16-bit Proprietary Microcontroller

CMOS

F^{2} MC-16F MB90230 Series

MB90233/234/P234/W234

DESCRIPTION

The MB90230 series is a member of general-purpose, 16 -bit microcontrollers designed for those applications which require high-speed realtimeprocessing, proving to be suitable for various industrial machines, camera and video devices, OA equipment, and for process control. The CPU used in this series is the $\mathrm{F}^{2} \mathrm{MC}^{*}-16 \mathrm{~F}$. The instruction set for the $\mathrm{F}^{2} \mathrm{MC}$-16F CPU core is designed to be optimized for controller applications while inheriting the AT architecture of the $\mathrm{F}^{2} \mathrm{MC}-16 / 16 \mathrm{H}$ series, allowing a wide range of control tasks to be processed efficiently at high speed.
The peripheral resources integrated in the MB90230 series include: the UART (clock asynchronous/synchronous transfer) $\times 1$ channel, the extended serial I/O interface $\times 1$ channel, the A/D converter ($8 / 10$-bit precision) $\times 8$ channels, the D/A converter (8 -bit precision) $\times 2$ channels, the level comparator $\times 1$ channel, the external interrupt input $\times 4$ lines, the 8 -bit PPG timer (PWM/single-shot function) $\times 1$ channel, the 8 -bit PWM controller $\times 6$ channels, the 16 -bit free run timer $\times 1$ channel, the input capture unit $\times 4$ channels, the output compare unit $\times 6$ channels, and the serial E^{2} PROM interface.
*: F2MC stands for FUJITSU Flexible Microcontroller.

FEATURES

F^{2} MC-16F CPU block

- Minimum execution time: 62.5 ns (at machine clock frequency of 16 MHz)
- Instruction set optimized for controllers

Various data types supported (bit, byte, word, and long-word)
Extended addressing modes: 23 types
High coding efficiency
Higher-precision operation enhanced by a 32-bit accumulator
Signed multiplication and division instructions
(Continued)

PACKAGE

100-pin Plastic LQFP
(FPT-100P-M05)
(FPT-100C-C01)

MB90230 Series

(Continued)

- Enhanced instructions applicable to high-level language (C) and multitasking

System stack pointer
Enhanced pointer-indirect instructions
Barrel shift instructions

- Increased execution speed: 8-byte instruction queue
- 8-level, 32-factor powerful interrupt service functions
- Automatic transfer function independent of the CPU (EI2OS)
- General-purpose ports: Up to 84 lines

Ports with input pull-up resistor available: 24 lines
Ports with output open-drain available: 9 lines

Peripheral blocks

- ROM:48 Kbytes (MB90233)

96 Kbytes (MB90234)
EPROM: 96 Kbytes (MB90W234)
One-time PROM: 96 Kbytes (MB90P234)

- RAM: 2 Kbytes (MB90233)

3 Kbytes (MB90234/W234/P234)

- PWM control circuit: (simple 8 bits): 6 channels
- Serial interface

UART: 1 channel
Extended serial I/O interface
Switchable I/O port: 1 channel
Communication prescaler (Source clock generator for the UART, serial I/O interface, CKOT, and level comparator): 1 channel

- Serial E2PROM interface: 1 channel
- A/D converter with $8 / 10$-bit resolution: input 8 channels
- Level comparator: 1 channel 4-bit D/A converter integrated
- D/A converter with 8 -bit resolution: 2 channels 8 -bit PPG timer: 1 channel
- Input/output timer 16-bit free run timer: 1 channel 16-bit output compare unit: 6 channels 16-bit input capture unit: 4 channels
- 18-bit timebase timer
- Watchdog timer function
- Standby modes

Sleep mode
Stop mode

PRODUCT LINEUP

Part number Parameter	MB90233	NB90234	MB90P234	MB90W234	MB90V230
Classification	Mask ROM products		One-time PROM model	EPROM model	Evaluation model
ROM size	48 Kbytes	96 Kbytes	96 Kbytes	96 Kbytes	-
RAM size	2 Kbytes	3 Kbytes	3 Kbytes	3 Kbytes	4 Kbytes
CPU functions	Number of instructions: 420 Instruction bit length: 8 or 16 bits Instruction length: 1 to 7 bytes Data bit length: $1,4,8,16$, or 32 bits Minimum execution time: 62.5 ns at 16 MHz (internal)				
Ports	Up to 84 lines I/O ports (CMOS): 51 I/O ports (CMOS) with pull-up resistor available: 24 I/O ports (open-drain): 9				
UART	Number of channels: 1 (switchable I/O) Clock synchronous communication (2404 to 38460 bps, full-duplex double buffering) Clock asynchronous communication (500K to 5M bps, full-duplex double buffering)				
Serial interface	Number of channels: 1 Internal or external clock mode Clock synchronous transfer (62.5 kHz to 1 MHz , "LSB first" or "MSB first" transfer)				
A/D converter	Resolution: 10 or 8 bits, Number of input lines: 4 Single conversion mode (conversion for a specified input channel) Scan conversion mode (continuous conversion for specified consecutive channels) Continuous conversion mode (repeated conversion for a specified channel) Stop conversion mode (periodical conversion)				
D/A converter	Resolution: 8 bits, Number of output pins: 2				
Level comparator	Comparison to internal D/A converter (4-bit resolution)				
PWM	Number of channels: 68 -bit PWM control circuit (operation of $1 \times \phi, 2 \times \phi, 16 \times \phi, 32 \times \phi$)				
PPG timer	Number of channels: 1 channel with 8 -bit resolution PWM function: Continuous output of pulse synchronous to trigger Single-shot function: Output of single pulse by trigger				
Serial E2PROM interface	Number of channels: 1 Instruction code (NS type) Variable address length: 8 to 11 bits (with address increment function) Variable data length: 8 or 16 bits				
Timer	Number of channels: 6 16-bit reload timer operation (operation clock cycle of $0.25 \mu \mathrm{~s}$ to 1.05 s)				
Free run timer	Number of channels: 1 16-bit input capture unit: 4 channels 16-bit output compare unit: 6 channels				
External interrupt input	Number of input pins: 4				
Standby mode	Stop mode and sleep mode				
Package	FPT-100P-M05			FPT-100C-C01	PGA256-A02

MB90230 Series

PIN ASSIGNMENT

(TOP VIEW)

(FPT-100P-M05)
(FPT-100C-C01)

PIN DESCRIPTION

Pin no.	Pin name	Circuit type	Function
80	X0	A	Oscillator pins
81	X1		
82	Vcc	-	Power supply pin
83 to 90	P00 to P07	G	General-purpose I/O port An input pull-up resistor can be added to the port by setting the pull-up resistor setting register. These pins serve as D00 to D07 pins in bus modes other than the single-chip mode.
	D00 to D07		I/O pins for the lower eight bits of the external data bus. These pins are enabled in an external-bus enabled mode.
91 to 98	P10 to P17	G	General-purpose I/O port An input pull-up resistor can be added to the port by setting the pull-up resistor setting register. These pins are enabled in the single-chip mode with the external-bus enabled and the 8 -bit data bus specified.
	D08 to D15		I/O pins for the upper eight bits of the external data bus These pins are enabled in an external-bus enabled mode with the 16bit data bus specified.
$\begin{gathered} 99,100 \\ 1 \text { to } 6 \end{gathered}$	P20 to P27	G	General-purpose I/O port An input pull-up resistor can be added to the port by setting the pull-up resistor setting register. These pins are enabled in the single-chip mode.
	A00 to A07		I/O pins for the lower eight bits of the external data bus These pins are enabled in an external-bus enabled mode.
7, 8	P30, P31	E	General-purpose I/O port This port is enabled in the single-chip mode or when the middle address control register setting is "port."
	A08, A09		I/O pins for the middle eight bits of the external data bus These pins are enabled in an external-bus enabled mode when the middle address control register setting is "address."
9	Vss	-	Power supply pin
10 to 15	P32 to P37	E	General-purpose I/O port This port is enabled in the single-chip mode or when the middle address control register setting is "port."
	A10 to A15		I/O pins for the middle eight bits of the external data bus These pins are enabled in an external-bus enabled mode when the middle address control register setting is "address."

(Continued)

MB90230 Series

Pin no .	Pin name	Circuit type	Function
16	P40	E	General-purpose I/O port This port is enabled in the single-chip mode or when the upper address control register setting is "port."
	A16		Output pin for external address A16 This pin is enabled in the external-bus enabled mode with the upper address control register set to "address."
	PWM0		This pin serves as the output pin for 8-bit PWM0 The pin is enabled for output by the control status register.
17	P41	E	General-purpose I/O port This port is enabled in the single-chip mode or when the upper address control register setting is "port."
	A17		Output pin for external address A17 This pin is enabled in the external-bus enabled mode with the upper address control register set to "address."
	PWM1		This pin serves as the output pin for 8-bit PWM1. The pin is enabled for output by the control status register.
18	P42	E	General-purpose I/O port This port is enabled in the single-chip mode or when the upper address control register setting is "port."
	A18		Output pin for external address A18 This pin is enabled in the external-bus enabled mode with the upper address control register set to "address."
	PWM2		This pin serves as the output pin for 8-bit PWM2. This pin is enabled for output by the control status register.
19	P43	E	General-purpose I/O port This port is enabled in the single-chip mode or when the upper address control register setting is "port."
	A19		Output pin for external address A19 This pin is enabled in the external-bus enabled mode with the upper address control register set to "address."
	PWM3		This pin serves as the output pin for 8-bit PWM3. This pin is enabled for output by the control status register.
20	P44	E	General-purpose I/O port This port is enabled in the single-chip mode or when the upper address control register setting is "port."
	A20		Output pin for external address A20 This pin is enabled in the external-bus enabled mode with the upper address control register set to "address."
	PWM4		This pin serves as the output pin for 8-bit PWM4. The pin is enabled for output by the control status register.
21	V cc	-	Power supply pin

(Continued)

Pin no.	Pin name	Circuit type	Function
22	P45	E	General-purpose I/O port This port is enabled in the single-chip mode or when the upper address control register setting is "port."
	A21		Output pin for external address A21 This pin is enabled in the external-bus enabled mode with the upper address control register set to "address."
	PWM5		This pin serves as the output pin for 8-bit PWM5. The pin is enabled for output by the control status register.
23	P46	L*1	General-purpose I/O port This port is enabled in the single-chip mode or when the upper address control register setting is "port."
	A22		Output pin for external address A22 This pin is enabled in the external-bus enabled mode with the upper address control register set to "address."
	TRG		This pin serves as the external trigger pin for the 8-bit PPG timer The pin is enabled for triggering by the control status register.
24	P47	E	General-purpose I/O port This port is enabled in the single-chip mode or when the upper address control register setting is "port."
	A23		Output pin for external address A23 This pin is enabled in the external-bus enabled mode with the upper address control register set to "address."
	PPG		This pin serves as the output pin for the 8-bit PPG timer. The pin is enabled for output by the control status register.
25	P70	L*1	General-purpose I/O port
	$\overline{\text { ATG }}$		External trigger input pin for the A/D converter This pin functions when enabled by the control status register.
26	P71	F	General-purpose I/O port
	EDI		Data input pin for the serial EEPROM interface This pin functions when enabled by the control status register.
27	P72	E	General-purpose I/O port
	EDO		Data output pin for the serial EEPROM interface This pin functions when enabled by the control status register.
28	P73	E	General-purpose I/O port
	ESK		Clock output pin for the serial EEPROM interface This pin functions when enabled by the control status register.
29	P74	E	General-purpose I/O port
	ECS		Chip select signal output pin for the serial EEPROM interface This pin functions when enabled by the control status register.

