
M68HC08
Microcontrollers

freescale.com

MC68HC908QY4
LIN Backlit Keypad Slave
Designer Reference Manual

DRM058/D
Rev. 1
07/2007

MC68HC908QY4 LIN Backlit Keypad Slave
Designer Reference Manual

DRM058/D
Rev. 1

07/2004

By: Matt Ruff
8/16 Bit Systems Engineering
Austin, Texas

Revision History

Rev. Section Description of Change

0 Throughout Initial release

1 Section 4; throughout Changed headings in Table 4-1; changed to Freescale format

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 5

Table of Contents

Chapter 1. System Overview
1.1 Introduction. .7
1.2 Features .8
1.3 Basic System Operation .13

Chapter 2. LIN Messaging
2.1 LIN Message Frames .15
2.2 Scheduling Tables .17

Chapter 3. Backlit Keypad Hardware
3.1 MC68HC908QY4 Backlit LIN Slave Keypad Unit .19

3.1.1 Button Interfacing. .22
3.1.2 LED Backlighting .23
3.1.3 Connectors and Harnesses .24

Chapter 4. Keypad Slave Software
4.1 Overview. .27
4.2 CodeWarrior‚ Project and File Structure .27
4.3 Application Code .29

4.3.1 Application Software State Machine .29
4.3.2 State Description .30
4.3.3 Application Data Storage .31
4.3.4 Choosing ADC Trip Points for Buttons .33
4.3.5 Software Switch Debouncing. .36

4.4 LIN Software Drivers .36
4.4.1 Changes from LIN Drivers in AN2599/D .36
4.4.2 Configuring Messaging .37

4.5 Performance Issues .38
4.5.1 LIN Driver ISR vs. TIMCH0 Flag Polling .38

Chapter 5. LIN Master Module Emulation Using the LIN Spector
5.1 Overview. .43

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

6 Freescale Semiconductor

Chapter 6. Design Enhancements and Upgrades
6.1 Overview. .45
6.2 Software Performance Improvements .45
6.3 Software Functionality Upgrades .46
6.4 Hardware Improvements .46
6.5 Hardware Functional Upgrades .47

Chapter 7. References and Acknowledgements
7.1 References .49
7.2 Acknowledgement .49

Appendix A. LIN_QY_Backlight_keypad_messaging_strategy_1_0.ldf.51
Appendix B. LED_Sweep.LEC .57
Appendix C. Schematic and BOM .59

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 7

Chapter 1. System Overview

1.1 Introduction

This manual describes a reference design for a local interconnect
network (LIN) enabled steering wheel keypad module with light emitting
diode (LED) backlighting. The design is based on the MC68HC908QY4
microcontroller and MC33689 LIN system basis chip (SBC). By placing
the keypad on a LIN network, the designer is able to reduce the wiring
required through the expensive clockspring wiring connection in the
steering wheel and add any number of new features to the steering
wheel without having to change this expensive connector. This design
shows one way that a basic keypad unit can be placed onto the LIN
network with simple components. The design also serves as a base
design which can be added to or increased in complexity without
additional connections through the clockspring.

The entire system consists of the keypad module (which is a slave on a
LIN network), a satellite board (which contains more buttons and
backlighting LEDs for the right side of the steering wheel), and a LIN
master node. For this reference design, the LIN master node uses
standard LIN tools to control and monitor the keypad unit. Design of the
master module and satellite keypad is beyond the scope of this design,
but the messaging used by the master to monitor switches and control
backlighting levels is included.

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

8 Freescale Semiconductor

System Overview

1.2 Features

This reference design features:

• Monitoring of 13 buttons for cruise control, HVAC (heating,
ventilation, and air conditioning), and radio controls on an
automotive steering wheel

• LIN connectivity using LIN 1.3 standard messaging

• Autobauding to any LIN bus speed from 1 kbps to 20 kbps

• LED backlighting with 16 network-controlled brightness levels
using PWM (pulse-width modulation)

• 3-wire connection to clockspring— independent of button count
(LIN, Vbat, ground)

• LIN communications and PWM backlighting achieved using single
timer module

• Based on low-cost 16-pin MC68HC908QY4 microcontroller

LIN is a low-cost serial data bus standard, based on universal
asynchronous receiver transmitter (UART) hardware. LIN is targeted at
low cost, low data rate networks, enabling the connection of motors,
sensors, and actuators. Vehicle HVAC systems and electric power seats
are good examples of systems in which LIN is used. These example
systems contain multiple motors, sensors, and control panels which can
easily be controlled through a relatively low-speed network (lower than
20 kbps) without impeding system performance. Networking these
components rather than the traditional point-to-point wiring eliminates a
large amount of wiring, reduces potential points of failure at wiring
connections, and allows for the use of more advanced diagnostics.

A LIN network in the steering column might include slave nodes for a
switch panel (keypad) on the steering wheel, a switch monitor in the turn
signal stalk, and/or an ignition switch node. The wiring reduction in the
steering column can be substantial, because many switches currently
require two wires per switch to run from the switch through the steering
column to a central control box. Some multiplexing of switches can be
done using resistor divider networks, but this only works for a limited
number of switches before requiring the use of more precise and
expensive resistors.

System Overview
Features

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 9

Figure 1-1 shows a typical steering column wiring with a few extra
features. In this example, at least 17 wires are required to enable these
features in the steering column. Depending upon the complexity of
functions and switches in the turn signal stalk, the number of wires could
easily be larger.

Figure 1-1. Typical (Non-LIN) Steering Column Wiring Diagram

Figure 1-2 shows how using a LIN network in the steering column can
eliminate 14 or more wires in this steering column, which can reduce the
size and conductor count of the connectors at every node. Additionally,
connectors at each node can now be made virtually identical, decreasing
cost through volume purchasing and increased manufacturability.

Turn Signal Stalk: Turn Signal Stalk:
�� Interval wiper Interval wiper (1)(1)
�� Washer pump Washer pump (1)(1)
�� Headlight dim Headlight dim (1)(1)
�� Ground Ground (1)(1)
�� New features (+)

Control Box
HEAT COOLCOOL

����

����

����

����

��������

���� ������������

������������

Steering ColumnSteering Column

Ignition Switch :Ignition Switch :
�� Key switchKey switch (3)(3)
�� ImmobilizerImmobilizer (1)(1)
�� Keyhole lightingKeyhole lighting (1)(1)
�� GroundGround (1)(1)

Column Extension Column Extension
Adjust MotorAdjust MotorClockspringClockspring ConnConn ::

�� KeypadKeypad (4)(4)
�� HeatHeat (1)(1)
�� CoolCool (1)(1)
�� Ground Ground (1)(1)

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

10 Freescale Semiconductor

System Overview

Figure 1-2. Steering Column LIN Network

In the clockspring mechanism, conductor count and connector
standardization are important concerns. The clockspring links the wiring
in the column to the devices in the steering wheel, which must rotate
through a large range of motion and maintain electrical contact. The
wheel might contain such diverse applications as keypads, airbag,
heating and cooling circuitry, and lighting. Clocksprings are relatively
expensive components and increase in cost with increasing numbers of
conductors. In a traditional system, such as shown in Figure 1-1, as
many as seven conductors are required to support the keypad, heating,
and cooling functions alone. To add these functions to a traditional
system that was not originally designed with them, the manufacturer
must absorb the cost of the bigger clockspring, increase the cost of the
assembly, or stock multiple clocksprings to accommodate all levels of
vehicle options. In a LIN system, however, only three conductors and a
single clockspring with a standard single connector are required for any
level of functions.

Turn Signal Stalk: Turn Signal Stalk:
�� Interval wiper Interval wiper ((--))
�� Washer pump Washer pump ((--))
�� Headlight dim Headlight dim ((--))
�� Ground Ground ((--))
�� New features ((--))

Column Extension Column Extension
Adjust MotorAdjust Motor

Control Box
(LIN Master)(LIN Master)

����

����

����

����

���� ����

����

Steering ColumnSteering Column

Ignition Switch :Ignition Switch :
�� Key switchKey switch ((--))
�� Immobilizer Immobilizer ((--))
�� Keyhole lightingKeyhole lighting ((--))
�� Ground Ground ((--))

HEAT COOLCOOL

System Overview
Features

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 11

Conversion to LIN not only allows for cost reduction while maintaining
the same level of functionality, it allows for dramatically increased design
flexibility in the steering wheel applications without adding any new
wiring. If the designer is able to add features without adding wires
through the clockspring, features such as adaptive backlighting, driver
grip pressure sensing, or even fingerprint recognition can be added or
removed from a vehicle for only the cost of the application itself. Some
of these features are discussed in Chapter 6. Design Enhancements and
Upgrades.

