to R0,
LR, SP
PC, CPSR

R14 to R0,
PC, CPSR

Table 2-2 PSR mode bit values (continued)

M[4:0] Mode Visible Thumb state registers Visible ARM state registers
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2.8 Exceptions

Exceptions arise whenever the normal flow of a program has to be halted temporarily, 
for example to service an interrupt from a peripheral. Before an exception can be 
handled, the current processor state must be preserved so that the original program can 
resume when the handler routine has finished.

Several exceptions can arise at the same time. If this happens, they are dealt with in a 
fixed order. See Exception priorities on page 2-21.

2.8.1 Action on entering an exception 

When handling an exception, the ARM720T: 

1. Preserves the address of the next instruction in the appropriate LR.

a. If the exception has been entered from ARM state, the address of the next 
instruction is copied into the LR (that is, current PC+4 or PC+8 depending 
on the exception, See Table 2-3 on page 2-17 for details).

b. If the exception has been entered from Thumb state, the value written into 
the LR is the current PC, offset by a value so that the program resumes 
from the correct place on return from the exception. This means that the 
exception handler does not have to determine which state the exception 
was entered from. 

For example, in the case of SWI:
MOVS PC, R14_svc 

always returns to the next instruction regardless of whether the SWI was 
executed in ARM or Thumb state.

2. Copies the CPSR into the appropriate SPSR.

3. Forces the CPSR mode bits to a value which depends on the exception.

4. Forces the PC to fetch the next instruction from the relevant exception vector.

It can also set the interrupt disable flags to prevent otherwise unmanageable nestings of 
exceptions.

If the processor is in Thumb state when an exception occurs, it automatically switches 
into ARM state when the PC is loaded with the exception vector address.
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2.8.2 Action on leaving an exception 

On completion, the exception handler:

1. Moves the LR, minus an offset where appropriate, to the PC. The offset varies 
depending on the type of exception.

2. Copies the SPSR back to the CPSR.

3. Clears the interrupt disable flags, if they were set on entry.

Note

An explicit switch back to Thumb state is never necessary, because restoring the CPSR 
from the SPSR automatically sets the T bit to the value it held immediately prior to the 
exception.

2.8.3 Exception entry and exit summary

Table 2-3 summarizes the PC value preserved in the relevant R14 on exception entry, 
and the recommended instruction for exiting the exception handler.

Table 2-3 Exception entry and exit

Exception Return Instruction Previous State

ARM R14_x Thumb R14_x

BLa

a.Where PC is the address of the BL/SWI/Undefined Instruction fetch that had
the Prefetch Abort.

MOV PC, R14 PC + 4 PC + 2

SWIa MOVS PC, R14_svc PC + 4 PC + 2

UDEFa MOVS PC, R14_und PC + 4 PC + 2

FIQb

b.Where PC is the address of the instruction that was not executed because the
FIQ or IRQ took priority.

SUBS PC, R14_fiq, #4 PC + 4 PC + 4

IRQ b SUBS PC, R14_irq, #4 PC + 4 PC + 4

PABTa SUBS PC, R14_abt, #4 PC + 4 PC + 4

DABTc SUBS PC, R14_abt, #8 PC + 8 PC + 8

RESETd NA - -



Programmer’s Model

2-18 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

2.8.4 Fast interrupt request

The FIQ exception is designed to support a data transfer or channel process. In ARM 
state it has sufficient private registers to remove the necessity for register saving, 
minimizing the overhead of context switching.

FIQ is externally generated by taking the nFIQ input LOW. nFIQ and nIRQ are 
considered asynchronous, and a cycle delay for synchronization is incurred before the 
interrupt can affect the processor flow.

Irrespective of whether the exception was entered from ARM or Thumb state, a FIQ 
handler must leave the interrupt by executing:

SUBS PC, R14_fiq, #4

FIQ can be disabled by setting the CPSR F flag.

Note

This is not possible from User mode. If the F flag is clear, ARM720T checks for a LOW 
level on the output of the FIQ synchronizer at the end of each instruction.

2.8.5 Interrupt request

The IRQ exception is a normal interrupt caused by a LOW level on the nIRQ input. 
IRQ has a lower priority than FIQ and is masked out when a FIQ sequence is entered. 
It can be disabled at any time by setting the I bit in the CPSR, though this can only be 
done from a privileged (non-User) mode.

Irrespective of whether the exception was entered from ARM or Thumb state, an IRQ 
handler must return from the interrupt by executing:

SUBS PC, R14_irq, #4

2.8.6 Abort

An abort indicates that the current memory access cannot be completed. It can be 
signaled either by the protection unit, or by the external BERROR input. The 
ARM720T checks for the abort exception during memory access cycles.

There are two types of abort:

Prefetch Abort This occurs during an instruction prefetch.

c.Where PC is the address of the Load or Store instruction that generated the
Data Abort.
d.The value saved in R14_svc upon reset is unpredictable.
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Data Abort This occurs during a data access.

If a Prefetch Abort occurs, the prefetched instruction is marked as invalid, but the 
exception is not taken until the instruction reaches the head of the pipeline. If the 
instruction is not executed, for example because a branch occurs while it is in the 
pipeline, the abort does not take place.

If a Data Abort occurs, the action taken depends on the instruction type:

1. Single data transfer instructions (LDR, STR) write-back modified base registers, 
the Abort handler must be aware of this.

2. The swap instruction (SWP) is aborted as though it had not been executed.

3. Block data transfer instructions (LDM, STM) complete. If write-back is set, the 
base is updated. If the instruction attempts to overwrites the base with data (that 
is, it has the base in the transfer list), the overwriting is prevented. All register 
overwriting is prevented after an abort is indicated. This means, in particular, 
that R15 (always the last register to be transferred) is preserved in an aborted 
LDM instruction.

After fixing the reason for the abort, the handler must execute the following irrespective 
of the state (ARM or Thumb):

SUBS PC, R14_abt, #4 for a Prefetch Abort, or

SUBS PC, R14_abt, #8 for a Data Abort

This restores both the PC and the CPSR, and retries the aborted instruction.

Note

There are restrictions on the use of the external abort signal. See External aborts on 
page 6-25.

2.8.7 Software interrupt 

The SWI instruction is used for entering Supervisor mode, usually to request a 
particular supervisor function. A SWI handler must return by executing the following 
irrespective of the state (ARM or Thumb):

MOV PC, R14_svc 

This restores the PC and CPSR, and returns to the instruction following the SWI.
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2.8.8 Undefined instruction 

When ARM720T comes across an instruction that it cannot handle, it takes the 
undefined instruction trap. This mechanism can be used to extend either the Thumb or 
ARM instruction set by software emulation. 

After emulating the failed instruction, the trap handler must execute the following 
irrespective of the state (ARM or Thumb):

MOVS PC, R14_und 

This restores the CPSR and returns to the instruction following the Undefined 
Instruction.

2.8.9 Exception vectors 

The ARM720T can have exception vectors mapped to either low or high addresses, 
controlled by the V bit in the control register (See Register 1, control register on 
page 3-5). Table 2-4 lists the exception vector addresses.

Note

The low addresses are those generated by the processor core before relocation.

Table 2-4 Exception vector addresses

High address  Low address  Exception Mode on entry

0xFFFF0000 0x00000000 Reset Supervisor

0xFFFF0004 0x00000004 Undefined instruction Undefined

0xFFFF0008 0x00000008 Software interrupt Supervisor 

0xFFFF000C 0x0000000C Abort (prefetch) Abort

0xFFFF0010 0x00000010 Abort (data) Abort

0xFFFF0014 0x00000014 Reserved Reserved

0xFFFF0018 0x00000018 IRQ IRQ 

0xFFFF001C 0x0000001C FIQ FIQ
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2.8.10 Exception priorities

When multiple exceptions arise at the same time, a fixed priority system determines the 
order in which they are handled: 

1. Reset (highest priority).

2. Data Abort.

3. FIQ.

4. IRQ.

5. Prefetch Abort.

6. Undefined Instruction, SWI (lowest priority).

2.8.11 Exception restrictions

Undefined Instruction and SWI are mutually exclusive, because they each correspond 
to particular (non-overlapping) decodings of the current instruction.

If a Data Abort occurs at the same time as a FIQ, and FIQs are enabled, the CPSR F flag 
is clear, ARM720T enters the Data Abort handler and then immediately proceeds to the 
FIQ vector. A normal return from FIQ causes the Data Abort handler to resume 
execution. Placing Data Abort at a higher priority than FIQ is necessary to ensure that 
the transfer error does not escape detection. The time for this exception entry must be 
added to worst-case FIQ latency calculations.



Programmer’s Model

2-22 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

2.9 Relocation of low virtual addresses by the FCSE PID

The ARM720T provides a mechanism, Fast Context Switch Extension (FCSE), to 
translate virtual addresses to physical addresses based on the current value of the FCSE 
Process IDentifier (PID).

The virtual address produced by the processor core going to the IDC and MMU can be 
relocated if it lies in the bottom 32MB of the virtual address. That is, virtual address bits 
[31:25] = b0000000 by the substitution of the seven bits [31:25] of the FCSE PID 
register in the CP15 coprocessor. 

A change to the FCSE PID exhibits similar behavior to a delayed branch if:

• the two instructions fetched immediately following an instruction to change the 
FCSE PID are fetched with a relocation to the previous FCSE PID

• the addresses of the instructions being fetched lie within the range of addresses 
to be relocated.

On reset, the FCSE PID register bits [31:25] are set to b0000000, disabling all 
relocation. For this reason, the low address reset exception vector is effectively never 
relocated by this mechanism. 

Note

All addresses produced by the processor core undergo this translation if they lie in the 
appropriate address range. This includes the exception vectors if they are configured to 
lie in the bottom of the virtual memory map. This configuration is determined by the 
V bit in the CP15 control register.
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2.10 Reset

When the BnRES signal goes LOW, ARM720T:

1. Abandons the executing instruction.

2. Flushes the cache and Translation Lookaside Buffer (TLB).

3. Disables the Write Buffer (WB), cache, and MMU.

4. Resets the FCSE PID.

5. Continues to fetch instructions from incrementing word addresses.

When BnRES goes HIGH again, the ARM720T: 

1. Overwrites R14_svc and SPSR_svc by copying the current values of the PC and 
CPSR into them. The value of the saved PC and SPSR is not defined.

2. Forces M[4:0] to 10011 (Supervisor mode), sets the I and F bits in the CPSR, 
and clears the CPSR T bit.

3. Forces the PC to fetch the next instruction from the low reset exception vector.

4. Resumes execution in ARM state.
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2.11 Implementation-defined behavior of instructions

The ARM Architectural Reference Manual defines the instruction set of the ARM720T:

• See Indexed Addressing on a Data Abort for the behavior of the ARM720T 
instructions for those features which are denoted as being 
implementation-defined in that manual.

• See Early termination for those features that define signed and unsigned early 
termination on the ARM720T.

2.11.1 Indexed Addressing on a Data Abort

In the event of a Data Abort with pre-indexed or post-indexed addressing, the value left 
in Rn is defined to be the updated base register value for the following instructions:

• LDC

• LDM

• LDR

• LDRB

• LDRBT

• LDRH

• LDRSB

• LDRSH

• LDRT

• STC

• STM

• STR

• STRB

• STRBT

• STRH

• STRT.

2.11.2 Early termination

On the ARM720T, early termination is defined as:

MLA, MUL Signed early termination.

SMULL, SMLAL Signed early termination.

UMULL, UMLAL Unsigned early termination.
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Chapter 3
Configuration

This chapter describes the configuration of the ARM720T. It contains the following 
sections.

• About configuration on page 3-2

• Internal coprocessor instructions on page 3-3

• Registers on page 3-4.
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3.1 About configuration

The operation and configuration of ARM720T is controlled:

• directly using coprocessor instructions

• indirectly using the MMU page tables.

The coprocessor instructions manipulate a number of on-chip registers which control 
the configuration of the following:

• cache

• write buffer

• MMU

• other configuration options.

3.1.1 Compatibility

To ensure backwards compatibility of future CPUs:

• all reserved or unused bits in registers and coprocessor instructions must be 
programmed to 0

• invalid registers must not be read or written

• the following bits must be programmed to 0:

— Register 1, bits[31:14] and bits [12:10]

— Register 2, bits[13:0]

— Register 5, bits[31:9]

— Register 7, bits[31:0]

— Register 13 FCSE PID, bits[24:0].

3.1.2 Notation

Throughout this section, the following terms and abbreviations are used:

Unpredictable (UNP)
If specified for reads, the data returned when reading from this 
location is unpredictable. It can have any value.
If specified for writes, writing to this location causes 
unpredictable behavior or change in device configuration.

Should Be Zero (SBZ)
When writing to this location, all bits of this field should be zero.
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3.2 Internal coprocessor instructions

The ARM720T instruction set allows specialized additional instructions to be 
implemented using coprocessors. These are separate processing units that are coupled 
to the ARM720T processor. 

Note

The CP15 register map might change in future ARM processors. You are strongly 
recommended to structure software so that any code accessing CP15 is contained in a 
single module. It can then be updated easily.

CP15 registers can only be accessed with MRC and MCR instructions in a privileged 
mode. The instruction bit pattern of the MCR and MRC instructions is shown in Figure 
3-1.

Figure 3-1 MRC and MCR bit pattern

CDP, LDC, and STC instructions, as well as unprivileged MRC and MCR instructions 
to CP15 cause the Undefined Instruction trap to be taken. 

The CRn field of MRC and MCR instructions specifies the coprocessor register to 
access. The CRm field and opcode_2 fields specify a particular action when addressing 
some registers. 

In all instructions accessing CP15:

• the opcode_1 field should be zero (SBZ).

• the opcode_2 and CRm fields should be zero except when accessing registers 7, 
8, and 13 when the specified values must be used to select the desired cache, 
TLB, or process identifier operations.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

1 1 1 opcode_1 L CRn CRm0 1 1 1 1 opcode_2 1RdCond



Configuration

3-4 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

3.3 Registers

ARM720T contains registers that control the cache and MMU operation. These 
registers are accessed using CPRT instructions to CP15 with the processor in a 
privileged mode. 

Only some of registers R0 to R15 are valid. An access to an invalid register causes 
neither the access nor an undefined instruction trap, and therefore must never be carried 
out.

3.3.1 Register 0, ID register

Reading from CP15 register 0 returns the value:

0x41807203

Note

The final nibble represents the core revision.

Table 3-1 Cache and MMU control register

Register Register reads Register writes

0 ID register Reserved

1 Control Control

2 Translation table base Translation table base

3 Domain access control Domain access control

4 Reserved Reserved

5 Fault status Fault status

6 Fault address Fault address

7 Reserved Cache operations

8 Reserved TLB operations

9 – 12 Reserved Reserved

13 Process identifier Process identifier

14 – 15 Reserved Reserved
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The CRm and opcode_2 fields should be zero when reading CP15 register 0. This is 
shown in Figure 3-2.

Figure 3-2 ID register read

Writing to CP15 register 0 is unpredictable. ID register write is shown in Figure 3-3.

Figure 3-3 ID register write

3.3.2 Register 1, control register

Reading from CP15 register 1 reads the control bits. The CRm and opcode_2 fields 
should be zero when reading CP15 register 1. Register 1 read is shown in Figure 3-4.

Figure 3-4 Register 1 read

Writing to CP15 register 1 sets the control bits. The CRm and opcode_2 fields must be 
zero when writing CP15 register 1. Register 1 write is shown in Figure 3-5.

Figure 3-5 Register 1 write

All defined control bits are set to zero on reset. The control bits have the following 
functions:

M Bit 0 MMU enable/disable:
0 = MMU disabled
1 = MMU enabled.

A Bit 1 Alignment fault enable/disable:
0 = Address Alignment Fault Checking disabled
1 = Address Alignment Fault Checking enabled.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 0 0 1 0 0 1 00 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

UNP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

UNP V UNP R S B L D P W C A M

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

UNP/SBZ V
UNP/

SBZ
R S B L D P W C A M
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C Bit 2 Cache enable/disable:
0 = Instruction and/or Data Cache (IDC) disabled
1 = Instruction and/or Data Cache (IDC) enabled.

W Bit 3 Write buffer enable/disable:
0 = Write Buffer disabled
1 = Write Buffer enabled.

P Bit 4 When read, returns 1. When written, is ignored.

D Bit 5 When read, returns 1. When written, is ignored.

L Bit 6 When read, returns 1. When written, is ignored.

B Bit 7 Big-endian/little-endian:
0 = Little-endian operation
1 = Big-endian operation.

S Bit 8 System protection:
Modifies the MMU protection system.

R Bit 9 ROM protection:
Modifies the MMU protection system.

Bits 12:10 When read, this returns an unpredictable value. When written, it 
should be zero, or a value read from these bits on the same 
processor.

Note

Using a read-write-modify sequence when modifying this register provides the greatest 
future compatibility.

V Bit 13 Location of exception vectors:
0 = low addresses
1 = high addresses.

Bits 31:14 When read, this returns an unpredictable value. When written, it 
should be zero, or a value read from these bits on the same 
processor.

Enabling the MMU

You must take care if the translated address differs from the untranslated address, 
because the instructions following the enabling of the MMU are fetched using no 
address translation. Enabling the MMU can be considered as a branch with delayed 
execution. 
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A similar situation occurs when the MMU is disabled. The correct code sequence for 
enabling and disabling the MMU is given in Interaction of the MMU, IDC, and write 
buffer on page 6-26.

If the cache and write buffer are enabled when the MMU is not enabled, the results are 
unpredictable.

3.3.3 Register 2, translation table base register

Reading from CP15 register 2 returns the pointer to the currently active first-level 
translation table in bits [31:14] and an unpredictable value in bits [13:0]. The CRm and 
opcode_2 fields should be zero when reading CP15 register 2.

Writing to CP15 register 2 updates the pointer to the currently active first-level 
translation table from the value in bits [31:14] of the written value. Bits [13:0] should 
be zero. The CRm and opcode_2 fields should be zero when writing CP15 register 2. 
Register 2 is shown in Figure 3-6.

Figure 3-6 Register 2

3.3.4 Register 3, domain access control register

Reading from CP15 register 3 returns the value of the domain access control register.

Writing to CP15 register 3 writes the value of the domain access control register.

The domain access control register consists of 16 2-bit fields, each of which defines the 
access permissions for one of the 16 domains (D15-D0).

The CRm and opcode_2 fields should be zero when reading or writing CP15 register 3. 
This is shown in Figure 3-7.

Figure 3-7 Register 3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Translation base table UNP/SBZ

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
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3.3.5 Register 4, reserved

Register 4 is reserved. Reading CP15 register 4 is unpredictable. Writing CP15 register 
4 is unpredictable. This is shown in Figure 3-8.

Figure 3-8 Register 4

3.3.6 Register 5, fault status register

Reading CP15 register 5 returns the value of the Fault Status Register (FSR). The FSR 
contains the source of the last data fault. 

Note

Only the bottom 9 bits are returned. The upper 23 bits are unpredictable. 

The FSR indicates the domain and type of access being attempted when an abort 
occurred:

Bit 8 This is always read as zero. Bit 8 is ignored on writes.

Bits [7:4] These specify which of the 16 domains (D15-D0) was being 
accessed when a fault occurred. 

Bits [3:1] Theses indicate the type of access being attempted. 

The encoding of these bits is shown in Fault address and fault status registers on 
page 6-19. The FSR is only updated for data faults, not for prefetch faults.

Writing CP15 register 5 sets the FSR to the value of the data written. This is useful when 
a debugger has to restore the value of the FSR. The upper 24 bits written should be zero. 

The CRm and opcode_2 fields should be zero when reading or writing CP15 register 5. 
Register 5 is shown in Figure 3-9.

Figure 3-9 Register 5

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

UNP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

UNP/SBZ 0 Domain Status
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3.3.7 Register 6, Fault Address Register 

Reading CP15 register 6 returns the value of the Fault Address Register (FAR). The 
FAR holds the virtual address of the access that was attempted when a fault occurred. 
The FAR is only updated for data faults, not for prefetch faults.

Writing CP15 register 6 sets the FAR to the value of the data written. This is useful 
when a debugger has to restore the value of the FAR.

The CRm and opcode_2 fields should be zero when reading or writing CP15 register 6. 
Register 6 is shown in Figure 3-10.

Figure 3-10 Register 6

Note

Register 6 contains a modified virtual address if the FCSE PID register is nonzero.

3.3.8 Register 7, cache operations

Writing to CP15 register 7 manages the unified instruction and data cache of the 
ARM720T. Only one cache operation is defined using the following opcode_2 and 
CRm fields in the MCR instruction that writes the CP15 register 7.

Caution
The Invalidate ID cache function invalidates all cache data. Use this with caution.

Register 7 is shown in Table 3-2.

Reading from CP15 register 7 is undefined.

3.3.9 Register 8, TLB operations

Writing to CP15 register 8 controls the Translation Lookaside Buffer (TLB). The 
ARM720T implements a unified instruction and data TLB.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Fault address

Table 3-2 Cache operation

Function opcode_2 value CRm value Data Instruction

Invalidate ID cache 0b000 0b0111 SBZ MCR  p15, 0, Rd, c7, c7, 0
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Two TLB operations are defined, and the function to be performed selected by the 
opcode_2 and CRm fields in the MCR instruction used to write CP15 register 8. This is 
listed in Table 3-3.

Reading from CP15 register 8 is undefined.

The Invalidate TLB function invalidates all of the unlocked entries in the TLB.

The Invalidate TLB single entry function invalidates any TLB entry corresponding to 
the Virtual Address given in Rd.

Note

Register 8 contains a modified virtual address if the FCSE PID register is nonzero.

3.3.10 Registers 9 to 12, reserved

Accessing any of these registers is undefined. Writing to any of these registers is 
undefined.

3.3.11 Register 13, process identifier

Two independent process identifier registers can be accessed using register 13:

• Fast context switch extension process identifier on page 3-11

• Trace process identifier on page 3-11.

Table 3-3 TLB operations

Function opcode_2 value CRm value Data Instruction

Invalidate TLB 0b000 0b0111 SBZ MCR  p15, 0, Rd, c8, c7, 0

Invalidate TLB
single entry

0b001 0b0111 Virtual Address MCR  p15, 0, Rd, c8, c7, 1
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Fast context switch extension process identifier

Reading from CP15 register 13 with opcode_2=0 returns the value of the FCSE PID. 
This is shown in Figure 3-11.

Figure 3-11 Register 13 with opcode_2=0

Note

Only bits [31:25] are returned. The remaining 25 bits are unpredictable.

Writing to CP15 register 13 with opcode_2=0 updates the FCSE PID from the value in 
bits [31:25]. Bits [24:0] should be zero. The FCSE PID is set to b0000000 on Reset.

The CRm and opcode_2 should be zero when reading or writing the FCSE PID.