(Continued)

MB90230 Series

Pin no.	Pin name	Circuit type	Function
30, 31	P75, P76	K	General-purpose I/O port
	$\begin{aligned} & \hline \text { DA0 } \\ & \text { DA1 } \end{aligned}$		This pin serves as the D/A converter output pin. The pin functions when enabled by the control status register.
32	AV ${ }_{\text {cc }}$	-	A/D converter power supply pin
33	$\mathrm{AV}_{\text {RH }}$	-	"H" reference power supply pin for the A/D converter
34	AV ${ }_{\text {RL }}$	-	"L" reference power supply pin for the A/D converter
35	AVss	-	A/D converter power pin (GND)
36 to 39	P60 to P63	J	General-purpose I/O port This port is enabled when the analog input enable register setting is "port."
	AN0 to AN3		A/D converter analog input pins These pins are enabled when the analog input enable register setting is "analog input."
40	Vss	-	Power pin (GND)
41 to 43	P64 to P66	J	General-purpose I/O port This port is enabled when the analog input enable register setting is "port."
	AN4 to AN6		A/D converter analog input pins These pins are enabled when the analog input enable register setting is "analog input."
44	P67	J	General-purpose I/O port This port is enabled when the analog input enable register setting is "port."
	AN7		A/D converter analog input pin This pin is enabled when the analog input enable register setting is "analog input."
	CMP		Comparator input pin
45	P80	L*2	General-purpose I/O port This port is always enabled.
	INTO		External interrupt request input 0 Since this pin serves for interrupt request as required when external interrupt is enabled, other outputs must be off unless used intentionally.
46	P81	L*2	General-purpose I/O port This port is always enabled.
	INT1		External interrupt request input 1 Since this pin serves for interrupt request as required when external interrupt is enabled, other outputs must be off unless used intentionally.
47	MDO	C	Mode pin This pin must be fixed to V_{cc} or $\mathrm{V}_{\text {ss }}$.
48	MD1	C	Mode pin This pin must be fixed to V_{cc} or V_{ss}.

(Continued)

Pin no.	Pin name	Circuit type	Function
49	MD2	C	Mode pin This pin must be fixed to $V_{\text {ss. }}$
50	$\overline{\text { HST }}$	D	Hardware standby input pin
51, 52	P82, P83	L*2	General-purpose I/O port
	OUTO, OUT1		Output compare output pins These pins function when enabled by the control status register.
	INT2, INT3		External interrupt request inputs 2 and 3. Since these pins serve for interrupt request as required when external interrupt is enabled, other outputs must be off unless used intentionally.
53 to 56	P84 to P87	E	General-purpose I/O port This pin is always enabled.
	OUT2 to OUT5		Output compare output pins These pins function when enabled by the control status register.
57 to 59	P90 to P92	L*	General-purpose I/O port This port is always enabled.
	INO to IN2		Input capture edge input pins These pins function when enabled by the control status register.
60	P93	L*	General-purpose I/O port This port is always enabled.
	IN3		Input capture edge input pin This pin functions when enabled by the control status register.
	CKOT		Prescaler output pin This pin functions when enabled by the control status register.
61	P94	I	General-purpose I/O port This port is always enabled. The port serves as an open-drain output depending on the open-drain setting register.
	SINO		Serial data input pin for the UART This pin functions when enabled by the control status register.
62	P95	H	General-purpose I/O port This port is always enabled. The port serves as an open-drain output depending on the open-drain setting register.
	SOTO		Serial data output pin for the UART This pin functions when enabled by the control status register.
63	P96	1	General-purpose I/O port This port is always enabled. The port serves as an open-drain output depending on the open-drain setting register.
	SCKO		UART clock output pin This pin functions when enabled by the control status register.

(Continued)

MB90230 Series

Pin no.	Pin name	Circuit type	Function
64	PA0	1	General-purpose I/O port This port is always enabled. The port serves as an open-drain output depending on the open-drain setting register.
	SIN1		Serial data input pin for the extended serial I/O interface This pin functions when enabled by the control status register and by the serial port switching register.
65	PA1	H	General-purpose I/O port This port is always enabled. The port serves as an open-drain output depending on the open-drain setting register.
	SOT1		Serial data output pin for the extended serial I/O interface This pin functions when enabled by the control status register and by the serial port switching register.
66	PA2	1	General-purpose I/O port This port is always enabled. The port serves as an open-drain output depending on the open-drain setting register.
	SCK1		Clock output pin for the extended serial I/O interface This pin functions when enabled by the control status register and by the serial port switching register.
67	PA3	1	General-purpose I/O port This port is always enabled. The port serves as an open-drain output depending on the open-drain setting register.
	SIN2		Serial data input pin for the extended serial I/O interface This pin functions when enabled by the control status register and by the serial port switching register.
68	PA4	H	General-purpose I/O port This port is always enabled. The port serves as an open-drain output depending on the open-drain setting register.
	SOT2		Serial data output pin for the extended serial I/O interface This pin functions when enabled by the control status register and by the serial port switching register.
69	PA5	I	General-purpose I/O port This port is always enabled. The port serves as an open-drain output depending on the open-drain setting register.
	SCK2		Clock output pin for the extended serial I/O interface This pin functions when enabled by the control status register and by the serial port switching register. The pin is a general-purpose I/O port.

(Continued)
(Continued)

Pin no.	Pin name	$\begin{gathered} \text { Circuit } \\ \text { type } \end{gathered}$	Function
70	P50	H	This pin is enabled in the single-chip mode and when the CLK output is disabled.
	CLK		CLK output pin This pin is enabled in an external-bus enabled mode with the CLK output enabled.
71	P51	F	General-purpose I/O port This port is enabled in the single-chip mode.
	RDY		Ready signal input pin This pin is enabled in an external-bus enabled mode.
72	P52	E	General-purpose I/O port This port is enabled in the single-chip mode or when the hold function is disabled.
	$\overline{\text { HAK }}$		Hold acknowledge signal output pin This pin is enabled in the single-chip mode or when the hold function is enabled.
73	P53	E	General-purpose I/O port This port is enabled in the single-chip mode or when the hold function is disabled.
	HRQ		Hold acknowledge signal output pin This pin is enabled in the single-chip mode or when the hold function is enabled.
74	P54	E	General-purpose I/O port This port is enabled in the single-chip mode, in external-bus 8-bit mode, or when the WR pin output is disabled.
	$\overline{\text { WRH }}$		Write strobe output pin for the upper eight bits of the data bus This pin is enabled in an external-bus enabled mode and in external bus 16 -bit mode with the WR pin output enabled.
75	$\overline{\text { RST }}$	B	Reset signal input pin
76	P55	E	This port is enabled in the single-chip mode, in external-bus 8 -bit mode, or when the WR pin output is disabled
	$\overline{\text { WRL }}$		Write strobe output pin for the lower eight bits of the data bus This pin is enabled in an external-bus enabled mode and in external bus 16 -bit mode with the WR pin output enabled. The pin is a general-purpose I/O port.
77	P56	E	This pin is enabled in the single-chip mode.
	$\overline{\mathrm{RD}}$		Read strobe output pin for the data bus This pin is enabled in an external-bus enabled mode.
78	P57	E	General-purpose I/O port
79	Vss	-	Power pin (GND)

*1: Enabled in any standby mode
*2: Enabled only in the hardware standby mode

MB90230 Series

I/O CIRCUIT TYPE

| Type | Remarks | |
| :---: | :---: | :---: | :---: |
| A | | • Oscillation feedback resistor: |
| Approx. $1 \mathrm{M} \Omega$ | | |

(Continued)

MB90230 Series

Type	Circuit	Remarks
F		- CMOS level output - Hysteresis input
G		- Input pull-up resistor control provided - CMOS level input/output
H		- CMOS level input/output - Open-drain control provided

(Continued)

MB90230 Series

(Continued)

Type	Circuit	Remarks
I		- CMOS level output - Hysteresis input - Open-drain control provided
J		- CMOS level input/output - Analog input
K		- CMOS level input/output - Analog output - Also serving for D/A output
L		- CMOS level output - Hysteresis input - Open-drain control provided

MB90230 Series

HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than V_{cc} or lower than $\mathrm{V}_{\text {ss }}$ is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage wihich shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.
Also, take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply ($V_{c c}$) when the analog system power supply is turned on and off.

2. Treatment of Unused Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. External Reset Input

To reset the internal circuit by the Low-level input to the $\overline{\text { RST }}$ pin, the Low-level input to the $\overline{\text { RST }}$ pin must be maintained for at least five machine cycles. Pay attention to it if the chip uses external clock input.

4. Vcc and Vss Pins

Apply equal potential to the V_{cc} and V_{ss} pins.