Figure 1-3 shows a basic overview of a LIN enabled steering wheel
keypad and how it connects to the master node of the system.

Figure 1-3. Reference Design System Overview

Satellite Satellite
KeypadKeypad

ClockspringClockspring
MechanismMechanism

LIN Master
Node

HC908QY4HC908QY4
LIN Backlit LIN Backlit

KeypadKeypad

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

12 Freescale Semiconductor

System Overview

Much more elaborate features can be implemented, but the two basic
functions are monitoring a set of switches and illuminating those
switches with LEDs. Some additional features and enhancements to this
basic design are described in Chapter 6. Design Enhancements and
Upgrades.

Figure 1-4 is a block diagram of the keypad that shows the basic
components and interconnections. One of the other key features of this
design is that it uses the very small and inexpensive MC68HC908QY4
microcontroller unit (MCU) to operate the LIN communications, PWM
backlighting, and switch monitoring. This is accomplished with only a
single two-channel timer module and general-purpose input and output
pins. Much of the other circuitry required in such a design, such as
voltage regulation from automotive battery voltage (Vbat) down to 5 V,
LIN physical interfacing, and Vbat level LED drive are accomplished with
the use of the MC33689 LIN system basis chip (SBC). The LIN SBC also
extends the input and output capabilities of the 16-pin package of the
MCU to allow the addition of more switches or output devices.

Figure 1-4. Keypad Block Diagram

HC908QY4 LIN Backlit Keypad
Satellite Keypad

4

HC908QY4
MCU

T
X

R
XS
P
I

SETSET

RESRES

CSTCST

OFFOFF

ONON

P
W
M

LED output

Vdd

VOL+VOL+

VOLVOL--

MEMMEM

MODEMODE

FANFAN--

FAN+FAN+

TMP+TMP+

TMPTMP--

VddATD

TIM

Vdd

LIN

Vbat
GND

LIN Master
Node Module

ClockspringClockspring MechanismMechanism Steering ColumnSteering Column

MC33689
LIN System
Basis Chip

System Overview
Basic System Operation

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 13

Figure 1-5. MC68HC908QY4 Backlit LIN Keypad
with Satellite Keypad and Harness

1.3 Basic System Operation

The core components of the system are the LIN backlit keypad module
and the LIN master module. This reference design focuses primarily on
the design of the keypad unit, which is a slave on the LIN network. The
functions of the master node are emulated using a standard LIN
development tool called the LIN Spector™ from Volcano Automotive
Group and are described in more detail in Chapter 5. LIN Master Module
Emulation Using the LIN Spector.

In a LIN network, the master node initiates all communications on the
network. In this system, it simply polls the keypad for button status using
request messages and transmits LED lighting levels via command
messages. The keypad constantly checks the switches for status,
updates the PWM output for the LEDs based on the current backlighting
level, and responds to any recognized LIN message header that arrives.
LIN messaging details are explained in Chapter 2. LIN Messaging.

LIN Spector™ is a trademark of Volcano Automotive Group.

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

14 Freescale Semiconductor

System Overview

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 15

Chapter 2. LIN Messaging

The keypad is designed to respond to four LIN messages; three are for
status and control and one is the LIN standard sleep message. The three
specific status and control messages can be modified easily in
LINmsg.c; however, adding messages may affect code performance.
Refer to 4.5 Performance Issues for more detail.

2.1 LIN Message Frames

The following LIN message frames are used:

Full details of the messaging can be found in the LIN description file
(LDF) found in the reference design software download file and in
Appendix A. LIN_QY_Backlight_keypad_messaging_strategy_1_0.ldf.
The format for this file is part of the LIN standard, which means that the
LDF file describes the LIN messaging in a standard way so that it will
work with all LIN compliant tools.

Table 2-1. LIN Message Frames

LIN ID
(with parity)

Frame Name Frame Description Byte 0 Byte 1

0xCA LIN_Stat
J2602 and LIN 2.0 compliant

status byte

 Application status,
 LIN communication

status
—

0x8B KEY_STATUS Keypad button press status
 Cruise control button

status
 HVAC and radio

button status

0x4C INT_LIGHT_CMD
Interior lighting command

message
 Backlighting ON/OFF

and level data
—

0x80 —
LIN 1.0 system sleep

message
— —

0x3C —
LIN 1.3+ system sleep

message
(not currently supported)

0x00 —

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

16 Freescale Semiconductor

LIN Messaging

The LIN_Stat message is not used in this reference design, but it is
included to show how this LIN and SAEJ2602 standard status byte might
be used in a system. The slave supplies to the master a 1-byte status
update that contains LIN bus error conditions and application status
information. This allows the master to rapidly poll the slave node status
by requesting a 1-byte message without having to ask for detailed status
data, which requires longer messages.

The LIN driver in this reference design does track bit errors and
checksum errors, however they are not currently reported in the
LIN_Stat message. The application status information in bits 0 through
4 are defined by the application designer. The only reserved value is
0x00, which indicates that there is no data to report. The application
status field is updated in the reference design (as an example) whenever
a button is pressed. The encoding of the LIN_Stat message byte
allows the master node to rapidly request this 1-byte status update and
monitor the most significant bit (MSB) for LIN bus error conditions and
the least significant bit (LSB) for application state changes.

The KEY_STATUS and INT_LIGHT_CMD messages are the primary
messages used in this reference design. Because only 13 bits are
required to report button status (with one additional bit that reports the
pressing of any button), only a 2-byte status response is required in
message KEY_STATUS. The added latency (2 bytes instead of 1 byte) is
minimal. Therefore in this reference design, the master simply uses this
message to monitor the condition of the keys. The KEY_STATE_CHG
signal (bit 7 of byte 0) serves the same function as the LSB of the
LIN_Stat message.

The INT_LIGHT_CMD is a command message the master node uses to
report the interior lighting levels to the slave node. A 4-bit value
represents the brightness level required in increments of 6.65% per bit.
The MSB is a toggling bit that indicates whether the backlighting should
be turned on or off. If this bit indicates that the lighting should be off, the
brightness level is ignored and the backlighting is disabled.

The LIN drivers included with the reference design recognize the
standard LIN 1.0 system sleep request message. In LIN 1.3 and later,
this message is defined as part of the 0x3C “diagnostic master request
frame” message set, where the first data byte is equal to zero. Currently,

LIN Messaging
Scheduling Tables

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 17

the application recognizes only the older version of this command (from
LIN 1.0) which was simply defined by the reception of identifier 0x80.
When this message is received, a bit flag called LINsleep is set,
allowing the application to recognize this command from the master and
decide how to manage network sleep conditions. The main application
routine polls the flag. If the flag is set, it calls the GoToSleep() routine.
A small code stub has been inserted into LINdriver.c to show how to
expand the driver to also work with the 0x3C message style, if desired.
The stub reads as follows:

if (Id == DIAGMSTRREQ) //Defined in LINdriver.h, should be 0x3C
{
// Set a temp latch that "diagnostic Master Req Frame" ID received
// then check data[0] when rcvd, if ==0x00, then set sleep flag
}

2.2 Scheduling Tables

A number of scheduling tables are defined in the LDF file. A scheduling
table is a defined sequence of message frames which are sent out in a
particular order at particular times. Different scheduling tables are
defined in the LDF file primarily to facilitate testing and debugging of the
slave node. Most LIN tools are capable of emulating the master node in
a LIN network if message frames and schedule tables are defined. More
advanced tool features also allow switching between schedule tables.

For example:

1. Run the FAST_POLL table (which sends the LIN_Stat message
ID)

2. Whenever the LSB returns a value of 1, switch to the
CHECK_SWITCHES table
(Requests full button status using the 2-byte KEY_STATUS frame)

3. Switch back to FAST_POLL table to poll the node more rapidly

4. Switch to LIGHTS_ONLY for one schedule table cycle whenever
the master node senses a change in the required backlighting

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

18 Freescale Semiconductor

LIN Messaging

Table 2-2 provides a brief description of the included schedules.

Table 2-2. Schedules Included in this Reference Design

Schedule Table Name Function

FAST_POLL Used to rapidly check node status

CHECK_SWITCHES
Sends only key_status request message

frame to monitor key conditions

LIGHTS_ONLY
Sends only int_light_cmd command

message frame to send backlighting settings

CHECK_SWITCHES_AND_LIGHT

Alternately sends KEY_STATUS request message
frame to monitor key conditions and
INT_LIGHT_CMD command message frame to
send backlighting settings

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 19

Designer Reference Manual — DRM058/D

Chapter 3. Backlit Keypad Hardware

3.1 MC68HC908QY4 Backlit LIN Slave Keypad Unit

The hardware design for the MC68HC908QY4 backlit LIN slave keypad
happens to be based upon a keypad for the 2003 model Ford
ExpeditionTM Eddie BauerTM Edition (Ford Replacement Part#: 1L2Z
9C888 BA, Description: NL SW AS), but any similar keypad could be
used. The reference design hardware replaces the left switch unit and is
designed to allow the button assembly from the factory unit to be
removed and placed upon the reference design board. The right switch
unit (satellite keypad) is intended to be used as is, without modification,
except perhaps changing the LEDs and current-limiting resistors as
appropriate to match the left switch unit color and intensity.