Changing FCSE PID

You must take care when changing the FCSE PID because the following instructions 
have been fetched with the previous FCSE PID. In this way, changing the FCSE PID 
has similarities with a branch with delayed execution. See Relocation of low virtual 
addresses by the FCSE PID on page 2-22.

Trace process identifier

A 32-bit read/write register is provided to hold a Trace PROCess IDentifier (PROCID) 
up to 32-bits in length visible to the ETM7. This is achieved by reading from or writing 
to the CP15 register 13 with opcode_2 = 1 as shown in Figure 3-12.

Figure 3-12 Register 13 with opcode_2=1

Signal PROCIDWR is exported to notify the ETM7 that the Trace PROCID has been 
written.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

FCSE PID UNP/SBZ

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Trace PROCID
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3.3.12 Registers 14-15, reserved

Accessing any of these registers is undefined. Writing to any of these registers is 
undefined.
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Chapter 4
Instruction and Data Cache

This chapter describes the instruction and data cache. It contains the following sections:

• About the instruction and data cache on page 4-2

• IDC validity on page 4-4

• IDC enable, disable, and reset on page 4-5

• IDC disable for secure applications on page 4-6.
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4.1 About the instruction and data cache

The cache only operates on a write-through basis with a read-miss allocation policy and 
a random replacement algorithm.

4.1.1 IDC operation

The ARM720T contains an 8KB mixed Instruction and Data Cache (IDC). 

The C bit in the ARM720T control register and the cachable bit in the MMU page tables 
only affect loading data into the cache. The cache is always searched regardless of these 
two bits. If the data is found then it is used, so when the cache is disabled, it must also 
be flushed.

The IDC has 512 lines of 16 bytes (four words), arranged as a 4-way set-associative 
cache, and uses the virtual addresses generated by the processor core after relocation by 
the FCSE PID as appropriate. The IDC is always reloaded a line at a time (four words). 
It can be enabled or disabled using the ARM720T control register and is disabled on 
BnRES. 

The operation of the cache is further controlled by the Cachable bit (C bit) stored in the 
MMU page table (see Chapter 6 Memory Management Unit). For this reason, the MMU 
must be enabled in order to use the IDC. However, the two functions can be enabled 
simultaneously, with a single write to the control register.

4.1.2 Cachable bit

The C bit determines whether data being read can be placed in the IDC and used for 
subsequent read operations. Typically, main memory is marked as cachable to improve 
system performance, and I/O space is marked as noncachable to stop the data being 
stored in the ARM720T cache. 

For example, if the processor is polling a hardware flag in I/O space, it is important that 
the processor is forced to read data from the external peripheral, and not a copy of the 
initial data held in the cache. The cachable bit can be configured for both pages and 
sections.

Cachable reads (C=1)

A line fetch of four words is performed when a cache miss occurs in a cachable area of 
memory, and it is randomly placed in a cache bank.

Uncachable reads (C=0)

An external memory access is performed and the cache is not written.



Instruction and Data Cache

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 4-3

4.1.3 Read-lock-write

The IDC treats the read-lock-write instruction as a special case:

Read phase Always forces a read of external memory, regardless of whether 
the data is contained in the cache. 

Write phase Is treated as a normal write operation. If the data is already in the 
cache, the cache is updated. 

Externally, the two phases are flagged as indivisible by asserting the BLOK signal.
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4.2 IDC validity

The IDC operates with virtual addresses, so you must ensure that its contents remain 
consistent with the virtual to physical mappings performed by the MMU. If the memory 
mappings are changed, the IDC validity must be ensured.

4.2.1 Software IDC flush

The entire IDC can be marked as invalid by writing to the cache operations register R7. 
The cache is flushed immediately the register is written, but the following two 
instruction fetches can come from the cache before the register is written.

4.2.2 Doubly-mapped space

Because the cache works with virtual addresses, it is assumed that every virtual address 
maps to a different physical address. If the same physical location is accessed by more 
than one virtual address, the cache cannot maintain consistency. Each virtual address 
has a separate entry in the cache, and only one entry can be updated on a processor write 
operation. 

To avoid any cache inconsistencies, both doubly-mapped virtual addresses must be 
marked as uncachable.
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4.3 IDC enable, disable, and reset

The IDC is automatically disabled and flushed on BnRES. Once enabled, cachable read 
accesses cause lines to be placed in the cache.

To enable the IDC:

1. Make sure that the MMU is enabled first by setting bit 0 in the control register.

2. Enable the IDC by setting bit 2 in the control register. The MMU and IDC can be 
enabled simultaneously with a single write to the control register.

To disable the IDC:

1. Clear bit 2 in the control register.

2. Perform a flush by writing to the cache operations register.
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4.4 IDC disable for secure applications

You can disable the IDC in certain secure applications. This is achieved by forcing the 
IDC to miss without triggering a line fill.

Caution
You are strongly advised not to use this feature in normal applications. When the 
CACHEDIS signal is not being used then it must be held LOW.

To disable the IDC:

1. Disable the MMU by writing to CP15 register 1 using an MCR and setting bit 0 
LOW.

2. Input the special signal, CACHEDIS.

When CACHEDIS is asserted, held HIGH, it masks out some cache signals to disable 
the cache RAM banks and stop a cache hit being generated as a consequence.

Note

• You must disable the MMU before CACHEDIS is asserted.

• You must not enable the MMU until after CACHEDIS is deasserted.

• ARM does not support the use of this feature.
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Chapter 5
Write Buffer

This chapter describes the write buffer. It contains the following sections:

• About the write buffer on page 5-2

• Write buffer operation on page 5-3.
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5.1 About the write buffer

The ARM720T write buffer is provided to improve system performance. It can buffer 
up to eight words of data, and four independent addresses. It can be enabled or disabled 
using the W bit, bit 3, in the ARM720T control register. The buffer is disabled and 
flushed on reset. 

The operation of the write buffer is further controlled by the Bufferable (B) bit, which 
is stored in the MMU page tables. For this reason, the MMU must be enabled before 
using the write buffer. The two functions can, however, be enabled simultaneously, 
with a single write to the control register. 

For a write to use the write buffer, both the W bit in the control register and the B bit in 
the corresponding page table must be set.

Note

It is not possible to abort buffered writes externally. The BERROR pin is ignored. 
Areas of memory that can generate aborts must be marked as unbufferable in the MMU 
page tables.

5.1.1 Bufferable bit

This bit controls whether a write operation uses or does not use the write buffer. 
Typically, main memory is bufferable and I/O space unbufferable. The B bit can be 
configured for both pages and sections.
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5.2 Write buffer operation

When the CPU performs a write operation, the translation entry for that address is 
inspected and the state of the B bit determines the subsequent action. If the write buffer 
is disabled using the ARM720T control register, buffered writes are treated in the same 
way as unbuffered writes. 

To enable the write buffer:

1. Ensure the MMU is enabled by setting bit 0 in the control register.

2. Enable the write buffer by setting bit 3 in the control register. The MMU and 
write buffer can be enabled simultaneously with a single write to the control 
register.

To disable the write buffer, clear bit 3 in the control register.

Note

• Any writes already in the write buffer complete normally.

• The write buffer will attempt a write operation as long as there is data present.

5.2.1 Bufferable write

If the write buffer is enabled and the processor performs a write to a bufferable area, the 
data is placed in the write buffer at FCLK speeds, or BCLK speeds if running with 
fastbus extension, and the CPU continues execution. The write buffer then performs the 
external write in parallel. 

If the write buffer is full (either because there are already eight words of data in the 
buffer, or because there is no slot for the new address), the processor is stalled until 
there is sufficient space in the buffer. 

5.2.2 Unbufferable write

If the write buffer is disabled or the CPU performs a write to an unbufferable area, 
the processor is stalled until the write buffer empties and the write completes externally. 
This might require synchronization and several external clock cycles. 
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5.2.3 Read-lock-write

The write phase of a read-lock-write sequence is treated as an unbuffered write, even if 
it is marked as buffered. 

Note

A single write requires one address slot and one data slot in the write buffer. A 
sequential write of n words requires one address slot and n data slots. The total of eight 
data slots in the buffer can be used as required. For example, there can be three 
nonsequential writes and one sequential write of five words in the buffer, and the 
processor could continue as normal, A fifth write or a sixth word in the fourth write 
stalls the processor until the first write has completed.
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Chapter 6
Memory Management Unit

This chapter describes the Memory Management Unit (MMU). It contains the following 
sections:

• About the MMU on page 6-2

• MMU program accessible registers on page 6-4

• Address translation process on page 6-5

• Level 1 descriptor on page 6-7

• Page table descriptor on page 6-8

• Section descriptor on page 6-9

• Translating section references on page 6-11

• Level 2 descriptor on page 6-12

• Translating small page references on page 6-14

• Translating large page references on page 6-16

• MMU faults and CPU aborts on page 6-18

• Fault address and fault status registers on page 6-19

• Domain access control on page 6-21

• Fault checking sequence on page 6-22

• External aborts on page 6-25

• Interaction of the MMU, IDC, and write buffer on page 6-26.
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6.1 About the MMU

The MMU performs two primary functions:

• translates virtual addresses into physical addresses

• controls memory access permissions.

The MMU hardware required to perform these functions consists of:

• a TLB

• access control logic

• translation table walking logic.

When the MMU is turned off, as happens on reset, the virtual address is output directly 
onto the physical address bus.

Note

The MMU works with virtual addresses after any relocation by the FCSE PID.

6.1.1 Memory accesses

The MMU supports memory accesses based on Sections or Pages:

Sections Are 1MB blocks of memory. 

Pages Two different page sizes are supported: 

• Small pages consist of 4KB blocks of memory. Additional 
access control mechanisms are extended to 1KB subpages.

• Large pages consist of 64KB blocks of memory. Large 
pages are supported to allow mapping of a large region of 
memory while using only a single entry in the TLB. 
Additional access control mechanisms are extended to 
16KB subpages.

6.1.2 Domains

The MMU also supports the concept of domains. These are areas of memory that can 
be defined to possess individual access rights. The domain access control register 
specifies access rights for up to 16 separate domains.

6.1.3 TLB

The TLB caches 64 translated entries. During most memory accesses, the TLB provides 
the translation information to the access control logic:
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• If the TLB contains a translated entry for the virtual address, the access control 
logic determines if access is permitted. 

• If access is permitted, the MMU outputs the appropriate physical address 
corresponding to the virtual address. 

• If access is not permitted, the MMU signals the CPU to abort.

If the TLB misses (it does not contain a translated entry for the virtual address), the 
translation table walking hardware is invoked to retrieve the translation information 
from a translation table in physical memory. Once retrieved, the translation information 
is placed into the TLB, possibly overwriting an existing value. The entry to be 
overwritten is chosen by cycling sequentially through the TLB locations.

Note

The TLB must be flushed whenever the virtual to physical address mappings are 
changed.

6.1.4 Effect of reset

For information on the effect of reset, see Reset on page 2-23.
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6.2 MMU program accessible registers

The ARM720T processor provides several 32-bit registers that determine the operation 
of the MMU.

Data is written to and read from the MMU registers using the ARM CPU MRC and MCR 
coprocessor instructions. 

A brief description of the registers is given in Table 6-1. Each register is discussed in 
more detail in its relevant section.

The FSR and FAR are only updated for data faults, not for prefetch faults.

Table 6-1 MMU program accessible registers

Register Description

Translation table
base

Holds the physical address of the base of the translation table 
maintained in main memory. This base must reside on a 16KB 
boundary.

Domain access
control

Consists of 16 2-bit fields, each of which defines the access 
permissions for one of the 16 domains (D15–D0).

TLB operations Allows individual or all TLB entries to be marked as invalid.

Fault status Indicates the domain and type of access being attempted when an abort 
occurred. 
Bits [7:4] specify which of the 16 domains (D15-D0) was being 
accessed when a fault occurred.
Bits [3:1] indicate the type of access being attempted.
The encoding of these bits is different for internal and external faults 
(as indicated by bit 0 in the register) and is shown in Table 6-5 on 
page 6-19.

Fault address Holds the virtual address of the access which was attempted when a 
fault occurred.
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6.3 Address translation process

The MMU translates virtual addresses generated by the CPU after relocation by the 
FCSE PID into physical addresses to access external memory. It also derives and checks 
the access permission. Translation information, that consists of both the address 
translation data and the access permission data, resides in a translation table located in 
physical memory. 

The MMU provides the logic required to:

• traverse this translation table

• obtain the translated address

• check the access permission.

There are three routes by which the address translation, and therefore permission check, 
takes place. The route taken depends on whether the address has been marked as a 
section-mapped access or a page-mapped access. There are two sizes of page-mapped 
access, large pages and small pages. However, the translation process always starts out 
in the same way, as described in Translation table base, with a level one fetch. A 
section-mapped access only requires a level one fetch, but a page-mapped access also 
requires a level two fetch.

6.3.1 Translation table base

The translation process is initiated when the TLB does not contain an entry for the 
requested virtual address. The Translation Table Base (TTB) register points to the base 
of a table in physical memory that contains:

• section and page descriptors

• section or page descriptors. 

The 14 low-order bits of the TTB Register should be zero as illustrated in Figure 6-1.

Figure 6-1 Translation table base register

Note

The table must reside on a 16KB boundary.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Translation table base SBZ
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6.3.2 Level 1 fetch

Bits [31:14] of the TTB register are concatenated with bits [31:20] of the virtual address 
to produce a 30-bit address. This address selects a 4-byte translation table entry that is 
a first level descriptor for either a section or a page. Bit 1 of the returned descriptor 
specifies whether it is for a section or page. This is shown in Figure 6-2.

.

Figure 6-2 Accessing the translation table first level descriptors

31 20 19 00

Table index Section index

31 14 13 00

Translation base SBZ

31 14 13 02 01 00

Translation base Table index

31 00

Virtual address

Translation table base

First level descriptor

0 0

18
12
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6.4 Level 1 descriptor

The level 1 descriptor returned is either a page table descriptor or a section descriptor, 
and its format varies accordingly. Figure 6-3 illustrates the format of level 1 descriptors.

Figure 6-3 Level 1 descriptors

The two least significant bits indicate the descriptor type and validity, and are 
interpreted as listed in Table 6-2.

31 20 19 0010 09 04

Page table base address

08 03 02 01

Section base address

1

12 11

Fault

01 PageDomain

1Domain C B 1 SectionAPSBZ

Reserved

05

0

1

1

0

0

SBZ

Table 6-2 Interpreting level 1 descriptor bits [1:0]

Value Meaning Notes

 0 0 Invalid Generates a section translation fault

 0 1 Page Indicates that this is a page descriptor

 1 0 Section Indicates that this is a section descriptor

 1 1 Reserved Reserved for future use
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6.5 Page table descriptor

The bits used for the page table descriptor are as follows:

Bits [3:2] Are always written as 0.

Bit [4] Must be written to 1 for backward compatibility.

Bits [8:5] Specify one of the 16 possible domains, held in the domain access 
control register, that contain the primary access controls.

Bit [9] Is always written as 0.

Bits [31:10] Form the base for referencing the page table entry. The page table 
index for the entry is derived from the virtual address as illustrated 
in Figure 6-6 on page 6-15. 

If a page table descriptor is returned from the level one fetch, a level two fetch is 
initiated as described in Section descriptor on page 6-9.
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6.6 Section descriptor

Address data is described as:

C (Cachable) Indicates that data at this address is placed in the cache if the cache 
is enabled.

B (Bufferable) Indicates that data at this address is written through the write 
buffer if the write buffer is enabled.

Note

The meaning of the C and B bits might change in later ARM processors. You are 
strongly recommend to structure software so that code that manipulates the MMU page 
tables is contained in a single module. It can then be updated easily when you port it to 
a different ARM processor.

The bits used for the page table descriptor are as follows:

Bits [3:2] (C, B) Control the cache and write buffer related functions.

Bit [4] Must be written to 1 for backward compatibility.

Bits [8:5] Specify one of the 16 possible domains held in the domain access 
control register that contain the primary access controls.

Bit [9] Is always written as 0.

Bits [11:10] (AP) Specify the access permissions for this section and are interpreted 
as listed in Table 6-3 on page 6-10. Their interpretation depends 
on the setting of the S and R bits, control register bits 8 and 9. The 
domain access control specifies the primary access control. The 
AP bits only have an effect in client mode. Refer to Domain 
access control on page 6-21.

Bits [19:12] Are always written as 0.

Bits [31:20] Form the corresponding bits of the physical address for the 1MB 
section.
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Table 6-3 Interpreting access permission (AP) bits

AP S R
Supervisor
Permission 

User
Permission Notes

00 0 0 No access No access Any access generates a permission fault

00 1 0 Read only No access Supervisor read only permitted

00 0 1 Read only Read only Any write generates a permission fault

00 1 1 Reserved Reserved Reserved

01 x x Read/write No access Access allowed only in Supervisor mode

10 x x Read/write Read only Writes in User mode cause permission fault

11 x x Read/write Read/write All access types permitted in both modes

xx 1 1 Reserved Reserved Reserved
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6.7 Translating section references

Figure 6-4 shows the complete section translation sequence.

Note

The access permissions contained in the level 1 descriptor must be checked before the 
physical address is generated.

Figure 6-4 Section translation

31 20 19 00

31 14 13 00

31 14 13 02 01 00

31 00

Virtual address

Translation table base

First level descriptor

18
12

20 19 10 09 0408 03 02 0112 11

20 1931

05

00

12
20

Translation base Table index 0 0

Section base address 1Domain C B 1APSBZ 0

Section indexSection base address

Translation base SBZ

Table index Section index

SBZ
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6.8 Level 2 descriptor

If the level one fetch returns a page table descriptor, this provides the base address of 
the page table to be used. The page table is then accessed as described in Figure 6-6 on 
page 6-15, and a page table entry, or level 2 descriptor, is returned. This in turn can 
define either a small page or a large page access. Figure 6-5 shows the format of level 
2 descriptors.

Figure 6-5 Page table entry, level 2 descriptor

The two least significant bits indicate the page size and validity, and are interpreted as 
listed in Table 6-4.

The remaining bits are interpreted as follows:

Bit [2] B, bufferable, indicates that data at this address is written through 
the write buffer if the write buffer is enabled.

Bit [3] C, cacheable, indicates that data at this address is placed in the 
IDC if the cache is enabled. 

Bits [11:4] Specify the access permissions (ap3–ap0) for the four subpages. 
Interpretation of these bits is listed in Table 6-2 on page 6-7.

Bits [15:12] Are programmed as 0 for large pages.

31 0010 09 04

Large page base address

08 03 02 01

Small page base address

1

12 11

Fault

0C Large Page

C B 1 Small page

Reserved1

1

0

05060716 15

Bap0ap1ap2ap3SBZ

ap0ap1ap2ap3

0 0

Table 6-4 Interpreting page table entry bits 1:0

Value Meaning Notes

 0 0 Invalid Generates a page translation fault

 0 1 Large page Indicates that this is a 64KB page

 1 0 Small page Indicates that this is a 4KB page

 1 1 Reserved Reserved for future use
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Bits [31:12] Small pages.

Bits [31:16] Large pages.

Note

Small and large pages form the corresponding bits of the physical address, that is the 
physical page number. The page index is derived from the virtual address as illustrated 
in Figure 6-6 on page 6-15 and Figure 6-7 on page 6-17.
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6.9 Translating small page references

Figure 6-6 illustrates the complete translation sequence for a 4KB small page. Page 
translation involves one additional step beyond that of a section translation. The level 1 
descriptor is the page table descriptor, and this points to the level 2 descriptor, or page 
table entry. As the access permissions are now contained in the level 2 descriptor they 
must be checked before the physical address is generated. The sequence for checking 
access permissions is described in Fault checking sequence on page 6-22.
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Figure 6-6 Small page translation

31 20 19 00

31 14 13 00

Translation base SBZ

31 14 13 02 01 00

Translation base Table index
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First level descriptor
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000110 09

31

00111231

Second level descriptor

Physical address
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Page indexPage base address

L2 table indexPage table base address 0 0

Page table base address 1Domain SBZ 0 1

Table index Page indexL2 table index

SBZ
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6.10 Translating large page references

Figure 6-7 illustrates the complete translation sequence for a 64KB large page. As the 
upper four bits of the page index and low-order four bits of the page table index overlap, 
each page table entry for a large page must be duplicated 16 times, in consecutive 
memory locations, in the page table.
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Figure 6-7 Large page translation
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31 14 13 00

Translation base SBZ
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6.11 MMU faults and CPU aborts

The MMU generates four types of faults:

• alignment fault

• translation fault 

• domain fault

• permission fault.

In addition, an external abort can be raised on external data access.

The access control mechanisms of the MMU detect the conditions that produce these 
faults. If a fault is detected as the result of a memory access, the MMU aborts the access 
and signals the fault condition to the CPU. The MMU is also capable of retaining status 
and address information about the abort. The CPU recognizes two types of abort that 
are treated differently by the MMU:

• Data Aborts

• Prefetch Aborts.

If the MMU detects an access violation, it does so before the external memory access 
takes place, and it therefore inhibits the access. External aborts do not necessarily 
inhibit the external access, as described in External aborts on page 6-25.

If the ARM720T is operating in fastbus mode an internally aborting access can cause 
the address on the external address bus to change, even though the external bus cycle 
has been canceled. The address that is placed on the bus is the translation of the address 
that caused the abort, though in the case of a translation fault the value of this address 
is undefined. No memory access is performed to this address.
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6.12 Fault address and fault status registers

Aborts resulting from data accesses, Data Aborts are acted upon by the CPU 
immediately, and the MMU places an encoded 4-bit value FS[3:0], along with the 4-bit 
encoded domain number, in the FSR.

In addition, the virtual processor address which caused the data abort is latched into the 
FAR. If an access violation simultaneously generates more than one source of abort, 
they are encoded in the priority listed in Table 6-5.
 

Note

Any abort masked by the priority encoding can be regenerated by fixing the primary 
abort and restarting the instruction.

CPU instructions are prefetched, so a Prefetch Abort simply flags the instruction as it 
enters the instruction pipeline. Only when, and if, the instruction is executed does it 
cause an abort. An abort is not acted upon if the instruction is not used, that is, it is 

Table 6-5 Priority encoding of fault status

Priority Source FS[3:0]
Domain
[3:0]

FAR

Highest Alignment 00x1a Invalid Valid

Bus error (translation) level 1
Level 2

1100
1110

Invalid
Valid

Valid
Valid

Translation section
Page 

0101
0111

Invalid
Valid

Valid
Valid

Domain section
Page

1001
1011

Valid
Valid

Valid
Valid

Permission section 
Page

1101
1111

Valid
Valid

Valid
Valid

Bus error (linefetch) section
Page

0100
0110

Valid
Valid

Contains the address of the start of the linefetch
Contains the address of the start of the linefetch

Lowest Bus error (other) section 
Page

1000
1010

Valid
Valid

Valid
Valid

a. x is undefined, and can be read as zero or one.
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branched around. Because instruction Prefetch Aborts might not be acted upon, the 
MMU status information is not preserved for the resulting CPU abort. For a Prefetch 
Abort, the MMU does not update the FSR or FAR.