5. Notes on Using an External Clock

When using an external clock, drive the X0 pin as illustrated below:

Use of External Clock

6. Power-on Sequence for A/D Converter Power Supplies and Analog Inputs

Be sure to turn on the digital power supply (Vcc) before applying voltage to the A/D converter power supplies (AVcc, AVRH, and AVRL) and analog inputs (AN0 to AN15).

When turning power supplies off, turn off the A/D converter power supplies ($\mathrm{AV} \mathrm{cc}, \mathrm{AVRH}$, and AVRL) and analog inputs (AN0 to AN15) first, then the digital power supply (AVcc).

When turning AVRH on or off, be careful not to let it exceed $A V$ cc.

7. Pin set when turning on power supplies

When turning on power supplies, set the hardware standby input pin (HST) to " H ".

MB90230 Series

8. Program Mode

When shipped from Fujitsu, and after each erasure, all bits ($96 \mathrm{~K} \times 8$ bits) in the MB90W234 and MB90P234 are in the " 1 " state. Data is introduced by selectively programming " 0 's" into the desired bit locations. Bits cannot be set to 1 electrically.

9. Erasure Procedure

Data written in the MB90W234 is erased (from 0 to 1) by exposing the chip to ultraviolet rays with a wavelength of $2,537 \AA$ through the translucent cover.

Recommended irradiation dosage for exposure is $10 \mathrm{Wsec} / \mathrm{cm}^{2}$. This amount is reached in 15 to 20 minutes with a commercial ultraviolet lamp positioned 2 to 3 cm above the package (when the package surface illuminance is $\left.1200 \mu \mathrm{~W} / \mathrm{cm}^{2}\right)$.

If the ultraviolet lamp has a filter, remove the filter before exposure. Attaching a mirrored plate to the lamp increases the illuminance by a factor of 1.4 to 1.8 , thus shortening the required erasure time. If the translucent part of the package is stained with oil or adhesive, transmission of ultraviolet rays is degraded, resulting in a longer erasure time. In that case, clean the translucent part using alcohol (or other solvent not affecting the package).
The above recommended dosage is a value which takes the guard band into consideration and is a multiple of the time in which all bits can be evaluated to have been erased. Observe the recommended dosage for erasure; the purpose of the guard band is to ensure erasure in all temperature and supply voltage ranges. In addition, check the lifespan of the lamp and control the illuminance appropriately.
Data in the MB90W234 is erased by exposure to light with a wavelength of $4000 \AA$ or less.
Data in the device is also erased even by exposure to fluorescent lamp light or sunlight although the exposure results in a much lower erasure rate than exposure to $2537 \AA$ Altraviolet rays. Note that exposure to such lights for an extended period will therefore affect system reliability. If the chip is used where it is exposed to any light with a wavelength of $4000 \AA$ or less, cover the translucent part, for example, with a protective seal to prevent the chip from being exposed to the light.

Exposure to light with a wavelength of 4,000 to $5,000 \AA$ or more will not erase data in the device. If the light applied to the chip has a very high illuminance, however, the device may cause malfunction in the circuit for reasons of general semiconductor characteristics. Although the circuit will recover normal operation when exposure is stopped, the device requires proper countermeasures for use in a place exposed continuously to such light even though the wavelength is $4,000 \AA$ or more.

MB90230 Series

10. Recommended Screening Conditions

High-temperature aging is recommended for screening before packaging.

11. Write Yield

OTPROM products cannot be write-tested for all bits due to their nature. Therefore the write yield cannot always be guaranteed to be 100%.

BLOCK DIAGRAM

P00 to P27 (24 lines): Provided with input pull-up resistor setting registers P94 to P96, PA0 to PA5 (9 lines): Provided with open-drain setting registers

MEMORY MAP

Note: 000000 H to 000005 H and 000010 H to 000015 H are allocated for external use when the external bus is enabled.

Product type	Address\#1	Address\#2	Address\#3
MB90233	FF4000H	004000 H	000900 H
MB90234			
MB90P234	FE8000H	004000 H	000 D 00 H
MB90W234	FE8000H	004000 H	000 H 00 H
MB90V230	(FE0000H $)$	$(004000 \mathrm{H})$	$(001100 \mathrm{H})$

The MB90230 series can access the 00 bank to read ROM data written to the upper 48-KB locations in the FF bank. An advantage of reading written to data addresses FFFFFFF-FF4000н from addresses 00 FFFFн $^{\boldsymbol{- 0} 004000 \mathrm{H}}$ is that you can use the small model of a C compiler.
Note, however, that the products with more than 48KB ROM space (MB90V230, MB90P/W234, MB90234) cannot read data in addresses other than FFFFFFFH to FF4000н from the 00 bank.

I/O MAP

Address	Register	Register name	Access	Resouce name	Initial value
00н	Port 0 data register	PDR0	R/W	Port 0	XXXXXXXX
01H	Port 1 data register	PDR1	R/W	Port 1	XXXXXXXX
02H	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXX
03н	Port 3 data register	PDR3	R/W	Port 3	XXXXXXXX
04н	Port 4 data register	PDR4	R/W	Port 4	XXXXXXXX
05н	Port 5 data register	PDR5	R/W	Port 5	XXXXXXXX
06н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXXX
07\%	Port 7 data register	PDR7	R/W	Port 7	$-X X X X X X X$
08H	Port 8 data register	PDR8	R/W	Port 8	XXXXXXXX
09н	Port 9 data register	PDR9	R/W	Port 9	$-X X X X X X X$
OАн	Port A data register	PDRA	R/W	Port A	$--X X X X X X$
10н	Port 0 direction register	DDR0	R/W	Port 0	00000000
11H	Port 1 direction register	DDR1	R/W	Port 1	00000000
12H	Port 2 direction register	DDR2	R/W	Port 2	00000000
13н	Port 3 direction register	DDR3	R/W	Port 3	00000000
14H	Port 4 direction register	DDR4	R/W	Port 4	00000000
15 H	Port 5 direction register	DDR5	R/W	Port 5	00000000
16H	Port 6 direction register	DDR6	R/W	Port 6	00000000
17H	Port 7 direction register	DDR7	R/W	Port 7	-0000000
18н	Port 8 direction register	DDR8	R/W	Port 8	00000000
19н	Port 9 direction register	DDR9	R/W	Port 9	-0000000
1Ан	Port A direction register	DDRA	R/W	Port A	$--000000$
1Вн	Port 0 resistor register	RDR0	R/W	Port 0	00000000
1 CH	Port 1 resistor register	RDR1	R/W	Port 1	00000000
1洓	Port 2 resistor register	RDR2	R/W	Port 2	00000000
$1 \mathrm{EH}_{H}$	Port 9 pin register	ODR9	R/W	Port 9	-000----
$1 \mathrm{~F}_{\mathrm{H}}$	Port A pin register	ODRA	R/W	Port A	$--000000$
$2 \mathrm{H}_{\mathrm{H}}$	Mode control register	UMC	R/W	UART	00000100
21H	Status register	USR	R/W		00010000
22 ${ }^{\text {H}}$	Serial input register /Serial output register	UIDR /UODR	R/W		XXXXXXXX
23H	Rate and data register	URD	R/W		0000--00
24H	Serial mode control status register	SMCS	R/W	Extended serial I/O interface	---00000
25H					00000010

(Continued)

MB90230 Series

Address	Register	Register name	Access	Resouce name	Initial value
26н	Serial data register	SDR	R/W	Extended serial I/O interface	XXXXXXXX
27н	Reserved area	-	-	-	-
28н	Cycle setting register	PCSR	W	8-bit PPG timer	XXXXXXXX
29H	Duty factor setting register	PDUT	W		XXXXXXXX
2 Ан $^{\text {仡 }}$	Control status register	PCNTL	R/W		00000000
2BH		PCNTH			$0000000-$
2 CH	Reserved area	-	-	-	-
2Dн	Communication prescaler	CDCR	R/W	UART, CKOT, I/O, serial IF	0---1111
2Ен	Clock control register	CLKR	R/W	CKOT output	-----000
2FH	Level comparator	LVLC	R/W	Level comparator	XXXX0000
30	Interrupt/DTP enable register	ENIR	R/W	DTP/external interrupt	----0000
31н	Interrupt/DTP factor register	EIRR	R/W		----0000
32н	Request level setting register	ELVR	R/W		00000000
33 H	Reserved area	-	-	-	-
34	Analog input enable register	ADER	R/W	10-bit A/D converter	11111111
35 H	Reserved area	-	-		-
36	Control status data register	ADCSO	R/W		00000000
37 ${ }_{\text {H }}$		ADCS1			00000000
38 H	Data register	ADCR0	R		XXXXXXXX
39н		ADCR1			O00000 XX
ЗАн	Reserved area	-	-	-	-
3В	Reserved area	-	-	-	-
3С	D/A converter data register 0	DAT0	R/W	8-bit D/A converter	XXXXXXXX
3D	D/A converter data register 1	DAT1	R/W		00000000
3Ен	D/A control register	DACR	R/W		------00
$3 \mathrm{~F}_{\mathrm{H}}$	Reserved area	-	-	-	-
40 H	PWM data register 0	PWD0	R/W	8-bit PWM0, 1	00000000
41н	PWM data register 1	PWD1	R/W		00000000
42 ${ }^{\text {H}}$	Control status data register 0, 1	PWC01	R/W		00000000
43н	Reserved area	-	-	-	-
44н	PWM data register 2	PWD2	R/W	8-bit PWM2, 3	00000000
45 H	PWM data register 3	PWD3	R/W		00000000
46H	Control status register 2, 3	PWC23	R/W		00000000

(Continued)

