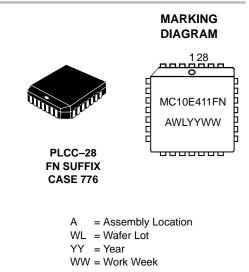
# 5V ECL 1:9 Differential PECL/NECL RAMBus Clock Buffer

The MC10E411 is a low skew 1-to-9 differential driver, designed with clock distribution in mind. The MC10E411's function and performance are similar to the popular MC10E111, with the added feature of 1.2 V output swings.

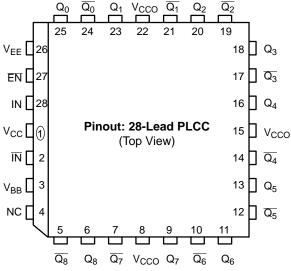
The output voltage swing of the E411 is larger than a standard ECL swing. The 1.2 V output swings provide a signal which can be AC coupled into RAMBus compatible input loads. The larger output swings are produced by lowering the  $V_{OL}$  of the device. With the exception of the lower  $V_{OL}$ , the E411 is identical to the MC10E111. Note that the larger output swings eliminate the possibility of temperature compensated outputs, thus the E411 is only available in the 10E style of ECL. In addition, because the  $V_{OL}$  is lower than standard ECL, the outputs cannot be terminated to -2.0 V. This data sheet provides a few termination alternatives.

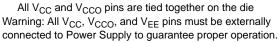

The E411 is specifically designed, modeled and produced with low skew as the key goal. Optimal design and layout serve to minimize gate–to–gate skew within a device, and empirical modeling is used to determine process control limits that ensure consistent  $t_{pd}$  distributions from lot–to–lot. The net result is a dependable, guaranteed low skew device.

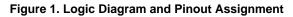
To ensure that the tight skew specification is met, it is necessary that both sides of the differential output are terminated, even if only one side is being used. In most applications, all nine differential pairs will be used, and therefore, terminated. In the case where fewer than nine pairs are used, it is necessary to terminate at least the output pairs on the same package side as the pair(s) being used on that side, in order to maintain minimum skew. Failure to do this will result in small degradations of propagation delay (on the order of 10–20 ps) of the output(s) being used which, while not being catastrophic to most designs, will mean a loss of skew margin.

The MC10E411, as with most other ECL devices, can be operated from a positive  $V_{CC}$  supply in PECL mode. This allows the E411 to be used for high performance clock distribution in +5.0 V systems. Designers can take advantage of the E411's performance to distribute low–skew clocks across the backplane or the board. In a PECL environment, series or Thevenin line terminations are typically used as they require no additional power supplies. For more information on using PECL, designers should refer to ON Semiconductor Application Note AN1406/D.

The V<sub>BB</sub> pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V<sub>BB</sub> as a switching reference voltage. V<sub>BB</sub> may also rebias AC coupled inputs. When used, decouple V<sub>BB</sub> and V<sub>CC</sub> via a 0.01  $\mu$ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V<sub>BB</sub> should be left open.





#### **ORDERING INFORMATION**

| Devi    | се    | Package | Shipping        |
|---------|-------|---------|-----------------|
| MC10E41 | 1FN   | PLCC-28 | 37 Units/Rail   |
| MC10E41 | IFNR2 | PLCC-28 | 500 Tape & Reel |

- 200 ps Part-to-Part Skew
- 50 ps Output-to-Output Skew
- Differential Design
- V<sub>BB</sub> Output
- Voltage Compensated Outputs
- $V_{EE}$  Range of -4.5 to -5.5 V
- PECL Mode Operating Range:
  - $V_{CC} = 4.2 \text{ V}$  to 5.7 V with  $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range:  $V_{CC} = 0$  V with  $V_{EE} = -4.2$  V to -5.7 V