The sections that follow describe the various access permissions and controls supported 
by the MMU and describe how these are interpreted to generate faults.

Note

The FAR will contain a modified virtual address if the process identifier register is 
nonzero.
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6.13 Domain access control

MMU accesses are primarily controlled through domains. There are 16 domains, and 
each has a 2-bit field to define it. 

Two basic kinds of users are supported: 

Clients Use a domain.

Managers Control the behavior of the domain.

The domains are defined in the domain access control register. Figure 6-8 illustrates 
how the 32 bits of the register are allocated to define the 16 2-bit domains.

Figure 6-8 Domain access control register format

Table 6-6 lists how the bits within each domain are interpreted to specify the access 
permissions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

15 01234567891011121314

Table 6-6 Interpreting access bits in domain access control register

Value Meaning Notes

00 No access Any access generates a domain fault.

01 Client Accesses are checked against the access permission bits in the section or page descriptor.

10 Reserved Reserved. Currently behaves like the no access mode.

11 Manager Accesses are not checked against the access permission bits so a permission fault cannot be 
generated.
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6.14 Fault checking sequence

The sequence the MMU uses to check for access faults is slightly different for sections 
and pages. Figure 6-9 illustrates the sequence for both types of access.

Figure 6-9 Sequence for checking faults

Descriptions of the conditions that generate each of the faults are provided as follows:

Virtual address

Check address

alignment
Misaligned

Alignment

fault

Get level 1

descriptor
Invalid

Section

translation

fault

Section Page

Get page

table entry

Check domain

status

Invalid

Page

translation

fault

No access(00)

Reserved(10)

Page

domain

fault

Section Page

No access(00)

Reserved(10)

Section

domain

fault

Client(01) Client(01)

Manager(01)

Check access

permissions

Check access

permissions

Physical address

Violation

Section

permission

fault

Violation

Sub-page

permission

fault
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• Alignment fault

• Translation fault

• Domain fault

• Permission fault on page 6-24.

6.14.1 Alignment fault

If alignment fault is enabled (bit 1 in the control register set), the MMU generates an 
alignment fault on any data word access without a word-aligned address, irrespective of 
whether the MMU is enabled or not. In other words, if either of virtual address bits [1:0] 
are not 0, the alignment fault is enabled.

An alignment fault is not generated on any instruction fetch, nor on any byte access. 

Note

If the access generates an alignment fault, the access sequence aborts without reference 
to further permission checks. 

6.14.2 Translation fault 

There are two types of translation fault:

Section Is generated if the level 1 descriptor is marked as invalid. This 
happens if bits[1:0] of the descriptor are both 0, or both 1.

Page Is generated if the page table entry is marked as invalid. This 
happens if bits[1:0] of the entry are both 0, or both 1.

6.14.3 Domain fault

There are two types of domain fault: 

Section The domain is checked when the level 1 descriptor is returned.

Page. The domain is checked when the page table entry is returned.

In both cases, the level 1 descriptor holds the 4-bit domain field that selects one of the 
16 2-bit domains in the domain access control register. The two bits of the specified 
domain are then checked for access permissions as listed in Table 6-3 on page 6-10. 

If the specified access is either no access (00) or reserved (10), either a section domain 
fault or page domain fault occurs. 
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6.14.4 Permission fault

Permission fault is checked at the same time as domain fault. If the 2-bit domain field 
returns Client (01), the permission access check is invoked as follows:

There are two types of permission fault:

• section

• subpage.

Section

If the level 1 descriptor defines a section-mapped access, the AP bits of the descriptor 
define whether or not the access is allowed according to Table 6-3 on page 6-10. 
Interpretation depends on the setting of the S bit (control register bit 8). If the access is 
not allowed, a section permission fault is generated.

Subpage

If the level 1 descriptor defines a page-mapped access then the level 2 descriptor 
specifies four access permission fields (ap3 to ap0), each corresponding to one quarter 
of the page:

• For small pages:

— ap3 is selected by the top 1KB of the page

— ap0 is selected by the bottom 1KB of the page.

• For large pages:

— ap3 is selected by the top 16KB of the page

— ap0 is selected by the bottom 16KB of the page.

The selected AP bits are then interpreted in exactly the same way as for a section (see 
Table 6-3 on page 6-10. The only difference is that the fault generated is a subpage 
permission fault.
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6.15 External aborts

In addition to the MMU-generated aborts, ARM720T has an external abort pin, 
BERROR, which can be used to flag an error on an external memory access. However, 
not all accesses can be aborted in this way, so use this pin with great care. This section 
describes the restrictions.

The following accesses can be aborted and restarted safely. The external access stops 
on the next cycle if any of the following are aborted:

• reads

• unbuffered writes

• level 1 descriptor fetch

• level 2 descriptor fetch

• read-lock-write sequence.

In the case of a read-lock-write sequence in which the read aborts, the write does not 
happen.

6.15.1 Cachable reads (linefetches)

A linefetch can be safely aborted on any word in the transfer.

If an abort occurs during the linefetch, the cache is purged, so it does not contain invalid 
data.

If the abort happens on a word that has been requested by the ARM720T, it is aborted, 
otherwise the cache line is purged but program flow is not interrupted. The line is 
therefore purged under all circumstances.

6.15.2 Buffered writes

Buffered writes cannot be externally aborted. Therefore, the system must be configured 
so that it does not attempt buffered writes to areas of memory that are capable of 
flagging an external abort.

Note

Areas of memory that can generate an external abort on a location that has previously 
been read successfully must not be marked as cachable or unbufferable. This applies to 
both the MMU page tables and the configuration register. If all writes to an area of 
memory abort, it is recommended that you mark it as read-only in the MMU, otherwise 
mark it as uncachable and unbufferable.
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6.16 Interaction of the MMU, IDC, and write buffer

The MMU, IDC, and WB can be enabled or disabled independently. However, in order 
for the write buffer or the cache to be enabled the MMU must also be enabled. There 
are no hardware interlocks on these restrictions, so invalid combinations cause 
undefined results. Valid buffer combinations are listed in Table 6-7.

The procedures described in Enabling the MMU and Disabling the MMU on page 6-27 
must be observed.

6.16.1  Enabling the MMU

To enable the MMU:

1. Program the translation table base and domain access control registers

2. Program level 1 and level 2 page tables as required.

3. Enable the MMU by setting bit 0 in the control register.

Note

You must take care if the translated address differs from the untranslated address 
because the two instructions following the enabling of the MMU have been fetched 
using flat translation. Enabling the MMU might be considered as a branch with delayed 
execution. A similar situation occurs when the MMU is disabled. Consider the 
following code sequence:
MOV R1, #0x1

MCR 15,0,R1,0,0; Enable MMU

Fetch Flat

Fetch Flat

Fetch Translated

Table 6-7 Valid MMU, IDC and write buffer combinations

MMU IDC WB

Off Off Off

On Off Off

On On Off

On Off On

On On On
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6.16.2 Disabling the MMU

To disable the MMU:

1. Disable the WB by clearing bit 3 in the control register.

2. Disable the IDC by clearing bit 2 in the control register.

3. Disable the MMU by clearing bit 0 in the control register.

You can disable all three functions simultaneously.

Note

If the MMU is enabled, then disabled and subsequently re-enabled, the contents of the 
TLB are preserved. If these are now invalid, you must flush the TLB before re-enabling 
the MMU.
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Chapter 7
Debug Interface

This chapter describes the ARM720T advanced debug interface. It contains the 
following sections:

• About the debug interface on page 7-2

• Debug systems on page 7-4

• Entering debug state on page 7-7

• Scan chains and JTAG interface on page 7-9

• Reset on page 7-11

• Public instructions on page 7-12

• Test data registers on page 7-16

• ARM7TDM core clocks on page 7-23

• Determining the core and system state on page 7-25

• The PC during debug on page 7-30

• Priorities and exceptions on page 7-34

• Scan interface timing on page 7-35

• Scan and debug signals used by the embedded trace logic on page 7-42.
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7.1 About the debug interface

In this chapter ARM7TDM refers to the ARM7TDMI core excluding the 
EmbeddedICE Logic. The ARM7TDM debug interface is based on IEEE Std. 
1149.1-1990, Standard Test Access Port and Boundary-Scan Architecture. Refer to this 
standard for an explanation of the terms used in this chapter and for a description of the 
TAP controller states.

7.1.1 Debug extensions

ARM7TDM contains hardware extensions for advanced debugging features. These are 
intended to ease the development of application software, operating systems, and the 
hardware itself.

The debug extensions allow you to stop the core either on a given instruction fetch 
(breakpoint) or data access (watchpoint), or asynchronously by a debug-request. When 
this happens, ARM7TDM is said to be in debug state. At this point, the internal state of 
the core and the external state of the system can be examined. Once examination is 
complete, the core and system state can be restored and program execution resumed.

Debug state

ARM7TDM is forced into debug state either by a request on one of the external debug 
interface signals, or by an internal functional unit known as EmbeddedICE Logic. Once 
in debug state, the core isolates itself from the memory system. The core can then be 
examined while all other system activity continues as normal.

Internal state

The internal state of the ARM7TDM is examined through a JTAG-style serial interface, 
that allows instructions to be serially inserted into the pipeline of the core without using 
the external data bus. When in debug state, a STore Multiple (STM) can be inserted into 
the instruction pipeline and this dumps the contents of the ARM7TDM registers. This 
data can be serially shifted out without affecting the rest of the system. 

7.1.2 Pullup resistors

The IEEE 1149.1 standard effectively requires that XTDI, XnTRST, and XTMS have 
internal pullup resistors. In order to minimize static current draw, these resistors are not 
fitted to ARM7TDM. Accordingly, the four inputs to the test interface (the above three 
signals plus XTCK) must all be driven to good logic levels to achieve normal circuit 
operation.
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7.1.3 Instruction register

The instruction register is four bits in length. 

There is no parity bit. The fixed value loaded into the instruction register during the 
CAPTURE-IR controller state is b0001.
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7.2 Debug systems

The ARM7TDM forms one component of a debug system that interfaces from the 
high-level debugging performed by the user to the low-level interface supported by 
ARM7TDM. Figure 7-1 shows a typical debug system.

Figure 7-1 Typical debug system

A debug system typically has three parts:

• Debug host

• Protocol converter

• resume program execution. on page 7-5.

7.2.1 Debug host

This is a computer, for example a personal computer, running a software debugger such 
as Arm Debugger for Windows (ADW). The debug host allows you to issue high level 
commands such as setting breakpoints, or examining the contents of memory.

7.2.2 Protocol converter

The protocol converter interfaces between the high-level commands issued by the 
debug host and the low-level commands of the ARM720T JTAG interface. Typically it 
interfaces to the host through an interface such as an enhanced parallel port.

Protocol

converter

Debug host

Debug

target

Host computer running

debugger

Development system

containing ARM7TDM
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7.2.3 ARM720T

The ARM720T has hardware extensions that ease debugging at the lowest level. The 
debug extensions:

• allow you to stall the core from program execution

• examine the core internal state

• examine the state of the memory system

• resume program execution.

The ARM720T contains the ARM7TDM core. The major blocks of the ARM7TDM 
core are:

The ARM CPU core 
This has hardware support for debug.

The EmbeddedICE Logic
This is a set of registers and comparators used to generate debug 
exceptions (such as breakpoints). This unit is described in 
Chapter 8 EmbeddedICE Logic.

The TAP controller 
This controls the action of the scan chains using a JTAG serial 
interface.

The anatomy of ARM7TDM is shown in Figure 7-2 on page 7-6 with the ARM720T 
system control processor.

The debug host and the protocol converter are system-dependent.
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Figure 7-2 ARM7TDM scan chain arrangement
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7.3 Entering debug state

ARM7TDM is forced into debug state after a breakpoint, watchpoint, or debug request. 
You can program the conditions under which a breakpoint or watchpoint occur using 
EmbeddedICE Logic. Alternatively, external logic can monitor the address and data 
bus, and flag breakpoints and watchpoints using the BREAKPOINT pin. 

7.3.1 Entering debug state on breakpoint

After an instruction has been breakpointed, the core does not enter debug state 
immediately. Instructions are marked as being breakpointed as they enter the 
ARM7TDM instruction pipeline. Therefore ARM7TDM only enters debug state when 
and if the instruction reaches the execute stage of the pipeline. 

There are two reasons why a breakpointed instruction might not cause ARM7TDM to 
enter debug state:

• A branch precedes the breakpointed instruction. When the branch is executed, 
the instruction pipeline is flushed and the breakpoint is canceled. 

• An exception has occurred. Again, the instruction pipeline is flushed and the 
breakpoint is canceled. However, the normal way to exit from an exception is to 
branch back to the instruction that would have executed next. This involves 
refilling the pipeline, and so the breakpoint can be re-flagged.

When a breakpointed conditional instruction reaches the Execute stage of the pipeline, 
the breakpoint is always taken and ARM7TDM enters debug state, regardless of 
whether the condition was met.

Breakpointed instructions are not executed. Instead, ARM7TDM enters debug state, so 
that when the internal state is examined, the state before the breakpointed instruction is 
seen. Once examination is complete, the breakpoint must be removed and program 
execution restarted from the previously breakpointed instruction.

7.3.2 Entering debug state on watchpoint

Watchpoints occur on data accesses. A watchpoint is always taken, but the core might 
not enter debug state immediately. In all cases, the current instruction does complete. If 
this is a multi-word load or store (LDM or STM), many cycles can elapse before the 
watchpoint is taken.

Watchpoints are similar to Data Aborts. The difference is that if a Data Abort occurs, 
although the instruction completes, all subsequent changes to ARM7TDM state are 
prevented. This allows the cause of the abort to be cured by the abort handler, and the 
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instruction re-executed. In the case of a watchpoint, the instruction completes and all 
changes to the core state occur (load data is written into the destination registers, and 
base writeback occurs). Therefore, the instruction does not have to be restarted.

Watchpoints are always taken. If an exception is pending when a watchpoint occurs, the 
core enters debug state in the mode of that exception.

7.3.3 Entering debug state on debug-request

ARM7TDM can also be forced into debug state on debug request. This can be done 
either through EmbeddedICE programming (see Chapter 8 EmbeddedICE Logic), or by 
the assertion of the DBGRQ pin. This pin is an asynchronous input and is therefore 
synchronized by logic inside ARM7TDM before it takes effect. Following 
synchronization, the core normally enters debug state at the end of the current 
instruction. However, if the current instruction is a busy-waiting access to a 
coprocessor, the instruction terminates and ARM7TDM enters debug state 
immediately. This is similar to the action of nIRQ and nFIQ.
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7.4 Scan chains and JTAG interface

There are three JTAG style scan chains inside ARM7TDM and an additional scan chain 
inside ARM720T. These allow testing, debugging, and EmbeddedICE programming.

In addition, support is provided for further scan chains outside of ARM720T. Unused 
scan chains can be used for Application-Specific Integrated Circuit (ASIC) boundary 
scan or for ASIC test. The control signals provided for this are described later.

The scan chains are controlled from a JTAG-style Test Access Port (TAP) controller. 
For further details of the JTAG specification, refer to IEEE Standard 1149.1-1990 
Standard Test Access Port and Boundary-Scan Architecture.

Note

The scan cells are not fully JTAG-compliant, see Scan limitations for a description of 
the limitations on their use.

7.4.1 Scan limitations

The three ARM7TDM scan paths are referred to as scan chain 0, 1, and 2. These are 
shown in Figure 7-2 on page 7-6. Scan chain functions are described below:

• Scan chain 0 allows access to the entire periphery of the ARM7TDM core, 
including the data bus. The scan chain functions allow inter-device testing 
(EXTEST) and serial testing of the core (INTEST). The order of the scan chain 
(from SDIN to SDOUT) is:

— data bus bits 0 to 31

— the control signals

— the address bus bits 31 to 0.

• Scan chain 1 is a subset of the signals that are accessible through scan chain 0. 
Access to the core data bus D[31:0], and the BREAKPOINT signal is available 
serially. There are 33 bits in this scan chain. The order is (from serial data in to 
out):

— data bus bits 0 through 31

— BREAKPOINT

• Scan chain 2 allows access to the EmbeddedICE Logic registers. See Chapter 8 
EmbeddedICE Logic for details.

• Scan chain 15 allows access to the system control coprocessor registers.
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7.4.2 The JTAG state machine

The process of serial test and debug is best explained in conjunction with the JTAG state 
machine. Figure 7-3 shows the state transitions that occur in the TAP controller. The 
state numbers are also shown on the diagram.

Figure 7-3 Test access port (TAP) controller state transitions

From IEEE Std. 1149.1-1999, Copyright 1997, 1998, 2000 IEEE. All rights reserved.
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7.5 Reset

The boundary-scan interface includes a state machine controller, the TAP controller. To 
force the TAP controller into the correct state after power-up of the device, a reset pulse 
must be applied to the XnTRST signal.

If the boundary scan interface is to be used, XnTRST must be driven LOW, and then 
HIGH again. If the boundary scan interface is not to be used, the XnTRST input can be 
tied permanently LOW. 

Note

A clock on XTCK is not necessary to reset the device.

The action of reset is as follows:

1. System mode is selected (the boundary scan chain cells do not intercept any of 
the signals passing between the external system and the core). 

2. The IDCODE instruction is selected. If the TAP controller is put into the 
SHIFT-DR state and XTCK is pulsed, the contents of the ID register are clocked 
out of XTDO.
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7.6 Public instructions

The public instructions are listed in this section. In the descriptions that follow, XTDI 
and XTMS are sampled on the rising edge of XTCK and all output transitions on 
XTDO occur as a result of the falling edge of XTCK.

7.6.1 EXTEST (0000)

This instruction places the selected scan chain in test mode. It connects the selected scan 
chain between XTDI and XTDO.

When the instruction register is loaded with EXTEST, all the scan cells are placed in 
their test mode of operation.

CAPTURE-DR Inputs from the system logic and outputs from the output scan 
cells to the system are captured by the scan cells.

SHIFT-DR The previously captured test data is shifted out of the scan chain 
using XTDO, while new test data is shifted in through the XTDI 
input. This data is applied immediately to the system logic and 
system pins. 

7.6.2 SCAN_N (0010)

This instruction connects the scan path select register between XTDI and XTDO. On 
reset, scan chain 3 is selected by default. The scan path select register is four bits long 
in this implementation, although no finite length is specified.

CAPTURE-DR The fixed value 1000 is loaded into the register.

SHIFT-DR The ID number of the desired scan path is shifted into the scan 
path select register.

UPDATE-DR The scan register of the selected scan chain is connected between 
XTDI and XTDO, and remains connected until a subsequent 
SCAN_N instruction is issued.

7.6.3 INTEST (1100)

This instruction places the selected scan chain in test mode. It connects the selected scan 
chain between XTDI and XTDO.

When the instruction register is loaded with this instruction, all the scan cells are placed 
in their test mode of operation.

Single-step operation is possible using the INTEST instruction.
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CAPTURE-DR The value of the data applied from the core logic to the output scan 
cells, and the value of the data applied from the system logic to the 
input scan cells is captured.

SHIFT-DR The previously captured test data is shifted out of the scan chain 
using the XTDO pin, while new test data is shifted in using the 
XTDI pin.

7.6.4 IDCODE (1110)

This instruction connects the device IDentification (ID) register between XTDI and 
XTDO. The ID register is a 32-bit register that allows the manufacturer, part number, 
and version of a component to be determined through the TAP. See ARM7TDM device 
identification code register on page 7-16 for details of the ID register format.

When the instruction register is loaded with this instruction, all the scan cells are placed 
in their normal, System, mode of operation:

CAPTURE-DR The device identification code is captured by the ID register.

SHIFT-DR The previously captured device identification code is shifted out 
of the ID register using the XTDO pin, while data is shifted in 
through the XTDI pin into the ID register.

UPDATE-DR The ID register is unaffected.

7.6.5 BYPASS (1111)

This instruction connects a 1-bit shift register, the bypass register, between XTDI and 
XTDO. When this instruction is loaded into the instruction register, all the scan cells 
are placed in their normal, system, mode of operation. This instruction has no effect on 
the system pins.

CAPTURE-DR A logic 0 is captured by the bypass register.

SHIFT-DR Test data is shifted into the bypass register through XTDI and out 
through XTDO after a delay of one XTCK cycle.

Note

• The first bit shifted out is a zero.

• All unused instruction codes default to the bypass instruction.

UPDATE-DR The bypass register is not affected.
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7.6.6 CLAMP (0101)

This instruction connects a 1-bit shift register, the bypass register, between XTDI and 
XTDO. When this instruction is loaded into the instruction register, the state of all the 
output signals is defined by the values previously loaded into the currently loaded scan 
chain.

Note

This instruction must only be used when scan chain 0 is the currently selected scan 
chain.

CAPTURE-DR A logic 0 is captured by the bypass register.

SHIFT-DR Test data is shifted into the bypass register using XTDI and out 
using XTDO after a delay of one XTCK cycle.

Note

The first bit shifted out is a zero.

UPDATE-DR The bypass register is not affected.

7.6.7 HIGHZ (0111)

This instruction connects a 1-bit shift register, the bypass register, between XTDI and 
XTDO. When this instruction is loaded into the instruction register, the address bus, 
A[31:0], the data bus, D[31:0], plus nRW, nOPC, LOCK, MAS[1:0], and nTRANS 
are all driven to the high impedance state and the external HIGHZ signal is driven 
HIGH. This is as if the signal TBE had been driven LOW.

CAPTURE-DR A logic 0 is captured by the bypass register.

SHIFT-DR Test data is shifted into the bypass register using XTDI and out 
using XTDO after a delay of one XTCK cycle.

Note

The first bit shifted out is a zero.

UPDATE-DR The bypass register is not affected.
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7.6.8 CLAMPZ (1001)

This instruction connects a 1-bit shift register, the bypass register, between XTDI and 
XTDO. When this instruction is loaded into the instruction register, all the 3-state 
outputs are placed in their inactive state, but the data supplied to the outputs is derived 
from the scan cells. The purpose of this instruction is to ensure that, during production 
test, each output can be disabled when its data value is either a logic 0 or a logic 1.

CAPTURE-DR A logic 0 is captured by the bypass register.

SHIFT-DR Test data is shifted into the bypass register through XTDI and out 
through XTDO after a delay of one XTCK cycle.

Note

The first bit shifted out will be a zero.

UPDATE-DR The bypass register is not affected.

7.6.9 RESTART (0100)

This instruction restarts the processor on exit from debug state. It connects the bypass 
register between XTDI and XTDO, and the TAP controller behaves as if the bypass 
instruction had been loaded. The processor resynchronizes back to the memory system 
once the RUN-TEST/IDLE state is entered.

