## **NTSC/PAL Encoder**

T-77-29

### Description

The V7040 is an IC that can operate in both NTSC and PAL modes. It superimposes analog RGB signals and outputs them as such, or as composite video signals. Both types of output can drive the  $75\Omega$  load directly.

#### **Features**

- 5 V single supply operation
- Low power consumption (135 mW)
- Built-in 75Ω driver (RGB output, 2 systems of composite video output)
- Compatible with both NTSC and PAL modes
- Superimposition (MIX, half-tone functions)

### **Functions**

- SW-circuit for superimposition
- MTX circuit
- R.Y. B.Y MOD circuit
- $\bullet$  75 $\Omega$  driver for RGB and composite video outputs

#### Structure

Bipolar silicon monolithic IC

## **Absolute Maximum Ratings**

| Supply voltage                                  | Vcc  | 10           | V     |
|-------------------------------------------------|------|--------------|-------|
| *                                               | Toor | -20  to  +75 | °C    |
| Operating temperature                           |      | -55 to +150  | ۰C    |
| Storage temperature                             | Tstg | 1250         | mW    |
| <ul> <li>Allowable power dissipation</li> </ul> | Po   | 1250         | 11194 |

## **Recommended Operating Condition**

• Supply voltage Vcc 5 ± 0.25





| No.      | Symbol     | Equivalent circuit                      | Description                                                                          |
|----------|------------|-----------------------------------------|--------------------------------------------------------------------------------------|
| 1        | RINPC      |                                         | Inputs an RGB color signal from a PC or a T                                          |
| 2        | GINPC      |                                         | Input must be of sufficiently low impedance                                          |
| 3        | BINPC      |                                         | to clamp.                                                                            |
| 4        | RINTV      | <b>★</b> -[ ]+-[                        |                                                                                      |
| 5        | GINTV      | <b>O O O O O O O O O O</b>              |                                                                                      |
| 6        | BINTV      | ③② <b>★</b>                             |                                                                                      |
|          |            |                                         |                                                                                      |
|          |            |                                         |                                                                                      |
| 7        | NT/PAL B&W |                                         | Switches the modes of NTSC, PAL, and B&V                                             |
|          |            | <b>↓</b> -【 】                           | 4.0 v to V <sub>CC</sub> NTSC mode<br>2.0 V to 3.0 V PAL mode                        |
|          |            | <b>A</b>   1                            | 2.0 V to 3.0 V PAL mode<br>0 V to 0.8 V B&W mode                                     |
| ,        |            |                                         | 0 4 10 0.0 4 00.00                                                                   |
|          |            | <b>T</b> Lp                             | "                                                                                    |
|          |            | <i>₩</i>                                |                                                                                      |
|          |            |                                         | 0.000                                                                                |
| 8        | BF IN      |                                         | inputs burst flag signal. Clamp is performed by this burst flag signal.              |
|          |            | <b>↓</b> ₹                              | L: 0 V to 0.8 V                                                                      |
|          |            | <b>★</b> ₹                              | H: 2.0 V to Vcc                                                                      |
|          |            | a Trair 7-                              | Burst at L.                                                                          |
|          |            |                                         | Duist at L.                                                                          |
|          |            | <b>↑</b> ₩ ¹                            |                                                                                      |
|          |            | ام <del>ااا</del>                       |                                                                                      |
|          |            | $\overrightarrow{m}$                    |                                                                                      |
|          |            |                                         |                                                                                      |
| 9        | PAL ALT    |                                         | Inputs the PAL ALT signal and inverts the burst and chroma signal phases in every fi |
| -        |            | • •                                     | in PAL mode.                                                                         |
|          |            | * *                                     | 0 V to 0.8 V Burst at 225°                                                           |
|          |            | ® <del>IN</del> +C ]-                   | 2.0 V to Vcc Burst at 135°                                                           |
|          |            | #                                       |                                                                                      |
| ĺ        |            | <b>1</b> /                              |                                                                                      |
|          |            | <i>m</i>                                |                                                                                      |
|          |            | •                                       |                                                                                      |
| <u> </u> |            |                                         | Inputs the sub-carrier. Input sine wave be-                                          |
| 10       | SC IN      |                                         | tween 0.4 to 0.8 Vp.p.                                                               |
|          |            | <u> </u>                                |                                                                                      |
|          |            | <b>▼</b> → }                            | }                                                                                    |
| 1        |            | 10 + L W                                |                                                                                      |
|          |            | * * * * * * * * * * * * * * * * * * * * |                                                                                      |
| 1        |            | $\overline{\mathcal{A}}$ $\Phi$ $\Phi$  |                                                                                      |
|          |            | ‴ Т Т                                   |                                                                                      |
|          |            |                                         |                                                                                      |
| 11       | C SYNC IN  |                                         | Inputs composite SYNC signal.                                                        |
|          |            | <b>A</b>                                | L: 0 V to 0.8 V                                                                      |
|          |            | <b>A</b> . ₹                            | H: 2.0 V to Vcc                                                                      |
| ,        |            | <del>1</del> 7 1                        | SYNC at L                                                                            |
|          |            | M. Tiel                                 |                                                                                      |
|          |            | ~ 1.1r ~                                |                                                                                      |
|          | *DX        | <b>↑ `</b>                              |                                                                                      |
| 1        |            | الم <del>بازر</del>                     | ,                                                                                    |
| l        | 1,00       | <del>1</del>                            |                                                                                      |
| ļ        | C          |                                         |                                                                                      |
|          | × O        |                                         |                                                                                      |
|          | 3          |                                         |                                                                                      |
|          |            |                                         |                                                                                      |
|          |            |                                         |                                                                                      |
|          |            |                                         |                                                                                      |
|          |            |                                         |                                                                                      |