Address	Register	Register name	Access	Resouce name	Initial value
47 ${ }^{\text {}}$	Reserved area	-	-	-	-
48 ${ }^{\text {H }}$	PWM data register 4	PWD4	R/W	8-bit PWM4, 5	0000000
49н	PWM data register 5	PWD5	R/W		00000000
4Ан	Control status register 4, 5	PWC45	R/W		00000000
4Bн	Reserved area	-	-	-	-
4 CH	Data register	TCDT	R	16-bit free run timer	00000000
4Dн					00000000
4Eн	Control status register	TCCS	R/W		00000000
4F	Reserved area	-	-	-	-
50н	Compare register 0	OCPO	R/W	Output compare 0, 1	XXXXXXXX
51н					XXXXXXXX
52 H	Compare register 1	OCP1	R/W		XXXXXXXX
53 H					XXXXXXXX
54	Control status register 0, 1	CSOO	R/W		0000--00
55 H		CS01			---00000
56н	Reserved area	-	-	-	-
57 ${ }_{\text {H }}$	Reserved area	-	-	-	-
58\%	Compare register 2	OCP2	R/W	Output compare 2, 3	XXXXXXXX
59н					XXXXXXXX
5Ан	Compare register 3	OCP3	R/W		XXXXXXXX
5Вн					XXXXXXXX
$5 \mathrm{C}_{\mathrm{H}}$	Control status register 2, 3	CS10	R/W		0000--00
5D		CS11			---00000
5Ен	Reserved area	-	-	-	-
5FH	Reserved area	-	-	-	-
60н	Compare register 4	OCP4	R/W	Output compare 4, 5	XXXXXXXX
61н					XXXXXXXX
62 ${ }^{\text {H }}$	Compare register 5	OCP5	R/W		XXXXXXXX
63 ${ }^{\text {H }}$					XXXXXXXX
64 ${ }^{\text {H }}$	Control status register 4, 5	CS20	R/W		0000--00
65 ${ }^{\text {H }}$		CS21			---00000
66н	Reserved area	-	-	-	-
$\begin{aligned} & \text { 67H to } \\ & 6 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	Reserved area	-	-	-	-

(Continued)

Address	Register	Register name	Access	Resouce name	Initial value
70н	Capture register 0	ICP0	R/W	Input capture 0, 1	XXXXXXXX
71н					XXXXXXXX
72 H	Capture register 1	ICP1	R/W		XXXXXXXX
73 ${ }^{\text {}}$					XXXXXXXX
74н	Control status register 0, 1	ICSO	R/W		00000000
$\begin{aligned} & \hline 75 \mathrm{H} \text { to } \\ & 77 \mathrm{H} \end{aligned}$	Reserved area	-	-	-	-
78н	Capture register 2	ICP2	R/W	Input capture 2, 3	XXXXXXXX
79н					XXXXXXXX
7Ан	Capture register 3	ICP3	R/W		XXXXXXXX
7Вн					XXXXXXXX
7С	Control status register 2, 3	ICS1	R/W		00000000
$\begin{aligned} & \text { 7DH to } \\ & \text { 7FH } \end{aligned}$	Reserved area	-	-	-	-
80н	OP code register	EOPC	R/W	Serial E2PROM interface	----0000
81н	Format status register	ECTS	R/W		00000000
82н	Data register	EDAT	R/W		X X X X X X X
83н					XXXXXXXX
84н	Address register	EADR	R/W		00000000
85 н					00---000
$\begin{aligned} & \text { 86н to } \\ & 8 \mathrm{FH} \end{aligned}$	Reserved area	-	-	-	-
$\begin{aligned} & \text { 90н to } \\ & 9 \mathrm{E}_{\mathrm{H}} \end{aligned}$	System reserved area	-	*1	-	-
9F\%	Delayed interrupt source generate/ release register	DIRR	R/W	Delayed interrupt generation module	-------0
$\mathrm{AOH}^{\text {¢ }}$	Standby control register	STBYC	R/W	Low-power consumption mode	0001 XXXX
A1 ${ }^{\text {}}$	Reserved area	-	-	-	-
А2н	Reserved area	-	-	-	-
АЗ ${ }^{\text {¢ }}$	Middle address control register	MACR	W	External pin	*2
А4 ${ }_{\text {н }}$	Upper address control register	HACR	W	External pin	*2
A5 ${ }^{\text {}}$	External pin control register	EPCR	W	External pin	*2
A6 ${ }^{\text {}}$	Reserved area	-	-	-	-
A7 ${ }^{\text {¢ }}$	Reserved area	-	-	-	-
A8H	Watchdog timer control register	TWC	R/W	Watchdog timer/ reset	XXXXXXXX

(Continued)

MB90230 Series

Address	Register	Register name	Access	Resouce name	Initial value
A9н	Timebase timer control register	TBTC	R/W	Timebase timer	---00000
$\begin{aligned} & \mathrm{AAH}_{\mathrm{H}} \text { o } \\ & \mathrm{AFH}_{\mathrm{H}} \end{aligned}$	Reserved area	-	-	-	-
B0н	Interrupt control register 00	ICR00	R/W	Interrupt controller	00000111
B1н	Interrupt control register 01	ICR01	R/W		00000111
B2н	Interrupt control register 02	ICR02	R/W		00000111
B3н	Interrupt control register 03	ICR03	R/W		00000111
B4н	Interrupt control register 04	ICR04	R/W		00000111
B5 ${ }^{\text {H}}$	Interrupt control register 05	ICR05	R/W		00000111
B6 ${ }^{\text {}}$	Interrupt control register 06	ICR06	R/W		00000111
B7 ${ }^{\text {}}$	Interrupt control register 07	ICR07	R/W		00000111
B8н	Interrupt control register 08	ICR08	R/W		00000111
B9н	Interrupt control register 09	ICR09	R/W		00000111
ВАн	Interrupt control register 10	ICR10	R/W		00000111
ВВн	Interrupt control register 11	ICR11	R/W		00000111
BC_{H}	Interrupt control register 12	ICR12	R/W		00000111
BD	Interrupt control register 13	ICR13	R/W		00000111
ВЕн	Interrupt control register 14	ICR14	R/W		00000111
BF\%	Interrupt control register 15	ICR15	R/W		00000111
$\begin{aligned} & \text { COH to } \\ & \text { FFH }^{2} \end{aligned}$	External area	-	-	-	*3

Initial values

0 : The initial value for the bit is " 0 ."
1: The initial value for the bit is " 1 ."
X : The initial value for the bit is undefined.
-: The bit is not used; the initial value is undefined.
*1: Access inhibited
*2: The initial value depends on each bus mode.
*3: Only this area can be used as the external access area in the area that follows address 0000FFh. Access to any address in reserved areas specified in the I/O map table is handled as access to an internal area. An access signal to the external bus is not generated.

INTERRUPT VECTORS AND INTERRUPT CONTROL REGISTERS FOR INTERRUPT SOURCES

Interrupt source	$\mathrm{I}^{2} \mathrm{OS}$ support	Interrupt vector			Interrupt control register	
		No.		Address	ICR	Address
Reset	\times	\#08	08н	FFFFDCH	-	-
INT9 instruction	\times	\#09	09н	FFFFD8 ${ }_{\text {H }}$	-	-
Exceptional	\times	\#10	ОАн	FFFFD4 ${ }_{\text {н }}$	-	-
External interrupt (INTO) 0 ch	\bigcirc	\#11	ОВн	FFFFDOH	ICROO	0000B0н
External interrupt (INT1) 1 ch	\bigcirc	\#12	OС ${ }_{\text {H }}$	FFFFCCH		
External interrupt (INT2) 2 ch	\bigcirc	\#13	ODн	FFFFFC8	ICR01	0000B1н
External interrupt (INT3) 3 ch	\bigcirc	\#14	0Ен	FFFFC4 ${ }_{\text {H }}$		
Extended serial I/O interface	\bigcirc	\#15	OFH	FFFFFCOH	ICR02	0000B2н
Serial E2PROM interface	\bigcirc	\#17	11н	FFFFB8 ${ }_{\text {H }}$	ICR03	0000ВВ3н
Input capture channel 0	\bigcirc	\#19	13н	FFFFFBO	ICR04	0000B4н
Input capture channel 1	\bigcirc	\#21	15 H	FFFFA8 ${ }_{\text {H }}$	ICR05	0000B5н
Input capture channel 2	\bigcirc	\#23	17H	FFFFAOH	ICR06	0000В6н
Input capture channel 3	\bigcirc	\#24	18н	FFFF9C ${ }_{\text {H }}$		
Output compare channel 0	\bigcirc	\#25	19н	FFFF98 ${ }_{\text {H }}$	ICR07	0000B7 ${ }^{\text {H }}$
Output compare channel 1	\bigcirc	\#26	1Ан	FFFF944		
Output compare channel 2	\bigcirc	\#27	1Вн	FFFF90 ${ }_{\text {H }}$	ICR08	0000B8н
Output compare channel 3	\bigcirc	\#28	$1 \mathrm{CH}^{\text {}}$	FFFF88 ${ }_{\text {H }}$		
Output compare channel 4	\bigcirc	\#29	1Dн	FFFF88 ${ }_{\text {H }}$	ICR09	0000B9н
Output compare channel 5	\bigcirc	\#30	1Ен	FFFF844		
16-bit free run timer overflow	\bigcirc	\#31	1F ${ }^{\text {H }}$	FFFF80 ${ }_{\text {H }}$	ICR10	0000ВАн
Timebase timer overflow	\bigcirc	\#32	20 H	FFFF7C ${ }_{\text {н }}$		
8-bit PPG timer	\bigcirc	\#33	21H	FFFF78 ${ }_{\text {H }}$	ICR11	0000ВВн
Level comparator	\bigcirc	\#34	22н	FFFF74		
UART reception	\bigcirc	\#35	23H	FFFF70 ${ }_{\text {H }}$	ICR12	0000BCH
UART transmission	\bigcirc	\#37	25	FFFF68 ${ }_{\text {H }}$	ICR13	0000BDн
End of A/D conversion	\bigcirc	\#39	27 ${ }^{\text {H}}$	FFFF60 ${ }_{\text {H }}$	ICR14	0000ВЕн
Delayed interrupt	\times	\#42	2 2н $^{\text {¢ }}$	FFFF54	ICR15	0000BFн
Stack fault	\times	\#256	FF\%	FFFCOOH	-	-

O : The request flag is cleared by the $\mathrm{El}^{2} \mathrm{OS}$ interrupt clear signal.
© : The request flag is cleared by the $\mathrm{El}^{2} \mathrm{OS}$ interrupt clear signal. The stop request is available.
x : The request flag is not cleared by the $\mathrm{EI}^{2} \mathrm{OS}$ interrupt clear signal.