To remove the existing PCB from the Ford keypad, two T9 Torx® or
star-drive screws must be removed. These can be found between and
behind the two columns of buttons at the top and bottom of the switch
unit. The Torx driver must be wedged between the columns of buttons to
reach the screws.

Torx® is a registered trademark of Camcar Div. of Textron Inc.

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

20 Freescale Semiconductor

Backlit Keypad Hardware

Figure 3-1. HC908QY4 Backlit LIN Slave Keypad Unit Block Diagram

The MC68HC908QY4 MCU has only 16 pins, including VDD and ground,
and it must monitor 13 switches, communicate over the LIN bus, and
operate LED backlighting through a PWM output. This is accomplished
by combining the MCU with a LIN SBC. Four pins are required to
connect the SBC to the MCU, but the SBC combines many functions of
voltage regulation, LIN physical interfacing, additional input and output
circuitry, and full diagnostics and circuit protection, which compensates
for using the four MCU pins.

HC908QY4 LIN Backlit Keypad

S
a
t
e
l
l
i
t
e

K
e
y
p
a
d

4

HC908QY4

MCU

T
X

R
XS
P
I

SETSET

RESRES

CSTCST

OFFOFF

ONON

P
W
M

LED output

Vdd

VddATD

TIM

Vdd

LIN

Vbat
GND

MC33689

LIN System

Basis Chip

Backlit Keypad Hardware
MC68HC908QY4 Backlit LIN Slave Keypad Unit

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 21

Figure 3-2. HC908QY4 LIN Backlit Keypad Unit — Switch Side (L) and Component Side (R)

Full schematic of this board can be found in the download files for this
reference design and in Appendix C. Schematic and BOM.

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

22 Freescale Semiconductor

Backlit Keypad Hardware

3.1.1 Button Interfacing

The primary function of a steering wheel keypad is to monitor the status
of buttons to provide an input device for the vehicle driver to easily
control HVAC, radio, cruise control, or other vehicle systems. The
chosen base design requires 13 buttons to be monitored, which is
accomplished through three different methods. Buttons may be:

• Directly input to the MCU and read as digital inputs

• Connected to the MCU through analog-to-digital (ADC) inputs and
decoded from analog voltages

• Connected directly to inputs on the SBC

The three cruise control runtime functions most used by the driver are:

• Setting a target speed (SET)

• Resuming a pre-set speed after a temporary disengagement of
the cruise control (RES)

• Coasting to allow the vehicle to slow down gradually resetting the
target speed (CST)

The buttons controlling these three functions are set up as standard 5-V
inputs directly connected to the MCU input pins with external pullup
resistors to VDD.

The two buttons that enable and disable the cruise control function (ON
and OFF) are connected to the SBC wake-up switch inputs with vehicle
battery voltage (Vbat) level pullup resistors. This allows the buttons to be
read without using additional pins on the MCU, and the status of these
button inputs can be read through the SPI interface to the SBC.

Another set of buttons is located on the satellite keypad board, which is
located on the right side of the steering wheel. The buttons on this
assembly are arranged in two groups of four buttons each, connected to
resistor ladders which yield a different voltage depending on which
button is pressed. Figure 3-3 shows the block diagram of this assembly.

Backlit Keypad Hardware
MC68HC908QY4 Backlit LIN Slave Keypad Unit

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 23

Figure 3-3. Satellite Keypad Block Diagram

Each of these two groups of buttons is connected through short wires
within the steering wheel to ADC inputs on the MCU. In this way, the
MC68HC908QY4 keypad unit can determine which buttons are being
pressed on the right side keypad. Some combinations of multiple
key-presses are possible and some might yield a different voltage; it is
the function of the software to determine the correct interpretation of this
combination. Details of this are discussed in 4.3 Application Code.

3.1.2 LED Backlighting

The SBC has three high-side protected drivers, allowing it to power large
loads such as lamps and relays. Two of these drivers (HS1 and HS2)
can further be controlled through a PWM input pin, allowing a PWM
signal to be ANDed with the switch setting. The result is the ability to
PWM larger loads and loads which must be switched at Vbat levels. For
this reference design, all LED backlighting is connected to HS1 and
controlled by this driver and the PWM signal is generated on TCH0 pin
of the MCU’s timer. Further enhancements to the backlighting can be

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

24 Freescale Semiconductor

Backlit Keypad Hardware

accomplished through alternative circuitry and are discussed in
Chapter 6. Design Enhancements and Upgrades.

3.1.3 Connectors and Harnesses

Both keypad units are separate assemblies which are mounted to
opposite sides of the steering wheel, requiring a wire harness to connect
them to each other and to connect to the LIN bus through the clockspring
mechanism. Figure 3-4 shows the connections required to create the
wiring harness for the keypad assembly. The connector used for the
clockspring connector is a standard Freescale Semiconductor LIN
development tools connector, which allows this assembly to easily
interface any of Freescale’s LIN master evaluation boards or LIN kit
boards.

Figure 3-4. Steering Wheel Keypad Wiring Harness Diagram

(Looking into back of
harness connector…)
Molex PN: 39-01-2040
MOTOROLA LIN CONNECTOR

LIN

Vbatt

GND

45 cm

Molex PN:
50-57-9404

Molex PN:
22-55-2081

Left and right connectors
use crimp terminals…
Molex PN: 16-02-0103

HVAC switches

Radio Switches
GND

LED Backlight

Backlit Keypad Hardware
MC68HC908QY4 Backlit LIN Slave Keypad Unit

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 25

The last major hardware interface in the design is the debugging and
programming interface. This connector would not be populated in
production designs, and likely would not be designed into the final
hardware layout, but it is provided here as a reasonable compromise for
development purposes. It allows the user to reprogram the MCU, but
debugging with this interface is extremely difficult due to the sharing of
the PTA0 pin between the PWM backlighting function and the monitor
mode debugging interface.

CAUTION: Do not plug the connector in backwards. Doing so can cause damage to
components on the board. Improvements to this debugging connector
interface are discussed in Chapter 6. Design Enhancements and
Upgrades.

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

26 Freescale Semiconductor

Backlit Keypad Hardware

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 27

Chapter 4. Keypad Slave Software

4.1 Overview

The software for the LIN keypad is fairly straightforward and covers only
the basic required functions of the keypad application. This design is
engineered to get a high level of performance from a relatively small and
inexpensive microcontroller. As a result, there are some design
challenges that are easy to overlook in the code. Most of the code is
written in C, but several key routines and code sequences are written in
assembly code to better optimize performance.

4.2 CodeWarrior® Project and File Structure

The CodeWarrior 3.0 project file (QY4_LIN_Keypad.mcp), located in
the sample directory, is included with this reference design and contains
all the code required to build the application. The code was originally
based on the MC68HC908QY4 LIN drivers detailed in AN2599/D:
Generic LIN Driver for MC68HC908QY4. Details on those drivers and
how they can be used can be found in that application note. See
Chapter 7. References and Acknowledgements.

CodeWarrior® is a registered trademark of Metrowerks, Inc., a wholly owned subsidiary of
Motorola, Inc.

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

28 Freescale Semiconductor

Keypad Slave Software

Figure 4-1. CodeWarrior 3.0 HC08 Project (QY4_LIN_Keypad.mcp)

The application code is contained in main.c with application-specific
variable declarations, macro definitions, and data structure definitions in
main.h.

The LIN driver consists of five files:

• LINdriver.c — contains the main driver code

• LINdriver.h — header file for the driver

• LINapi.c — contains all the driver API functions (only
LIN_Init routine is used)

• LINmsg.c — where all LIN message frames are defined

• Tx_Config.h — header file containing the transmission pin
definitions

Keypad Slave Software
Application Code

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 29

The driver also requires these standard files and libraries:

• Start08.c — standard start-up routines

• MC68HC908QY4.h — header file for the MC68HC908QY4 MCU

• MC68HC908QY4.c — C file for the MC68HC908QY4 MCU with
data structure instantiations

• ansi.lib — ANSI library file

• vector.c — interrupt vector definitions for MCU

• hc08qy4.prm — memory locations (ROM and RAM) in the MCU

4.3 Application Code

The application code for the reference design is in main.c and deals
with monitoring the status of the buttons, maintaining the data in the LIN
message buffers with this data, and updating the LED backlighting PWM
signal.