- Internal Input Pulldown Resistors
- ESD Protection: > 2 kV HBM, > 200 V MM
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 1 For Additional Information, refer to Application Note AND8003/D
- Flammability Rating: UL-94 code V-0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 180 devices

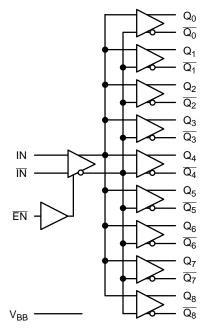



Figure 2. Logic Symbol

| PIN DESCRIPTION                    |                             |  |  |  |  |  |  |  |  |
|------------------------------------|-----------------------------|--|--|--|--|--|--|--|--|
| PIN                                | FUNCTION                    |  |  |  |  |  |  |  |  |
| IN, ĪN                             | ECL Differential Input Pair |  |  |  |  |  |  |  |  |
| EN                                 | ECL Enable                  |  |  |  |  |  |  |  |  |
| Q0, <u>Q0</u> –Q8, <u>Q8</u>       | ECL Differential Outputs    |  |  |  |  |  |  |  |  |
| V <sub>BB</sub>                    | Reference Voltage Output    |  |  |  |  |  |  |  |  |
| V <sub>CC</sub> , V <sub>CCO</sub> | Positive Supply             |  |  |  |  |  |  |  |  |
| V <sub>EE</sub>                    | Negative Supply             |  |  |  |  |  |  |  |  |
| NC                                 | No Connect                  |  |  |  |  |  |  |  |  |

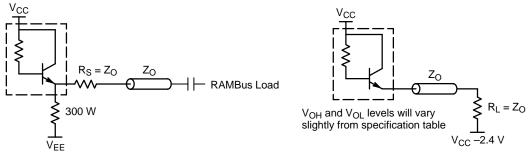



Figure 3. Termination Alternatives

### MAXIMUM RATINGS (Note 1)

| Symbol           | Parameter                                          | Condition 1                                    | Condition 2                                | Rating                     | Units        |
|------------------|----------------------------------------------------|------------------------------------------------|--------------------------------------------|----------------------------|--------------|
| V <sub>CC</sub>  | PECL Mode Power Supply                             | V <sub>EE</sub> = 0 V                          |                                            | 8                          | V            |
| $V_{EE}$         | NECL Mode Power Supply                             | $V_{CC} = 0 V$                                 |                                            | -8                         | V            |
| Vi               | PECL Mode Input Voltage<br>NECL Mode Input Voltage | V <sub>EE</sub> = 0 V<br>V <sub>CC</sub> = 0 V | $V_{I} \leq V_{CC}$<br>$V_{I} \geq V_{EE}$ | 6<br>6                     | V<br>V       |
| l <sub>out</sub> | Output Current                                     | Continuous<br>Surge                            |                                            | 50<br>100                  | mA<br>mA     |
| I <sub>BB</sub>  | V <sub>BB</sub> Sink/Source                        |                                                |                                            | ± 0.5                      | mA           |
| TA               | Operating Temperature Range                        |                                                |                                            | 0 to +85                   | °C           |
| T <sub>stg</sub> | Storage Temperature Range                          |                                                |                                            | -65 to +150                | °C           |
| $\theta_{JA}$    | Thermal Resistance (Junction to Ambient)           | 0 LFPM<br>500 LFPM                             | 28 PLCC<br>28 PLCC                         | 63.5<br>43.5               | °C/W<br>°C/W |
| $\theta_{JC}$    | Thermal Resistance (Junction to Case)              | std bd                                         | 28 PLCC                                    | 22 to 26                   | °C/W         |
| $V_{EE}$         | PECL Operating Range<br>NECL Operating Range       |                                                |                                            | 4.2 to 5.7<br>-5.7 to -4.2 | V<br>V       |
| T <sub>sol</sub> | Wave Solder                                        | <2 to 3 sec @ 248°C                            |                                            | 265                        | °C           |