|     |        |                                                    | T-77-29                                                 |
|-----|--------|----------------------------------------------------|---------------------------------------------------------|
| No. | Symbol | Equivalent circuit                                 | Description                                             |
| 12  | GND1   |                                                    | Ground pin for circuits other than RGB OUT an           |
| 13  | COUT   |                                                    | at the lowest impedance.  Outputs chroma signal to BPF. |
| •   |        | • 1                                                | Signal to BFF.                                          |
|     |        | <b>★</b> →                                         |                                                         |
|     |        | ( <del>1)</del>                                    | ·                                                       |
|     | ·      | <b></b>                                            |                                                         |
|     |        | <i>m</i> .                                         |                                                         |
|     | V 0.17 |                                                    |                                                         |
| 14  | Y OUT  |                                                    | Outputs Y signal to delay line.                         |
|     | ,      | <b>,</b> L                                         |                                                         |
|     |        | <b>★</b> }                                         |                                                         |
|     |        | ( <del>)</del>                                     |                                                         |
|     |        | 1 1                                                |                                                         |
|     | ·      | $\frac{m}{}$                                       |                                                         |
| 15  | REG2V  |                                                    |                                                         |
|     |        |                                                    | For the inner reference voltage. Ground at 10 $\mu$ F.  |
|     |        | <b>† L</b>                                         |                                                         |
|     |        | *                                                  |                                                         |
|     |        | ® <u>†      </u>                                   |                                                         |
| i   |        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1              |                                                         |
|     |        | <i>m</i> 1                                         |                                                         |
|     |        |                                                    |                                                         |
| 16  | CIN    |                                                    | Inputs the chroma signal from which the har-            |
| •   |        | <b>‡</b>                                           | monics are removed by BPF.                              |
|     |        | ® <del>                                     </del> |                                                         |
|     |        | * * * * * * * * * * * * * * * * * * *              |                                                         |
|     | ·      | # <u></u>                                          |                                                         |
| 1   |        | • 1                                                |                                                         |
| 17  | V 111  |                                                    |                                                         |
|     | YIN    |                                                    | Inputs Y signal which is delayed by delay line          |
|     |        | <b>±</b>                                           |                                                         |
|     |        | m Tr                                               | ·                                                       |
|     |        | * * *                                              |                                                         |
|     |        | $\Psi$                                             |                                                         |
|     |        | 7.9                                                |                                                         |
|     |        |                                                    |                                                         |
|     |        |                                                    |                                                         |
|     |        |                                                    |                                                         |
|     |        |                                                    |                                                         |
|     |        |                                                    |                                                         |
|     |        |                                                    |                                                         |
|     |        |                                                    |                                                         |
|     |        |                                                    |                                                         |