4.3.1 Application Software State Machine

The state diagram for the main application is shown in Figure 4-2.
Because the states are simple, they are not explicitly written into the
application code and are shown for clarity. The state machine is event
driven where all state transitions are gated by the events shown in the
figure rather than by time triggering.

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

30 Freescale Semiconductor

Keypad Slave Software

Figure 4-2. HC908QY4 LIN Backlit Keypad Software State Diagram

4.3.2 State Description

The following is a detailed description of the states:

• START/INITIALIZE — After reset, the software initializes the
oscillator trim value to 0x00 to get the fastest possible bus clock
(3.2 to 4 MHz), sets the LIN driver to the unsynchronized state,
sets up the timer and ADC, sets up the input and output settings
for the general-purpose pins, and initializes the SBC to get ready
for LIN messaging. Additionally, the LIN message buffers are
cleared.

• MAIN POLLING LOOP — After initialization is complete, the
software enters the main running state. This is a polling loop that
reads each of the three sets of buttons via direct inputs, SBC
inputs using SPI data, and ADC measurements. This data is
stored in a temporary latch which is transferred once to the LIN
message buffers at the end of the main loop. The polling loop is
gated by the period of the timer module. When the timer reaches
a certain period, the scheduling flag is set, which triggers one poll
of the buttons. Throughout the polling loop and every time that any
delay might be encountered, the timer channel 0 flag is polled to
determine whether the PWM signal requires updating. The PWM
must be managed in software rather than hardware due to the
sharing of the timer module and the time-critical nature of LIN bus

START/INITIALIZE

SLEEP

MAIN POLLING LOOP

LIN NETWORK ACTIVITY

INIT DONE

LINsleep = 1

Keypad Slave Software
Application Code

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 31

traffic. The LIN driver state machine is allowed to run while the
application is in this state because this is the only time interrupts
are enabled. The LIN drivers are discussed in more detail in
section 4.4 LIN Software Drivers.

• SLEEP – After successful reception and interpretation of the
global LIN sleep command message, the software enters the
SLEEP state. This state serves as a trap for the sleep command.
In the current design, an infinite loop is entered, but in a final
design, this state would place the SBC into its sleep mode, which
powers off the MCU. The state is exited only when there is
message traffic on the LIN bus which triggers the SBC to
re-enable the regulator which causes a power-on reset (POR) in
the MCU. The current software also recognizes only the older,
LIN 1.0 form of the LIN sleep command (ID=0x80).

4.3.3 Application Data Storage

A description of the key data storage flow is shown in Figure 4-3. This
diagram illustrates the interaction of data between the different software
processes, hardware components, and system events. This diagram
should be created before software is written and serves as the basis for
creating all data storage structures required in the application code itself.

The bubbles indicate processes that manipulate or generate data in the
system. Data storage locations are indicated by text with horizontal lines
above and below and use the exact names of the data storage structures
used in the code itself (e.g., ButtonLatch_1). In some cases, these
storage areas are simply registers in the MCU memory map. In other
cases, they are the LIN message buffers created in RAM for sending and
receiving LIN messages.

Data flow is shown as arrows with accompanying text to explain what
data is being moved. All text shown in COURIER font corresponds to a
variable or constant name used in the C code.

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

32 Freescale Semiconductor

Keypad Slave Software

Figure 4-3. HC908QY4 LIN Backlit Keypad Software Data Flow Diagram

LIN MESSAGE
TRANSMITTING CODE

(SW DRIVERS)

Message0x8B Message0xCA

UPDATE LIN
MESSAGE TRANSMIT

BUFFERS
LINstat

CC_ON

CC_OFF
CC_RES
CC_SET
CC_CST

KEY_STATE_CHANGE

RADIO_VOL_UP
RADIO_VOL_DOWN
RADIO_SOURCE
RADIO_MEM
HVAC_FAN_UP
HVAC_FAN_DOWN
HVAC_TEMP_UP
HVAC_TEMP_DOWN

Status_Chg

LIN MESSAGE
RECEIVING CODE*

(SW DRIVERS)

Message0x4CADR

ADC RESULT
REGISTER**

UPDATE PWM

PWMValue

READ ADC

ADLatch

AD2 (PTA4)
AD3 (PTA5)

RES (PTB_PTB3)
SET (PTB_PTB4)
CST (PTB_PTB5)

ButtonLatch_0_PREV ButtonLatch_1_PREV

READ AND UPDATE
BUTTON LATCHESDEBOUNCE

BUTTON LATCHES

ButtonLatch_0 ButtonLatch_1

L1 AND L2
SWITCH INPUTS

SPIReceive

PTB

UPDATE SBC

SPISend
Int_SBC

OR
ENTER SLEEP MODE

NOTES:
* Generated or initiated by LIN software drivers

** Generated or updated by application code

Keypad Slave Software
Application Code

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 33

4.3.4 Choosing ADC Trip Points for Buttons

To choose the ideal cutoff values for the ADC measurements of the
satellite keypad, calculate the net resistance of both channels for two
sample units. This will provide reference resistance levels, which can be
used to extrapolate ADC measurements for the other points. Then
average the two sets of extrapolated numbers and calculate the mean
value of the two resistance values desired. This final mean value will
typically be the ideal ADC trip point value.

For example, the cutoff value for the RADIO_MEM button was
calculated as follows:

1. Average estimated ADC reading with RADIO_MEM pressed:
(78.8+78.6)/2 = 78.7

2. Average estimated ADC reading with RADIO_SOURCE pressed:
(121.2+120.9)/2 = 121.05

3. Mean ADC Value:
(121.05+78.7)/2 = 99.875

4. HEX equivalent:
0x63

Table 4-1 shows the complete set of resistance measurements for both
sample units, all estimated ADC readings (in decimal and hexadecimal),
and the calculated ADC cutoff values. The net resistance measurements
for the satellite keypad units were measured between pins 1–2 and pins
2–3 (radio and HVAC data respectively) of the satellite keypad
connector. All calculations are based on these measurements and a
1-kΩ resistor to VDD located on the HC908QY4 LIN keypad module.

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

34 Freescale Semiconductor

Keypad Slave Software

For a clearer understanding of these cutoff frequencies, Figure 4-4
shows the extrapolated ADC readings for unit 1 and unit 2 with 10% error
bars and the calculated ADC cutoff values to be used in the code. The
calculated cutoff values (CALC ADC Cutoff) are exactly between the
adjacent resistances, which gives maximum clearance from the adjacent
values and allows for the 10% possible variance in resistor values in
manufacturing.

Table 4-1. Satellite Keypad Resistance Measurements and ADC Cutoff Calculation Data

Button Pressed Net Resistance
Measured

Est. Voltage
Reading

Est. ADC Value
(DEC)

Est. ADC Value
(HEX)

CALC ADC
Cutoff

Unit 1 Unit 2 Unit 1 Unit 2 Unit 1 Unit 2 Unit 1 Unit 2 DEC HEX

RADIO_VOL_DOWN 74.10 73.40 0.34 0.34 17.7 17.5 11 11 30.7 1E

RADIO_VOL_UP 207.30 206.50 0.86 0.86 44.0 43.8 2B 2B 61.3 3D

RADIO_MEM 445.00 443.00 1.54 1.53 78.8 78.6 4E 4E 99.9 63

RADIO_SOURCE 899.00 895.00 2.37 2.36 121.2 120.9 79 78 166.6 A6

<none> 4890.00 4800.00 4.15 4.14 212.5 211.9 D4 D3

HVAC_FAN_DOWN 130.20 130.40 0.58 0.58 29.5 29.5 1D 1D 48.4 30

HVAC_TEMP_UP 355.90 356.30 1.31 1.31 67.2 67.3 43 43 89.6 59

HVAC_FAN_UP 778.00 778.00 2.19 2.19 112.0 112.0 70 70 136.8 88

HVAC_TEMP_DOWN 1710.00 1709.00 3.15 3.15 161.5 161.5 A1 A1 186.1 BA

<none> 4650.00 4640.00 4.12 4.11 210.7 210.6 D2 D2

Keypad Slave Software
Application Code

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 35

Figure 4-4. ADC Cutoff Values

These cutoff target values are then used to scan through the ADC
readings in the code as follows:

if (ADLatch < 0x1E) ButtonLatch_1.Bits.RADIO_VOL_DOWN = 1;
else if (ADLatch < 0x3D) ButtonLatch_1.Bits.RADIO_VOL_UP = 1;
else if (ADLatch < 0x63) ButtonLatch_1.Bits.RADIO_MEM = 1;
else if (ADLatch < 0xA6) ButtonLatch_1.Bits.RADIO_SOURCE = 1;

In this way, one and only one button value will be chosen on each scan,
and the lowest resistance will dominate. It is possible to have some
combinations of multiple button presses, but some are impossible due to
mechanical linkages of the buttons. Due to the unlikely occurrence of
these multiple button presses by the vehicle operator (these switches
are generally operated with the thumbs only during vehicle operation),
these cases are not addressed specifically in this reference design. The
most likely combination is if the driver accidentally pressed
RADIO_VOL_DOWN and RADIO_SOURCE simultaneously by pushing on
the gap between them. This case would be interpreted as
RADIO_VOL_DOWN while both buttons are pressed due to the disparity
in resistance values, which is the safest fault condition for the system.
Managing all multiple button press conditions are beyond the scope of
this design, but many methods can be used in software.

