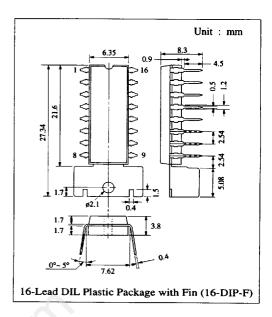
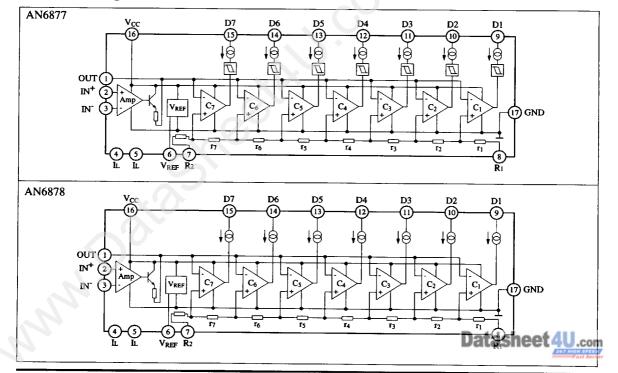
AN6877, AN6878


7-Dot LED Driver Circuits

Description


The AN6877 and AN6878 are monolithic integrated circuits driving 7-LEDs. The AN6877 respond linearly and the AN6878 does logarithmically for input signal. As output current adjusting pin is set, it can control LED brightness.

■ Features

- 7-LED bar graph display drive
- Linear (AN6877) and Logarithm (AN6878) response
- Brightness externally adjustable
- High output current: 25mA max.
- Series connection available for driving more than 7-dot display
- Incorporating reference supply voltage circuit
- No fluctuation of LED current even if supply voltage changes
- Snap turning on available

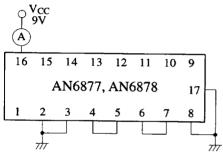
■ Block Diagram

■ Absolute Maximum Ratings (Ta=25°C)

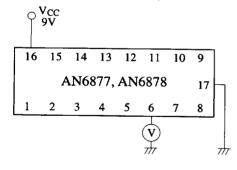
Item		Symbol	Rating	Unit
	Supply Voltage	v _{cc}	18	V
Voltage	Circuit Voltage	v_1	7.5	V
	Input Voltage	V _{12,3}	16	V
	Output Voltage	V _{O 9-15}	16	V
Current	Supply Current	I _{CC}	25	mA
	Output Current	Io	25	mA
Power Dissipation (Ta = 25°C)		P _D	1,800*	mW
Operating Ambient Temperature		Topr	-30 ~ +75	°C
Storage Temperature		Tstg	-55 ~ +150	°C

^{*} Value of no radiating fin. Refer P_D - Ta characteristics curve for radiating fin design. Operating Supply Voltage Range: $V_{CC} = 5.0V \sim 16.0V$

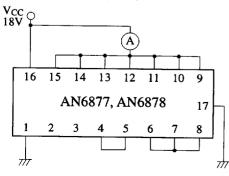
■ Electrical Characteristics (V_{CC}=9V, Ta=25°C)

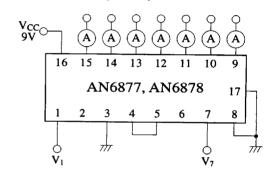

Item	Symbol	Test Circuit	Condition	min.	typ.	max.	Unit
Supply Current	I _{CC}	1	V ₂ =V ₃ =0V	4		18	mA
Output Inflow Current	lo 9-15	2	V ₁ =3.55V, V ₇ =3.5V	13		25	mA
Reference Voltage	V _{REF}	3		3.55	3.75	3.95	V
Output Offset Voltage (Amp.)	V_1	4	V _{CC} =16V, G _V =20dB, V ₂ =0V	-150		150	mV
Voltage Gain (Amp.)	V_G	4	V ₂ =50mV	18	20	22	dB
Output Pin Leak Current	I9-15	5	V _{CC} =18V	0		20	μΑ
I Dis Commt (Amn)	I _{Bias2}	6	V _{CC} =18V, V ₂ =V ₃ =0V	-2		0	μΑ
Input Bias Current (Amp.)	I _{Bias3}	6	V _{CC} =18V, V ₂ =V ₃ =0V	-2		0	μΑ
Input Bias Current	I _{Bias7}	7	V _{CC} =18V, V ₂ =10V, V ₃ =V ₇ =V ₈₌ 0V	-10		0	μA
(Comparator)	IBias1	7	$V_{CC}=18V$, $V_3=10V$, $V_1=V_2=0V$, $V_6=V_7=V_8$	-10		0	μА
	GD ₁			0.4	0.5	0.6	V
	GD_2			0.85	1	1.15	V
	GD ₃			1.35	1.5	1.65	V
Comparator Level (AN6877)	GD ₄	8	$V_7=3.65V, V_8=0V$	1.85	2	2.15	V
•	GD ₅			2.35	2.5	2.65	V
	GD ₆			2.85	3	3.15	v
	GD ₇			3.35	3.5	3.65	v
	GD ₁ *			-17	-15	-13	dB
	GD ₂			-9	-7	-5	dB
	GD ₃			-4	-3	-2	dB
Comparator Level (AN6878)	GD ₄	8	V ₇ =3.5V, V ₈ =0V	-1	0	1	dB
•	GD ₅	1		1.5	2	2.5	dB
	GD ₆	1		3.5	4	4.5	dB
	GD ₇	1		4.5	5	5.5	dB