MB90230 Series

PERIPHERAL RESOURCES

1. I/O Ports

Each pin in each port can be specified for input or output by setting the direction register when the corresponding peripheral resource is not set to use that pin. When the data register is read, the value depending on the pin level is read whenever the pin serves for input. When the data register is read with the pin serving for output, the latch value of the data register is read. This also applies to read operation by the read modify write instruction.

- General-purpose I/O port

- Port with pull-up resistor setting register

MB90230 Series

- Port with open-drain setting register

(1) Register Configuration

$\begin{array}{llllllllll}\text { bit } & 15 / 7 & 14 / 6 & 13 / 5 & 12 / 4 & 11 / 3 & 10 / 2 & 9 / 1 & 8 / 0\end{array}$
Address: 000000 Address: 000001н Address: 000002н Address: 000003н Address: 000004 Address: 000005 Address: 000006н Address: 000007H Address: 000008н Address: 000009н Address: 00000Ан

P07	P06	P05	P04	P03	P02	P01	P00
P17	P16	P15	P14	P13	P12	P11	P10
P27	P26	P25	P24	P23	P22	P21	P20
P37	P36	P35	P34	P33	P32	P31	P30
P47	P46	P45	P44	P43	P42	P41	P40
P57	P56	P55	P54	P53	P52	P51	P50
P67	P66	P65	P64	P63	P62	P61	P60
-	P76	P75	P74	P73	P72	P71	P70
P87	P86	P85	P84	P83	P82	P81	P80
-	P96	P95	P94	P93	P92	P91	P90
-	-	PA5	PA4	PA3	PA2	PA1	PA0

bit
Address: 000010 H Address: 000011H Address: 000012н Address: 000013 Address: 000014H Address: 000015 Address: 000016 Address: 000017H Address: 000018н Address: 000019H Address: 00001Ан

P07	P06	P05	P04	P03	P02	P01	P00
P17	P16	P15	P14	P13	P12	P11	P10
P27	P26	P25	P24	P23	P22	P21	P20
P37	P36	P35	P34	P33	P32	P31	P30
P47	P46	P45	P44	P43	P42	P41	P40
P57	P56	P55	P54	P53	P52	P51	P50
P67	P66	P65	P64	P63	P62	P61	P60
-	P76	P75	P74	P73	P72	P71	P70
P87	P86	P85	P84	P83	P82	P81	P80
-	P96	P95	P94	P93	P92	P91	P90
-	-	PA5	PA4	PA3	PA2	PA1	PA0

Port 0 data register (PDRO) Port 1 data register (PDR1) Port 2 data register (PDR2) Port 3 data register (PDR3) Port 4 data register (PDR4) Port 5 data register (PDR5) Port 6 data register (PDR6) Port 7 data register (PDR7) Port 8 data register (PDR8) Port 9 data register (PDR9) Port A data register (PDRA)

Port 0 direction register (DDRO) Port 1 direction register (DDR1) Port 2 direction register (DDR2) Port 3 direction register (DDR3) Port 4 direction register (DDR4) Port 5 direction register (DDR5) Port 6 direction register (DDR6) Port 7 direction register (DDR7) Port 8 direction register (DDR8) Port 9 direction register (DDR9) Port A direction register (DDRA)

$$
\begin{array}{lllllllll}
\text { bit } & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8
\end{array}
$$

Address: 000034н \quad ADE7 \mid ADE6 \mid ADE5 \mid ADE4 \mid ADE3 \mid ADE2 \mid ADE1 \mid ADE0
bit $\begin{array}{lllllllll}15 / 7 & 14 / 6 & 13 / 5 & 12 / 4 & 11 / 3 & 10 / 2 & 9 / 1 & 8 / 0\end{array}$
Address: 00001Вн Address: 00001 CH_{H} Address: 00001D н

P 07	P 06	P 05	P 04	P 03	P 02	P 01	P 00
P 17	P 16	P 15	P 14	P 13	P 12	P 11	P 10
P 27	P 26	P 25	P 24	P 23	P 22	P 21	P 20

bit	$15 / 7$	$14 / 6$	$13 / 5$	$12 / 4$	$11 / 3$	$10 / 2$	$9 / 1$

Address: 00001Ен Address: 00001FH

-	P96	P95	P94	-	-	-	-
-	-	PA5	PA4	PA3	PA2	PA1	PA0

MB90230 Series

Ports 0 to 5 in the MB90230 series share the external bus and pins. Each pin function is selected depending on the bus mode and register settings.

Pin name	Function			
	Single-chip mode	External bus extended mode		EPROM write
		8 bits	16 bits	
P07 to P00	Port	D07 to D00		D07 to D00
P17 to P10		Port	D15 to D08	D15 to D08
P27 to P20		A07 to A00		A07 to A00
P37 to P30		A15 to A08*1		A15 to A08
P47 to P45		A23 to A16*1		A23 to A16
P44				
P43 to P40				
P50				
P51				
P52				Not used
P53				
P54		Port	$\overline{\mathrm{WRH}}^{*}{ }^{2}$	$\overline{\mathrm{CE}}$
P55		$\overline{\mathrm{WR}}$	$\overline{\mathrm{WRL}}{ }^{*}$	$\overline{\mathrm{OE}}$
P56				$\overline{\text { PGM }}$
P57				"0"

*1: The pin can be used as an I/O port by setting the upper and middle address control registers.
*2: The pin can be used as an I/O port by setting the external pin control register.

MB90230 Series

2. 8-bit PWM (with 6 channels in this series)

The PWM module consists of a pair of 8-bit PWM output circuits. The MB90230 series incorporates a set of three PWM modules. They can output a waveform continuously from the port at an arbitrary duty factor according to the register settings.

- 8-bit down counter
- 8-bit data registers
- Compare circuit
- Control registers

(1) Register Configuration

bit
000041, 40H
000045, 44H 000049, 48н

000042н
000046
00004Ан

(2) Block Diagram

MB90230 Series

3. UART

The UART is a serial I/O port for synchronous or asynchronous communication with external resources. It has the following features:

- Full-duplex double buffering
- Data transfer synchronous or asynchronous with clock pulses
- Multiprocessor mode support (Mode 2)
- Internal dedicated baud-rate generator
- Arbitrary baud-rate setting from external clock input or internal timer
- Variable data length (7 to 9 bits (without parity bit); 6 to 8 bits (with parity bit))
- Error detection function (Framing, overrun, parity)
- Interrupt function (Two sources for transmission and reception)
- Transfer in NRZ format

(1) Register Configuration

(R/W)
(R/W)

Address: $000020^{\text {bit }}$

Address: $000021^{\text {bit }}$

15	14	13	12	11	10	9	8
RDRF	ORFE	PE	TDRE	RIE	TIE	RBF	TBF

Status register
(USR)
bit

7	6	5	4	3	2	1	0
D7	D6	D5	D4	D3	D2	D1	D0

bit
Address: 000023

Serial input data register Serial output data register (UIDR/UODR)

Rate and data register (URD)
bit
Address: 00002D н

15	14	13	12	11	10	9	8
MD	-	-	-	DIV3	DIV2	DIV1	DIV0

Communication prescaler (CDCR)

(2) Block Diagram

MB90230 Series

4. Extended Serial I/O Interface

This block is a serial I/O interface implemented on a single 8-bit channel that can transfer data in synchronization with clock pulses. It allows the "LSB first" or "MSB first" option to be selected for data transfer. The serial I/O port to be used can also be selected.
There are two serial I/O operation modes available:

- Internal shift clock mode: Transfers data in synchronization with internal clock pulses.
- External shift clock mode: Transfers data in synchronization with clock pulses entered from an external pin (SCKx). In this mode, data can be transferred by instructions from the CPU by operating the general-purpose port that shares the external pin (SCKx).

(1) Register Configuration

bit	15	14	13	12	11	10	9	8	Serial mode control status register (SMCS)
Address: 000025 H	SMD2	SMD1	SMD0	SIE	SIR	BUSY	STOP	STRT	
bit	7	6	5	4	3	2	1	0	
Address: 000024	-	-	-	OUTC	MODE	BDS	SOE	SCOE	
bit	7	6	5	4	3	2	1	0	erial data reg
Address: 000026	D7	D6	D5	D4	D3	D2	D1	D0	(SDR)

(2) Block Diagram

MB90230 Series

5. A/D Converter

The A/D converter converts the analog input voltage to a digital value. It has the following features:

- Conversion time: 5 s min. per channel (at 16 MHz machine clock)
- RC-type successive approximation with sample-and-hold circuit
- 8-bit or 10-bit resolution
- Eight analog input channels programmable for selection
- A/D conversion mode selectable from the following three: One-shot conversion mode: Converts a specified channel once.
Consecutive conversion mode: Converts a specified channel repeatedly.
Stop conversion mode: Converts one channel and suspends its own operation until the next activation (allowing synchronized conversion start).
- Conversion mode:

Single conversion mode: Converts one channel (when the start and stop channels are the same).
Scan conversion mode: Converts multiple consecutive channels (when the start and stop channels are different).

- On completion of A / D conversion, the converter can generate an interrupt request for termination of A / D conversion to the CPU. This interrupt generation can activate the $\mathrm{EI}^{2} \mathrm{OS}$ to transfer the A/D conversion result to memory, making the converter suitable for continuous operation.
- Conversion can be activated by software, external trigger (falling edge), and/or timer (rising edge) as selected.

(1) Register Configuration

MB90230 Series

(2) Block Diagram

MB90230 Series

6. 16-bit I/O Timer

The 16-bit I/O timer consists of 16 -bit free run timer, 6 -line output compare, and 4 -line input capture modules.
The 16-bit I/O timer can output six independent waveforms based on the 16-bit free run timer, allowing the input pulse width and external clock cycle to be measured.

(1) Outline of Functions

16-bit free run timer ($\times 1$)

The 16-bit free run timer consists of a 16-bit up-count timer, a control register, and a prescaler. The value output from this timer/counter is used as the base time by the input capture and output compare modules.