0.0

50.0

100.0

150.0

200.0

250.0

R
A

D
IO

_V
O

L_
D

O
W

N

R
A

D
IO

_V
O

L_
U

P

R
A

D
IO

_M
E

M

R
A

D
IO

_S
O

U
R

C
E

<n
on

e
pr

es
se

d
>

H
V

A
C

_F
A

N
_D

O
W

N

H
V

A
C

_T
E

M
P

_U
P

H
V

A
C

_F
A

N
_U

P

H
V

A
C

_T
E

M
P

_D
O

W
N

<n
on

e
pr

es
se

d>

Unit 1
Unit 2
CALC ADC Cutoff

Values of Unit 1 and Unit 2 show estimated
ADC readings with 10% error bars.

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

36 Freescale Semiconductor

Keypad Slave Software

4.3.5 Software Switch Debouncing

A very simple and effective software switch-debouncing mechanism will
ensure that a button must be pressed for at least two cycles of the main
polling loop. Because of the way the application code is written, this will
require that a button be pressed for at least 4 ms before it registers as
being pressed. This is accomplished by establishing two latch buffers to
hold the value of button status. The current button readings are always
loaded into ButtonLatch_0 and ButtonLatch_1, then they are
bit-wise ANDed with the values from the last cycle through the polling
loop stored in ButtonLatch_0_PREV and ButtonLatch_1_PREV.
The resulting debounced values are loaded into the LIN message
buffers for transmission over the network, and finally the debounced
latches are updated for the next pass through the polling loop.

4.4 LIN Software Drivers

The LIN communications driver used in this reference design is
essentially the same as the one found in AN2599/D: Generic LIN Driver
for MC68HC908QY4 with a few changes required to speed execution
time and reduce final code size. Further changes to this driver or the use
of another driver, such as the one in AN2503/D: Slave LIN Driver for the
MC68HC908QT/QY Family are detailed in Chapter 6. Design
Enhancements and Upgrades. Also see Chapter 7. References and
Acknowledgements.

4.4.1 Changes from LIN Drivers in AN2599/D

One of the primary changes made to the usage of the LIN drivers is the
added direct access of the message buffers in memory. The message
buffer data structures are declared as external data structures in
main.c to allow direct accesses, rather than requiring the use of the
LIN_PutMsg() and LIN_GetMsg() application programming
interface (API) calls. Because these API calls are not used, they are not
compiled; this saves code space and reduces execution performance
overhead.

Keypad Slave Software
LIN Software Drivers

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 37

Another change is the elimination of updating the LIN message buffer
status update code in the timer interrupt service routine (ISR) in
LINdriver.c. This reduces the execution time of the ISR. Because the
LIN_PutMsg() and LIN_GetMsg() API calls are not used to update
and retrieve data in the LIN message buffers, the LIN message buffer
status data is not updated properly or checked anyway. This renders the
buffer status update code in the ISR unnecessary. The only API call
used in the reference design software is the LIN_Init() routine.

Several other performance improvements were made to speed
execution of the timer ISR which runs the LIN driver.

For example, the following code:

for (i=0 ; i <= ((MessageCountTbl[MessageIndex] & 0xF) - 1);i++)
{
 FrameBuffer[i] = *(MessagePointerTbl[MessageIndex] + i);
}

was replaced with:

cnt_limit = ((MessageCountTbl[MessageIndex] & 0xF) - 1);
for (i=0 ; i <= cnt_limit ;i++)
{
 FrameBuffer[i] = *(MessagePointerTbl[MessageIndex] + i);
}

Both sets of code accomplish the same end result (copying data from the
LIN message buffer into the temporary transmission buffer), but there is
one important difference: In the first code sample, the expression
((MessageCountTbl[MessageIndex] & 0xF) - 1) is evaluated
each time the for () loop is executed. In the new code, the expression is
evaluated one time and the loop is executed based on that value. The
tradeoff is the need for one byte of stack space for the local variable
cnt_limit. Depending upon compiler optimizations and settings, this
kind of code change might even be managed automatically.

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

38 Freescale Semiconductor

Keypad Slave Software

4.4.2 Configuring Messaging

The only significant detail about configuring the messaging for this
design is to ensure that all transmit buffers are set up to always transmit.
This is accomplished by setting the upper nibble of each entry in
MessageCountTbl[] for a transmit buffer to 0.

4.5 Performance Issues

In this reference design, one timer module must be shared between two
key time-critical functions, the LIN bus communications and the LED
PWM backlighting. Performance issues can arise based on the
efficiency of the application and driver code, the CPU bus speed, and the
speed of the LIN bus communications. Some aspects of code efficiency
have been addressed in previous sections, particularly dealing with the
execution speed of the LIN driver ISR.

4.5.1 LIN Driver ISR vs. TIMCH0 Flag Polling

Because the PWM function is managed by the application software
rather than by interrupts, it is necessary to ensure that the PWM is
updated often enough to maintain the PWM waveform. The worst case
for this is when the PWM is at the highest or lowest duty cycle settings
which are not 100% or 0%. Because this is a 4-bit PWM, when
PWMValue is 0x1 or 0xE, the PWM must be updated within about 500 µs
(1/16th of 8 ms). Usually, this is no problem, except when LIN message
traffic causes many timer interrupts to occur in this same time interval as
well. Figure 4-5 shows what can happen when the PWM isn’t updated
properly.

Keypad Slave Software
Performance Issues

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 39

Figure 4-5. Missed PWM Update

The cursors in Figure 4-5 show how wide the PWM pulse should be
(notice the two normal pulses preceding it in the high-level zoom window
at the top). The ISRs for LIN communications are shown on channel 3
and the PWM update routine is shown on channel 2. In this case, the
timer ISRs for the LIN communications use some of the CPU cycles that
were required in the 528-µs window to allow the PWM update to occur.
The result is that by the time the PWMfix() routine executes (channel
2), the PWM should have been low and the timer counter should have
passed the target value. The PWM output stays high until the counter
synchronizes. The result is an unacceptable bright flash on the LED
backlighting (about 16 ms). Similarly, for the case where the duty cycle
is 93.75% (PWMValue = 0xE), the LED turns off for the same duration.

Several issues can cause this error condition, including inefficient timer
ISR code or insufficient polling of the PWM timer channel flag to

PWM High-Level
Zoom

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

40 Freescale Semiconductor

Keypad Slave Software

determine whether a PWM update is needed. For these reasons, the LIN
timer ISR performance improvements were made and very frequent
polling of TCH0F within the main switch polling loop is performed,
especially at any point where a significant delay might occur within the
switch polling loop. Faster LIN bus communications make the problem
worse by grouping the LIN-related ISRs closer together as the edges of
each bit come closer together.

Proper execution of the code can be seen in Figure 4-6. This figure
shows persistence from several oscilloscope sweeps, showing several
PWM cycles.

Figure 4-6. Proper Code Execution of LIN and PWM Updates

Because the LIN traffic is asynchronous to the application code, several
“ghosts” of previous oscilloscope sweeps appear on both the LIN RX pin
(channel 1) and the LIN ISR indicator (channel 3). Several instances of

PWM High-Level
Zoom

Keypad Slave Software
Performance Issues

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 41

the PWMfix() routine calls are also shown on channel 2. Notice that the
timing of execution of this routine still varies dramatically, based on how
many interrupts are being serviced for the LIN communications when the
PWM needs updating. In this case, however, the code has been
streamlined enough to ensure that the PWM will always get serviced in
time. Other improvements can be made and are listed in Chapter 6.
Design Enhancements and Upgrades.

The indicator flags shown in Figure 4-5 and Figure 4-6 were generated
on pins PTB4 and PTB5 as output signals, which idle at VDD and pulse
low while the corresponding routine is executing. The signals were then
inverted in the oscilloscope to make the resulting waveforms appear to
idle low and pulse high. The reason for using the signals this way is to
minimize the amount of current sourced by the MCU when the pins
toggle because there is already a pullup resistor tied to the pins. These
signals have been left in the code and can be activated and de-activated
by enabling or disabling the debug_flags define statement in main.h.

