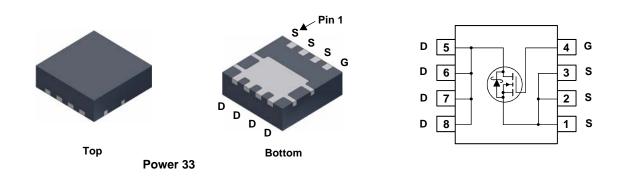
FAIRCHILD

SEMICONDUCTOR

December 2009

FDMC7660S N-Channel Power Trench[®] SyncFET[™] **30 V, 20 A, 2.2 m**Ω

Features


- Max $r_{DS(on)} = 2.2 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 20 \text{ A}$
- Max $r_{DS(on)}$ = 2.95 m Ω at V_{GS} = 4.5 V, I_D = 18 A
- High performance technology for extremely low r_{DS(on)}
- Termination is Lead-free and RoHS Compliant

General Description

The FDMC7660S has been designed to minimize losses in power conversion applications. Advancements in both silicon and package technologies have been combined to offer the lowest $r_{\mathsf{DS}(\mathsf{on})}$ while maintaining excellent switching performance. This device has the added benefit of an efficient monolithic Schottky body diode.

Applications

- Synchronous Rectifier for DC/DC Converters
- Notebook Vcore/GPU low side switch
- Networking Point of Load low side switch
- Telecom secondary side rectification

MOSFET Maximum Ratings $T_A = 25 \degree C$ unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Voltage		(Note 4)	±20	V	
	Drain Current -Continuous (Package limited)	T _C = 25 °C		40		
	-Continuous (Silicon limited) $T_C = 25 \text{ °C}$			100	•	
D	-Continuous	T _A = 25 °C	(Note 1a)	20	Α	
	-Pulsed		200			
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	128	mJ	
P _D	Power Dissipation			41	w	
	Power Dissipation (N		(Note 1a)	2.3	vv	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

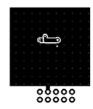
Thermal Characteristics

R_{\thetaJC}	Thermal Resistance, Junction to Case		3	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	53	C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC7660S	FDMC7660S	Power 33	13 "	12 mm	3000 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 1 mA, V _{GS} = 0 V	30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 1 \text{ mA}$, referenced to 25 °C		13		mV/°C
IDSS	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			500	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			100	nA
	octeristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$	1.2	1.6	2.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 1$ mA, referenced to 25 °C		-3		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 20 A		1.7	2.2	
		V _{GS} = 4.5 V, I _D = 18 A		2.5	2.95	mΩ
		V _{GS} = 10 V, I _D = 20 A, T _J = 125 °C		2.2	3.1	1
9 _{FS}	Forward Transconductance	$V_{DD} = 5 \text{ V}, \ \text{I}_{D} = 20 \text{ A}$		129		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	V 45.V.V 6.V		3250	4325	pF
C _{oss}	Output Capacitance	─ V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz		1260	1680	pF
C _{rss}	Reverse Transfer Capacitance			105	160	pF
Rg	Gate Resistance			0.8		Ω
Switching	g Characteristics					
t _{d(on)}	Turn-On Delay Time			14	25	ns
t _r	Rise Time	V _{DD} = 15 V, I _D = 20 A,		5	10	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		34	54	ns
t _f	Fall Time			3.9	10	ns
Q _{g(TOT)}	Total Gate Charge	V _{GS} = 0 V to 10 V		47	66	nC
	Total Gate Charge	$V_{GS} = 0 V \text{ to } 4.5 V V_{DD} = 15 V$		21	29	nC
Q _{gs}	Total Gate Charge	$I_D = 20 \text{ A}$		9.5		nC
Q _{gd}	Gate to Drain "Miller" Charge	1		5		nC
Drain-So	urce Diode Characteristics					
Drain-So	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 20 A$ (Note 2)		0.8	1.2	V


Q_{rr} NOTES:

t_{rr}

1. R_{0LA} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0LC} is guaranteed by design while R_{0CA} is determined by the user's board design.

 $I_F = 20 \text{ A}, \text{ di/dt} = 300 \text{ A/}\mu\text{s}$

00000

2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0 %.