7.6.10 SAMPLE/PRELOAD (0011)

This instruction is included for production test only, and must never be used.
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7.7 Test data registers

You can connect five test data registers between XTDI and XTDO:

• This register bypasses the device during scan testing by providing a path 
between XTDI and XTDO. The bypass register is 1 bit in length.

• ARM7TDM device identification code register

• This register changes the current TAP instruction. The register is four bits in 
length. on page 7-17

• This register changes the current active scan chain. The register is 4 bits in 
length. on page 7-17

• These allow serial access to the core logic, and to EmbeddedICE Logic for 
programming purposes. They are described in this section and shown in Figure 
7-5 on page 7-19. on page 7-18.

These are described in the following sections.

7.7.1 Bypass register

This register bypasses the device during scan testing by providing a path between XTDI 
and XTDO. The bypass register is 1 bit in length.

Operating mode

When the BYPASS instruction is the current instruction in the instruction register, 
serial data is transferred from XTDI to XTDO in the SHIFT-DR state with a delay of 
one XTCK cycle.

There is no parallel output from the bypass register.

A logic 0 is loaded from the parallel input of the bypass register in the CAPTURE-DR 
state.

7.7.2 ARM7TDM device identification code register 

This register reads the 32-bit device ID code. No programmable supplementary 
identification code is provided. The register is 32 bits in length.

The format of the ID register is shown in Figure 7-4.

Figure 7-4 ID code register format

011112272831

Version Part number Manufacturer identity 1
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Contact your supplier for the correct device identification code.

Operating mode

When the IDCODE instruction is current, the ID register is selected as the serial path 
between XTDI and XTDO.

There is no parallel output from the ID register.

The 32-bit device identification code is loaded into the ID register from its parallel 
inputs during the CAPTURE-DR state.

7.7.3 Instruction register

This register changes the current TAP instruction. The register is four bits in length.

Operating mode

When in the SHIFT-IR state, the instruction register is selected as the serial path 
between XTDI and XTDO.

During the CAPTURE-IR state, the value 0001 binary is loaded into this register. This 
is shifted out during SHIFT-IR Least Significant Bit (LSB) first, while a new instruction 
is shifted in (LSB first). 

During the UPDATE-IR state, the value in the instruction register becomes the current 
instruction.

On reset, IDCODE becomes the current instruction.

7.7.4 Scan chain select register

This register changes the current active scan chain. The register is 4 bits in length.

Operating mode

After SCAN_N has been selected as the current instruction, when in the SHIFT-DR 
state, the scan chain select register is selected as the serial path between XTDI and 
XTDO.

During the CAPTURE-DR state, the value 1000 binary is loaded into this register. This 
is shifted out during SHIFT-DR (LSB first), while a new value is shifted in (LSB first). 

During the UPDATE-DR state, the value in the register selects a scan chain to become 
the currently active scan chain. All further instructions, such as INTEST, then apply to 
that scan chain.
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The currently selected scan chain only changes when a SCAN_N instruction is 
executed, or a reset occurs. On reset, scan chain 3 is selected as the active scan chain.

The number of the currently selected scan chain is reflected on the SCREG[3:0] 
outputs. You can use the TAP controller to drive external scan chains in addition to 
those within the ARM7TDM macrocell. You must assign the external scan chain a 
number and control signals for it can be derived from SCREG[3:0], IR[3:0], 
TAPSM[3:0], TCK1, and TCK2.

The list of scan chain numbers allocated by ARM are listed in Table 7-1. An external 
scan chain can take any other number. The serial data stream to be applied to the 
external scan chain is made present on SDINBS. The serial data back from the scan 
chain must be presented to the TAP controller on the SDOUTBS input. 

The scan chain present between SDINBS and SDOUTBS is connected between XTDI 
and XTDO whenever scan chain 3 is selected, or when any of the unassigned scan chain 
numbers is selected. If there is more than one external scan chain, a multiplexor must 
be built externally to apply the desired scan chain output to SDOUTBS. The 
multiplexor can be controlled by decoding SCREG[3:0].

7.7.5 Scan chains 0, 1, 2, and 15

These allow serial access to the core logic, and to EmbeddedICE Logic for 
programming purposes. They are described in this section and shown in Figure 7-5 on 
page 7-19. 

Scan chains 0 and 1 allow access to the processor core for test and debug. They have 
the following lengths:

• Scan chain 0, 105 bits

Table 7-1 Scan chain number allocation

Scan chain number Function

0 Macrocell scan test

1 Debug

2 EmbeddedICE programming

3 Reserved (external boundary scan)

4 Reserved

8 Reserved

15 System control coprocessor
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• Scan chain 1, 33 bits.

Each scan chain cell consists of a serial register and a multiplexor. The scan cells 
perform two basic functions:

Capture For input cells, the capture stage involves copying the value of the 
system input to the core into the serial register.
For output cells, capture involves placing the value of a core 
output into the serial register. 

Shift For input cells, during shift, this value is output serially. The value 
applied to the core from an input cell is either the system input or 
the contents of the serial register, and this is controlled by the 
multiplexor.
For output cells, during shift, this value is serially output as 
before. The value applied to the system from an output cell is 
either the core output, or the contents of the serial register.

Figure 7-5 Input scan cell

All the control signals for the scan cells are generated internally by the TAP controller. 
The action of the TAP controller is determined by the current instruction, and the state 
of the TAP state machine. This is described in Operating modes on page 7-20.

Serial data in

Shift

register
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Operating modes

The scan chains have three basic modes of operation, selected by the various TAP 
controller instructions:

SYSTEM mode The scan cells are idle. System data is applied to inputs, and core 
outputs are applied to the system. 

INTEST mode The core is internally tested. The data serially scanned in is 
applied to the core, and the resulting outputs are captured in the 
output cells and scanned out.

EXTEST mode Data is scanned onto the core outputs and applied to the external 
system. System input data is captured in the input cells and then 
shifted out.

Note

• The scan cells are not fully JTAG-compliant because they do not have an update 
stage. Therefore, while data is being moved around the scan chain, the contents 
of the scan cell are not isolated from the output. Therefore the output from the 
scan cell to the core or to the external system can change on every scan clock.

• This does not affect ARM7TDM because its internal state does not change until 
it is clocked. However, the rest of the system has to be aware that every output 
can change asynchronously as data is moved around the scan chain. External 
logic must ensure that this does not harm the rest of the system.

7.7.6 Scan chain 0

Scan chain 0 is intended primarily for inter-device testing (EXTEST), and testing the 
core (INTEST). Scan chain 0 is selected using the SCAN_N instruction.

Serial testing the core

INTEST allows serial testing of the core. The TAP controller must be placed in INTEST 
mode after scan chain 0 has been selected:

• During CAPTURE-DR, the current outputs from the core logic are captured in 
the output cells. 

• During SHIFT-DR, this captured data is shifted out while a new serial test 
pattern is scanned in, applying known stimuli to the inputs.

• During RUN-TEST-IDLE, the core is clocked. The TAP controller must only 
spend one cycle in RUN-TEST-IDLE. 
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The whole operation can then be repeated. 

See ARM7TDM core clocks on page 7-23 for details of the core clocks during test and 
debug.

Inter-device testing

EXTEST allows inter-device testing. This is useful for verifying the connections 
between devices on a circuit board. The TAP controller must be placed in EXTEST 
mode after scan chain 0 has been selected:

• During CAPTURE-DR, the current inputs to the core logic from the system are 
captured in the input cells.

• During SHIFT-DR, this captured data is shifted out while a new serial test 
pattern is scanned in, applying known values on the core outputs.

• During UPDATE-DR, the value shifted into the data bus D[31:0] scan cells 
appears on the outputs. For all other outputs, the value appears as the data is 
shifted round. 

Note

During RUN-TEST/IDLE, the core is not clocked. 

The operation can then be repeated. The ordering of signals on scan chain 0 is listed in 
Table 7-3 on page 7-37.

7.7.7 Scan chain 1

The primary use for scan chain 1 is for debugging, although it can be used for EXTEST 
on the data bus. Scan chain 1 is selected using the SCAN_N TAP controller instruction. 
Debugging is similar to INTEST, and the procedure described above for scan chain 0 
must be followed.

Scan chain length and purpose

This scan chain is 33 bits long.32 bits are for the data value, plus an additional bit for 
the scan cell on the BREAKPOINT core input. This 33rd bit serves four purposes:

1. Under normal INTEST test conditions, it allows a known value to be scanned 
into the BREAKPOINT input. 

2. During EXTEST test conditions, the value applied to the BREAKPOINT input 
from the system can be captured. 
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3. While debugging, the value placed in the 33rd bit determines whether 
ARM7TDM synchronizes back to system speed before executing the instruction. 
See System-speed access on page 7-32 for more information.

4. After ARM7TDM has entered debug state, the first time this bit is captured and 
scanned out, its value tells the debugger whether the core entered debug state is 
due to a breakpoint (bit 33 LOW), or a watchpoint (bit 33 HIGH).

7.7.8 Scan chain 2

This scan chain allows you to access the EmbeddedICE Logic registers. The scan chain 
is 38 bits in length.

The order of the scan chain from XTDI to XTDO is:

• read/write

• register address bits 4 to 0

• data value bits 31 to 0

See Figure 8-2 on page 8-5 for more information.

To access this serial register, scan chain 2 must first be selected using the SCAN_N 
TAP controller instruction. The TAP controller must then be place in INTEST mode:

• No action is taken during CAPTURE-DR. 

• During SHIFT-DR, a data value is shifted into the serial register. Bits 32 to 36 
specify the address of the EmbeddedICE Logic register to be accessed. 

• During UPDATE-DR, this register is either read or written depending on the 
value of bit 37 (0 = read). Refer to Chapter 8 EmbeddedICE Logic for further 
details.

7.7.9 Scan chain 15

This scan chain allows access to the system control coprocessor registers. Scan chain 
15 is selected using the SCAN_N TAP controller instruction. This scan chain is 33 bits 
long. 32 bits are for the data or instruction value plus an additional bit that identifies the 
value as instruction (1) or data (0). This scan chain must only be used during INTEST. 
The order of the scan chain from XTDI to XTDO is: 

• CPDATA [0:31]

• instruction or data flag.
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7.8 ARM7TDM core clocks

ARM7TDM has two clocks:

• the memory clock, MCLK, generated by the ARM720T

• an internally XTCK-generated clock, DCLK.

During normal operation, the core is clocked by MCLK, and internal logic holds 
DCLK LOW. 

There are two cases in which the clocks switch:

• during debugging

• during testing.

7.8.1 Clock switch during debug

When ARM7TDM is in the debug state, the core is clocked by DCLK under the control 
of the TAP state machine, and MCLK can free run. The selected clock is output on the 
signal ECLK for use by the external system. 

Note

When the CPU core is being debugged and is running from DCLK, nWAIT has no 
effect.
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When ARM7TDM enters debug state, it must switch from MCLK to DCLK. This is 
handled automatically by logic in the ARM7TDM. On entry to debug state, 
ARM7TDM asserts DBGACK in the HIGH phase of MCLK. The switch between the 
two clocks occurs on the next falling edge of MCLK. This is shown in Figure 7-6.

Figure 7-6 Clock switching on entry to debug state

ARM7TDM is forced to use DCLK as the primary clock until debugging is complete. 
On exit from debug, the core must be allowed to synchronize back to MCLK. This must 
be done in the following sequence:

1. The final instruction of the debug sequence must be shifted into the data bus 
scan chain and clocked in by asserting DCLK. 

2. At this point, BYPASS must be clocked into the TAP instruction register.

3. ARM7TDM now automatically resynchronizes back to MCLK and starts 
fetching instructions from memory at MCLK speed. 

See Exit from debug state on page 7-28 for more information.
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7.9 Determining the core and system state

When ARM7TDM is in debug state, you can examine the core and system state. This 
is done by forcing load and store multiples into the instruction pipeline.

7.9.1 Determining ARM or Thumb state

Before the core and system state can be examined, the debugger must first determine 
whether the processor was in Thumb or ARM state when it entered debug. You can 
achieve this by examining bit 4 of the EmbeddedICE Logic debug status register. If this 
is HIGH, the core was in Thumb state when it entered debug.

7.9.2 Determining the state of the core

If the processor has entered debug state from Thumb state, the simplest course of action 
is for the debugger to force the core back into ARM state. Once this is done, the 
debugger can always execute the same sequence of instructions to determine the 
processor state.

While in debug state, only the following instructions can legally be scanned into the 
instruction pipeline for execution:

• all data-processing instructions, except TEQP

• all load, store, load multiple, and store multiple instructions

• MSR and MRS.

Moving to ARM state

To force the processor into ARM state, the following sequence of Thumb instructions 
must be executed on the core:

STR R0, [R0] ; Save R0 before use

MOV R0, PC ; Copy PC into R0

STR R0, [R0] ; Now save the PC in R0

BX PC ; Jump into ARM state

MOV R8, R8 ; NOP

MOV R8, R8; NOP

As all Thumb instructions are only 16 bits long, the simplest method when shifting them 
into scan chain 1 is to repeat the instruction twice. 

For example, the encoding for BX R0 is 0x4700. Therefore, if 0x47004700 is shifted 
into scan chain 1, the debugger does not have to keep track of which half of the bus the 
processor expects to read the data from.
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From this point on, the processor state can be determined by the sequences of ARM 
instructions described In ARM state.

In ARM state

Once the processor is in ARM state, the first instruction executed is typically:

STM R0, {R0-R15}

This makes the contents of the registers visible on the data bus. These values can then 
be sampled and shifted out.

Note

The use of R0 as the base register for STM is for illustration only. Any register can be 
used.

Accessing banked registers

After determining the values in the current bank of registers, you might want to access 
the banked registers. This can only be done by changing mode. Usually, a mode change 
can only occur if the core is already in a privileged mode. However, while in debug 
state, a mode change from any mode into any other mode can occur. 

Note

The debugger must restore the original mode before exiting debug state.

For example, assume that the debugger is asked to return the state of the USER and FIQ 
mode registers, and debug state was entered in Supervisor mode. 

The instruction sequence might be as listed below:

STM R0, {R0-R15} Save current registers

MRS R0, CPSR

STR R0, R0; Save CPSR to determine current mode

BIC R0, 0x1F; Clear mode bits

ORR R0, 0x10; Select user mode

MSR CPSR, R0; Enter USER mode

STM R0, {R13,R14}; Save register not previously visible

ORR R0, 0x01; Select FIQ mode

MSR CPSR, R0; Enter FIQ mode

STM R0, {R8-R14}; Save banked FIQ registers
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All these instructions are said to execute at debug speed. Debug speed is much slower 
than system speed because between each core clock, 33 scan clocks occur to shift in an 
instruction, or shift out data. Executing instructions more slowly than usual is 
acceptable for accessing the core state because ARM7TDM is fully static. However, 
this same method cannot be used for determining the state of the rest of the system.

7.9.3 Determining system state

To meet the dynamic timing requirements of the memory system, any attempt to access 
system state must occur synchronously with it. Therefore, ARM7TDM must be forced 
to synchronize back to system speed. This is controlled by the 33rd bit of scan chain 1.

You can place any instruction in scan chain 1 with bit 33, the BREAKPT bit, LOW. 
This instruction is then executed at debug speed. To execute an instruction at system 
speed, the instruction prior to it must be scanned into scan chain 1 with bit 33 set HIGH.

After the system speed instruction has been scanned into the data bus and clocked into 
the pipeline, the BYPASS instruction must be loaded into the TAP controller. This 
makes the ARM7TDM automatically synchronize back to MCLK, the system clock, 
executes the instruction at system speed, and then re-enters debug state and switches 
itself back to the internally generated DCLK. When the instruction has completed, 
DBGACK is HIGH and the core switches back to DCLK. At this point, INTEST can 
be selected in the TAP controller, and debugging can resume.

To determine that a system speed instruction has completed, the debugger must look at 
both DBGACK and nMREQ. In order to access memory, ARM7TDM drives nMREQ 
LOW after it has synchronized back to system speed. This transition is used by the 
memory controller to arbitrate whether ARM7TDM can have the bus in the next cycle. 
If the bus is not available, ARM7TDM can have its clock stalled indefinitely. 

Therefore, the only way to tell that the memory access has completed, is to examine the 
state of both nMREQ and DBGACK. When both are HIGH, the access has completed. 
The debugger normally uses EmbeddedICE Logic to control debugging, and by reading 
the EmbeddedICE Logic status register, the state of nMREQ and DBGACK can be 
determined. Refer to Chapter 8 EmbeddedICE Logic for more details.

Using system speed load multiples and debug speed store multiples, the system memory 
state can be fed back to the debug host.

Restrictions

There are restrictions on which instructions can have the 33rd bit set. The only valid 
instructions where this bit can be set are:

• loads

• stores
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• load multiple

• store multiple.

See also Exit from debug state.

When ARM7TDM returns to debug state after a system speed access, bit 33 of scan 
chain 1 is set HIGH. This gives the debugger information about why the core entered 
debug state the first time this scan chain is read.

7.9.4 Determining system control coprocessor state

To access the system control coprocessor registers, debug state must be entered by a 
breakpoint, watchpoint, or debug request. This ensures that the ARM7TDM core stops 
execution of code that might be dependent on the system control coprocessor.

Scan chain 15 can then be selected using the SCAN_N instruction.

Instructions can then be scanned down the scan chain as if being executed from the 
ARM7TDM core. As the ARM7TDM is idle while scan chain 15 is being accessed, you 
must provide the register data using the scan chain. The instruction prior to the data 
must have the instruction or data flag cleared.

The data operation requires an additional clock from the TAP controller. This can be 
achieved by remaining in the RUN-TEST-IDLE state for an additional XTCK cycle.

7.9.5 Exit from debug state

Leaving debug state involves:

1. Restoring ARM7TDM internal state.

2. Branching to the next instruction to be executed.

3. Synchronizing back to MCLK.

After restoring internal state, a branch instruction must be loaded into the pipeline. See 
The PC during debug on page 7-30 for details on calculating the branch.

Bit 33 of scan chain 1 is used to force ARM7TDM to resynchronize back to MCLK. 
The penultimate instruction of the debug sequence is scanned in with bit 33 set HIGH. 
The final instruction of the debug sequence is the branch, and this is scanned in with bit 
33 LOW. The core is then clocked to load the branch into the pipeline. Now, the 
RESTART instruction is selected in the TAP controller. 

When the state machine enters the RUN-TEST-IDLE state, the scan chain reverts back 
to system mode and clock resynchronization to MCLK occurs within ARM7TDM. 
ARM7TDM then resumes normal operation, fetching instructions from memory. This 
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delay, until the state machine is in the RUN-TEST-IDLE state, allows conditions to be 
set up in other devices in a multiprocessor system without taking immediate effect. 
Then, when the RUN-TEST-IDLE state is entered, all the processors resume operation 
simultaneously.
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7.10 The PC during debug

The debugger must keep track of what happens to the PC so that ARM7TDM can be 
forced to branch back to the place at which program flow was interrupted by debug. 
There are five cases when this occurs: 

• Entry to the debug state from a breakpoint advances the PC by four addresses, 
or 16 bytes. Each instruction executed in debug state advances the PC by one 
address, or four bytes. The normal way to exit from debug state after a 
breakpoint is to remove the breakpoint, and branch back to the previously 
breakpointed address.

• Returning to program execution after entering debug state from a watchpoint is 
done in the same way as the procedure described above. Debug entry adds four 
addresses to the PC, and every instruction adds one address. The difference is 
that because the instruction that caused the watchpoint has executed, the 
program returns to the next instruction. on page 7-31

• Watchpoint with another exception on page 7-31

• Debug request on page 7-32

• System-speed access on page 7-32.

A summary of the method used to determine the return address is provided in Summary 
of return address calculations on page 7-33.

7.10.1 Breakpoint

Entry to the debug state from a breakpoint advances the PC by four addresses, or 
16 bytes. Each instruction executed in debug state advances the PC by one address, or 
four bytes. The normal way to exit from debug state after a breakpoint is to remove the 
breakpoint, and branch back to the previously breakpointed address.

For example, if ARM7TDM entered debug state from a breakpoint set on a given 
address and two debug-speed instructions were executed, a branch of minus seven 
addresses must occur. Four are for debug entry, plus two for the instructions, plus one 
for the final branch.

The following sequence shows the data scanned into scan chain 1. This is Most 
Significant Bit (MSB) first, and so the first digit is the value placed in the BREAKPT 
bit, followed by the instruction data:

0 E0802000; ADD R2, R0, R0

1 E1826001; ORR R6, R2, R1

0 EAFFFFF9; B -7 (2s complement)
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Once in debug state, a minimum of two instructions must be executed before the branch, 
although these can both be NOPs, for example:

MOV R0, R0

For small branches, the final branch can be replaced by a subtract with the PC as the 
destination:

SUB PC, PC, #28

7.10.2 Watchpoint

Returning to program execution after entering debug state from a watchpoint is done in 
the same way as the procedure described above. Debug entry adds four addresses to the 
PC, and every instruction adds one address. The difference is that because the 
instruction that caused the watchpoint has executed, the program returns to the next 
instruction.

7.10.3 Watchpoint with another exception

If a watchpointed access simultaneously causes a Data Abort, ARM7TDM enters debug 
state in abort mode. Entry into debug is held off until the core has changed into abort 
mode, and fetched the instruction from the abort vector.

A similar sequence is followed when an interrupt, or any other exception, occurs during 
a watchpointed memory access. ARM7TDM enters debug state in the exception mode, 
and so the debugger must check to see whether this happened. The debugger can deduce 
whether an exception occurred by looking at the current and previous mode, in the 
CPSR and SPSR, and the value of the PC. If an exception does take place, you must 
give the user the choice of whether to service the exception before debugging.

Exiting from debug state

Exiting debug state if an exception occurred is slightly different from the other cases. 
Here, entry to debug state causes the PC to be incremented by three addresses rather 
than four, and this must be taken into account in the return branch calculation. For 
example, suppose that an abort occurred on a watchpointed access and ten instructions 
had been executed to determine this. The following sequence can be used to return to 
program execution:

0 E1A00000; MOV R0, R0

1 E1A00000; MOV R0, R0

0 EAFFFFF0; B -16
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This forces a branch back to the abort vector, causing the instruction at that location to 
be refetched and executed. 

Note

After the abort service routine, the instruction that caused the abort and watchpoint is 
re-executed. This generates the watchpoint and ARM7TDM enters debug state again.

7.10.4 Debug request

Entry into debug state through a debug request is similar to a breakpoint. However, 
unlike a breakpoint, the last instruction has completed execution and so must not be 
refetched on exit from debug state. Therefore, entry to debug state adds three addresses 
to the PC, and every instruction executed in debug state adds one.