CAUTION: Do not press the SET or RES buttons while these flags are active. Doing
so will short the output pin directly to ground with no current limiting
resistor. This could cause damage to the MCU.

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

42 Freescale Semiconductor

Keypad Slave Software

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 43

Chapter 5. LIN Master Module Emulation
Using the LIN Spector

5.1 Overview

The LIN Spector tool from Volcano Automotive Group is a LIN tool that
can monitor and emulate LIN bus traffic. With the base version of the LIN
Spector tool, an LDF file can be read in and the master node emulated
to provide message headers and bus level debugging and data
monitoring.

The LIN Spector tool is also capable of more advanced emulation and
behavioral modeling, with the proper software add-on. For example,
another slave node could be created to monitor the headlight switch and
dimmer assembly, and a message could be added to the LDF file for the
master to request this unit’s switch data. The LIN Spector tool can then
emulate the master node and this new slave node. Additionally,
behavioral models of the two emulated nodes could then be
programmed into a “LIN emulation control” (LEC) file. This is essentially
a behavioral script for the LIN Spector tool.

A simple example is included with the download software of this
reference design called LED_Sweep.LEC. This basic script simply
varies the value of the interior brightness level (BRIGHT_LVL) from 0x0
through 0xF and back to 0x0 constantly. Each time the INT_LIGHT_CMD
message is sent, the next value is transmitted. The script does not
control the LIGHT_ON signal, so if this is 0x0, the backlighting won’t turn
on at all. The result of running the script is that the backlighting pulses
on and off. This isn’t practical in a vehicle, but does show some
capabilities of using these kinds of tools to model node behavior.

The LEC file can be found in Appendix B. LED_Sweep.LEC. For details
about this advanced emulation software addition, contact Volcano
Automotive Group, (http://www.volcanoautomotive.com/)

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

44 Freescale Semiconductor

LIN Master Module Emulation Using the LIN Spector

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 45

Chapter 6. Design Enhancements and Upgrades

6.1 Overview

As mentioned in other sections, there are opportunities for enhancing,
upgrading, and customizing this reference design. Only a brief
description is offered here, as a point of departure; the designer is
responsible for implementation specifics.

6.2 Software Performance Improvements

A few improvements can be made to the existing software to improve
execution performance and increase the design margins of operational
stability, allowing more features to be added to this code without
introducing performance issues.

First, the LIN driver code can be further optimized to reduce its CPU
requirements. This could be done by optimizing the existing drivers,
writing new drivers, or using the MC68HC908QY4 LIN drivers outlined
in AN2503/D: Slave LIN Driver for the MC68HC908QT/QY Family. The
drivers in that application note require fewer interrupts, on average, for
received messages, because they require only interrupts on each edge
on the incoming data stream. One drawback of these drivers is that the
LIN bus speed must be predetermined and preprogrammed rather than
using the autobauding technique found in the drivers from AN2599/D.

Another simple change that does not require changing the software,
when using the default reference design drivers, is to simply run the LIN
bus at a slower rate. Running the bus at 9,615 bps or 10,417 bps
(standard slower LIN speeds for European and US manufacturers)
increases the time between LIN interrupts, allowing more application
code to execute between ISRs. This increases design margin for timing.

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

46 Freescale Semiconductor

Design Enhancements and Upgrades

A significant software change which can be made is to modify the
PWMfix() routine so that if the PWM update does occur too late, the
routine recognizes this condition and immediately transitions the PWM
pin to the correct state. The result is that some very minor jitter might
occur occasionally on one PWM cycle, but it will be approximately 1 ms
rather than 16 ms based on the current design. This small amount of
jitter should not be visually detectable.

6.3 Software Functionality Upgrades

A software upgrade opportunity is to complete the support for the 0x3C
system sleep message and other diagnostics support. The sleep
message is likely to be used by all systems and is clearly defined, so it
makes sense to place support of this message directly into the driver
ISR. Other diagnostics messages will vary between manufacturers, so it
makes more sense to simply define these in LINmsg.c.

6.4 Hardware Improvements

The current hardware design could also be improved, primarily dealing
with the debugging connector. One possibility is to simply remove the
connector altogether, as it likely won’t be used in field applications. If it
is desired to keep the connector, it could use a few improvements.

Currently, if the connector is plugged in backwards, the pin normally
connected to PTA2 (IRQ) would be connected to VDD, which could
damage the MCU, SBC, or both. To place the part in monitor mode, high
voltage (Vtst) is applied to this pin. This is anywhere from VDD +2.5 V to
9.1 V and can cause damage to components on the board. Changing
this connector pinout so that PTA2 pin would line up with the no connect
pin (currently pin 3) or keying the connector so it can’t be plugged into
backwards would be a very good improvement.

Another issue with the debug connector is that the SBC must be
powered to allow a programmer to adequately drive PTA0 and PTA1 to
get the MCU into monitor mode. But when the SBC has Vbat applied, it
drives 5 V out onto VDD and the programmer cannot power-on reset the

Design Enhancements and Upgrades
Hardware Functional Upgrades

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 47

device. For debugging/development work, a cut-trace jumper on the VDD
connection between the MCU and the SBC would allow the developer to
disconnect this during programming. This would not be a recommended
practice for production units (which would be pre-programmed or ROM
units anyway).

6.5 Hardware Functional Upgrades

Many opportunities exist to upgrade the hardware design to introduce
new features or increase performance. Adding this keypad to a LIN bus
connection provides the freedom for the designer to implement almost
any feature he or she can devise. Without significantly changing the
basic design, a few simple changes can be made to improve this design.

The first modification would be to change the base MCU to an
MC68HC908QL4 device with the slave LIN interface controller (SLIC)
module. This module is a dedicated LIN peripheral which dramatically
decreases LIN driver code, reduces CPU overhead, and frees up the
timer module to be used for the application. This application could easily
fit into less than 2K bytes of code space on that device, allowing a
smaller memory sized MC68HC908QL2 derivative to be used. The timer
could then be used to drive the PWM channel or even two separate
PWM channels for lighting buttons to different brightness levels. See to
AN2633/D: LIN Drivers for SLIC Module on the MC68HC908QL4 for
more information and example software for that MCU (in Chapter 7.
References and Acknowledgements)

Another possible change would be to use one of several multi-chip
device products which contain both the MCU and the SBC. These
devices combine the MCU and SBC into a single package so fewer
components must be placed on the board. This also allows for smaller
boards to be designed. This could also allow a larger MCU, such as the
MC68HC908EY8 or MC68HC908EY16 to be designed into a smaller
package, if support is needed for extra functions such as steering wheel
heating and cooling or individually controlling the backlighting for each
button.

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

48 Freescale Semiconductor

Design Enhancements and Upgrades

Finally, a simple addition to the existing hardware design could provide
for a simpler level of adaptive backlighting. Three distinct backlighting
zones (for cruise control, HVAC, and radio) could easily be created with
the addition of one or two discrete transistors and one additional wire to
CONN1. This would also require a minor redesign of the satellite board to
add one additional wire to separate its backlighting into two zones. Both
zones of the satellite board backlighting could be rerouted to be driven
off HS2 rather than HS1. There is no problem with driving the PWM, as
both HS1 and HS2 can be PWM controlled by the same signal on the
PWMin pin of the SBC. Finally, the two zones driven from HS2 could be
independently gated by the discrete transistors, which are controlled via
the HS3 output of the SBC and PTA2 of the MCU.