1. Maximum Ratings are those values beyond which device damage may occur.

## PECL DC CHARACTERISTICS V<sub>CC</sub> = 5.0 V; V<sub>EE</sub> = 0.0 V (Note 2)

|                 |                                                                 | 0°C  |      | 25°C |      |      | 85°C |      |      |      |      |
|-----------------|-----------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|
| Symbol          | Characteristic                                                  | Min  | Тур  | Max  | Min  | Тур  | Max  | Min  | Тур  | Max  | Unit |
| I <sub>EE</sub> | Power Supply Current                                            |      | 55   | 65   |      | 55   | 65   |      | 55   | 65   | mA   |
| V <sub>OH</sub> | Output HIGH Voltage (Note 3)                                    | 3980 | 4070 | 4160 | 4020 | 4105 | 4190 | 4090 | 4185 | 4280 | mV   |
| V <sub>OL</sub> | Output LOW Voltage (Note 3)                                     | 2580 | 2750 | 2920 | 2620 | 2785 | 2950 | 2690 | 2865 | 3040 | mV   |
| V <sub>IH</sub> | Input HIGH Voltage (Single Ended)                               | 3830 | 3995 | 4160 | 3870 | 4030 | 4190 | 3940 | 4110 | 4280 | mV   |
| V <sub>IL</sub> | Input LOW Voltage (Single Ended)                                | 3050 | 3285 | 3520 | 3050 | 3285 | 3520 | 3050 | 3302 | 3555 | mV   |
| V <sub>BB</sub> | Output Voltage Reference                                        | 3.62 |      | 3.73 | 3.65 |      | 3.75 | 3.69 |      | 3.81 | V    |
| VIHCMR          | Input HIGH Voltage Common Mode<br>Range (Differential) (Note 4) | 3.4  |      | 4.6  | 3.4  |      | 4.6  | 3.4  |      | 4.6  | V    |
| I <sub>IH</sub> | Input HIGH Current                                              |      |      | 150  |      |      | 150  |      |      | 150  | μΑ   |
| IIL             | Input LOW Current                                               | 0.5  | 0.3  |      | 0.5  | 0.25 |      | 0.3  | 0.2  |      | μΑ   |

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been establish circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.
Input and output parameters vary 1:1 with V<sub>CC</sub>. V<sub>EE</sub> can vary +0.5 V / -0.5 V.
Outputs are terminated through a 300 ohm resistor to V<sub>EE</sub>.

4.  $V_{IHCMR}$  min and max vary 1:1 with  $V_{CC}$ .

# NECL DC CHARACTERISTICS $V_{CC} = \ 0.0 \ \text{V}; \ V_{EE} = -5.0 \ \text{V} \ (\text{Note 5})$

|                 |                                                                 | 0°C   |       | 25°C  |       |       | 85°C  |       |       |       |      |
|-----------------|-----------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| Symbol          | Characteristic                                                  | Min   | Тур   | Max   | Min   | Тур   | Мах   | Min   | Тур   | Max   | Unit |
| I <sub>EE</sub> | Power Supply Current                                            |       | 55    | 65    |       | 55    | 65    |       | 55    | 65    | mA   |
| V <sub>OH</sub> | Output HIGH Voltage (Note 6)                                    | -1020 | -930  | -840  | -980  | -895  | -810  | -910  | -815  | -720  | mV   |
| V <sub>OL</sub> | Output LOW Voltage (Note 6)                                     | -2420 | -2250 | -2080 | -2380 | -2215 | -2050 | -2310 | -2135 | -1960 | mV   |
| V <sub>IH</sub> | Input HIGH Voltage (Single Ended)                               | -1170 | -1005 | -840  | -1130 | -970  | -810  | -1060 | -890  | -720  | mV   |
| V <sub>IL</sub> | Input LOW Voltage (Single Ended)                                | -1950 | -1715 | -1480 | -1950 | -1715 | -1480 | -1950 | -1698 | -1445 | mV   |
| V <sub>BB</sub> | Output Voltage Reference                                        | -1.38 |       | -1.27 | -1.35 |       | -1.25 | -1.31 |       | -1.19 | V    |
| VIHCMR          | Input HIGH Voltage Common Mode<br>Range (Differential) (Note 7) | -1.6  |       | -2.4  | -1.6  |       | -0.4  | -1.6  |       | -0.4  | V    |
| I <sub>IH</sub> | Input HIGH Current                                              |       |       | 150   |       |       | 150   |       |       | 150   | μΑ   |
| Ι <sub>ΙL</sub> | Input LOW Current                                               | 0.5   | 0.3   |       | 0.5   | 0.065 |       | 0.3   | 0.2   |       | μA   |