| No.      | Symbol   | Equivalent circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Description                                                                                                  |
|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 18       | GND2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ground pin for RGB OUT circuit and for C.V OUT circuit. Connect with GND1 of pin 12 at the lowest impedance. |
| 19       | C.V.OUT2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Outputs a composite video signal encoded from switched RGB signals. The load of 75 $\Omega$                  |
| 20       | C.V.OUT1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | can be directly driven.                                                                                      |
| 20       | 0.000    | <b>*</b> '-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                              |
|          |          | (9 <del>  (</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                              |
|          |          | │ <b>◎★</b> ⊁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              |
|          |          | <del>777</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                              |
|          | \<br>\   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |
| 21       | B OUT    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Outputs a switched RGB signal as an RGB signal. The load of 75 $\Omega$ can be directly driven               |
|          | İ        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | signal. The load of 75 h can be directly diver-                                                              |
| 22       | G OUT    | ± 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              |
| 23       | ROUT     | <b>₽</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                              |
|          | į        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |
|          |          | Ø # [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              |
| i.       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                     |
| <u> </u> | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Power source for RGB OUT circuit and for                                                                     |
| 24       | Vccz     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C.V.OUT circuit. Decoupling should be performed with a very large capacity.                                  |
|          | lve.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Switches TV, PC, MiX and halftone modes. In                                                                  |
| 25       | YS       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | put at TTL level                                                                                             |
|          |          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                              |
|          |          | B THHE T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                              |
|          | ·        | * 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SW mode  VS YMIX YM SW mode                                                                                  |
|          | ·        | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | YS YMIX YM SW mode                                                                                           |
|          |          | The state of the s | 0 0 1 Half-tone                                                                                              |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 1 0 TV                                                                                                     |
| 26       | YMIX     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 1 1 Half-tone                                                                                              |
| 27       | YM       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 0 0 PC                                                                                                     |
|          |          | <b>*</b> * <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 0 1 PC<br>1 1 0 MIX                                                                                        |
|          |          | <del>⊚  uu</del> [ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 1 1 MIX                                                                                                    |
|          |          | <b>②</b> <u>∓</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              |
|          |          | <i>717</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                              |
| 1        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Power source for circuits other than RGB C                                                                   |
| j        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOMEL 200108 Int curcuity attention                                                                          |
| 28       | Vccı     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and C.V.OUT.                                                                                                 |

(Vcc=5V Ta=25' See the Electrical Characteristic Test Circuit)

|                              |                  |                                | (Vcc=5V Ta=       |               | e clectuca   | Character | ristic Test | Circuit      |
|------------------------------|------------------|--------------------------------|-------------------|---------------|--------------|-----------|-------------|--------------|
| Item                         | Symbol           |                                |                   | Test<br>point | Min.         | Тур.      | Max.        | Unit         |
| Supply current               |                  | SG1 to SG6 AC 0V               | NITCC             | 11            | 7.0          | 12.2      | 17.3        | mA           |
| Supply current 2             | lcc2             | SG12 to SG14 DC 0.8V           | DC 0.8V NTSC mode |               | 6.0          | 14.3      | 20.0        | mA           |
| BW mode supply current 1     | lew              | SG7-SG9 DC 2V                  | 8W mode           | 1,            | 4.3          | 8.1       | 11.9·       | mA           |
| R output level               | Va               | Fig. 1 RINTV = 1 Vp.p. f       | = 200 kHz         | C .           | 0.63         | 0.71      | 0.80        | Vp.p         |
| G output level               | VG               | Fig. 1 GINTV = 1 Vp.p. f       | = 200 kHz         | 0             | 0.63         | 0.71      | 0.80        | +            |
| 8 output level               | Ve               | Fig. 1 BINTV = 1 Vp.p. f       |                   | É             | 0.63         | 0.71      | 0.80        | Vp.p<br>Vp.p |
| RG8 frequency characteristic | 1cags            | Fig. 1 AGBINTV = 1 Vp.p        |                   | CDE           | -3           |           | 0.00        | В            |
| RGB crosstalk                | СТ               | Fig. 1 VIN = 1 VPP, f = 2      | 200 kHz           | CDE           | <del> </del> |           | -40         | 40           |
| SW delay time                | Tơ               | Fig. 2 SI to S6 On             |                   | CDE           | <del> </del> | 40        | 80          | dB           |
| Half-tone level              | G <sub>нт</sub>  | Fig. 3 20 log (VM/V)           |                   | CDE           | -8           | -6        | -4          | ns<br>dB     |
| MIX level                    | GMIX             | Fig. 3 20 log (VMIX/V)         |                   | CDE           | -8           | -6        | -4          | dB           |
| Sync level                   | VSYNC            | Fig. 4 Sync level              |                   | A8            | 0.24         | 0.29      | 0.34        | V            |
| Y level at<br>R 100%         | VYR              | Fig. 4 Y level at R = 1 V      | ·                 | AB            | 0.18         | 0.21      | 0.25        | v            |
| Y level at<br>G 100%         | V <sub>YG</sub>  | Fig. 4 Y level at G = 1 V      | ] i               | AB            | 0.37         | 0.41      | 0.49        | V            |
| Y level at:<br>B 100%        | Vys              | Fig. 4 Y level at B = 1 V      |                   | AB            | 0.05         | 0.08      | 0.11        | V            |
| Y level at<br>RGB 100%       | V <sub>YW</sub>  | Fig. 4 Y level at<br>RGB = 1 V |                   | AB            | 0.64         | 0.71      | 0.82        | V            |
| DG                           | DG               | Fig. 5 S7, S8 On               | <u></u>           | AB            |              |           | 8           | %            |
| DP                           | DP               | Fig. 5 S7, S8 On               |                   | AB            |              |           | 4           | deg          |
| R chroma level               | VcR              | Fig. 6 R chroma level          |                   | AB            | 2.53         | 3.16      | 3.79        | Vp.p         |
| R chroma<br>phase            | Өа               | Fig. 6 R phase                 |                   | AB            | 92           | 104       | 116         | deg          |
| G chroma level               | Vca              | Fig. 6 G chroma level          |                   | AB            | 2.36         | 2.96      | 3.55        | Vp.p         |
| G chroma<br>phase            | O <sub>G</sub>   | Fig. 6 G phase                 | NTSC mode         | AB            | 229          | 241       | 253         | deg          |
| B chroma level               | Vca              | Fig. 6 8 chroma level          |                   | AB            | 1.79         | 2.24      | 2.69        | Vp.p         |
| B chroma<br>phase            | O <sub>B</sub>   | Fig. 6 B phase                 |                   | AB            | 335          | 347       | 359         | deg          |
| NTSC burst<br>level          | Vent             | Fig. 6 Burst level             |                   | AB            | 0.16         | 0.29      | 0.39        | Vp.p         |
| PAL burst                    | VeraL            | Fig. 6 Burst level             | PAL mode          | AB            | 0.80         | 1.00      | 1.20        | Vp.p         |
| PAL burst                    |                  | Fig. 6 Burst phase             | PALALT = 2.0 V    |               | 123          | 135       | 147         | <del> </del> |
| phase                        | OBPAL            | PAL mode                       | PALALT = 0.8 V    | AB            | 213          | 225       | 237         | deg          |
| Carrier leak                 | V <sub>LSC</sub> | Fig. 6 Leak at pedestal        | <del></del>       | AB            |              |           | 40          | mV           |
| Leak at B&W<br>mode          | VLSW             | Fig. 4 Leak of chroma          |                   | AB            | ,            |           | 30          | m/V          |