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 49

Chapter 7. References and Acknowledgements

7.1 References

Freescale Semiconductor’s LIN Site: http://freescale.com/LIN

MC68HC908QY4 Product Summary Page

MC33689 Product Summary Page

AN2503/D: Slave LIN Driver for the MC68HC908QT/QY Family

AN2599/D: Generic LIN Driver for MC68HC908QY4

AN2600/D: A Simple Keypad Using LIN with the MC68HC908QT/QY MCU

AN2623/D: LIN Temperature Sensor Using the MC68HC908QY/QY MCU

AN2633/D: LIN Drivers for SLIC Module on the MC68HC908QL4

LIN Specification, Versions 1.3 and 2.0 from www.lin-subbus.org

VCT website: http://www.volcanoautomotive.com

7.2 Acknowledgement

Special thanks to Davor Bogavac of Freescale Semiconductor for his
invaluable assistance in creating this reference design. This reference
design would not have been possible without his original designs of both
the hardware and the MC68HC908QY4 LIN software driver code, as well
as practical advice based upon his customer-focused expertise.

http://e-www.motorola.com/webapp/sps/site/prod_summary.jsp?code=68HC908QY4&nodeId=01624684498634
http://e-www.motorola.com/webapp/sps/site/prod_summary.jsp?code=MC33689&nodeId=01435974401684
www.lin-subbus.org
http://www.volcanoautomotive.com

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

50 Freescale Semiconductor

References and Acknowledgements

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 51

Appendix A.
LIN_QY_Backlight_keypad_messaging_strategy_1_0.ldf

/**
Copyright (c) Freescale Semiconductor, Inc. 2001

File Name: LIN_QY_Backlight_keypad_messaging_strategy_0_1.ldf

Engineer: Matt Ruff

Location: OHT

Date Created: 15 December 2003

Current Revision: 0.1 - 6 Feb 2002

Notes: LIN QY Backlit Keypad Reference Design - LIN Description File

Freescale reserves the right to make changes without further notice to any
product herein to improve reliability, function or design. Freescale does not
assume any liability arising out of the application or use of any product,
circuit, or software described herein; neither does it convey any license
under its patent rights nor the rights of others. Freescale products are not
designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support life,
or for any other application in which the failure of the Freescale product
could create a situation where personal injury or death may occur. Should
Buyer purchase or use Freescale products for any such unintended or
unauthorized application, Buyer shall idemnify and hold Freescale and its
officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges
that Freescale was negligent regarding the design or manufacture of the part.
Freescale and the Freescale logo* are registered trademarks of Freescale, Inc.
**/

LIN_description_file;
LIN_protocol_version = 1.2;
LIN_language_version = 1.2;
//LIN_speed = 4.800 kbps;
//LIN_speed = 9.615 kbps;
//LIN_speed = 10.419 kbps;
//LIN_speed = 16.525 kbps;
LIN_speed = 19.230 kbps;

//--------------------------------
Nodes {

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

52 Freescale Semiconductor

 /* Name TimeBase Jitter */
 /* ---- -------- ------ */

Master: MSTR_CNTL, 1 ms, 0 ms;
Slaves: KEYPAD;
}

//--------------------------------
Diagnostic_addresses {//new (1.2)

//Name: addr;
}

/*___Signal Definitions___*/

Signals {
 /* Name Size Init Sender Receiver(s) */
 /* ---- ---- ---- ------ ----------- */

/* ------------- LIN_Stat signals ----------------*/
 APP_STATE_CHG 5, 0, KEYPAD, MSTR_CNTL;
 ERR_FIELD 3, 0, KEYPAD, MSTR_CNTL;

/* ------------- KEY_STATUS Cruise Control signals ----------------*/
 CC_ON 1, 0, KEYPAD, MSTR_CNTL;
 CC_OFF 1, 0, KEYPAD, MSTR_CNTL;
 CC_RES 1, 0, KEYPAD, MSTR_CNTL;
 CC_SET 1, 0, KEYPAD, MSTR_CNTL;
 CC_CST 1, 0, KEYPAD, MSTR_CNTL;
/* <RESERVED> 1, 0,KEYPAD, MSTR_CNTL; */
/* <RESERVED> 1, 0,KEYPAD, MSTR_CNTL; */
 KEY_STATE_CHG 1, 0, KEYPAD, MSTR_CNTL;

/* ------------- KEY_STATUS Radio & HVAC signals ----------------*/
 RADIO_VOL_UP 1, 0, KEYPAD, MSTR_CNTL;
 RADIO_VOL_DOWN 1, 0, KEYPAD, MSTR_CNTL;
 RADIO_SOURCE 1, 0, KEYPAD, MSTR_CNTL;
 RADIO_MEM 1, 0, KEYPAD, MSTR_CNTL;
 HVAC_FAN_UP 1, 0, KEYPAD, MSTR_CNTL;
 HVAC_FAN_DOWN 1, 0, KEYPAD, MSTR_CNTL;
 HVAC_TEMP_UP 1, 0, KEYPAD, MSTR_CNTL;
 HVAC_TEMP_DOWN 1, 0, KEYPAD, MSTR_CNTL;

/* ------------- INT_LIGHT_CMD signals ----------------*/
 BRIGHT_LVL 4, 0, MSTR_CNTL, KEYPAD;
 LIGHT_ON 1, 0, MSTR_CNTL, KEYPAD;

}
/*___Signal Definitions___*/

Frames {
 /* FrameName ID Sender Size */
 /* --------- -- ------ ---- */

LIN_Stat: 0x0A, KEYPAD, 1 {
 /* Signal Offset */
 /* ------ ------ */
 APP_STATE_CHG, 0;
 ERR_FIELD, 5;

}

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 53

KEY_STATUS: 0x0B, KEYPAD, 2 {
 /* Signal Offset */
 /* ------ ------ */
 CC_ON, 0;
 CC_OFF, 1;
 CC_RES, 2;
 CC_SET, 3;
 CC_CST, 4;
 /*<reserved> 5; */
 /*<reserved> 6; */
 KEY_STATE_CHG, 7;

 RADIO_VOL_UP, 8;
 RADIO_VOL_DOWN, 9;
 RADIO_SOURCE, 10;
 RADIO_MEM, 11;
 HVAC_FAN_UP, 12;
 HVAC_FAN_DOWN, 13;
 HVAC_TEMP_UP, 14;
 HVAC_TEMP_DOWN, 15;

}

INT_LIGHT_CMD: 0x0C, MSTR_CNTL, 1 {
 /* Signal Offset */
 /* ------ ------ */
 BRIGHT_LVL, 0;
 LIGHT_ON, 7;

}
}

/*___Signal Definitions___*/

Event_triggered_frames{//new (1.2)
//EventFrame: ID, name[, name];
}

/*___Signal Definitions___*/

Diagnostic_frames{//new (1.2)
MasterReq: 60{ //pub: Master

MasterReqB0, 0;//command:0=sleep
MasterReqB1, 8;
MasterReqB2, 16;
MasterReqB3, 24;
MasterReqB4, 32;
MasterReqB5, 40;
MasterReqB6, 48;
MasterReqB7, 56;
}

SlaveResp: 61{ //pub: any slave
SlaveRespB0, 0;
SlaveRespB1, 8;
SlaveRespB2, 16;
SlaveRespB3, 24;
SlaveRespB4, 32;
SlaveRespB5, 40;
SlaveRespB6, 48;

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

54 Freescale Semiconductor

SlaveRespB7, 56;
}

}
/*___Signal Definitions___*/

Signal_groups {
//GroupName: Size {
// SignalName, offset;
// }
}

/*___Signal Definitions___*/

Schedule_tables {

FAST_POLL {
 LIN_Stat delay 20.00 ms; // 10ms for 9600 bps

 }
CHECK_SWITCHES {

 KEY_STATUS delay 21.00 ms; // 11ms for 9600 bps
 }
LIGHTS_ONLY {

 INT_LIGHT_CMD delay 15.00 ms; // 11ms for 9600 bps
 }
CHECK_SWITCHES_AND_LIGHT {

 KEY_STATUS delay 15.00 ms; // 11ms for 9600 bps
 INT_LIGHT_CMD delay 15.00 ms; // 11ms for 9600 bps

 }

}
/*___Signal Definitions___*/

Signal_encoding_types {
//Name {
// logical_value, signal value, "textinfo"
// physical_value, min value, max value, offset, scale, "textinfo"
// bcd_value ;
// ASCII_value ;
// }

APP_STATE_CHG_field {
logical_value, 0, "No Error";
logical_value, 1, "Key was pressed";
logical_value, 2, "RESERVED";
logical_value, 3, "RESERVED";

 }

LIN_Error_Field {
logical_value, 0, "No Error";
logical_value, 1, "Reset";
logical_value, 2, "RESERVED";
logical_value, 3, "RESERVED";

logical_value, 4, "Bit-Error";
logical_value, 5, "Checksum-Err";
logical_value, 6, "Byte Framing Error";

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 55

logical_value, 7, "ID-Parity-Error";
 }

 Switch_Pos {
 logical_value, 0, "OPEN";
 logical_value, 1, "PRESSED";
 }

Switch_Stat_Hist {
logical_value, 0, "No change";
logical_value, 1, "Key was pressed";

 }

Light_Level {
physical_value, 0, 16, 6.65, 0, " %";

 }

 Light_Status {
 logical_value, 0, "OFF";
 logical_value, 1, "ON";
 }

}
/*___Signal Definitions___*/

Signal_representation {
//EncName: SignalName [, SignalName];

 APP_STATE_CHG_field: APP_STATE_CHG;
LIN_Error_Field: ERR_FIELD;