- The counter operation clock cycle can be selected from the following four: Four internal clock cycles ($\phi / 4, \phi / 16, \phi / 32, \phi / 64$)
- The interrupt counter value can be generated by compare/match operation with the overflow register and compare register 0 (compare/match operation requires the mode setting).
- The counter value can be initialized to " 0000 н" by compare/match operation with the reset register, software clear register, and compare register 0.

Output compare module ($\times \mathbf{6}$)

The output compare module consists of six 16-bit compare registers, compare output latches, and control registers. When the compare value matches the 16 -bit free run timer value, this module can generates an interrupt while inverting the output level.

- Six compare registers can operate independently, and have each output pin and interrupt flag.
- Two compare resisters can be used to control the same output pin.
- The initial value for each output pin can be set.
- The interrupt can be generated by compare/match operation.

Input capture module ($\times 4$)

The input capture module consists of four external input pins and associated capture and control registers. This module can detect an arbitrary edge of the signal input from each external input pin to generate an interrupt while holding the 16-bit free run timer value in the capture register.

- The external input signal edge can be selected from the rising edge, failing edge or both edges.
- Four input capture lines can operate independently.
- The interrupts can be generated by a valid edge of external input signals. The extended intelligent I/O service (EI2OS) can be activated.

MB90230 Series

(2) Register Configuration

- 16 -bit free run timer

- 16-bit output compare module

bit	15		Compare register 0 to 5
000050, 52, 58, 5Ан 000060, 62н	OCP0 to 5		
000054, 55 00005C, 5D 000064, 65	CS $\times 1$	CS $\times 0$	Control status register 0 to 5

- 16-bit input capture module

MB90230 Series

(3) Block Diagram

MB90230 Series

7. PPG Timer (Programmable Pulse Generator)

This module can output the pulse synchronized with an external or software trigger. The cycle and duty factor of the output pulse can be changed arbitrarily by changing the values in two 8 -bit registers.
PWM function: Outputs a pulse in programmable mode while changing the values in the two registers in synchronization with the input trigger.
This module can also be used as a D/A converter using an external circuit.
Single-shot function: Detects the trigger input edge to output a single pulse.

(1) Module Configuration

This module consists of an 8 -bit down counter, prescaler, 8 -bit cycle setting register, 8 -bit duty factor setting register, 16-bit control register, external trigger input pin, and PPG output pin.

(2) Register Configuration

bit 1	15		0
Address: 000028 ${ }^{\text {H }}$		PCSR	Cycle setting register
000029н	PDUT		Duty factor setting register
$00002 \mathrm{~B}, 2$ 2А	PCNTH	PCNTL	Control status register

MB90230 Series

(3) Block Diagram

MB90230 Series

8. Serial E²PROM Interface

This module is the interface circuit dedicated to external bit-serial E²PROM.

(1) Features

- Instruction code support (compatible with the MB8557).
- Selectable address length: 8 to 11 bits
- Selectable data length: 8 or 16 bits
- Automatic address increment function
- Transmit/receive data transfer enabled by $\mathrm{El}^{2} \mathrm{OS}$
- Up to 2048-by-16 bit access enabled (at an address length of 11 bits and a data length of 16 bits)

(2) Register Configuration

bit

Status format register

Data register

Address register
bit

bit	15	14	13	12	11	10	9	8	Format status register (ECTS)
Address: 000081н	IFEN	INT	INTE	BUSY	ADL1	ADLO	DTL	CON	

bit
Address: $00008 \mathrm{OH}_{\mathrm{H}}$

Op code register (EOPC)
bit
Address: 000083н

15	14	13	12	11	10	9	8
D15	D14	D13	D12	D11	D10	D9	D8

Data register (EDAT)
bit
Address: 000082H

Data register (EDAT)
bit
Address: 000085 H

15	14	13	12	11	10	9	8
CLK	FRQ	-	-	-	A10	A9	A8

bit
Address: 000084н

7	6	5	4	3	2	1	0
A7	A6	A5	A4	A3	A2	A1	A0

Address register (EADR)

MB90230 Series

(3) Block Diagram

MB90230 Series

9. DTP/External Interrupt

The data transfer peripheral (DTP) is located between external peripherals and the $F^{2} M C-16 F C P U$. It receives a DMA request or interrupt request generated by the external peripherals and reports it to the F${ }^{2} \mathrm{MC}$-16F CPU to activate the extended intelligent I/O service or interrupt handler. The user can select two request levels of "H" and "L" for extended intelligent I/O service (EI2OS) or, four request levels of "H," "L," rising edge, and falling edge for external interrupt requests.

(1) Register Configuration

bit			Interrupt/DTP enable register
Address: 000031 н, 30 ${ }^{\text {H}}$	EIRR	ENIR	
000032н		ELVR	Request level setting register

(2) Block Diagram

MB90230 Series

10. D/A Converter

This block is an R-2R type D/A converter with 8-bit resolution.
The D/A converter incorporates two channels, each of which can be controlled for output independently by the D/A control register.
(1) Register Configuration

DATO
Address: 00003Cн

7	6	5	4	3	2	1	0
DA07	DA06	DA05	DA04	DA03	DA02	DA01	DA00

DACR
Address: 00003Eн

7	6	5	4	3	2	1	0	
-	-	-	-	-	-	DAE1	DAE0	D/A control register
-								

(2) Block Diagram

MB90230 Series

11. Level Comparator

This module compares the input level (by checking whether it is high or low).
The module consists of a comparator, 4-bit resistor ladder, and control register.

- The external input can be compared to the internal 4-bit resistor ladder.

(1) Register Configuration

(2) Block Diagram

MB90230 Series

12.Watchdog Timer and Timebase Timer

The watchdog timer consists of a 2-bit watchdog counter using carry signals from an 18-bit timebase counter as the clock source, a control register, and a watchdog reset control section. The timebase timer consists of an 18 -bit timer and an interval interrupt control circuit.
(1) Register Configuration

(2) Block Diagram

MB90230 Series

13．Delay Interruupt Generation Module

The delayed interrupt generation module is used to generate an interrupt for task switching．Using this module allows an interrupt request to the $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{~F}$ CPU to be generated or canceled by software．
（1）Register Configuration

Delayed interrupt source generate／release register Address：00009FH

Read／write \rightarrow Initial value \rightarrow

15	14	13	12	11	10	9	8

DIRR
（2）Block Diagram

14．Clock Output Control Register

The clock output control register outputs the output from the communication prescaler to the pin．
（1）Register Configuration

bit Clock control register	15	14	13	12	11	10	9	8	CLKR
Address：00002Eн	－	－	－	－	－	CKEN	FRQ1	FRQ0	
Read／write \rightarrow Initial value \rightarrow	$\begin{aligned} & (\text { (一) } \\ & (\text { (} \end{aligned}$	$\begin{aligned} & (\text { (一) } \\ & (\text {) } \end{aligned}$	（－）	$($（－）	$\begin{aligned} & (\text { (一) } \\ & (-) \end{aligned}$	(R / W) (0)	(R / W) （0）	（R／W） （0）	

MB90230 Series

15.Low-power Consumption Control Circuit

The low-power consumption control circuit consists of a low-power consumption control register, clock generator, standby status control circuit, and gear divider circuit. These internal circuits implements the sleep, stop, and hardware standby modes as well as the clock gear function. The gear function allows the machine clock cycle to be selected as a division of the frequency of crystal oscillation or external clock input by $1,2,4$, or 16 .
(1) Register Configuration
bit 15
Address: 0000A0н

Standby control register

(2) Block Diagram

MB90230 Series

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	Vss - 0.3	Vss +7.0	V	
	$A V_{c c}, A V_{s s}$ AVRH, AVRL	Vcc-0.3*1	Vss +7.0	V	
Input voltage	$\mathrm{V}_{1}{ }^{\text {2 }}$	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	
Output voltage	Vo*2	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	
"L" level output current	los	-	20	mA	
"L" level average output current	lolav	-	4	mA	
"L" level total output current	Elo	-	50	mA	
"H" level output current	Іон	-	-10	mA	
"H" level average output current	Iohav	-	-4	mA	
"H" level total output current	Eloh	-	-50	mA	
Power consumption	PD	-	400	mW	
Operating temperature	T_{A}	-40	+70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*1: AVRH, AVRL, or AVcc must not exceed Vcc.
$A V$ ss and $A V R H$ must not exceed $A V R H$ and $A V c c$, respectively.
$\mathrm{V}_{\mathrm{cc}} \geq \mathrm{AV}_{\mathrm{cc}} \geq \mathrm{AVRH}>A V R L \geq \mathrm{AV}_{\mathrm{ss}} \geq \mathrm{V}_{\mathrm{ss}}$
*2: V or Vo must not exceed " $\mathrm{Vcc}+0.3 \mathrm{~V}$."
WARNING: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for externded periods may affect device reliability.