<sup>•</sup> All phase reference should be the burst of NTSC = 180°









\* YS, YMIX, and YM are 0.8 V (PC mode)

Fig. 1



RINTY, GINTY, BINTY = 2V

Fig. 2



Fig. 4



Fig. 5





\* YS, YMIX, and YM are 0.6 V (PC model

Fig. 6



# Application Circuit PAL



### **Application Notes**

1. RG8 signal input

Input the RGB signal to pins 1 to 3 and 4 to 6 via a clamp capacitor.

RGB signal is pedestal clamped by means of the burst flag signal input from pin 8. Input with a sufficiently low impedance.

### 2. SW mode

RGB signal input from pins 1 to 3 and RGB signal input from pins 4 to 6 are switched into the specified Y mode at the SW circuit. This, by means of the YS, YMIX, YM signals input from pins 25 to 27. The SW mode is in accordance with the following table.

1 PC mode

RGB signal input from pins 1 to 3 is output via SW circuit.

2 TV mode

RGB signal input from pins 4 to 6 is output via SW circuit.

3 MIX mode

RGB signal input from pins 1 to 3 and RGB signal input from pins 4 to 6 are respectively lowered to a level of -6 dB, mixed and output via SW circuit.

4 Halftone mode

RGB signal input from pins 4 to 6, lowers -6 dB level and is output. When superimposing, the background can be darkened and the letters made easier to read. For normal superimposing, ground pin 26 YMIX and pin 27 YM. Input superimpose signal to pin 25 YS.

#### SW Mode

| YS     | YMIX   | YM     | C14/ A4 = 4 = |
|--------|--------|--------|---------------|
| Pin 25 | Pin 26 | Pin 27 | SW Mode       |
| L      | L      | L      | TV            |
| L      | L      | н      | Halftone      |
| Ļ      | н      | L      | ΤV            |
| L      | н      | Н      | Halftone      |
| н      | Ľ,     | L      | PC            |
| н      | L      | н      | PC            |
| н      | н      | L      | MIX           |
| H      | Н      | Н      | MIX           |

L≦0.8V H≧2.0V

### 3. NT/PAL/B & W mode

By turning pin 7 (NT/PAL/B & W) to 4V and over, NTSC mode is switched on. By turning it to 3 to 2V, PAL mode is switched on. By turning it to 0.8V or under, B & W mode is switched on. In NTSC mode, burst signal, with 8-Y shaft at 0°, is output to 180° direction.