For example, suppose that you invoke a debug request, and decide to return to program 
execution straight away. The following sequence can be used:

0 E1A00000; MOV R0, R0

1 E1A00000; MOV R0, R0

0 EAFFFFFA; B -6

This restores the PC, and restarts the program from the next instruction.

7.10.5 System-speed access

If a system-speed access is performed during debug state, the value of the PC is 
increased by three addresses. As system-speed instructions access the memory system, 
aborts can take place. If an abort occurs during a system-speed memory access, 
ARM7TDM enters abort mode before returning to debug state.

This is similar to an aborted watchpoint except that the problem is much harder to fix, 
because the abort was not caused by an instruction in the main program, and the PC does 
not point to the instruction that caused the abort. An abort handler usually looks at the 
PC to determine the instruction which caused the abort, and therefore the abort address. 
In this case, the value of the PC is invalid, but the debugger must know what location 
was being accessed. Therefore, the debugger can be written to help the abort handler fix 
the memory system. 
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7.10.6 Summary of return address calculations

The calculation of the branch return address can be summarized as follows:

• For normal breakpoint and watchpoint, the branch is:
(4 + N + 3S)

• For entry through debug request (DBGRQ), or watchpoint with exception, the 
branch is:
(3 + N + 3S)

where:

• N is the number of debug speed instructions executed, including the final branch

• S is the number of system speed instructions executed.
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7.11 Priorities and exceptions

Because the normal program flow is broken when a breakpoint or a debug request 
occurs, debug can be considered as being another type of exception. Some of the 
interaction with other exceptions is been described in Entering debug state on page 7-7 
and The PC during debug on page 7-30. This section summarizes these priorities.

7.11.1 Breakpoint with Prefetch Abort

When a breakpointed instruction fetch causes a Prefetch Abort, the abort is taken and 
the breakpoint is disregarded. Usually, Prefetch Aborts occur when, for example, an 
access is made to a virtual address that does not physically exist, and the returned data 
is therefore invalid. 

In this case, the normal action of the operating system is to swap in the page of memory 
and return to the previously invalid address. Here, when the instruction is fetched, and 
providing the breakpoint is activated (it might be data-dependent), ARM7TDM enters 
debug state.

In this case, the Prefetch Abort takes higher priority than the breakpoint.

7.11.2 Interrupt

When ARM7TDM enters debug state, interrupts are automatically disabled. If 
interrupts are disabled during debug, ARM7TDM is never forced into an interrupt 
mode. Interrupts only have this effect on watchpointed accesses. They are ignored at all 
times on breakpoints.

If an interrupt is pending during the instruction prior to entering debug state, 
ARM7TDM enters debug state in the mode of the interrupt. So, on entry to debug state, 
the debugger cannot assume that ARM7TDM is in the expected mode of the program. 
It must check the PC, the CPSR, and the SPSR to fully determine the reason for the 
exception.

Debug takes higher priority than the interrupt, although ARM7TDM remembers that an 
interrupt has occurred.

7.11.3 Data Aborts

When a Data Abort occurs on a watchpointed access, ARM7TDM enters debug state in 
abort mode. Therefore, the watchpoint has higher priority than the abort although, as in 
the case of interrupt, ARM7TDM remembers that the abort happened.
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7.12 Scan interface timing

Figure 7-7 and Table 7-2 provide general scan timing information.

Figure 7-7 Scan general timing
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Table 7-2 ARM720T scan interface timing

Symbol Parameter

Tbscl XTCK low period

Tbsch XTCK high period

Tbsis XTDI, XTMS setup to XTCKr

Tbsih XTDI, XTMS hold from XTCKr

Tbsoh XTDO hold time from XTCKf

Tbsod XTCKf to XTDO valid
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Figure 7-8 shows the Tbsr (reset period timing) parameter.

Figure 7-8 Reset period timing

Figure 7-9 shows the Tbse parameter (output enable time) and Tbsz (output disable time) 
when the HIGHZ TAP instruction is loaded into the instruction register.

Figure 7-9 Output enable and disable times due to HIGHZ TAP instruction

Tbsssa I/O signal setup to XTCKr

Tbssha I/O signal hold from XTCKr

Tbsdh Data output hold time from XTCK

Tbsdd XTCK to data output valid

Tbsr Reset period

Tbse Output enable time

Tbsz Output disable time

a.For correct data latching, the I/O signals (from the core and pads) must be
setup and held with respect to the rising edge of XTCK in the CAPTURE-DR
state of the INTEST and EXTEST instructions

Contact your supplier for AC timing parameter values.

Table 7-2 ARM720T scan interface timing (continued)

Symbol Parameter

T
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Figure 7-10 shows the Tbse parameter (output enable time) and Tbsz (output disable 
time) when data scanning.

Figure 7-10 Output enable and disable times due to data scanning

Table 7-3 lists the signals and positions for scan chain 0.

Table 7-3 Scan chain 0, signals and positions

Number Signal Type

1 D[0] Input/output

2 D[1] Input/output

3 D[2] Input/output

4 D[3] Input/output

5 D[4] Input/output

6 D[5] Input/output

7 D[6] Input/output

8 D[7] Input/output

9 D[8] Input/output

10 D[9] Input/output

11 D[10] Input/output

12 D[11] Input/output

13 D[12] Input/output

14 D[13] Input/output

15 D[14] Input/output

16 D[15] Input/output

T
bsz

T
bse

XTCK

A[ ]

D[ ]
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17 D[16] Input/output

18 D[17] Input/output

19 D[18] Input/output

20 D[19] Input/output

21 D[20] Input/output

22 D[21] Input/output

23 D[22] Input/output

24 D[23] Input/output

25 D[24] Input/output

26 D[25] Input/output

27 D[26] Input/output

28 D[27] Input/output

29 D[28] Input/output

30 D[29] Input/output

31 D[30] Input/output

32 D[31] Input/output

33 BREAKPT Input

34 NENIN Input

35 NENOUT Output

36 LOCK Output

37 BIGEND Input

38 DBE Input

39 MAS[0] Output

40 MAS[1] Output

41 BL[0] Input

Table 7-3 Scan chain 0, signals and positions (continued)

Number Signal Type
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42 BL[1] Input

43 BL[2] Input

44 BL[3] Input

45 DCTLa Output

46 nRW Output

47 DBGACK Output

48 CGENDBGACK Output

49 nFIQ Input

50 nIRQ Input

51 nRESET Input

52 ISYNC Input

53 DBGRQ Input

54 ABORT Input

55 CPA Input

56 nOPC Output

57 IFEN Input

58 nCPI Output

59 nMREQ Output

60 SEQ Output

61 nTRANS Output

62 CPB Input

63 nM[4] Output

64 nM[3] Output

65 nM[2] Output

66 nM[1] Output

Table 7-3 Scan chain 0, signals and positions (continued)

Number Signal Type
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67 nM[0] Output

68 nEXEC Output

69 ALE Input

70 ABE Input

71 APE Input

72 TBIT Output

73 nWAIT Input

74 A[31] Output

75 A[30] Output

76 A[29] Output

77 A[28] Output

78 A[27] Output

79 A[26] Output

80 A[25] Output

81 A[24] Output

82 A[23] Output

83 A[22] Output

84 A[21] Output

85 A[20] Output

86 A[19] Output

87 A[18] Output

88 A[17] Output

89 A[16] Output

90 A[15] Output

91 A[14] Output

Table 7-3 Scan chain 0, signals and positions (continued)

Number Signal Type
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92 A[13] Output

93 A[12] Output

94 A[11] Output

95 A[10] Output

96 A[9] Output

97 A[8] Output

98 A[7] Output

99 A[6] Output

100 A[5] Output

101 A[4] Output

102 A[3] Output

103 A[2] Output

104 A[1] Output

105 A[0] Output

a. DCTL is not described in this datasheet. DCTL is an output from the
processor used to control the unidirectional data out latch, DOUT[31:0]. This
signal is not visible from the periphery of ARM7TDM.

Table 7-3 Scan chain 0, signals and positions (continued)

Number Signal Type
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7.13 Scan and debug signals used by the embedded trace logic

The signals listed in Table 7-4 exist on the ARM720T and are used to configure and 
control the ETM. Refer to the ETM7 Technical Reference Manual for more information 
on scan chain connection between the ARM720T core and ETM7, and DBGRQ 
connection.

Table 7-4 Scan and debug signals used by the ETM

Signal Type

DBGRQ Input

XnTRST Input

SDOUTBS Input

XTCK Input

XTDI Input

XTMS Input

RANGEOUT0 Output

RANGEOUT1 Output
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Chapter 8
EmbeddedICE Logic

This chapter describes the ARM720T EmbeddedICE Logic. It contains the following 
sections.

• About EmbeddedICE Logic on page 8-2

• The watchpoint registers on page 8-4

• Programming breakpoints on page 8-9

• Programming watchpoints on page 8-11

• The debug control register on page 8-13

• Debug status register on page 8-15

• Coupling breakpoints and watchpoints on page 8-17

• Debug communications channel on page 8-19.
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8.1 About EmbeddedICE Logic

The ARM7TDM EmbeddedICE Logic, referred to as EmbeddedICE, provides 
integrated on-chip debug support for the ARM7TDM core.

In this chapter ARM7TDM refers to the ARM7TDMI core excluding the 
EmbeddedICE Logic. EmbeddedICE is programmed in a serial fashion using the 
ARM7TDM TAP controller. It consists of two real-time watchpoint units, together with 
a control and status register. You can program one or both watchpoint units to halt the 
execution of instructions by the ARM7TDM core using the BREAKPT signal. 

Two independent registers, debug control and debug status, provide overall control of 
EmbeddedICE operation. Figure 8-1 shows the relationship between the core, 
EmbeddedICE, and the TAP controller.

Figure 8-1 ARM7TDMI TAP controller and EmbeddedICE
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Execution is halted when a match occurs between the values programmed into 
EmbeddedICE and the values currently appearing on the address bus, data bus, and 
various control signals. Any bit can be masked so that its value does not affect the 
comparison.

Note

• Only those signals that are pertinent to EmbeddedICE are shown.

• In the ARM720T, the EmbeddedICE module is connected directly to the 
ARM7TDM core and therefore functions on the virtual address of the processor 
after relocation by the FCSE PID.

Either of the two real-time watchpoint units can be configured to be a watchpoint 
(monitoring data accesses) or a breakpoint (monitoring instruction fetches). You can 
make watchpoints and breakpoints data-dependent. 

8.1.1 Disabling EmbeddedICE

You can disable EmbeddedICE by wiring the DBGEN input LOW.

When DBGEN is LOW, BREAKPOINT and DBGRQ to the core are forced LOW, 
DBGACK from the ARM7TDM is also forced LOW, and the IFEN input to the core 
is forced HIGH, enabling interrupts to be detected by ARM7TDM.

When DBGEN is LOW, EmbeddedICE is also put into a low-power mode.

8.1.2 EmbeddedICE timing

The EXTERN1 and EXTERN0 inputs are sampled by EmbeddedICE on the falling 
edge of ECLK. Therefore you must allow sufficient set-up and hold time for these 
signals.
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8.2 The watchpoint registers

The two watchpoint units, known as watchpoint 0 and watchpoint 1. Each contain three 
pairs of registers: 

• address value and address mask

• data value and data mask

• control value and control mask.

Each register is independently programmable and has its own address, as listed in Table 
8-1.

Table 8-1 Function and mapping of EmbeddedICE registers

Address Width Function

00000 3 Debug control

00001 5 Debug status

00100 6 Debug comms control register

00101 32 Debug comms data register

01000 32 Watchpoint 0 address value

01001 32 Watchpoint 0 address mask

01010 32 Watchpoint 0 data value

01011 32 Watchpoint 0 data mask

01100 9 Watchpoint 0 control value

01101 8 Watchpoint 0 control mask

10000 32 Watchpoint 1address value

10001 32 Watchpoint 1 address mask

10010 32 Watchpoint 1 data value

10011 32 Watchpoint 1 data mask

10100 9 Watchpoint 1 control value

10101 8 Watchpoint 1 control mask



EmbeddedICE Logic

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 8-5

8.2.1 Programming and reading watchpoint registers

A register is programmed by scanning data into the EmbeddedICE scan chain using 
scan chain 2. The scan chain consists of a 38-bit shift register comprising:

• a 32-bit data field

• a 5-bit address field

• a read/write bit.

This is shown in Figure 8-2.

Figure 8-2 EmbeddedICE block diagram
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The data to be written is scanned into the 32-bit data field, the address of the register 
into the 5-bit address field, and a 1 into the read/write bit.

A register is read by scanning its address into the address field and scanning a 0 into the 
read/write bit. The 32-bit data field is ignored. The register addresses are shown in 
Table 8-1 on page 8-4.

Note

A read or write takes place when the TAP controller enters the UPDATE-DR state.

8.2.2 Using the mask registers

For each value register in a register pair, there is a mask register of the same format. 
Setting a bit to 1 in the mask register has the effect of disregarding the corresponding 
bit in the value register in the comparison. For example, if a watchpoint is required on 
a particular memory location but the data value is irrelevant, you can program the data 
mask register to 0xFFFFFFFF, all bits set to 1, to make the entire data bus field ignored.

Note

The mask is an XNOR mask rather than a conventional AND mask. When a mask bit 
is set to 1, the comparator for that bit position always matches, irrespective of the value 
register or the input value.

Setting the mask bit to 0 means that the comparator only matches if the input value 
matches the value programmed into the value register.

8.2.3 The control registers

Control value and control mask registers are mapped identically in the lower 8 bits. 
Bit 8 of the control value register is the ENABLE bit, which cannot be masked. The 
control value and mask format is shown in Figure 8-3.

Figure 8-3 Watchpoint control value and mask format

The bits have the following functions:

nRW Compares against the not-read/write signal from the core in order 
to detect the direction of bus activity. nRW is 0 for a read cycle 
and 1 for a write cycle.

ENABLE CHAINRANGE EXTERN nOPCnTRANS MAS[1] nRWMAS[0]

8 67 5 34 2 01
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MAS[1:0] Compares against the MAS[1:0] signal from the core in order to 
detect the size of bus activity. The encoding is shown in Table 8-2.

nOPC Detects if the current cycle is an instruction fetch (nOPC = 0) or a 
data access (nOPC = 1).

nTRANS Compares against the not-translate signal from the core in order to 
distinguish between User mode (nTRANS = 0) and non-User 
mode (nTRANS = 1) accesses.

EXTERN Is an external input to EmbeddedICE that allows the watchpoint 
to be dependent upon an external condition. The EXTERN input 
for watchpoint 0 is labeled EXTERN0 and the EXTERN input for 
watchpoint 1 is labeled EXTERN1. This is known as nUSER on 
ARM720T and has an allocated output.

CHAIN Can be connected to the chain output of another watchpoint in 
order to implement, for example, debugger requests of the form 
breakpoint on address YYY only when in process XXX.
In the ARM7TDM EmbeddedICE, the CHAINOUT output of 
watchpoint 1 is connected to the CHAIN input of watchpoint 0. 
The CHAINOUT output is derived from a latch. The 
address/control field comparator drives the write enable for the 
latch and the input to the latch is the value of the data field 
comparator. The CHAINOUT latch is cleared when the control 
value register is written or when XnTRST is LOW.

RANGE Can be connected to the range output of another watchpoint 
register. In the ARM7TDM EmbeddedICE, the RANGEOUT 
output of watchpoint 1 is connected to the RANGE input of 
watchpoint 0. This allows the two watchpoints to be coupled for 
detecting conditions that occur simultaneously, for example, in 
range-checking.

Table 8-2 MAS[1:0] signal encoding

Bit 1 Bit 0 Data size

0 0 byte

0 1 halfword

1 0 word

1 1 (reserved)
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ENABLE Only exists in the value register and it cannot be masked. If a 
watchpoint match occurs, the BREAKPOINT signal is asserted 
only when the ENABLE bit is set.

For each of the bits [8:0] in the control value register, there is a corresponding bit in the 
control mask register. This removes the dependency on particular signals.
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8.3 Programming breakpoints

Breakpoints can be classified as hardware breakpoints or software breakpoints:

Hardware These typically monitor the address value and can be set in any 
code, even in code that is in ROM or code that is self-modifying.

Software These monitor a particular bit pattern being fetched from any 
address. Therefore you can use one EmbeddedICE watchpoint to 
support any number of software breakpoints. Software 
breakpoints can usually only be set in RAM because an 
instruction has to be replaced by the special bit pattern chosen to 
cause a software breakpoint.

8.3.1 Hardware breakpoints

To make a watchpoint unit cause hardware breakpoints on instruction fetches:

1. Program its address value register with the address of the instruction to be 
breakpointed.

2. Program the breakpoint bits for each state as follows:

a. ARM, set bits [1:0] of the address mask register to one.

b. Thumb, set bit 0 of the address mask to one. 

In both cases, the remaining bits are set to zero.

3. Program the data value register only if you require a data-dependent breakpoint, 
that is, only if the actual instruction code fetched must be matched as well as the 
address. If the data value is not required, program the data mask register to 
0xFFFFFFFF, all bits to one, otherwise program it to 0x00000000.

4. Program the control value register with nOPC = zero.

5. Program the control mask register with nOPC = zero, all other bits to one. 

6. If you have to make the distinction between User and non-User mode instruction 
fetches, program the nTRANS value and mask bits as above. 

7. If required, program the EXTERN, RANGE, and CHAIN bits in the same way.

8.3.2 Software breakpoints

To make a watchpoint unit cause software breakpoints, that is, on instruction fetches of 
a particular bit pattern:
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1. Program its address mask register to 0xFFFFFFFF, all bits set to one, so that the 
address is disregarded.

2. Program the data value register with the particular bit pattern that has been 
chosen to represent a software breakpoint.

3. For a Thumb software breakpoint, the 16-bit pattern must be repeated in both 
halves of the data value register. For example, if the bit pattern is 0xDFFF, then 
0xDFFFDFFF must be programmed. When a 16-bit instruction is fetched, 
EmbeddedICE only compares the valid half of the data bus against the contents 
of the data value register. In this way, a single watchpoint register can be used to 
catch software breakpoints on both the upper and lower halves of the data bus.

4. Program the data mask register to 0x00000000.

5. Program the control value register with nOPC = zero.

6. Program the control mask register with nOPC = zero, all other bits to one.

7. If you have to make the distinction between User and non-User mode instruction 
fetches, program the nTRANS bit in the control value and control mask registers 
accordingly.

8. If required, program the EXTERN, RANGE, and CHAIN bits in the same way.

Note

The address value register does not have to be programmed.

Setting the breakpoint

To set the software breakpoint:

1. Read the instruction at the desired address and store it.

2. Write the special bit pattern representing a software breakpoint at the address.

Clearing the breakpoint

To clear the software breakpoint, restore the instruction to the address.
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8.4 Programming watchpoints

This section contains examples of how to program the watchpoint register to generate 
breakpoints and watchpoints. Many other ways of programming the registers are 
possible. For instance, simple range breakpoints can be provided by setting one or more 
of the address mask bits.

To make a watchpoint unit cause watchpoints, that is, on data accesses:

1. Program its address value register with the address of the data access to be 
watchpointed.

2. Program the address mask register to 0x00000000.

3. Program the data value register only if you require a data-dependent watchpoint, 
that is, only if the actual data value read or written must be matched as well as 
the address. If the data value is irrelevant, program the data mask register to 
0xFFFFFFFF (all bits set to one) otherwise program it to 0x00000000.

4. Program the control value register with:

a. nOPC = one.

b. nRW = zero for a read.

c. nRW = one for a write.

d. MAS[1:0] with the value corresponding to the appropriate data size.

5. Program the control mask register with:

a. nOPC = zero.

b. nRW = zero.

c. MAS[1:0] = zero.

d. all other bits to zero.

Note

nRW or MAS[1:0] can be set to one if both reads and writes or data size accesses are 
to be watchpointed respectively.

6. If you have to make the distinction between User and non-User mode data 
accesses, program the nTRANS bit in the control value and control mask 
registers accordingly.

7. If required, program the EXTERN, RANGE, and CHAIN bits in the same way.
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8.4.1 Programming restriction

The EmbeddedICE watchpoint units must only be programmed when the clock to the 
core is stopped. You can achieve this by putting the core into the debug state.

The reason for this restriction is that if the core continues to run at ECLK rates when 
EmbeddedICE is being programmed at XTCK rates, it is possible for the 
BREAKPOINT signal to be asserted asynchronously to the core.

This restriction does not apply if MCLK and XTCK are driven from the same clock, 
or if it is known that the breakpoint or watchpoint condition can only occur some time 
after EmbeddedICE has been programmed.

Note

This restriction does not apply to the debug control or status registers. 
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8.5 The debug control register

The debug control register is 3 bits wide. 

• If the register is accessed for a write, with the read/write bit HIGH, the control 
bits are written.

• If the register is accessed for a read, with the read/write bit LOW, the control bits 
are read.

The functions of the register bits are shown in Figure 8-4 and described as follows:

• DBGRQ

• DBGACK

• INTDIS on page 8-14.

Figure 8-4 Debug control register format

Bits 1 and 0 allow you to force the values on DBGRQ and DBGACK.

8.5.1 DBGRQ

As shown in Figure 8-6 on page 8-16, the value stored in bit 1 of the control register is 
synchronized and then ORed with the external DBGRQ before being applied to the 
processor. The output of this OR gate is the signal DBGRQI which is brought out 
externally from the macrocell.

The synchronization between control bit 1 and DBGRQI assists in multiprocessor 
environments. The synchronization latch only opens when the TAP controller state 
machine is in the RUN-TEST-IDLE state. This allows an enter debug condition to be 
set up in all the processors in the system while they are still running. Once the condition 
is set up in all the processors, you can then applied it to them simultaneously by entering 
the RUN-TEST-IDLE state.

8.5.2 DBGACK

In the case of DBGACK, the value of DBGACK from the core is ORed with the value 
held in bit 0 to generate the external value of DBGACK seen at the periphery of 
ARM7TDM. This allows the debug system to signal to the rest of the system that the 
core is still being debugged even when system-speed accesses are being performed. The 
internal DBGACK signal from the core is LOW.

INTDIS DBGRQ DBGACK

2 1 0
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8.5.3 INTDIS

If bit 2, INTDIS, is asserted, the interrupt enable signal, IFEN, of the core is forced 
LOW. Therefore all interrupts (IRQ and FIQ) are disabled during debugging 
(DBGACK =1) or if the INTDIS bit is asserted. The IFEN signal is driven as listed in 
Table 8-3.

Table 8-3 IFEN signal control

DBGACK INTDIS IFEN

0 0 1

1 x 0

x 1 0
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8.6 Debug status register

The debug status register is 5 bits wide: 

• if it is accessed for a write, with the read/write bit set HIGH, the status bits are 
written

• if it is accessed for a read, with the read/write bit LOW, the status bits are read.

The debug status register is shown in Figure 8-5:.