2. Recommended Operating Conditions

Parameter		Symbol	Value		(Vs $=0.0 \mathrm{~V})$
			Max.		
Power supply voltage	V_{cc}	4.75	5.25	V	During normal operation
		3.0	5.5	V	In stop mode
Operating temperature	T_{A}	-40	+70	${ }^{\circ} \mathrm{C}$	

MB90230 Series

3. DC Characteristics

$\left(\mathrm{V} c \mathrm{cc}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
"H" level input voltage	$\mathrm{V}_{\text {IH }}$	*1	$\mathrm{Vcc}=5.0 \mathrm{~V} \pm 5 \%$	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	
	$\mathrm{V}_{\text {IHS }}$	*2		0.8 Vcc	-	V cc +0.3	V	Hysteresis input
	Vнм	*3		Vcc -0.3	-	$\mathrm{Vcc}+0.3$	V	MD0 to 2
"L" level input voltage	VIL	*1	$\mathrm{Vcc}=5.0 \mathrm{~V} \pm 5 \%$	Vss -0.3	-	0.3 Vcc	V	
	Vıs	*2		Vss -0.3	-	0.2 Vcc	V	Hysteresis input
	VILM	*3		Vss -0.3	-	Vss +0.3	V	MD0 to 2
"H" level output voltage	Vон	*1, *2	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.75 \mathrm{~V} \\ & \mathrm{loH}=-2.0 \mathrm{~mA} \end{aligned}$	2.4	-	-	V	
"L" level output voltage	Vol	*1, *2	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V} \\ & \mathrm{loL}=1.8 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Input leakage current	Ін	$\begin{gathered} \text { *1, *2, } \\ { }^{*} 3 \end{gathered}$	$\begin{aligned} & V_{s s}+4.75 \mathrm{~V} \\ & <V_{1}<V_{c c} \end{aligned}$	-10	-	10	$\mu \mathrm{A}$	
Power supply current	Icc	Vcc	$\begin{aligned} & \mathrm{Vcc}=5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{fc}=16 \mathrm{MHz} \end{aligned}$	-	48	80	mA	
	Iccs			-	15	25	mA	In sleep mode
	Icch			-	10	-	$\mu \mathrm{A}$	In stop mode
Input capacity	Cin	Other than V_{cc} and Vss	-	-	10	-	pF	
Open-drain output leakage current (N-channel Tr OFF)	lleak	*4	-	-	0.1	10	$\mu \mathrm{A}$	
Pull-up current	Ipulu	*5	-	-250	-	-50	$\mu \mathrm{A}$	

*1: CMOS I/O pin (Other than hysteresis pins)
*2: Hysteresis input pins: P46/TRG, P70/ATG, P71/ESI, P80/INT0, P81/INT1, P82/OUT0/INT2, P83/OUT1/INT3, P90/INO, P91/IN1, P92/IN2, P93/IN3/CKOT, P94/SIN0, P96/SCK0, PA0/SIN1, PA2/SCK1, PA3/SIN2, PA5/SCK2
*3: Mode pins MD2 to MD0
*4: Open-drain pins P94 to P96 and PA0 to PA5: Set by registers
*5: Pins with pull-up resistor RST and P00 to P27: Set by registers

MB90230 Series

4. AC Characteristics

(1) Clock Timing Standards

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Clock frequency	fc	$\begin{aligned} & \hline \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$	$\mathrm{Vcc}=5.0 \mathrm{~V} \pm 5 \%$	1	16	MHz	
Clock cycle time	tc	$\begin{aligned} & \hline \text { X0 } \\ & \text { X1 } \end{aligned}$	$\mathrm{Vcc}=5.0 \mathrm{~V} \pm 5 \%$	62.5	-	ns	
Input clock pulse width	$\begin{aligned} & \mathrm{Pwh}_{w h} \\ & \mathrm{P}_{\mathrm{wL}} \end{aligned}$	X0	$\mathrm{Vcc}=5.0 \mathrm{~V} \pm 5 \%$	25.0	-	ns	Duty $=60 \%$
Input clock rising/falling time	$\begin{aligned} & \text { tor } \\ & \mathrm{t}_{\mathrm{tof}} \end{aligned}$	X0	-	5	10	ns	

MB90230 Series

(2) Reset, Hardware Standby, and Trigger Input Standards

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Reset input time	trstL	$\overline{\text { RST }}$	-	5	-	Machine cycle*	
Hardware standby input time	thstL	$\overline{\text { HST }}$	-	5	-	Machine cycle*	
A/D start trigger input time	tatgx	$\overline{\text { ATG }}$	-	5	-	Machine cycle*	
PPG start trigger input time	tppgL	TRG	-	5	-	Machine cycle*	
Input capture input trigger	tinp	INO to IN3	-	5	-	Machine cycle*	

*Machine cycle: tcyc $=1 /$ machine clock $=1 /(f \mathrm{fc} \div \mathrm{N})$
fc: Oscillation frequency
N : Gear divide ratio ($1,2,4,16$)
Note: Clock input is required during reset.
The machine cycle at hardware standby input is set to $1 / 32$ divided oscillation.

MB90230 Series

(3) Power-on Reset

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Power supply riseing time	tR	$\mathrm{V}_{\text {co }}$	-	-	50	ms	
Power-off time	toff			1	-	ms	

Keep in mind that abrupt changes in supply voltage may cause a power-on reset.

MB90230 Series

(4) UART Timing
$\left(\mathrm{V} \mathrm{Cc}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	-	Internal clock operation output pin: $\mathrm{CL}_{\mathrm{L}}=80 \mathrm{pF}$	8 tcyc	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	-		-80	80	ns	
Valid SIN \rightarrow SCK \uparrow	tivsH	-		100	-	ns	
SCK $\uparrow \rightarrow$ Valid SIN hold time	tshix	-		60	-	ns	
Serial clock "H" pulse width	tshsL	-	External clock operation output pin: $\mathrm{Cl}_{\mathrm{L}}=80 \mathrm{pF}$	4 torc	-	ns	
Serial clock "L" pulse width	tsısh	-		4 torc	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tsıov	-		-	150	ns	
Valid SIN \rightarrow SCK \uparrow	tivsh	-		60	-	ns	
SCK $\uparrow \rightarrow$ Valid SIN hold time	tshix	-		60	-	ns	

Notes: - These AC characteristics assume the CLK synchronous mode.

- C_{L} is the value for load capacity applied to the pin under testing.
- tcyc is the machine cycle (in nanoseconds).

- Internal shift clock mode

- External shift clock mode

MB90230 Series

(5) Extended Serial I/O Timing

$\left(\mathrm{V} \mathrm{cc}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	-	Internal clock operation output pin: $\mathrm{CL}_{\mathrm{L}}=80 \mathrm{pF}$	8 tcyc	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	-		50	-	ns	
Valid SIN \rightarrow SCK \uparrow	tivs	-		1 tcrc	-	ns	
SCK $\uparrow \rightarrow$ Valid SIN hold time	tshix	-		1 tcyc	-	ns	
Serial clock "H" pulse width	tshsL	-	External clock operation output pin: $\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}$	250	-	ns	External clock: 2 MHz max.
Serial clock "L" pulse width	tsLsh	-		250	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	-		2 toyc	-	ns	
Valid SIN \rightarrow SCK \uparrow	tivs	-		1 tcyc	-	ns	
SCK $\uparrow \rightarrow$ Valid SIN hold time	tshix	-		2 tcyc	-	ns	

Notes: • C_{L} is the value for load capacity applied to the pin under testing.

- tcyc is the machine cycle (in nanoseconds).

- External shift clock mode

MB90230 Series

5. A/D Converter Electrical Characteristics

Parameter	Symbol	Pin name	Value			Unit
			Min.	Typ.	Max.	
Resolution	-	-	-	10	10	bit
Total error			-	-	± 3.0	LSB
Linearity error			-	-	± 2.0	LSB
Differential linearity error			-	-	± 1.5	LSB
Zero transition voltage	Vot	AN0 to AN7	-1.5	+0.5	+2.5	LSB
Full-scale transition voltage	Vfst		AVRH -4.5	AVRH -1.5	AVRH +0.5	LSB
Conversion time	-	$\mathrm{fc}_{\mathrm{c}}=16 \mathrm{MHz}$	5.00	-	-	$\mu \mathrm{s}$
Analog port input current	Iain	AN0 to AN7	-	-	10	$\mu \mathrm{A}$
Analog input voltage	-		AVRL	-	AVRH	V
Reference voltage		AVRH	AVRL	-	AVcc	V
		AVRL	0	-	AVRH	V
Power supply current	IA	AVcc	-	5	-	mA
	las		-	-	5*	$\mu \mathrm{A}$
Reference voltage supply current	IR	AVRH	-	200	-	$\mu \mathrm{A}$
	IRS		-	-	5*	$\mu \mathrm{A}$
Variation between channels	-	AN0 to AN7	-	-	4	LSB

* : Current applied in CPU stop mode with the A/D converter inactive ($\mathrm{V} c \mathrm{Cc}=\mathrm{AV} \mathrm{Cc}=\mathrm{AVRH}=5.5 \mathrm{~V}$).

Notes: • The error becomes larger as |AVRH-AVRL| becomes smaller.

- Use the output impedance of the external circuit for analog input under the following conditions: External circuit output impedance < Approx. $7 \mathrm{k} \Omega$
- If the output impedance the external circuit is too high, the analog voltage sampling time may be insufficient. (Sampling time $=3.0 \mu \mathrm{~s}$ at a machine clock frequency of 16 MHz)

- Analog Input Circuit Mode

Note: The values shown here are reference values.

MB90230 Series

6. A/D Glossary

- Resolution

Analog changes that are identifiable with the A / D converter.
When the number of bits is 10 , analog voltage can be divided into $2^{10}=1024$

- Total error

Difference between actual and logical values. This error is caused by a zero transition error, full-scale transition error, linearity error, differential linearity error, or by noise.

- Linearity error

The deviation of the straight line connecting the zero transition point ("00 00000000 " \leftrightarrow "00 00000001 ") with the full-scale transition point ("11 11111111" ↔"11 1111 1110") from actual conversion characteristics

- Differential linearity error

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

MB90230 Series

7. D/A Converter Electrical Characteristics

Parameter	Symbol	Pin name	Value			Unit
			Min.	Typ.	Max.	
Resolution	-	-	-	8	8	bit
Differential linearity error	-	-	-	-	± 0.9	LSB
Conversion time	-	-	-	10*	20*	$\mu \mathrm{s}$
Analog output impedance	-	-	-	28	-	$K \Omega$

[^0]
8. Serial E²PROM Interface Timing

(1) E2PROM interface at an operation clock frequency of 1 MHz

Parameter	Symbol	Value			Unit	Remarks
		Min.	Typ.	Max.		
Operation cycle	tsk	1.0	-	-	$\mu \mathrm{s}$	
Clock "H" time	tskн	0.4	0.5	-	$\mu \mathrm{s}$	
Clock "L" time	tskL	0.4	0.5	-	$\mu \mathrm{s}$	
ECS setup time	tcss	0.3	-	-	$\mu \mathrm{s}$	
ECS hold time	tcsh	0.0	-	-	$\mu \mathrm{s}$	
EDO data decision time	tpo	0.3	-	-	$\mu \mathrm{s}$	
EDO output hold time	tor	0.5	-	-	$\mu \mathrm{s}$	
EDI setup time	tols	0.0	-	-	$\mu \mathrm{s}$	
EDI hold time	toil	0.4	-	-	$\mu \mathrm{s}$	
READY $\uparrow \rightarrow$ ECS \downarrow	trcsh	0.4	-	-	$\mu \mathrm{s}$	
ECS "L" time	tcsL	0.8	1.0	-	$\mu \mathrm{s}$	