In PAL mode, burst signal, in accordance with PAL ALT signal input from pin 9, is output to 135°, 225° direction. In 8 & W mode, chroma signal and burst signal are not output. As for V7020, to use in NTSC mode, pin 7 is left open or connected to Vcc.

- 4. BF signal In accordance with burst flag signal input from pin 8, the burst signal from the composite video signal, is formed. Also, the clamping of RGB signal is executed in accordance with this burst flag signal.
- 5. PAL ALT signal In accordance with PAL ALT signal input from pin 9, the R-Y shaft direction of the modulator from the chroma signal, is inverted. When pin 9 is at "H", (≥2.0V) it is set to normal direction. When it is at "L", it is set to the inverted direction.
- 6. Subcarrier input Input the subcarrier through a 0.4 to 0.8 Vp-p sine wave, via pin 10 (SC IN). With the subcarrier input, too many harmonic waves may adversely affect the phase characteristics of the chroma modulator.
- Vcc. GND
   Connect with as low as possible an impedance, pin 12 and GND 1, pin 18 and GND 2. Pin 24 (Vcc 2) and pin 18 (GND 2) are the power supply of 75Ω driver (RGB OUT circuit, C.V.OUT circuit). As large currents flow in, execute decoupling with a sufficiently large capacitor.
- 8. BPF, DL

  Eliminates harmonic waves contained in the chroma demodulator output, at the band-pass filter.

  Use a delay line matching the band-pass filter delay time.
- 9. RGBOUT, C.V.OUT At pins 19 and 20 (V.OUT) a composite video signal of about 2 Vp-p is output. At pins 21 through 23 (RGB OUT), an RGB signal (superimposed or else) of about 1.4 Vp-p is output. For the composite sync signal used together with RGB signal, use the composite video signal of pins 19 and 20. Both C.V.OUT of pins 19, 20 and RGB OUT of pins 21 through 23, can directly drive a load of 75Ω.
- 10. Composite sync signal

  Through the composite sync signal input from pin 11, sync is added to Y signal. At "H" (≥2.0V) Y signal is activated while at "L" (≤0.8V) sync is activated.

## **Descriptions of Operation**

1. Clamp circuit, SW circuit, SW CONT circuit.

RGB signal from PC is input to pins 1 through 3 via a clamp capacitor. In the same way, RGB signal from TV is input to pins 4 through 6. Input RGB signals are pedestal clamped together, by means of the clamp circuit operating in accordance with the burst flag signal. Clamped RGB signals are switched at the SW circuit, in accordance with the 4 modes, specified by YS, YMIX and YM signals, which are input from pins 25 through 27.

RGB signals switched at SW circuit are sent to MTX, MOD and RGB OUT circuits.

2. MTX circuit, MOD circuit, SC phase shift circuit

From RGB signal switched at SW circuit. Y signal is formed by means of MTX circuit. As for these Y and R signals, B signal goes to R-Y MOD circuit and B-Y MOD circuit. Also, this Y signal is sent to SYNC ADD circuit composite sync signal input from pin 11 is added to it, and it is sent through pin 14 to delay line.

SC shift phase circuit creates 0°, 90° subcarriers by phase shifting the subcarrier input from pin

10.

O° and 90° subcarriers are respectively sent to 8-Y MOD circuit and R-Y MOD circuit. By means of R with Y signals and B with Y signals, they undergo quadrature double phase modulation to become chroma signals. Chroma signals are sent to BPF via pin 13.

3. YC MIX circuit

Chroma signals from which harmonic waves have been eliminated at BPF, and Y signals that have passed through the delay line are sent to YC MIX circuit via pins 17 and 16. They are mixed, become composite video signals and sent to C.V.OUT circuit.

4. COMPOSITE VIDEO OUT circuit (C.V.OUT circuit) Composite video signals from YC MIX circuit, are amplified at C.V.OUT circuit into about 2 Vp-p video signals, and output through pins 19 and 20. C.V.OUT circuit, from each of pins 19 and 20 can directly drive a load of 75Ω.

5. RGB OUT circuit

Signal RGB switched at SW circuit is amplified to about 1.4 Vp-p by RGB OUT circuit and output via pins 21 through 23. RGB OUT circuit can directly drive a load of  $75\Omega$ .

6. REG 2V

The internal reference voltage is obtained through the band gap reference circuit. The reference voltage becomes the standard for the volume of each of the clamp electric potential, the burst and the sync.