Figure 8-5 Debug status register format

The function of each bit in this register is as follows:

Bits 1 and 0 Allow the values on the synchronized versions of DBGRQ and 
DBGACK to be read. 

Bit 2 Allows the state of the core interrupt enable signal, IFEN, to be 
read. As the capture clock for the scan chain can be asynchronous 
to the processor clock, the DBGACK output from the core is 
synchronized before being used to generate the IFEN status bit.

Bit 3 Allows the state of the NMREQ signal from the core, 
synchronized to XTCK to be read. This allows the debugger to 
determine that a memory access from the debug state has 
completed.

Bit 4 Allows TBIT to be read. This enables the debugger to determine 
what state the processor is in, and which instructions to execute.

The structure of the debug status register is shown in Figure 8-6 on page 8-16.
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Figure 8-6 Debug control and status register structure
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8.7 Coupling breakpoints and watchpoints

You can couple watchpoint units 1 and 0 together using the CHAIN and RANGE 
inputs:

• CHAIN enables watchpoint 0 to be triggered only if watchpoint 1 has previously 
matched

• RANGE enables simple range checking to be performed by combining the 
outputs of both watchpoints.

Example 8-1 Coupling breakpoints and watchpoints

Let:

Av[31:0] be the value in the address value register.

Am[31:0] be the value in the address mask register.

A[31:0] be the address bus from the ARM7TDM.

Dv[31:0] be the value in the data value register.

Dm[31:0] be the value in the data mask register.

D[31:0] be the data bus from the ARM7TDM.

Cv[8:0] be the value in the control value register.

Cm[7:0] be the value in the control mask register.

C[9:0] be the combined control bus from the ARM7TDM, other 
watchpoint registers and the EXTERN signal.

8.7.1 CHAINOUT

The CHAINOUT signal is then derived as follows:

WHEN (({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR 
{Am[31:0],Cm[4:0]} == 0x1FFFFFFFFF)

CHAINOUT = ((({Dv[31:0],Cv[7:5]} XNOR {D[31:0],C[7:5]}) OR 
{Dm[31:0],Cm[7:5]}) == 0x7FFFFFFFF) 

The CHAINOUT output of watchpoint register 1 provides the CHAIN input to 
watchpoint 0. This allows for quite complicated configurations of breakpoints and 
watchpoints. For example, consider the request by a debugger to breakpoint on the 
instruction at location YYY when running process XXX in a multiprocess system.
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If the current process ID is stored in memory, you can implement the above function 
with a watchpoint and breakpoint chained together. The watchpoint address is set to a 
known memory location containing the current process ID. The watchpoint data is set 
to the required process ID and the ENABLE bit is set to off.

The address comparator output of the watchpoint drives the write enable for the 
CHAINOUT latch, the input to the latch being the output of the data comparator from 
the same watchpoint. The output of the latch drives the CHAIN input of the breakpoint 
comparator. The address YYY is stored in the breakpoint register and when the CHAIN 
input is asserted, and the breakpoint address matches, the breakpoint triggers correctly.

8.7.2 RANGEOUT

The RANGEOUT signal is then derived as follows:

RANGEOUT = ((({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR 
{Am[31:0],Cm[4:0]}) == 0xFFFFFFFFF) AND ((({Dv[31:0],Cv[7:5]} 
XNOR {D[31:0],C[7:5]}) OR {Dm[31:0],Cm[7:5]}) == 0x7FFFFFFFF) 

The RANGEOUT output of watchpoint register 1 provides the RANGE input to 
watchpoint register 0. This allows you to couple two breakpoints together to form range 
breakpoints. 

Note

Selectable ranges are restricted to being powers of 2.

If a breakpoint is to occur when the address is in the first 256 bytes of memory, but not 
in the first 32 bytes, the watchpoint registers must be programmed as follows:

1. Watchpoint 1 is programmed with an address value of 0x00000000 and an 
address mask of 0x0000001F. The ENABLE bit is cleared. All other watchpoint 
1 registers are programmed as normal for a breakpoint. An address within the 
first 32 bytes causes the RANGE output to go HIGH but the breakpoint is not 
triggered.

2. Watchpoint 0 is programmed with an address value of 0x00000000 and an 
address mask of 0x000000FF. The ENABLE bit is set and the RANGE bit 
programmed to match a 0. All other watchpoint 0 registers are programmed as 
normal for a breakpoint. 

If watchpoint 0 matches but watchpoint 1 does not (that is, the RANGE input to 
watchpoint 0 is 0), the breakpoint is triggered.
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8.8 Debug communications channel

The ARM7TDM EmbeddedICE contains a communication channel for passing 
information between the target and the host debugger. This is implemented as 
coprocessor 14.

The communications channel consists of:

• a 32-bit wide comms data read register

• a 32-bit wide comms data write register

• a 6-bit wide comms control register for synchronized handshaking between the 
processor and the asynchronous debugger.

These registers live in fixed locations in the EmbeddedICE memory map (as shown in 
Table 8-1 on page 8-4) and are accessed from the processor using MCR and MRC 
instructions to coprocessor 14.

8.8.1 Debug communications channel registers

The debug comms control register is read-only and allows synchronized handshaking 
between the processor and the debugger. The register format is shown in Figure 8-7.

Figure 8-7 Debug comms control register

The function of each register bit is:

Bits [31:28] Contain a fixed pattern that denotes the EmbeddedICE version 
number, in this case 0001.

Bit [1] Denotes whether the comms data write register is free from the 
processor point of view. 

From the processor point of view:

If the Comms data write register is free (W=0), new data can be 
written.

If it is not free (W=1), the processor must poll until W=0. 

From the debugger point of view, if W=1 then new data has been 
written which can then be scanned out.

Bit [0] Denotes if there is some new data in the comms data read register. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 RW100
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From the processor point of view:
If R=1, there is some new data which can be read using an MRC 
instruction. 

From the debugger point of view:
If R=0, the comms data read register is free and new data can be 
placed there through the scan chain.
If R=1, this denotes that data previously placed there through the 
scan chain has not been collected by the processor and so the 
debugger must wait.

From the debugger point of view, the registers are accessed using the scan chain in the 
usual way. From the processors point of view, these registers are accessed using 
coprocessor register transfer instructions.

Instructions

The following instructions must be used:

This instruction returns the debug comms control register into Rd:

MRC CP14, 0, Rd, C0, C0

This instruction writes the value in Rn to the comms data write register:

MCR CP14, 0, Rn, C1, C0

This instruction returns the debug data read register into Rd:

MRC CP14, 0, Rd, C1, C0

Note

As the Thumb instruction set does not contain coprocessor instructions, it is 
recommended that these are accessed using SWI instructions when in Thumb state.

8.8.2 Communications using the comms channel

Communication between the debugger and the processor occurs as follows:
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1. When the processor wishes to send a message to EmbeddedICE, it first checks 
that the comms data write register is free for use. This is done by reading the 
debug comms control register to check that the W bit is clear:

a. If it is clear, the comms data write register is empty and a message is 
written by a register transfer to the coprocessor. The action of this data 
transfer automatically sets the W bit.

b. If it is set, this implies that previously-written data has not been picked up 
by the debugger and the processor must poll until the W bit is clear.

2. Because the data transfer occurs from the processor to the comms data write 
register, the W bit is set in the debug comms control register. 

3. When the debugger polls this register, it sees a synchronized version of both the 
R and W bit:

a. When the debugger sees that the W bit is set, it can read the comms data 
write register and scan the data out. 

b. The action of reading this data register clears the W bit of the debug 
comms control register. At this point, the communications process will 
begin again.

8.8.3 Message transfer

Message transfer from the debugger to the processor is carried out in a similar fashion 
to Communications using the comms channel on page 8-20:

1. The debugger polls the R bit of the debug comms control register:

a. If the R bit is LOW, the data read register is free and so data can be placed 
there for the processor to read. 

b. If the R bit is set, previously deposited data has not yet been collected and 
so the debugger must wait.

2. When the comms data read register is free, data is written there using the scan 
chain. The action of this write sets the R bit in the debug comms control register.

3. When the processor polls this register, it sees an MCLK synchronized version:

a. If the R bit is set, this denotes that there is data waiting to be collected, and 
this can be read using a CPRT load. The action of this load clears the R bit 
in the debug comms control register. 

b. If the R bit is clear, this denotes that the data has been taken and the 
process can now be repeated.
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Chapter 9
Bus Clocking

This chapter describes the bus interface clocking. It contains the following sections:

• About the ARM720T bus interface on page 9-2

• Fastbus extension on page 9-3

• Standard mode on page 9-5.
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9.1 About the ARM720T bus interface

The ARM720T bus interface can be operated using either:

• the standard mode of operation

• the new fastbus extension.

As the ARM720T is a fully static design, you can stop the clock indefinitely in either 
mode of operation.

Note

Take care to ensure that the memory system does not dissipate power in the state in 
which it is stopped.

9.1.1 Standard mode

For designs using low-cost, low-speed memory, and if operation of the core at a faster 
speed is required, it is recommended that you use standard mode. 

This mode consists of:

• two clocks, FCLK and BCLK
• synchronous or fully asynchronous operation.

9.1.2 Fastbus extension

For new designs, you can operate the device using the fastbus extension. In fastbus 
mode, the device is clocked off a single clock, and the bus is operated at the same 
frequency as the core. This allows the bus interface to be clocked faster than if the 
device is operated in standard mode. It is recommended that you use this mode of 
operation in systems with high-speed memory and a single clock.

This mode consists of:

• single device clock

• increased maximum BCLK frequency.
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9.2 Fastbus extension

Using the fastbus extension, the ARM720T has a single input clock, BCLK. This 
clocks the internals of the device, and qualified by BWAIT, controls the memory 
interface as shown in Figure 9-1.

Figure 9-1 Conceptual device clocking using the fastbus extension

When operating the device with XFASTBUS HIGH, the inputs FCLK and XSnA are 
not used. 

Note

To prevent unwanted power dissipation, ensure that they do not float to an undefined 
level. New designs must tie these signals LOW for compatibility with future products.

9.2.1 Using BWAIT

The BWAIT signal inserts entire BCLK cycles into the bus cycle timing. BWAIT can 
only change when BCLK is LOW, and extends the memory access by inserting BCLK 
cycles into the access while BWAIT is asserted.

Figure 10-4 on page 10-11 shows the use of BWAIT in more detail.

CPU Cache

Bus interface
BCLK

BWAIT



Bus Clocking

9-4 Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. ARM DDI 0192A

Memory cycles

It is preferable to use BWAIT to extend memory cycles, rather than stretching BCLK 
externally to the device because it is possible for the core to be accessing the cache 
while bus activity is occurring. This allows the maximum performance, as the core can 
continue execution in parallel with the memory bus activity. All BCLK cycles are 
available to the CPU and cache, regardless of the state of BWAIT.

In some circumstances, it is desirable to stretch BCLK phases to match memory timing 
that is not an integer multiple of BCLK. There are certain cases where this results in a 
higher performance than using BWAIT to extend the access by an integer number of 
cycles.

CPU and cache operation

CPU and cache operation can only continue in parallel with buffered writes to the 
external bus. For all read accesses, the CPU is stalled until the bus activity has 
completed. So, if read accesses can be achieved faster by stretching BCLK rather than 
using BWAIT, this results in improved performance. An example of where this can be 
useful is to interface to a ROM which has a cycle time of 2.5 times the BCLK period.
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9.3 Standard mode

Using the standard mode of operation, without the fastbus extension, and XFASTBUS 
tied LOW, the ARM720T has two input clocks:

• FCLK
• BCLK.

The bus interface is always controlled by the memory clock, BCLK, qualified by 
BWAIT. However, the core and cache are clocked by the fast clock, FCLK. 

In standard mode, the FCLK frequency must be greater than or equal to the BCLK 
frequency at all times. This relationship must be maintained on a cycle-by-cycle basis.

9.3.1 Memory access

When running in this mode, you can stretch memory access cycles by:

• using BWAIT
• by stretching phases of BCLK.

The resulting performance is determined by the access time, regardless of which 
method is used. This is shown in Figure 9-2.

Figure 9-2 Conceptual device clocking in standard mode
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9.3.2 Synchronous and asynchronous modes

When not using the fastbus extension, the ARM720T bus interface has two distinct 
modes of operation: 

• synchronous

• asynchronous.

These are selected by tying XSnA either HIGH or LOW. 

FCLK and BCLK

The two modes differ in the relationship between FCLK and BCLK:

• In asynchronous mode (XSnA LOW), the clocks can be completely 
asynchronous and of unrelated frequency.

• In synchronous mode (XSnA HIGH), BCLK can only make transitions before 
the falling edge of FCLK.

In systems where a satisfactory relationship exists between FCLK and BCLK, 
synchronization penalties can be avoided by selecting the synchronous mode of 
operation.

Asynchronous mode

In this mode, FCLK and BCLK can be completely asynchronous. You must select this 
mode by tying XSnA LOW when the two clocks are of unrelated frequency. 

There is a synchronization penalty whenever the internal core clock switches between 
the two input clocks. This penalty is symmetrical, and varies between zero and a whole 
period of the clock to which the core is resynchronizing:

• when changing from FCLK to BCLK, the average resynchronization penalty is 
half a BCLK period

• when changing from BCLK to FCLK, the average resynchronization penalty is 
half an FCLK period.



Bus Clocking

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 9-7

Synchronous mode

You select this mode by tying XSnA HIGH. In this mode, there is a tightly defined 
relationship between FCLK and BCLK, in that BCLK can only make transitions on 
the falling edge of FCLK. Some jitter between the two clocks is permitted, but BCLK 
must meet the setup and hold requirements relative to FCLK. This is shown in Figure 
9-3.

Figure 9-3 Relationship of FCLK and BCLK in synchronous mode
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Chapter 10
AMBA Interface

This chapter describes the operation of the AMBA bus interface. It contains the 
following sections:

• About the AMBA interface on page 10-2

• ASB bus interface signals on page 10-3

• Cycle types on page 10-4

• Addressing signals on page 10-7

• Memory request signals on page 10-8

• Data signal timing on page 10-9

• Slave response signals on page 10-10

• Maximum sequential length on page 10-12

• Read-lock-write on page 10-13

• Little-endian and big-endian operation on page 10-14

• Multi-master operation on page 10-17

• Bus master handover on page 10-19

• Default bus master on page 10-21.
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10.1 About the AMBA interface

In normal operation, the ARM720T is an Advanced System Bus (ASB) bus master. As 
a bus master it performs a subset of the possible ASB cycle types. 

The ASB is further described in the AMBA Specification.
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10.2 ASB bus interface signals

The signals in the ASB interface can be grouped into four categories:

Addressing BA[31:0]
BWRITE
BSIZE[1:0]
BLOK
BPROT[1:0].

Memory request BTRAN[1:0].

Data sampled BD[31:0].

Slave response BERROR
BWAIT
BLAST.

In addition to the signals provided above, there are also three controls communicating 
with control logic in the system:

AGNT Selects the ARM as a bus master.

AREQ Indicates that the ARM720T requires bus mastership.

DSEL Selects the ARM as a bus slave.
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10.3 Cycle types

In normal operation, the ARM720T bus interface can perform two types of cycle:

• address cycles

• sequential cycles.

These cycles are differentiated by the pipelined signal BTRAN[1:0]. Conventionally, 
cycles are considered to start from the falling edge of BCLK, and this is how they are 
shown in all diagrams.

These cycle types are a subset of the possible ASB cycle types. Other cycle types can 
be forced by the use of the slave response signals. See the AMBA Specification for more 
details.

The addressing and memory request signals are pipelined ahead of the data addressing 
by a phase, half a cycle, and BTRAN[1:0] by one cycle. This advance information 
allows the implementation of efficient memory systems. 

10.3.1 Single-word memory access

A simple single-word memory access is shown in Figure 10-1.

Figure 10-1 Simple single-cycle access

The access starts with the address being broadcast. You can be use this for decoding, 
but the access is not committed until BTRAN[1:0], bus transaction type, signals a 
sequential cycle in the following HIGH phase of BCLK. This indicates that the next 
cycle is a memory access cycle. 

In this example, BTRAN[1:0] returns to address after a single cycle, indicating that 
there is a single memory access cycle, followed by an address cycle. The data is 
transferred on the falling edge of BCLK at the end of the sequential cycle.
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Therefore, a memory access consists of:

• an address cycle, with a valid address

• a memory cycle with the same address.

The initial address cycle allows the memory controller more time to decode the address. 
See Table 10-1 on page 10-8 for the encoding of BTRAN[1:0].

10.3.2 Sequential accesses

ARM720T can perform sequential bursts of accesses. These consist of:

• an address cycle and a sequential cycle, as shown previously

• further sequential cycles to either:

— incrementing word addresses, that is, a, a+4, a+8 for example

— halfword addresses, that is, a, a+2, a+4 for example.

Figure 10-2 shows that after the initial address cycle, the address is pipelined by half a 
bus cycle from the data.

Note

BTRAN[1:0] is pipelined by a bus cycle from the data. If BWAIT is being used to 
stretch cycles, BTRAN[1:0] no longer refers to the next BCLK cycle, but rather to the 
next bus cycle. See BWAIT on page 10-10 for more information.

Figure 10-2 Simple sequential access

Sequential bursts can occur on word or halfword accesses, and are always in the same 
direction, that is, read, BWRITE LOW, or write, BWRITE HIGH.
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A memory controller must always qualify the use of the address with BTRAN[1:0]. 
There are circumstances in which a new address can be broadcast on the address bus, 
but BTRAN[1:0] does not signal a sequential access. This only happens when an 
internal, protection unit generated, abort occurs.

10.3.3 Bus accesses

The minimum interval between bus accesses can occur after a buffered write. In this 
case, there might only be a single address cycle between two memory cycles to 
nonsequential addresses. This means that the address for the second access is broadcast 
on BA[31:0] during the HIGH phase of the final memory cycle of the buffered write. 
This is shown in Figure 10-3.

Figure 10-3 Minimum interval between bus accesses

This is the closest case of back-to-back cycles on the bus, and the memory controller 
must be designed to handle this case. In high-speed systems, one solution is to use 
BWAIT to increase the decode and access time available for the second access. 

Note

Memory and peripheral strobes must not be direct decodes of the address bus. This can 
result in them changing during the last cycle of a write burst. 
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10.4 Addressing signals

Memory accesses can be read or write, and are differentiated by the signal BWRITE.

BWRITE cannot change during a sequential access, so if a read from address A is 
followed immediately by a write to address (A+4), the write to address (A+4) is 
performed on the bus as a nonsequential access.

In the same way, any memory access can be a word, a halfword, or a byte. These are 
differentiated by the signal BSIZE[1:0]. Again, BSIZE[1:0] can not change during 
sequential accesses. It is not possible to perform sequential byte accesses.

To reduce system power consumption, the addressing signals are left with their current 
values at the end of an access, until the next access occurs.

After a buffered write, there might be only a single address cycle between the two 
memory cycles. In this case, the next nonsequential address is broadcast in the last cycle 
of the previous access. This is the worst case for address decoding, as shown in Figure 
10-3 on page 10-6.
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10.5 Memory request signals

The memory request signals, BTRAN[1:0], are pipelined by one bus cycle, and refer to 
the next bus cycle. 

Note

You must take care when depipelining these signals if BWAIT is being used, as they 
always refer to the following bus cycle, rather than the following BCLK cycle. BWAIT 
stretches the bus cycle by an integer number of BCLK cycles. See BWAIT on 
page 10-10. Table 10-1 lists BTRAN[1:0] encoding

Table 10-1 BTRAN[1:0] encoding

BTRAN[1:0] Cycle type Description Remarks

00 Address Address transfer
or idle cycle

-

01 - Reserved -

10 Nonsequential Nonsequential
data transfer cycle

This cycle can only occur as a result of the slave response 
signals. In normal operation, ARM720T does not generate 
this cycle type.

11 Sequential Sequential data
transfer cycle

-
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10.6 Data signal timing

During a read access, the data is sampled on the falling edge of BCLK at the end of the 
sequential cycle. During a write access, the data on BD[31:0] is timed off the falling 
edge of BCLK at the start of the memory cycle. If BWAIT is being used to stretch this 
cycle, the data is valid from the falling edge of BCLK at the end of the previous cycle, 
when BWAIT was HIGH. See BWAIT on page 10-10.

Note

In a low-power system, you must ensure that the databus is not allowed to float to an 
undefined level. This causes power to be dissipated in the inputs of devices connected 
to the bus. This is particularly important when a system is put into a low-power sleep 
mode. It is recommended that one set of databus drivers in the system are left enabled 
during sleep to hold the bus at a defined level.
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10.7 Slave response signals

There are two main slave response signals:

• BERROR

• BWAIT

Other slave response combinations, including bus last and bus retract, are described in 
the AMBA Specification.

10.7.1 BERROR

The BERROR signal is sampled on the rising edge of BCLK during a sequential cycle, 
on both read and write accesses. The effect of BERROR on the operation of the 
ARM720T is described in Exceptions on page 2-16.

BERROR can be flagged on any sequential cycle. However, it is ignored on buffered 
writes, which cannot be aborted. 

Linefetches

The effect of BERROR during linefetches is slightly different to that during other 
access. During a linefetch the ARM720T fetches four words of data, regardless of 
which words of data were requested by the ARM core, and the rest of the words are 
fetched speculatively:

• if BERROR is asserted on a word that was requested by the ARM core, the 
abort functions normally

• if the abort is signaled on a word that was not requested by the ARM core, the 
access is not aborted, and program flow is not interrupted.

Regardless of which word was aborted, the line of data is not placed in the cache as it 
is assumed to contain invalid data. 

10.7.2 BWAIT

You can use the BWAIT pin to extend memory accesses in whole cycle increments.

BWAIT is driven by the selected slave during the LOW phase of BCLK. When a slave 
cannot complete an access in the current cycle, it drives BWAIT HIGH to stall the 
ARM720T.
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BWAIT does not prevent changes in BTRAN[1:0] and write data on BD[31:0] during 
the cycle in which it was asserted HIGH. Changes in these signals are then prevented 
until the BCLK HIGH phase after BWAIT was taken LOW. The addressing signals do 
not change from the rising BCLK edge when BWAIT goes HIGH, until the next 
BCLK HIGH phase after BWAIT returns LOW.

In Figure 10-4, the heavy bars indicate the cycle for which signals are stable as a result 
of asserting BWAIT.

Figure 10-4 Use of the BWAIT pin to stop ARM720T for 1 BCLK cycle

The signal BTRAN[1:0] is pipelined by one bus cycle. This pipelining must be taken 
into account when these signals are being decoded. The value of BTRAN[1:0] indicates 
whether the next bus cycle is a data cycle or an address cycle. 