3. Starting $T_J = 25^{\circ}C$; N-ch: L = 1 mH, $I_{AS} = 16$ A, $V_{DD} = 27$ V, $V_{GS} = 10$ V.

Reverse Recovery Time

Reverse Recovery Charge

a. 53°C/W when mounted on a 1 in² pad of 2 oz copper

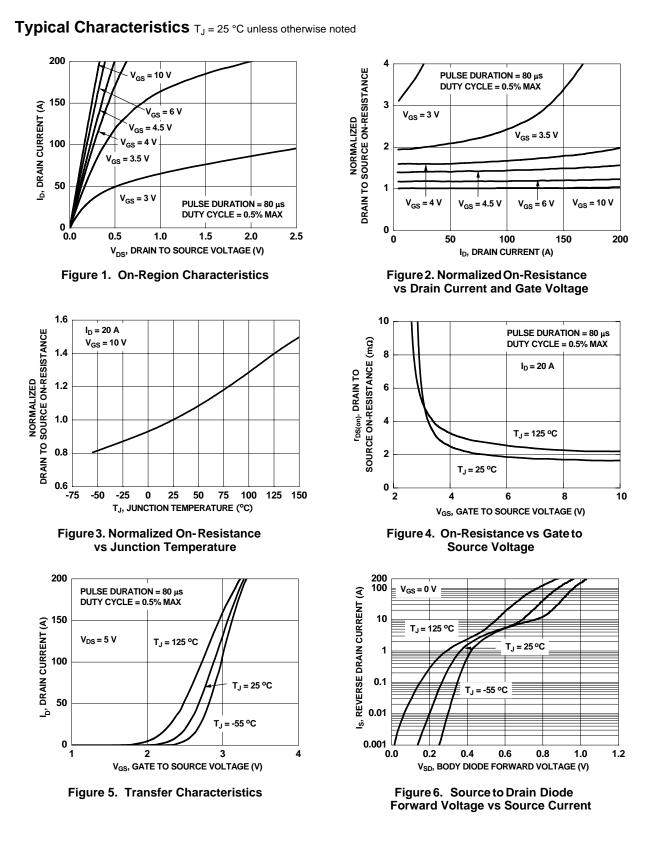
4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse ocurrence only. No continuous rating is implied.