 Switch_Pos: CC_ON, CC_OFF, CC_RES, CC_SET, CC_CST,
 RADIO_VOL_UP, RADIO_VOL_DOWN, RADIO_SOURCE, RADIO_MEM,
 HVAC_FAN_UP, HVAC_FAN_DOWN, HVAC_TEMP_UP, HVAC_TEMP_DOWN;

Switch_Stat_Hist: KEY_STATE_CHG;

Light_Level: BRIGHT_LVL;
Light_Status: LIGHT_ON;
}

/*___Signal Definitions___*/

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

56 Freescale Semiconductor

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 57

Appendix B. LED_Sweep.LEC

// This is a LIN emulator control file
// Created by LINspector on 1-20-2004

LIN_emulation_control_file;
LIN_protocol_version = 1.2;
LIN_language_version = 1.2;
LIN_description_file = \\mecd-ra5782-l1\d$\Data\MUX_Information\LIN\Reference Design
Activities\QY LIN Slave - Davor Bogavac\Messaging
Strategy\LIN_QY_Backlight_keypad_messaging_strategy_0_1.ldf ;

Emulated_nodes
{
MSTR_CNTL;
}

Control_program
{
// Defines:
// #define

// Variables:
// uint16
uint16 count;
uint16 i;

// Initializations:

// Main cycle:
while(1)

{
for(count= 0; count<16; count++)

{
BRIGHT_LVL = count;
while(!test_flag(INT_LIGHT_CMD.RECEIVED))

{
 }//On INT_LIGHT_CMD.RECEIVED

clear_flag(INT_LIGHT_CMD.RECEIVED);
 // Wait for complete, then roll to next cnt

// for(i=0;i<35;i++){;;}
}

for(count= 14; count>0; count--)
{

 BRIGHT_LVL = count;
while(!test_flag(INT_LIGHT_CMD.RECEIVED))

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

58 Freescale Semiconductor

{
 }//On INT_LIGHT_CMD.RECEIVED

clear_flag(INT_LIGHT_CMD.RECEIVED);
 // Wait for complete, then roll to next cnt

// for(i=0;i<35;i++){;;}
}

} // while(1)

} // Control program

MC68HC908QY4 LIN Backlit Keypad Slave Designer Reference Manual, Rev. 1

Freescale Semiconductor 59

Appendix C. Schematic and BOM

Bill of Materials (BOM)

Designators Qty Description Vendor Part Number

C1 1 0.1 uF Capicator (0603) Digi-Key PCC2277CT-ND
C2 1 33 uF Capicator 25V (7343) Digi-Key P11298CT-ND
C3,C4,C5,C6,C8,C9 6 1 nF Capicator (0603) Digi-Key PCC2151CT-ND

C7 1 220 pF Capicator (0603) Digi-Key PCC221ACVCT-ND
D1 1 MIF60 Diode (SOT23) Digi-Key ZHCS1006CT-ND
D2,D3,D4,D5,D6 5 Red LED Digi-Key 67-1371-1-ND
CONN1 1 1X4 .1oc Header See Note 1 and Note 2 Digi-Key S2011-36-ND
J2 1 Mon08 Connector 2x4 .1oc Header Digi-Key WM18203-ND
LIN_CON 1 1X3 .1oc Header See Note 1 and Note 2 Digi-Key See CONN1
R1,R2,R3,R4,R5 5 1k Ohm 5% Resistor (0603) Digi-Key 311-1.0KGCT-ND
R6 1 4.7 Ohm Resistor (0603) Digi-Key 311-4.7GCT-ND
R7,R8 2 2.32K Ohm Resistor (0603) Digi-Key P2.32KHCT-ND
R9 1 47K Ohm 5%Resistor (0603) Digi-Key 311-47KGCT-ND
R10,R11 2 2K ohm 1% Resistor (0805) Digi-Key P2.00KCCT-ND
R12 1 0.0 Ohm 5% Resistor Digi-Key 311-0.0GCT-ND
U1 1 HC908QY4 - Nitron Digi-Key MC68HLC908QY4MDT

U2 1 MC33689 - LIN System Basis Chip Digi-Key PC33689DW
U3 1 SM6T27CA (DO214) Mouser Electronics 511-SM6T24CA
ASB525 LIN Keyboard bare PC board 1 Bare PC board DS Electronics ASB525

Note 1: Shipped in strips of 36x2. Cut to length.
Note 2: Constructed from a 2x4 connector with one pin removed

WIRE HARNESS COMPONENTS

RIGHT-Harness-Conn 1
C-Grid SL .100 Pocket Header
Mating Connector Housing "G" Version, 1x4 Digi-Key WM2902-ND

4 Crimp Terminals - Digi-Key

LEFT-Harness-Conn 1
C-Grid Crimp Connector Housing
Mating Connector Housing "A" Version, 2x4 Digi-Key WM2521-ND

7 Crimp Terminals - Digi-Key

CLOCKSPRING-Harness-Conn 1
C-Grid SL .100 Pocket Header
Mating Connector Housing "G" Version, 1x3 Digi-Key WM2901-ND

3 Crimp Terminals - Digi-Key WM2512-ND

CLOCKSPRING-Conn 1
C-Grid SL .100 Pocket Header
Straight Header Digi-Key WM4801-ND

ALTERNATE LIN MASTER Connector
(Motorola LIN Tools Connector) 1

CONN RECEPT 4POS VERT DUAL
Digi-Key WM3701-ND

1 CONN TERM FEMALE 18-24AWG TIN Digi-Key WM2501-ND

Debugging Harness 1 Crimp Housing Digi-Key WM18032-ND
8 Crimp Terminal Digi-Key WM18056-ND

2003 Ford Expedition Keypad
 (Eddie Bauer Edition)

1 NL SW AS Ford Motor Company 1L2Z 9C888 BA

Schematic

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

L1

L2

VBAT

VDD

L2

VDD

L1

VBAT

HS1

HS1

VDD

VDD

Title

Size Document Number Rev

Date: Sheet of

ASB565 1.2

HC908QY4 LIN Sterring Wheel Slave Keypad

B

1 1Friday, January 16, 2004

VBAT

GND

LIN

HVAC Switch Voltage
GND

TSSOP

TSSOP

25V Radio Switch Voltage

LED Backlight

SW1 CST

R5

1k

D1

ZHCS1006

3 1

D6

LED

SW4

OFF

U1
MCHC908QY4

PTA5 8

PTA4 9

PTB3 14

G
N

D
4

V
D

D
5

PTB12

PTB03

PTB76

PTB67

TCH01

TCH116

PTB215

RST12

PTB4 11

PTA2 13

PTB5 10

R6

4.7

C6

1nF

R4

1k

U2
MC33689

VS113

VS210

NC1

NC3

NC12

NC14

HS35

HS26

HS17

OUT18

LIN11

V
D

D
1
5

E- 19

E+ 20

GND 16
GND 25
GND 24
GND 9
GND 8

L2 4

L1 2

INT 30

Conf 21

RESET 22

Tx 32

Rx 31

PWMin 23

SCE 29

SCK 26

MOSI 27

MISO 28

Vcc 17

SW5

ON

D5

LED

R1

1k

+ C2
33 uF

R9
47k

C3

1nF

SW3 RES

R10

2k

R3

1k

SW2
SET

LIN_CON

3-PIN_LIN_POWER

1 1

2 2

3 3

D2
LED

R2

1k

R7

2.3k

U3

SM6T27CA

C9

1nF

C4

1nF

D4
LED

C7

220pF

C1

0.1

D3
LED

J2

MON08

11 2 2

33 4 4

55 6 6

77 8 8

C8

1nF

R8

2.3k

C5

1nF

CONN1

1X4 CONNECTOR

PIN11

PIN33

PIN44

PIN22

R12

0

R11

2k

DRM058
Rev. 1, 7/2004

How to Reach Us:

USA/Europe/Locations not listed:
Freescale Semiconductor Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

Japan:
Freescale Semiconductor Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu
Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

Asia/Pacific:
Freescale Semiconductor H.K. Ltd.
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
852-26668334

Learn More:
For more information about Freescale
Semiconductor products, please visit
http://www.freescale.com

Information in this document is provided solely to enable system and software implementers to use

Freescale Semiconductor products. There are no express or implied copyright licenses granted

hereunder to design or fabricate any integrated circuits or integrated circuits based on the information

in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products

herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any

liability arising out of the application or use of any product or circuit, and specifically disclaims any

and all liability, including without limitation consequential or incidental damages. “Typical” parameters

which may be provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating parameters,

including “Typicals” must be validated for each customer application by customer’s technical experts.

Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.

Freescale Semiconductor products are not designed, intended, or authorized for use as components

in systems intended for surgical implant into the body, or other applications intended to support or

sustain life, or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer purchase or use

Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall

indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and

distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney

fees arising out of, directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was

negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004.