As bus cycles are stretched by BWAIT, the boundary between bus cycles is determined 
by the falling edge of BCLK when BWAIT was sampled as LOW on the rising edge 
of BCLK. A useful general rule is to sample the value of BTRAN[1:0] on the falling 
edge of BCLK only when BWAIT was LOW on the previous rising edge of BCLK. 

When BWAIT is used to stretch a sequential cycle, BTRAN[1:0] returns to signaling 
address during the first phase of the sequential cycle if a single word access is occurring. 
In this case, it is important that the memory controller does not interpret that an address 
cycle is signaled when it is a stretched memory cycle. 
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10.8 Maximum sequential length

The ARM720T can perform sequential memory accesses whenever the cycle is of the 
same type as the previous cycle (for example, read/write), and the addresses are 
consecutive. However, sequential accesses are interrupted on a 256-word boundary. 

If a sequential access is performed over a 256-word boundary, the access to word 256 
is turned into a nonsequential access, and further accesses continue sequentially as 
before. 

This simplifies the design of the memory controller. Provided that peripherals and areas 
of memory are aligned to 256-word boundaries, sequential bursts are always local to 
one peripheral or memory device. This means that all accesses to a device always start 
with a nonsequential access.

A DRAM controller can take advantage of the fact that sequential cycles are always 
within a DRAM page, provided the page size is greater than 256.
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10.9 Read-lock-write

The read-lock-write sequence is generated by a SWP instruction. 

The BLOK signal indicates that the two accesses must be treated as an atomic unit. A 
memory controller must ensure that no other bus activity is allowed to happen between 
the accesses when BLOK is asserted. When the ARM720T has started a 
read-lock-write sequence, it cannot be interrupted until it has completed.

On the bus, the sequence consists of:

• a read access

• a write access to the same address.

This sequence is differentiated by the BLOK signal. BLOK:

• goes HIGH in the HIGH phase of BCLK at the start of the read access

• always goes LOW at the end of the write access.

The read cycle is always performed as a single, nonsequential, external read cycle, 
regardless of the contents of the cache.

The write is forced to be unbuffered, so that it can be aborted if necessary. 

The cache is updated on the write.
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10.10 Little-endian and big-endian operation

The ARM720T treats words in memory as being stored in big-endian or little-endian 
format depending on the value of the bigend bit in the control register (see Memory 
formats on page 2-3).

Load and store are the only instructions affected by the endianness. Refer to the ARM 
Architecture Reference Manual for details of the LDR and STR instructions.

10.10.1 Little-endian format

In little-endian format:

• the lowest-numbered byte in a word is considered to be the least significant

• the highest-numbered byte is the most significant.

Byte zero of the memory system must be connected to data lines seven to zero 
(BD[7:0]) in this format.

Little-endian format is shown in Figure 10-5.

Figure 10-5 Little-endian addresses of bytes within words

10.10.2 Big-endian format

In big-endian format:

• the most significant byte of a word is stored at the lowest-numbered byte

• the least significant byte is stored at the highest-numbered byte. 

Byte zero of the memory system must therefore be connected to data lines 31 to 24 
(BD[31:24]).
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Big-endian format is shown in Figure 10-6.

Figure 10-6 Big-endian addresses of bytes within words

10.10.3 Word operations

All word operations expect the data to be presented on data bus inputs 31 to 0. The 
external memory system ignores the bottom two bits of the address if a word operation 
is indicated.

10.10.4 Halfword operations
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data bus outputs 31 to 0. The external memory system must activate the appropriate byte 
subsystems to store the data.
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A halfword load, LDRH, expects the data on data bus inputs 15 to 0 if the supplied 
address is on a word boundary, or on data bus inputs 31 to 16 if it is a word address plus 
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register. The other two bytes on the databus are ignored (see Figure 10-5 on 
page 10-14). 

Big-endian operation

A halfword load, LDRH, expects the data on data bus inputs 31 to 16 if the supplied 
address is on a word boundary, or on data bus inputs 15 to 0 if it is a word address plus 
two bytes. The selected halfword is placed in the bottom 16 bits of the destination 
register. The other two bytes on the databus are ignored, see Figure 10-6 on page 10-15.
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10.10.5 Byte operations

A byte store, STRB, repeats the bottom eight bits of the source register four times across 
data bus outputs 31 to 0. The external memory system activates the appropriate byte 
subsystem to store the data.

Because ARM720T duplicates the byte to be written across the databus and internally 
rotates bytes after reading them from the databus, a 32-bit memory system only requires 
to have control logic to enable the appropriate byte. You do not have to rotate or shift 
the data externally.

To ensure that all of the databus is driven during a byte read, it is valid to read a word 
back from the memory.

Little-endian operation

A byte load, LDRB, expects the data on data bus inputs seven to zero if the supplied 
address is on a word boundary, on data bus inputs 15 to 8 if it is a word address plus one 
byte, and so on. The selected byte is placed in the bottom eight bits of the destination 
register. The other three bytes on the databus are ignored (see Figure 10-5 on 
page 10-14).

Big-endian operation

A byte load, LDRB, expects the data on data bus inputs 31 to 24 if the supplied address 
is on a word boundary, on data bus inputs 23 through 16 if it is a word address plus one 
byte, and so on. The selected byte is placed in the bottom eight bits of the destination 
register. The other three bytes on the databus are ignored (see Figure 10-6 on 
page 10-15).



AMBA Interface

ARM DDI 0192A Copyright © ARM Limited 1997, 1998, 2000. All rights reserved. 10-17

10.11 Multi-master operation

The AMBA bus specification supports multiple bus masters on the high performance 
ASB. A simple two wire request and grant mechanism is implemented between the 
arbiter and each bus master. The arbiter ensures that only one bus master is active on 
the bus and also ensures that when no masters are requesting the bus, a default master 
is granted.

The specification also supports a shared lock signal. This allows bus masters to indicate 
that the current transfer is indivisible from the following transfer and prevents other bus 
masters from gaining access to the bus until the locked transfers have completed.

10.11.1 Arbitration

Efficient arbitration is important to reduce dead-time between successive masters being 
active on the bus. The bus protocol supports pipelined arbitration, so that arbitration for 
the next transfer is performed during the current transfer.

The arbitration protocol is defined, but the prioritization is flexible and left to the 
application. Typically, the test interface is given the highest priority to ensure test 
access under all conditions. Every system must also include a default bus master, which 
is granted the bus when no bus masters are requesting it.

The request signal, AREQ, from each bus master to the arbiter indicates that the bus 
master requires the bus. The grant signal from the arbiter to the bus master, AGNT, 
indicates that the bus master is currently the highest priority master requesting the bus.

The bus master:

• must drive the BTRAN signals during BCLK HIGH when AGNT is HIGH

• is granted when AGNT is HIGH and BWAIT is LOW on a rising edge of 
BCLK.

The shared bus lock signal, BLOK, indicates to the arbiter that the following transfer is 
indivisible from the current transfer and no other bus master can be given access to the 
bus.

A bus master must always drive a valid level on the BLOK signal when granted the bus 
to ensure the arbitration process can continue, even if the bus master is not performing 
any transfers.

The arbiter functions are:

1. Bus masters assert AREQ during the HIGH phase of BCLK.

2. The arbiter samples all AREQ signals on the falling edge of BCLK.
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3. During the LOW phase of BCLK, the arbiter also samples the BLOK signal and 
then asserts the appropriate AGNT signal:

a. If BLOK is LOW, the arbiter grants the highest priority bus master

b. If BLOK is HIGH, the arbiter keeps the same bus master granted.

The arbiter can update the grant signals every bus cycle. However, a new bus master 
can only become granted and start driving the bus when the current transfer completes, 
as indicated by BWAIT being LOW. Therefore, it is possible for the potential next bus 
master to change during waited transfers.

The BLOK signal is ignored by the arbiter during the single cycle of handover between 
two different bus masters. 

If no bus masters are requesting the bus, the arbiter must grant the default bus master. 
The arbitration protocol is defined, but the prioritization is flexible and left to the 
application. A simple fixed-priority scheme can be used. Alternatively, a more complex 
scheme can be implemented if required by the application.
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10.12 Bus master handover

Bus master handover occurs when a bus master, which is not currently granted the bus, 
becomes the new granted bus master.

A bus master becomes granted when AGNT is HIGH and BWAIT is LOW. AGNT 
HIGH indicates the bus master is currently the highest priority master requesting the bus 
and BWAIT LOW indicates the previous transfer has completed. Figure 10-7 shows 
the bus master handover process.

Figure 10-7 Bus master handover
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6. The first transfer can then commence in the following bus cycle.

During a waited transfer, bus master handover can be delayed and it is possible that the 
AGNT to a particular bus master might be asserted and then negated, if another higher 
priority bus master then requests the bus before the current transfer has completed.
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10.13 Default bus master

Every system must be designed with a single default bus master, which is granted when 
no other bus master is requesting the bus. The default bus master is responsible for 
driving the following signals to ensure the bus remains active:

• BTRAN must be driven to indicate address-only transfer

• BLOK must be driven LOW.

Note

If the ARM720T is to be the default bus master then the AREQ signal from the 
ARM720T must not be used.
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Chapter 11
AMBA Test

This chapter describes the AMBA test features of the ARM720T. It contains the 
following sections:

• Slave operation, test mode on page 11-2

• ARM720T test mode on page 11-3

• ARM7TDM core test mode on page 11-5

• RAM test mode on page 11-6

• TAG test mode on page 11-8

• Test register mapping on page 11-11.
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11.1 Slave operation, test mode

When the block is selected as a slave, you can write and read test vectors to the core 
using the AMBA test methodology. 

The ARM720T provides four test modes for this purpose:

• ARM720T test mode on page 11-3

• ARM7TDM core test mode on page 11-5

• RAM test mode on page 11-6

• TAG test mode on page 11-8.

To apply test vectors to the ARM720T, the ARM720T block must have been deselected 
as a master (AGNT goes LOW). The Test Interface Controller (TIC) becomes the bus 
master, and the ARM720T is selected as a slave using the signal DSEL. This places the 
ARM720T into test mode, and allows access to the test registers. 

The tests are sequenced by the test state machine in the AMBA interface. This generates 
the appropriate control signals for the test modes. 

A sample test sequence is shown in Figure 11-1.

Figure 11-1 Running a test vector on the processor core
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11.2 ARM720T test mode

The ARM720T test mode tests the functionality of the:

• cache control logic

• write buffer

• protection unit

• cache.

To perform this test control/stimuli are applied to the control register (see Table 11-4 
on page 11-13).

Data packets are read or written as appropriate and the address and status are read back 
(see Table 11-3 on page 11-11). 

The sequencing for this test mode is shown in Figure 11-2. This is the default test mode, 
and is selected when bits [31:29] of the control register are set LOW (see Table 11-4 on 
page 11-13).

Figure 11-2 State machine for ARM720T and ARM7TDMI test
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MCLKENABLE is an internal signal that controls the clocking of the ARM720T and 
is asserted only in the DataIn and DataOut status.
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11.3 ARM7TDM core test mode

The ARM7TDMI test places the ARM720T into a test mode so that the signals of the 
ARM7TDM are visible to the AMBA interface. In this mode, the rest of ARM720T is 
held in reset. The ARM720T is placed in the mode by setting bit 31 of the control 
register (see Table 11-4 on page 11-13).
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11.4 RAM test mode

The RAM test mode performs an intensive test of the RAM arrays, to provide full 
coverage of bit faults. In this test mode, the rest of the ARM720T is held in reset and 
direct access is provided to the data, address, and control signals of the RAM.

To accommodate this, an alternative test sequence is used as shown in Figure 11-3.

Figure 11-3 .State machine for RAM test mode

In this test mode, the RAM control signals are derived from unused address bits, as 
shown in Table 11-1.

INACTIVE

CONTROL

ADDRESS

TURNAROUND

Reset

DATA OUTDATA IN

Table 11-1 RAM test mode address packet bit positions

Address
packet bit

RAM signal Description

[24:23] MAS[1:0] RAM access size

22 RSEQ RAM sequential signal

21 IMMED Immediate write signal, controls write pipeline, and 
selects between RAMSEL[3:0] and SETSEL[3:0]
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To enter RAM test mode, bits 29 and 28 of the control packet must be set. This places 
the ARM720T into RAM test mode, and forces the RAM to be clocked from the FCLK 
input.

20 WRITE RAM write strobe

19 READ RAM read strobe

[18:15] RAMSEL[3:0] RAM bank select signal, used when IMMED is LOW

[14:11] SETSEL[3:0] RAM bank select signal, used when IMMED is HIGH

[10:0] ADDR[10:0] RAM address

Table 11-1 RAM test mode address packet bit positions

Address
packet bit

RAM signal Description
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11.5 TAG test mode

The TAG test mode performs an intensive test of all of the cells of the TAG array, and 
tests the TAG comparators. In this test mode, the rest of the ARM720T is held in reset 
and direct access is provided to the data, address, and control signals of the RAM as 
shown in Figure 11-4. In this test mode the TAG control signals are derived from the 
TAG CTL packet as listed in Table 11-2 on page 11-9.

To enter TAG test mode, you must set bits 30 and 28 of the control packet. This places 
the ARM720T into TAG test mode, and forces the TAG to be clocked from the FCLK 
input.

Figure 11-4 State machine for TAG test mode
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Table 11-2 TAG test mode TAG CTL packet bit positions

TAG CTL
packet bit

TAG signal Description

[11:8] FLUSH[3:0] When asserted each bit flushes the appropriate TAG 
arrays

[7:4] TAGSEL[3:0] Tag select signal, each bit selects a TAG array

2 WRITE TAG write strobe

1 READ TAG read strobe

0 VALID Valid input, the value on VALID is written into the 
valid cell in the array on a write.
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11.6 MMU test mode

The MMU test mode performs an intensive test of all the cells in the TLB array, and 
tests the protection mechanism. In this test mode the rest of the ARM720T is held in 
reset and direct access is provided to the data, control, and translated address of the 
MMU as shown in Figure 11-5.

In this test mode, the MMU control signals are derived from the MMU CM packet. 

To enter MMU test mode, you must set bits 28 and 27 of the control packet. This places 
the ARM720T into MMU test mode and forces the MMU to be clocked from the FCLK 
input.

Figure 11-5 State machine for MMU test mode
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11.7 Test register mapping

The test registers are defined in the following tables:

• Table 11-3

• Table 11-4 on page 11-13.

Table 11-3 Status packet bit positions bits [31:0]

Bit ARM7TDMI test ARM720T test

31 BUSDIS
Bus disable

-

30 SCREG[3]
Scan chain register

SCREG[3]
Scan chain register

29 SCREG[2]
Scan chain register

SCREG[2]
Scan chain register

28 SCREG[1]
Scan chain register

SCREG[1]
Scan chain register

27 SCREG[0]
Scan chain register

SCREG[0]
Scan chain register

26 HIGHZ
HIGHZ instruction in TAP controller

HIGHZ
HIGHZ instruction in TAP controller

25 nTDOEN
not TDO enable

nTDOEN
not XTDO enable

24 DBGRQI
Internal debug request

DBGRQI
Internal debug request

23 RANGEOUT0
ICEbreaker rangeout0

RANGEOUT0
ICEbreaker rangeout0

22 RANGEOUT1
ICEbreaker rangeout1

RANGEOUT1
ICEbreaker rangeout1

21 COMMRX
Communications channel receive

COMMRX
Communications channel receive

20 COMMTX
Communications channel transmit

COMMTX
Communications channel transmit

19 DBGACK
Debug acknowledge

DBGACK
Debug acknowledge
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18 TDO
Test data out

XTDO
Test data out

17 nENOUTa

Not enable output
nENOUT
Not enable output

16 nENOUTIb

Not enable output
PROTWATCH[3]
Protection unit test output

15 TBIT
Thumb state

PROTWATCH[2]
Protection unit test output

14 nCPI
Not coprocessor instruction

-

13 nM[4]
Not processor mode

CAMWATCH[2]
Replacement test output

12 nM[3]
Not processor mode

CAMWATCH[1]
Replacement test output

11 nM[2]
Not processor mode

CAMWATCH[0]
Replacement test output

10 nM[1]
Not processor mode

IDCWATCH[3]
Cache test output

9 nM[0]
Not processor mode

IDCWATCH[2]
Cache test output

8 nTRANS
Not memory translate

IDCWATCH[1]
Cache test output

7 nEXEC
Not executed

IDCWATCH[0]
Cache test output

6 LOCK
Locked operation

LOCK
Locked operation

5 MAS[1]
Memory access size

MAS[1]
Memory access size

4 MAS[0]
Memory access size

MAS[0]
Memory access size

3 nOPC
Not op-code fetch

nENDOUT
Not enable output

Table 11-3 Status packet bit positions bits [31:0] (continued)

Bit ARM7TDMI test ARM720T test
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2 nRW
Not read/write

nRW
Not read/write

1 nMREQ
Not memory request

nMREQ
Not memory request

0 SEQ
Sequential address

SEQ
Sequential address

a.nENOUT is only valid during the data access cycle, so MCLKENABLE is used to 
clock a transparent latch that captures the correct state.

b.nENOUTI as nENOUT.

Table 11-4 Control packet bit positions bits [31:0]

Bit ARM7TDMI input ARM720T input

31 TESTCPU
ARM7TDMI test enable

TESTCPU
ARM7TDMI test enable

30 - TAGTEST
TAG test mode enable

29 - RAMTEST
RAM test mode enable

28 nENIN
NOT enable input

FORCEFCLK
Clock select override

27 SDOUTBS
Boundary scan serial output data

MMUTEST
MMU test mode enable

26 TBE
Test bus enable

-

25 APE
Address pipeline enable

-

24 BL[3]a

Byte latch control
-

23 BL[2]a

Byte latch control
-

Table 11-3 Status packet bit positions bits [31:0] (continued)

Bit ARM7TDMI test ARM720T test
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22 BL[1]a

Byte latch control
-

21 BL[0]a

Byte latch control
-

20 TMS
Test mode select

XTMS
Test mode select

19 TDI
Test data in

XTDI
Test data in

18 TCKb

Test clock
XTCK
Test clock

17 nTRST
Not test reset.

XnTRST
Not test reset

16 EXTERN1
External input 1

EXTERN1
External input 1

15 EXTERN0
External input 0

EXTERN0
External input 0

14 DBGRQ
Debug request

DBGRQ
Debug request

13 BREAKPT
Breakpoint

BREAKPOINT
Breakpoint

12 DBGEN
Debug enable

DBGEN
Debug enable

11 ISYNC
Synchronous interrupts

-

10 BIGEND
Big Endian configuration

WINCE EN
WinCe enhancements enable

9 CPA
Coprocessor absent

CPA
Coprocessor absent

8 CPB
Coprocessor busy

CPB
Coprocessor busy

7 ABEc

Address bus enable
XSnA
Clock configuration

Table 11-4 Control packet bit positions bits [31:0] (continued)

Bit ARM7TDMI input ARM720T input
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6 ALE
Address latch enable

ALE
Address latch enable

5 DBEd

Data bus enable
XFASTBUS
Clock configuration

4 nFIQ
Not fast interrupt request. 

nFIQ
Not fast interrupt request

3 nIRQ
Not interrupt request

nIRQ
Not interrupt request

2 ABORT
Memory abort

ABORT
Memory abort

1 nWAITe

Not wait
nWAIT
Not wait

0 nRESET
Not reset

nRESET
Not reset

a.ANDed with MCLKENABLE, so is only valid during data access cycle.

b.ANDed with MCLKENABLE and BCLK.

c.This must normally be set HIGH, because if the bus is tristated, with ABE LOW, then 
it is not possible to read address values.

d.DBE to the ARM7DMT is ANDed with the state machine generated DBE and BCLK 
to prevent bus conflict

e.ANDed with MCLKENABLE, so that the core state can only change during the data 
access cycle.

Table 11-4 Control packet bit positions bits [31:0] (continued)

Bit ARM7TDMI input ARM720T input
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Chapter 12
Trace Interface Port

This chapter describes the ETM support for the ARM720T. It contains the following 
sections.

• About the ETM on page 12-2

• ETM interface on page 12-3.
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12.1 About the ETM

The ETM provides instruction and data trace for the ARM family of processors.

The ETM comprises two parts:

A trace port A trace protocol has been developed to provide a real time trace 
capability for ARM processor cores that are embedded in large 
Application-Specific Integrated Circuits (ASICs). Because the 
ASIC usually contains on-chip memory and other circuitry, it is 
not possible for you to determine processor core operation by 
observing the ASIC pins. The trace port is necessary for you to 
understand processor operation.

Triggering facilities
A specification has been developed that allows you to specify the 
exact set of trigger resources necessary for a particular 
application. Resources include address and data comparators, 
counters, and sequencers.

A software debugger provides you with the interface to the ETM. The debugger allows 
all of the ETM facilities to be configured through a JTAG interface. If a trace port has 
been implemented then the debugger displays the captured trace information in an 
easily understandable format.

You can use the JTAG interface for other debugging functions, such as downloading 
code or single-stepping through a program.

The ETM compresses the trace information and exports it through the trace port. An 
external Trace Port Analyzer (TPA) is used to capture the trace information.

When you have captured the trace then the debugger extracts compressed information 
from the TPA and decompresses it to provide a full disassembly of the executed code. 
The debugger can also link this to the original high level code to provide you with 
information on how the code was executed on the target system.
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12.2 ETM interface

The ARM720T trace interface port enables connection of an ARM7 ETM (ETM7) 
Rev 1 to an ARM720T Rev 3. This interface does not exist on ARM720T Rev 0 to 
Rev 2. The ETM7 provides instruction and data trace for the ARM7 family of 
processors.

The interface is made up as follows:

ETMCLK Is a clock signal output from the ARM720T to use in the ETM7 to 
provide synchronization with the clock in the ARM720T core. 
The internal clock signal used is CPCLK which is inverted to 
form the ETMCLK output.

ETMCLKEN ETMCLK is gated when it enters the ETM7 by exporting another 
signal (ETMCLKEN) from the ARM720T. This signal is based 
on the CPnWAIT signal.

ETM<signal> Outputs to the ETM7.

The ETM7 is reset by XnTRST, no extra signal is used to achieve this.

The ETMCLK output is used by the ETM7 to register the ETM<signal> outputs on 
the rising edge of ETMCLK.

The ETM interface (ETM<signal>) timings are shown in Figure 12-1. These signals all 
change in the low phase of ETMCLK. 

Figure 12-1 ETM interface signal timing

The ARM720T ETM<signal> descriptions are provided in Embedded trace macrocell 
interface signals on page A-10.

The ETM7 Technical Reference Manual describes how to integrate an ETM7 with the 
ARM7 family of processors.

ETMCLK

ARM720T outputs

set up hold
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12.2.1 ETMCLK gating for power saving

For lowest power operation, it is essential that the clock provided to the ETM7 is gated 
off when the ETM7 is powered down. You must insert a clock gate between ARM720T 
and ETM7 for this purpose. This is shown in Figure 12-2.