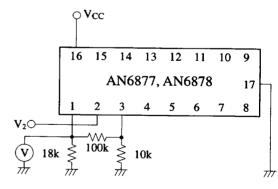
^{*} Comparator reference voltage = 3.5V, 2.0V = 0dB.

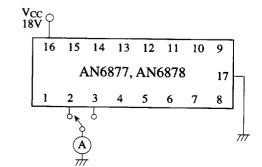

■ Pin

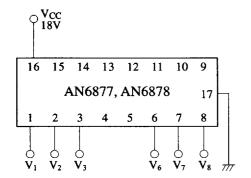
Pin No.	Pin Name	Pin No.	Pin Name	
1	Amp. Output	9	LED 1 Output	
2	Non Inverting Input	10	LED 2 Output	
3	Inverting Input	11	LED 3 Output	
4	LED Current Setting Input	12	LED 4 Output	
5	LED Current Setting Input	13	LED 5 Output	
6	Reference Voltage	14	LED 6 Output	
7	LED ON Level Setting Input	15	LED 7 Output	
8	LED ON Level Setting Input	16	Vcc	

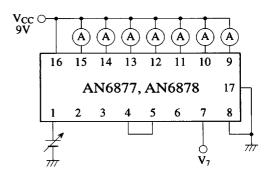

Test Circuit 1 (I_{CC})

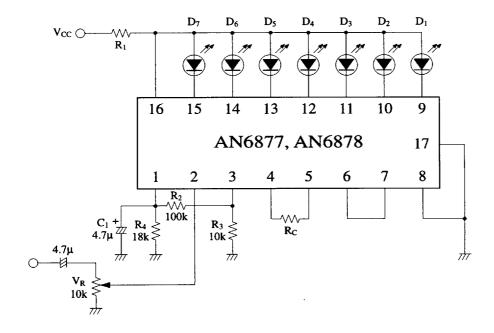

Test Circuit 3 (V_{REF})


Test Circuit 5 (I₉₋₁₅)


Test Circuit 2 (I_{O 9-15})

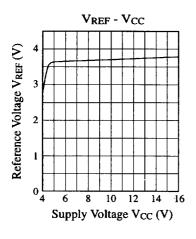

Test Circuit 4 (V₁, V_G)

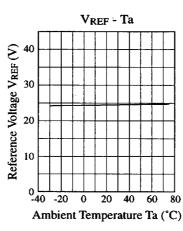

Test Circuit 6 (IBias2, IBias3)

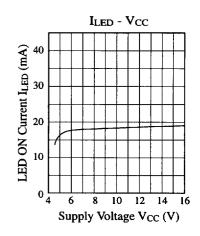

Test Circuit 7 (IBias7, IBias1)

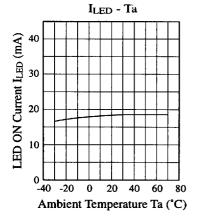
Test Circuit 8 (GD₁₋₇)

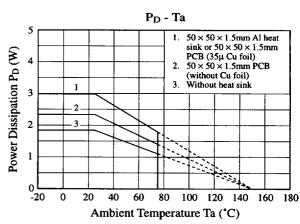
Application Circuit


- For input amp. gain determination: R₂, R₃
- LED current adjusting resistor : R_C


$$R_C = 300\Omega$$
 $I_{LED} = 18mA$


$$R_C = 3.3k\Omega$$
 $I_{LED} = 5mA$


- Determine by using [PD Ta] characteristics data about power supply R1
- For response time determination: C₁, C₄
- For input level determination : V_R


■ Characteristics Curve