minimum pad of 2 oz copper

b. 125°C/W when mounted on a

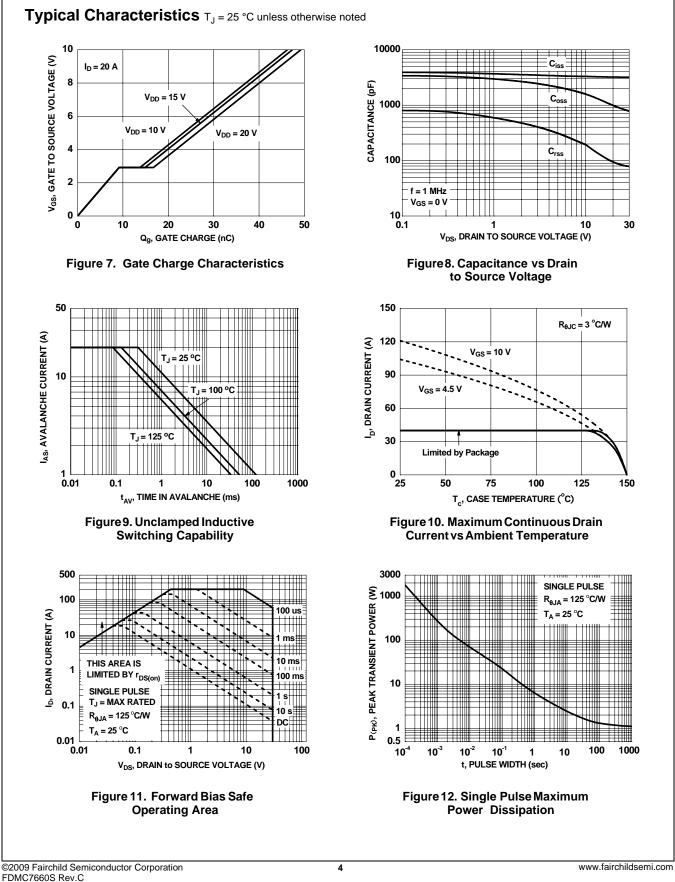
31

39

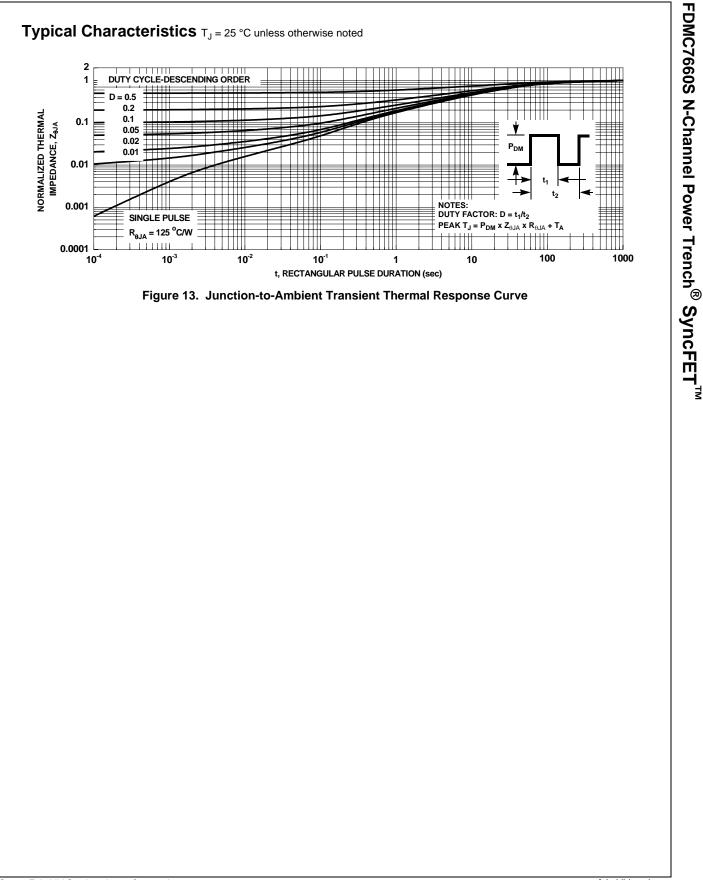

50

62

ns


nC

FDMC7660S N-Channel Power Trench[®] SyncFET[™]



©2009 Fairchild Semiconductor Corporation FDMC7660S Rev.C

www.fairchildsemi.com

FDMC7660S N-Channel Power Trench[®] SyncFET[™]

5

FDMC7660S N-Channel Power Trench[®] SyncFET[™]

Typical Characteristics (continued)

SyncFET Schottky body diode Characteristics

Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 27 shows the reverse recovery characteristic of the FDMC7660S.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

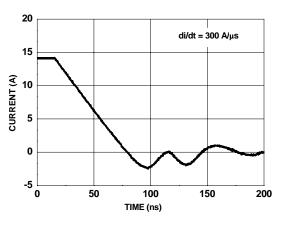


Figure 14. FDMC7660S SyncFET body diode reverse recovery characteristic

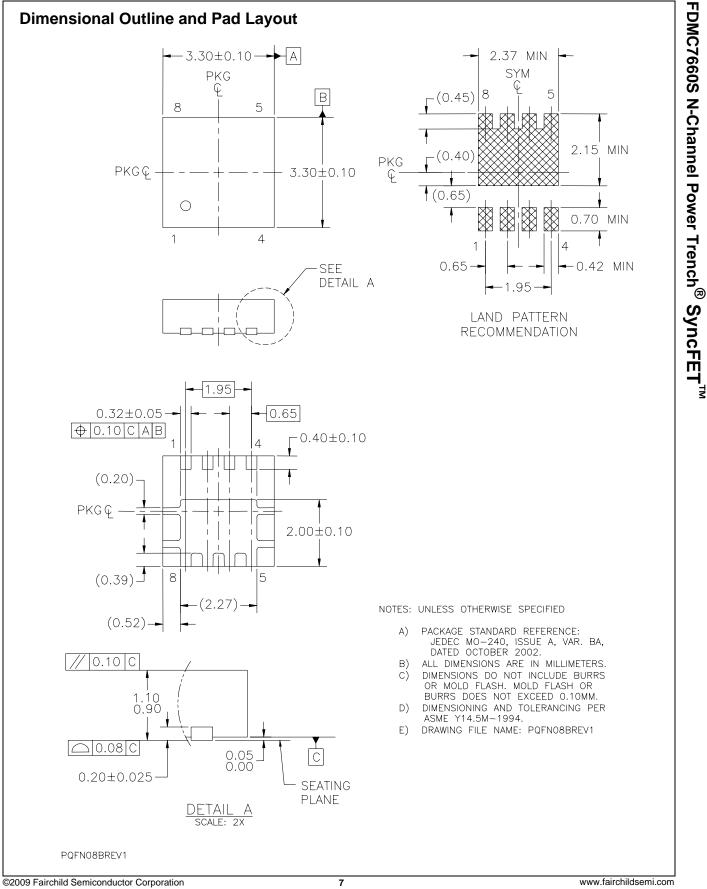
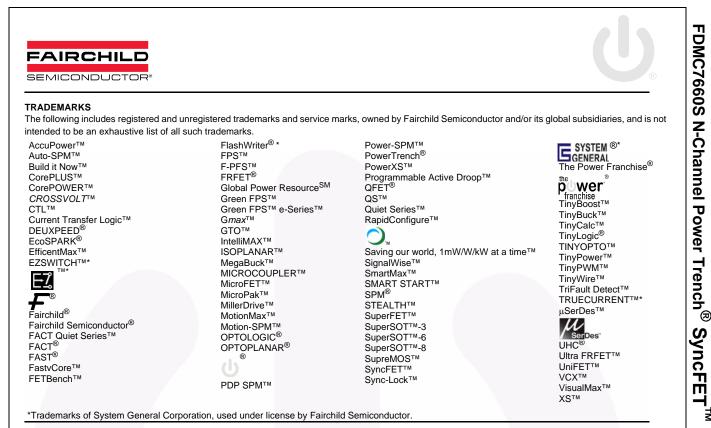




Figure 15. SyncFET body diode reverse leakage versus drain-source voltage

FDMC7660S Rev.C

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Product Status	Definition
Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
	Formative / In Design First Production Full Production