Figure 12-2 ETMCLK power saving

Note

You must take care during implementation to minimize the delay caused by insertion of 
this gate.

ARM720T PWRDWN ETM7

ETMCLK
CLK
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Appendix A
Signal Descriptions

This chapter describes the interface signals of the ARM720T. It contains the following 
sections:

• AMBA interface signals on page A-2

• Coprocessor interface signals on page A-5

• JTAG signals on page A-7

• Debugger signals on page A-9

• Embedded trace macrocell interface signals on page A-10

• Miscellaneous signals on page A-12.
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A.1 AMBA interface signals
The AMBA interface signals are listed in Table A-1.

Table A-1 AMBA signal descriptions

Name Type Source or destination Description

AGNT In Arbiter Access grant.
This signal from the bus arbiter indicates that the 
ARM720T is currently the highest priority master 
requesting the bus. If AGNT is asserted at the end 
of a transfer (BWAIT LOW), the master is granted 
the bus. AGNT changes during the LOW phase of 
BCLK and remains valid through the high phase.

AREQ Out Arbiter Access request.
This signal indicates that the master requires the 
bus. It changes during the HIGH phase of BCLK. 
This signal is intended for use where the 
ARM720T is not the lowest priority or default bus 
master.

BA[31:0] Out Current bus master Bus address.
This is the system address bus.

BCLK In System (bus) clock.
This clock times all bus transfers. 

BD[31:0] In/out Bus master Bidirectional system data bus.
This data bus is driven by the current bus master 
during write cycles, and by the appropriate bus 
slave during read cycles.

BERROR In/out System decoder and current bus 
master

Bus error.
This signal indicates a transfer error by the 
selected bus slave using the BERROR signal. 
When BERROR is HIGH, a transfer error has 
occurred. When BERROR is LOW, the transfer is 
successful. This signal is also used in combination 
with the BLAST signal to indicate a bus retract 
operation.
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BLAST In/out System decoder and current bus 
master

Bus class.
This signal is driven by the selected slave to 
indicate if the current transfer must be the last of a 
burst sequence. When BLAST is HIGH, the next 
bus transfer must allow sufficient time for address 
decoding. When BLAST is LOW, the next transfer 
can continue as a burst sequence. This signal is 
also used in combination with the BERROR 
signal to indicate a bus retract operation.

BLOK Out Arbiter Bus lock.
When HIGH, this signal indicates that the 
following bus transfer is to be indivisible and no 
other bus master must be given access to the bus.

BnRES In Reset state machine Bus reset.
This signal indicates the reset status of the bus.

BPROT[1:0] Out System decoder Bus protections.
These signals provide additional information about 
the transfer being performed. All write cycles are 
indicated as being Supervisor accesses. These 
signals have the same timing as the BA signals.

BSIZE[1:0] Out Current bus master Bus size.
These signals indicate the size of the transfer, 
which can be byte, halfword, or word. These 
signals have the same timing as the address bus. 

BTRAN[1:0] Out Bus master Bus transaction type.
These signals indicate the type of the next 
transaction which can be address-only, 
nonsequential, or sequential. These signals are 
driven when AGNT is asserted, and are valid 
during the HIGH phase of BCLK before the 
transfer to which they refer.

Table A-1 AMBA signal descriptions  (continued)

Name Type Source or destination Description
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BWAIT In/out System decoder and current bus 
master

Bus wait.
This signal is driven by the selected slave to 
indicate if the current transfer can complete. If 
BWAIT is HIGH, a further bus cycle is required. 
If BWAIT is LOW, the current transfer can 
complete in the current bus cycle.

BWRITE In/out Current bus master Bus write.
When HIGH, this signal indicates a bus write 
cycle and when LOW, a read cycle. This signal has 
the same timing as the address bus.

DSEL In System decoder Slave select.
This signal puts the ARM core into a test mode so 
that vectors can be written in and out of the core.

Table A-1 AMBA signal descriptions  (continued)

Name Type Source or destination Description
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A.2 Coprocessor interface signals 

The coprocessor interface signals are listed in Table A-2.

Table A-2 Coprocessor interface signal descriptions

Name Type Description

CPCLK Out Coprocessor clock.
This clock controls the operation of the coprocessor interface.

CPDATA[31:0] In/out Coprocessor data bus.
Data is transferred to and from the coprocessor using this bus. Data is valid on the falling 
edge of CPCLK.

CPDBE In Coprocessor data bus enable.
This signal when HIGH, indicates that the coprocessor intends to drive the coprocessor 
data bus, CPDATA. If the coprocessor interface is not to be used then this signal must be 
tied LOW.

CPnWAIT Out Coprocessor not wait.
The coprocessor clock CPCLK is qualified by CPnWAIT to allow the ARM720T to 
control the transfer of data on the coprocessor interface.

CPTESTREAD In Coprocessor test read.
This signal can be used for test of a coprocessor, if attached, and must only be used with 
the ARM720T held in reset. When HIGH, it enables Data Bus (DB) to be driven on to 
CPDATA, and must be held LOW. It must never be asserted at the same time as 
CPTESTWRITE. 

CPTESTWRITE In Coprocessor test write.
This signal can be used for test of a coprocessor, if attached, and must only be used with 
the ARM720T held in reset. When HIGH, it enables DB to be driven on to CPDATA, 
and must be held LOW. It must never be asserted at the same time as CPTESTREAD.

EXTCPA In External coprocessor absent.
A coprocessor that is capable of performing the operation that ARM720T is requesting, 
by asserting nCPI takes EXTCPA LOW immediately. If EXTCPA is HIGH at the end of 
the low phase of the cycle in which nCPI went LOW, ARM720T aborts the coprocessor 
instruction and takes the undefined instruction trap. If EXTCPA is LOW and remains 
LOW, ARM720T busy-waits until EXTCPB is LOW, and then completes the 
coprocessor instruction.

EXTCPB In External coprocessor busy.
A coprocessor that is capable of performing the operation that ARM720T is requesting, 
by asserting nCPI, but cannot commit to starting it immediately, indicates this by driving 
EXTCPB HIGH. When the coprocessor is ready to start it takes EXTCPB LOW. 
ARM720T samples EXTCPB at the low phases of each cycle in which nCPI is LOW.
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nOPC Out Not opcode fetch.
When LOW, this signal indicates that the processor is fetching an instruction from 
memory. When HIGH, data, if present, is being transferred. This signal is used by the 
coprocessor to track the ARM pipeline.

nCPI Out Not coprocessor instruction.
When LOW, this signal indicates that the ARM720T is executing a coprocessor 
instruction.

nUSER Out Not User mode.
When LOW, this signal indicates that the processor is in User mode. It is used by a 
coprocessor to qualify instructions.

TBIT Out Thumb state.
This signal, when HIGH, indicates that the processor is executing the THUMB 
instruction set. When LOW, the processor is executing the ARM instruction set.

Table A-2 Coprocessor interface signal descriptions  (continued)

Name Type Description
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A.3 JTAG signals

JTAG signal descriptions are listed in Table A-3.

Table A-3 JTAG signal descriptions

Name Type Description

HIGHZ Out This signal denotes that the HIGHZ instruction has been loaded into the TAP controller.

IR[3:0] Out TAP instruction register.
These signals reflect the current instruction loaded into the TAP controller instruction register. 
The signals change on the falling edge of XTCK when the TAP state machine is in the 
UPDATE-DR state. You can use these signals to allow more scan chains to be added using the 
ARM720T TAP controller.

RSTCLKBS Out Reset boundary scan clock.
This signal denotes that either the TAP controller state machine is in the RESET state or that 
XnTRST has been asserted. You can use this to reset boundary scan cells outside the 
ARM720T.

SCREG[3:0] Out Scan chain register.
These signals reflect the ID number of the scan chain currently selected by the TAP controller. 
These signals change on the falling edge of XTCK when the TAP state machine is in the 
UPDATE-DR state.

SDINBS Out Boundary scan serial data in.
This signal is the serial data to be applied to an external scan chain.

SDOUTBS In Boundary scan serial data out.
This signal is the serial data from an external scan chain. It allows a single XTDO port to be 
used. If an external scan chain is not connected, this input must be tied LOW.

TAPSM[3:0] Out Tap controller status.
These signals represent the current state of the TAP controller machine. These signals change 
on the rising edge of XTCK and can be used to allow more scan chains to be added using the 
ARM720T TAP controller. 

TCK1 Out Test clock one.
This clock represents the HIGH phase of XTCK. TCK1 is HIGH when XTCK is HIGH. This 
signal can be used to allow more scan chains to be added using the ARM720T TAP controller.

TCK2 Out Test clock two.
This clock represents the LOW phase of XTCK. TCK2 is HIGH when XTCK is LOW. You 
can use this signal to allow more scan chains to be added using the ARM720T TAP controller. 
TCK2 is the non-overlapping complement of TCK1.

XnTDOEN Out Not test data out output enable.
When LOW, this signal denotes that serial data is being driven out on the XTDO output.
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XnTRST In Not test reset.
When LOW, this signal resets the JTAG interface.

XTCK In Test clock.
This signal is the JTAG test clock.

XTDI In Test data in.
JTAG test data in signal.

XTDO Out Test data out.
JTAG test data out signal.

XTMS In Test mode select.
JTAG test mode select signal.

Table A-3 JTAG signal descriptions  (continued)

Name Type Description
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A.4 Debugger signals

The debugger signal descriptions are listed in Table A-4.

Table A-4 Debugger signal descriptions

Name Type Description

BREAKPOINT In Breakpoint.
This signal allows external hardware to halt execution of the processor for debug 
purposes. When HIGH, this causes the current memory access to be breakpointed. If 
memory access is an instruction Fetch, the core enters debug state if the instruction 
reaches the Execute stage of the core pipeline. If the memory access is for data, the core 
enters the debug state after the current instruction completes execution. This allows 
extension of the internal breakpoints provided by the EmbeddedICE module.

COMMRX Out Communication receive full.
When HIGH, this signal denotes that the comms channel receive buffer contains data for 
the core to read.

COMMTX Out Communication transmit empty.
When HIGH, this signal denotes that the comms channel transmit buffer is empty.

DBGACK Out Debug acknowledge.
When HIGH, this signal denotes that the ARM is in debug state.

DBGEN In Debug enable.
This signal allows the debug features of ARM720T to be disabled. When DBGEN is 
LOW, it inhibits BREAKPOINT and DBGRQ to the core, DBGACK from the 
ARM720T is always LOW.

DBGRQ In Debug request.
This signal causes the core to enter debug state after executing the current instruction. 
This allows external hardware to force the core into debug state, in addition to the 
debugging features provided by the EmbeddedICE Logic.

EXTERN [1:0] In External condition.
These signals allow breakpoints and watchpoints to depend on an external condition.

RANGEOUT[1:0] Out Range out.
These signals indicate that the relevant EmbeddedICE watchpoint register has matched 
the conditions currently present on the address, data, and control buses. These signals 
are independent of the state of the watchpoint enable control bits.
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A.5 Embedded trace macrocell interface signals

The ETM interface signals are listed in Table A-5.

Table A-5 ETM interface signal descriptions

Output name Type Description

ETMnMREQ Out Not memory request.
When LOW, indicates that the processor requires memory access during the following 
cycle.

ETMSEQ Out Sequential address.
When HIGH, indicates that the address of the next memory cycle is related to that of the 
last memory cycle. The new address is one of the following:

• the same as the previous one

• four greater in ARM state

• two greater in Thumb state.
This signal can be used, with the low order address lines, to indicate that the next cycle can 
use a fast memory mode and bypass the address translation system.

ETMnEXEC Out Not executed.
When HIGH, indicates that the instruction in the execution unit is not being executed. For 
example it might have failed the condition check code.

ETMnCPI Out Not coprocessor instruction.
When the ARM720T executes a coprocessor instruction, it takes the ETMnCPI LOW and 
waits for a response from the coprocessor. The actions taken depend on this response, 
which the coprocessor signals on the CPA and CPB inputs.

ETMA[31:0] Out Addresses.
This is the retimed internal address bus.

ETMnOPC Out Not opcode fetch.
When LOW, indicates that the processor is fetching an instruction from memory. When 
HIGH, indicates that data, if present, is being transferred.

ETMnRW Out Not read/write.
When HIGH, indicates a processor write cycle. When LOW, indicates a processor read 
cycle.

ETMCLK Out ETM clock.
Exported clock signal for use in ETM. Internal signal is inverted version of CPCLK. See 
Table A-2 on page A-5 for a description of CPCLK.
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Note

• The signal TBIT is also used as an ETM interface signal. For a description of 
TBIT, see Table A-2 on page A-5.

• The signal BIGEND is also used as an ETM interface signal. For a description of 
BIGEND, see Table A-6 on page A-12.

ETMCLKEN Out ETM clock enable.
Exported signal used to gate ETMCLK. Internal signal is based on the CPnWAIT signal 
that is first phase two latched by CPCLK. This ensures that it changes at the start of phase 
two, the HIGH phase of CPCLK. It is held throughout the next phase, that is phase one, the 
LOW phase of CPCLK. See Table A-2 on page A-5 for a description of CPnWAIT.

ETMMAS[1:0] Out Memory access size.
Indicates the width of the bus transaction to the current address, this signal can take the 
following values:
00 = 8-bit
01 = 16-bit
10 = 32-bit
11 is reserved.
The above values are valid for both read and write cycles.

ETMDBGACK Out Debug acknowledge.
When HIGH, indicates that the processor is in debug state. When LOW, indicates that the 
processor is in normal system state.

ETMD[31:0] Out Coprocessor data bus.
This is the retimed internal data bus.

ETMABORT Out Memory abort or bus error.
Indicates that a requested access has been disallowed.

ETMCPA Out Coprocessor absent handshake.
The coprocessor absent signal. It is a buffered version of the coprocessor absent signal.

ETMCPB Out Coprocessor busy handshake.
The coprocessor busy signal. It is a buffered version of the coprocessor absent signal.

PROCID[31:0] Out Trace PROCID bus.

PROCIDWR Out Trace PROCID write.
Indicates to ETM7 that the Trace PROCID, CP15 register 13, has been written.

Table A-5 ETM interface signal descriptions (continued)

Output name Type Description
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A.6 Miscellaneous signals
— Miscellaneous signals used by the ARM720T are listed in Table A-6.

Table A-6 Miscellaneous signal descriptions

Name Type Source or destination Description

BIGEND Out Configuration output Big-endian format.
When this signal is HIGH, the processor treats bytes in memory 
as being in big-endian format. When it is LOW, memory is 
treated as little-endian.

CACHEDISa In Configuration input Disable cache.
This signal is used to disable the IDC for use in certain 
applications. See IDC disable for secure applications on 
page 4-6 for a description of this signal.

FCLK In External clock source Fast clock input.
This clock is used to clock the ARM core when XFASTBUS is 
LOW. During testing, the signal allows efficient testing of the 
RAM, TAG, and MMU blocks.

XFASTBUS In Configuration input Bus clocking mode configuration signal.
When HIGH, the ARM720T operates from a single clock, 
BCLK. When LOW, selects standard mode operating from two 
clocks, BCLK and FCLK.

XnFIQ In Interrupt controller ARM fast interrupt request signal.

XnIRQ In Interrupt controller ARM interrupt request signal.
The interrupt controller mixes several interrupt sources, and 
produces XnIRQ.

XSnA In Configuration input Synchronous and not asynchronous configuration pin.
In standard ARM bus mode this signal determines the bus 
interface mode and must be wired HIGH or LOW depending on 
the desired relationship between FCLK and BCLK. See 
Standard mode on page 9-5. This pin is ignored when operating 
XFASTBUS is high.

a.ARM does not support the use of this feature.
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A.7 Additional signal outputs

Three additional signal outputs are provided to aid the interface of AMBA signals to 
Input and Output pads when building an ARM test chip. These signals are:

• BABE
• WDEN
• BDEN.

Note

ARM advises that these signals are not used.
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Coprocessor interface

signals A-5
Core clocks 7-23
Core state

accessing banked registers 7-25
determining 7-25
moving to ARM state 7-25

CPSR (Current Processor Status 
Register) 2-13

format of 2-13
CPU aborts 6-18
Cycle types

bus interface 10-4

D
Data signal timing 10-9
Data types 2-6

alignment 2-6
byte 2-6
halfword 2-6
word 2-6

Debug
host 7-4
program counter 7-30
protocol converter 7-4
reset 7-11
systems 7-4

Debug extensions 7-2
debug state 7-2
internal state 7-2

Debug interface
definition 7-2

Debug request
entering debug state via 7-32

Debug state
entering 7-7
entering on breakpoint 7-7
entering on debug-request 7-8
entering on watchpoint 7-7
exiting from 7-28
switching clock state 7-23

Debugger
signals A-9

device identification code register 7-16
Domain access control 6-21
Domain access control register

format 6-21
interpreting access bits 6-21

E
Early termination

definition 2-24
EmbeddedICE

about 8-2
breakpoints 8-9

coupling 8-17
BREAKPT signal 8-2
communications channel 8-19
control registers 8-6
debug control register 8-13
debug status register 8-15
definition 8-2
disabling 8-3
TAP controller 8-2, 8-6
timing 8-3

ETM
about 12-2
interface 12-3

ETM interface
signals A-10

Exception
entering 2-16
entry and exit summary 2-17
leaving 2-17
priorities 2-21
restrictions 2-21
returning to THUMB state 

from 2-17
vectors 2-20, 2-21

addresses 2-20

External aborts
Aborts

external 6-25
buffered writes 6-25
cachable reads 6-25

EXTEST
public instruction 7-12

F
Fast Context Switch Extension 2-22
Fastbus extension 9-3
Fault address register 6-19
Fault checking 6-22
Fault status register 6-19
Faults

alignment 6-23
domain 6-23
permission 6-24

section 6-24
subpage 6-24

translation 6-23
FCSE

relocation of low virtual 
addresses 2-22

FIQ mode 2-7
definition 2-18

H
Halfword operations 10-15
High register

accessing from THUMB state 2-11
description 2-11

HIGHZ
public instruction 7-14

I
IDC

cacheable bit 4-2
disable 4-5
disable for secure applications 4-6
enable 4-5
interaction with MMU and write 

buffer 6-26
operation 4-2
read-lock-write 4-3
reset 4-5
validity 4-4

double-mapped space 4-4
software IDC flush 4-4

IDCODE
public instruction 7-13
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Instruction register 7-17
Instruction set 1-5

ARM 1-6
Thumb 1-15

Instruction types 1-5
Internal coprocessor instructions 3-3
Interrupts 7-34
INTEST

public instruction 7-12
IRQ mode 2-7

definition 2-18

J
JTAG signals A-7
JTAG state machine 7-10

L
Large page references

translating 6-16
Level 1

descriptor 6-7
fetch 6-6

Level 2
descriptor 6-12

Little endian
format 10-14
operation 10-14

Little endian. See memory format
Low registers 2-12

M
Memory access

use of the BWAIT pin 10-10
Memory format

big endian
description 2-3

little endian
description 2-4

Memory request signals 10-7, 10-8
Miscellaneous signals A-12
MMU

description 6-2
disabling 6-27
domains 6-2
effect of reset 6-3
enabling 3-6, 6-26
faults 6-18
interaction with IDC and write 

buffer 6-26
memory accesses 6-2
program accessible registers 6-4
TLB 6-2

Multi master operation 10-17

N
nWAIT pin

use of 10-10

O
Operating modes

Abort
mode 2-7

changing 2-7
FIQ 2-7
IRQ mode 2-7
Supervisor mode 2-7
System mode 2-7
Undefined mode 2-7
User mode 2-7

Operating state
ARM 2-2
reading 2-14
switching 2-2

to ARM 2-2
to THUMB 2-2

THUMB 2-2

P
Page table descriptor

bits 6-8
Program status registers

control bits 2-13
mode bit values 2-14
reserved bits 2-14

Programming watchpoints 8-11
Public instructions 7-12

BYPASS 7-13
CLAMP 7-14
CLAMPZ 7-15
EXTEST 7-12
HIGHZ 7-14
IDCODE 7-13
INTEST 7-12
RESTART 7-15
SAMPLE/PRELOAD 7-15
SCAN_N 7-12

R
Read-lock-write 10-13
Registers 3-4

ARM 2-8
interrupt modes 2-9

BYPASS 7-16
debug communications 

channel 8-19
debug control

DBGACK 8-13
DBGRQ 8-13
INTDIS 8-14

debug status 8-15
device ID 7-16
fault address 6-19
fault status 6-19
instruction 7-17
MMU 6-4
register 0, ID register 3-4
register 1, control register 3-5
register 13, process identifier 

register 3-10
changing FCSE PID 3-11
FCSE PID 3-11

register 2, translation table base 
register 3-7

register 3, domain access control 
register 3-7

register 4, reserved 3-8
register 5, fault status register 3-8
register 6, fault address register 3-9
register 7, cache operations 

register 3-9
register 8, translation lookaside buffer 

register 3-9
register 9-12, reserved 3-10
relationship between ARM and 

Thumb 2-11
scan chain select 7-17
test data types 7-16
Thumb 2-10
watchpoint 8-4

programming and reading 8-5

Reset
action of processor on 2-23

RESTART public instruction 7-15
Return address calculations 7-33

S
SAMPLE/PRELOAD

public instruction 7-15
Scan and debug

signals used by ETM 7-42
Scan chain 0 7-20
Scan chain 1 7-21
Scan chain 15 7-22
Scan chain 2 7-22
Scan chain select register 7-17
Scan Chains 7-18
Scan interface timing 7-35
Scan limitations 7-9
SCAN_N

public instruction 7-12
Section descriptor 6-9
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Sequential memory accesses
Memory accesses

sequential 10-12

Signals
AMBA interface A-2
coprocessor interface A-5
debugger A-9
ETM interface A-10
JTAG A-7
miscellaneous A-12

Slave operation, test mode 11-2
Slave response signals 10-10
Small page references

translating 6-14
Software Interrupt 2-19
Software interrupt 2-19
SPSR (Saved Processor Status 

Register) 2-13
format of 2-13

Standard mode 9-5
Supervisor mode 2-7
SWI 2-19
System mode 2-7
System speed access

during debug state 7-32
System state

determining 7-27

T
T bit (in CPSR) 2-14
Test data register types 7-16
Thumb instruction set 1-15
Thumb state 2-2

register organization 2-10
Translating references 6-5
Translating section references 6-11
Translation table base 6-5

U
Undefined instruction trap 2-20
Undefined mode 2-7
User mode 2-7

W
Watchpoint

registers 8-4
programming and reading 8-5

Watchpoints
entering debug state from 7-31
programming 8-11
programming restriction 8-12
with another exception 7-31

Word operations 10-15
Write buffer

bufferable bit 5-2
definition 5-2
interaction with MMU and 

IDC 6-26
operation 5-3

bufferable write 5-3
read-lock-write 5-4
unbufferable write 5-3