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

5. Input and output parameters vary 1:1 with V<sub>CC</sub>. V<sub>EE</sub> can vary +0.5 V / –0.5 V. 6. Outputs are terminated through a 300 ohm resistor to V<sub>EE</sub>.

7. VIHCMR min and max vary 1:1 with V<sub>CC</sub>.

| AC CHARACTERISTICS $V_{CC} = 5.0 V$ ; $V_{EE} = 0$ | $0.0 \text{ V} \text{ or } \text{V}_{\text{CCx}} = 0.0 \text{ V}; \text{V}_{\text{EE}} = -5.0 \text{ V} \text{ (Note 8)}$ |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|

|                                      |                                                                                                     |                   | 0°C  |                   | 25°C              |      |                   | 85°C              |      |                   |      |
|--------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------|------|-------------------|-------------------|------|-------------------|-------------------|------|-------------------|------|
| Symbol                               | Characteristic                                                                                      | Min               | Тур  | Max               | Min               | Тур  | Max               | Min               | Тур  | Max               | Unit |
| f <sub>MAX</sub>                     | Maximum Toggle Frequency                                                                            |                   | TBD  |                   |                   | TBD  |                   |                   | TBD  |                   | GHz  |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay to Output<br>IN (differential) (Note 9)<br>IN (single-ended) (Note 10)<br>EN to Q | 400<br>350<br>450 |      | 600<br>650<br>850 | 430<br>380<br>450 |      | 630<br>680<br>850 | 500<br>450<br>450 |      | 700<br>750<br>850 | ps   |
| ts                                   | Setup Time (Note 11) EN to IN                                                                       | 200               | 0    |                   | 200               | 0    |                   | 200               | 0    |                   | ps   |
| t <sub>H</sub>                       | Hold Time (Note 12) IN to EN                                                                        | 0                 | -200 |                   | 0                 | -200 |                   | 0                 | -200 |                   | ps   |
| t <sub>R</sub>                       | Release Time (Note 13) EN to IN                                                                     | 300               | 100  |                   | 300               | 100  |                   | 300               | 100  |                   | ps   |
| t <sub>skew</sub>                    | Within-Device Skew (Note 14)<br>Part-to-Part Skew (Diff)                                            |                   |      | 50<br>200         |                   |      | 50<br>200         |                   |      | 50<br>200         | ps   |
| t <sub>JITTER</sub>                  | Cycle-to-Cycle Jitter                                                                               |                   | TBD  |                   |                   | TBD  |                   |                   | TBD  |                   | ps   |
| V <sub>PP</sub>                      | Minimum Input Swing (Note 15)                                                                       | 250               |      | 1000              | 250               |      | 1000              | 250               |      | 1000              | mV   |
| t <sub>r</sub> /t <sub>f</sub>       | Output Rise/Fall Time<br>(20%–80%)                                                                  | 275               |      | 600               | 275               |      | 600               | 275               |      | 600               | ps   |

8. V<sub>EE</sub> can vary +0.5 V / -0.5 V.

9. The differential propagation delay is defined as the delay from the crossing points of the differential input signals to the crossing point of the differential output signals.

10. The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal.

11. The setup time is the minimum time that EN must be asserted prior to the next transition of IN/IN to prevent an output response greater than ±75 mV to that IN/IN transition.

12. The hold time is the minimum time that  $\overline{EN}$  must remain asserted after a negative going IN or a positive going  $\overline{IN}$  to prevent an output response greater than  $\pm 75$  mV to that  $IN/\overline{IN}$  transition.

13. The release time is the minimum time that EN must be deasserted prior to the next IN/IN transition to ensure an output response that meets the specified IN to Q propagation delay and output transition times.

14. The within-device skew is defined as the worst case difference between any two similar delay paths within a single device.

15. V<sub>PP</sub>(min) is defined as the minimum input differential voltage which will cause no increase in the propagation delay. The V<sub>PP</sub>(min) is AC limited for the E411 as a differential input as low as 50 mV will still produce full ECL levels at the output.

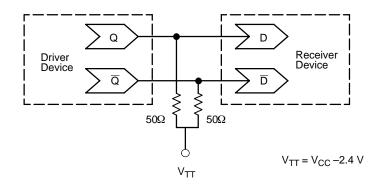
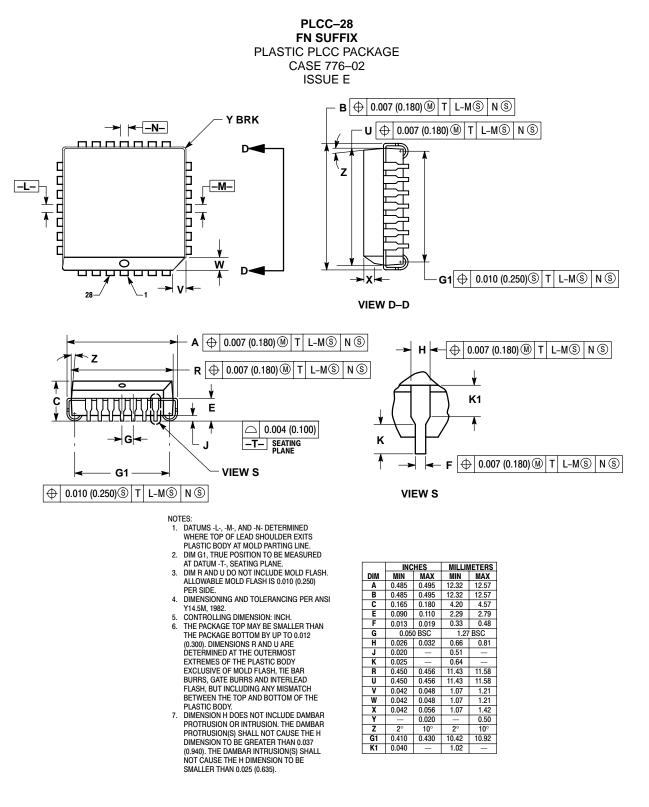




Figure 4. Termination for Output Driver and Device Evaluation of This Device (Refer to Application Note AND8020 – Termination of ECL Logic Devices)

## **Resource Reference of Application Notes**

- AN1404 ECLinPS Circuit Performance at Non–Standard VIH Levels
- AN1405 ECL Clock Distribution Techniques
- AN1406 Designing With PECL (ECL at +5.0 V)
- AN1503 ECLinPS I/O SPICE Modeling Kit
- AN1504 Metastability and the ECLinPS Family
- AN1568 Interfacing Between LVDS and ECL
- AN1596 ECLinPS Lite Translator ELT Family SPICE I/O Model Kit
- AN1650 Using Wire–OR Ties in ECLinPS Designs
- AN1672 The ECL Translator Guide
- AND8001 \_ Odd Number Counters Design
- AND8002 Marking and Date Codes
- AND8020 Termination of ECL Logic Devices

### PACKAGE DIMENSIONS



# <u>Notes</u>

**ON Semiconductor** and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death wits such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

#### PUBLICATION ORDERING INFORMATION

#### Literature Fulfillment:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.