(2) E2PROM interface at an operation clock frequency of 2 MHz
$\left(\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value			Unit	Remarks
		Min.	Typ.	Max.		
Operation cycle	tsk	0.5	-	-	$\mu \mathrm{s}$	
Clock "H" time	tskн	0.2	0.25	-	$\mu \mathrm{s}$	
Clock "L" time	tskL	0.2	0.25	-	$\mu \mathrm{s}$	
ECS setup time	tcss	0.15	-	-	$\mu \mathrm{s}$	
ECS hold time	tcsh	0.0	-	-	$\mu \mathrm{s}$	
EDO data decision time	tpD	0.15	-	-	$\mu \mathrm{s}$	
EDO output hold time	tor	0.25	-	-	$\mu \mathrm{s}$	
EDI setup time	tois	0.0	-	-	$\mu \mathrm{s}$	
EDI hold time	toin	0.2	-	-	$\mu \mathrm{s}$	
READY $\uparrow \rightarrow$ ECS \downarrow	trcsh	0.2	-	-	$\mu \mathrm{S}$	
ECS "L" time	tcs	0.4	0.5	-	$\mu \mathrm{s}$	

MB90230 Series

INSTRUCTIONS (412 INSTRUCTIONS)

Table 1 Description of Instruction Table

Item	Description		
Mnemonic	Upper-case letters and symbols: Described directry in assembly code Lower-case letters: Replaced when described in assembly code Numbers after lower-case letters: Indicates the bit width within the code		
\#	Indicates the number of bytes	\quad	Indicates the number of cycles
:---			
See Table 4 for details about meanings of letters in items.			

MB90230 Series

Table 2 Explanation of Symbols in Table of Instructions

Symbol	Description
A	32-bit accumulator The number of bits used varies according to the instruction. Byte: Low order 8 bits of AL Word: 16 bits of AL Long: 32 bits of AL, AH
AH	High-order 16 bits of A

MB90230 Series

Table 3 Effective Address Fields

Code	Notation		Address format	$\begin{array}{c}\text { Number of bytes in } \\ \text { address extemsion }\end{array}$
00	R0	RW0	RL0	
01	R1	RW1	(RL0)	Register direct
"ea" corresponds to byte, word, and	-			
02	R2	RW2	RL1	long-word types, starting from the

*: The number of bytes for address extension is indicated by the " + " symbol in the " $\#$ " (number of bytes) column in the Table of Instructions.

MB90230 Series

Table 4 Number of Execution Cycles for Each Form of Addressing

Code	Operand	(a)*
		Number of execution cycles for each from of addressing
00 to 07	Ri	Listed in Table of Instructions
	RWi	
RLi		
08 to 0 B	$@ \mathrm{RWj}$	1
0 C to 0 F	$@ \mathrm{RWj}+$	4
10 to 17	@RWi + disp8	1
18 to 1 B	@RWj + disp16	1
1 C	@RW0 + RW7	2
1 D	@RW1 + RW7	2
1 E	@PC + dip16	2
1 F	@addr16	1

* : "(a)" is used in the "cycles" (number of cycles) column and column B (correction value) in the Table of Instructions.

Table 5 Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles

Operand	(b) *		(c) *		(d)	
	byte		word		long	
Internal register	+	0	+	0	+	0
Internal RAM even address	+	0	+	0	+	0
Internal RAM odd address	+	0	+	1	+	2
Even address not in internal RAM	+	1	+	1	+	2
Odd address not in internal RAM	+	1	+	3	+	6
External data bus (8 bits)	+	1	+	3	+	6

*: "(b)", "(c)", and "(d)" are used in the "cycles" (number of cycles) column and column B (correction value) in the Table of Instructions.

MB90230 Series

Table 6 Transfer Instructions (Byte) [50 Instructions]

	Mnemonic	\#	~	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
MOV	A, dir	2	2	(b)	byte $(A) \leftarrow$ (dir)	Z		-	-	-	*	*	-	-	-
MOV	A, addr16	3	2	(b)	byte $(A) \leftarrow$ (addr16)	Z		-	-	-	*	*	-	-	-
MOV	A, Ri	1	1	0	byte $(\mathrm{A}) \leftarrow$ (Ri)	Z	*	-	-	-	*	*	-	-	-
MOV	A, ear	2	1	0	byte $(A) \leftarrow$ (ear)	Z		-	-	-	*	*	-	-	-
MOV	A, eam	2+	$2+(a)$	(b)	byte $(A) \leftarrow$ (eam)	Z		-	-	-	*	*	-	-	-
MOV	A, io	2	2	(b)	byte (A) \leftarrow (io)	Z	*	-	-	-	*	*	-	-	-
MOV	A, \#imm8	2	2	0	byte (A) \leftarrow imm8	Z		-	-	-	*	*	-	-	-
MOV	A, @A	2	2	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{A})$)	Z	-	-	-	-	*	*	-	-	-
MOV	A, @RLi+disp8	3	6	(b)	byte $(A) \leftarrow((R L i))+$ disp8)	Z	*	-	-	-	*	*	-	-	-
MOV	A, @SP+disp8	3	3	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{SP})+$ disp8)	Z		-	-	-	*	*	-	-	-
MOVP	A, addr24	5	3	(b)	byte $($ A $) \leftarrow$ (addr24)	Z		-	-	-	*		-	-	-
MOVP	A, @A	2	2	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{A})$)	Z	-	-	-	-	*	*	-	-	-
MOVN	A, \#imm4	1	1	0	byte $(A) \leftarrow$ imm4	Z		-	-	-	R	*	-	-	-
MOVX	A, dir	2	2	(b)	byte $(A) \leftarrow$ (dir)	X		-	-	-	*	*	-	-	-
MOVX	A, addr16	3	2	(b)	byte (A) \leftarrow (addr16)	X	*	-	-	-	*	*	-	-	-
MOVX	A, Ri	2	1	0	byte $(A) \leftarrow($ Ri)	X		-	-	-	*		-	-	-
MOVX	A, ear	2	1	0	byte (A) \leftarrow (ear)	X	*	-	-	-	*	*	-	-	-
MOVX	A, eam	2+	$2+(a)$	(b)	byte $($ A $) \leftarrow$ (eam)	X	*	-	-	-	*	*	-	-	-
MOVX	A, io	2	2	(b)	byte (A) \leftarrow (io)	X		-	-	-	*		-	-	-
MOVX	A, \#imm8	2	2	0	byte (A) \leftarrow imm8	X	*	-	-	-	*	*	-	-	-
MOVX	A, @A	2	2	(b)	byte $(A) \leftarrow((A))$	X	-	-	-	-	*	*	-	-	-
MOVX	A,@RWi+disp8	2	3	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{RWi}))+$ disp8)	X	*	-	-	-	*	*	-	-	-
MOVX	A, @RLi+disp8	3	6	(b)	byte $(A) \leftarrow((R L i))+$ disp8)	X	*	-	-	-	*	*	-	-	-
MOVX	A, @SP+disp8	3	3	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{SP})+$ disp8)	X		-	-	-	*	*	-	-	-
MOVPX	A, addr24	5	3	(b)	byte (A) \leftarrow (addr24)	X		-	-	-	*	*	-	-	-
MOVPX	A, @A	2	2	(b)	byte $(A) \leftarrow((A))$	X	-	-	-	-	*	*	-	-	-
MOV	dir, A	2	2	(b)	byte (dir) $\leftarrow(A)$	-	-	-	-	-	*	*	-	-	-
MOV	addr16, A	3	2	(b)	byte (addr16) $\leftarrow(A)$	-	-	-	-	-	*	*	-	-	-
MOV	Ri, A	1	1	0	byte (Ri) $\leftarrow(A)$	-	-	-	-	-	*	*	-	-	-
MOV	ear, A	2	2	0	byte (ear) $\leftarrow(A)$	-	-	-	-	-	*		-	-	-
MOV	eam, A	2+	2+ (a)	(b)	byte (eam) $\leftarrow(A)$	-	-	-	-	-	*	*	-	-	-
MOV	io, A	2	2	(b)	byte (io) $\leftarrow(A)$	-		-	-	-	*	*	-	-	-
MOV	@RLi+disp8, A	3	6	(b)	byte ((RLi)) +disp8) $\leftarrow(\mathrm{A})$	-	-	-	-	-	*		-	-	-
MOV	@SP+disp8, A	3	3	(b)	byte ($(\mathrm{SP})+$ disp8) $\leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	-
MOVP	addr24, A	5	3	(b)	byte (addr24) $\leftarrow(A)$	-	-	-	-	-	*	*	-	-	-
MOV	Ri, ear	2	2	0	byte (Ri) \leftarrow (ear)	-	-	-	-	-	*	*	-	-	-
MOV	Ri, eam	2+	$3+$ (a)	(b)	byte $(\mathrm{Ri}) \leftarrow($ eam $)$	-	-	-	-	-	*	*	-	-	-
MOVP	@A, Ri	2	3	(b)	byte $((\mathrm{A})) \leftarrow(\mathrm{Ri})$	-	-	-	-	-	*		-	-	-
MOV	ear, Ri	2	3	0	byte (ear) $\leftarrow(\mathrm{Ri})$	-	-	-	-	-	*	*	-	-	-
MOV	eam, Ri	2+	$3+(\mathrm{a})$	(b)	byte (eam) \leftarrow (Ri)	-	-	-	-	-	*	,	-	-	-
MOV	Ri, \#imm8	2	2	0	byte $(\mathrm{Ri}) \leftarrow$ imm8	-	-	-	-	-	*	*	-	-	-
MOV	io, \#imm8	3	3	(b)	byte (io) \leftarrow imm8	-	-	-	-	-	-	-	-	-	-
MOV	dir, \#imm8	3	3	(b)	byte (dir) \leftarrow imm8	-	-	-	-	-	-	-	-	-	-
MOV	ear, \#imm8	3	2	0	byte (ear) \leftarrow imm8	-	-	-	-	-	*	*	-	-	-
MOV	eam, \#imm8	3+	$2+(a)$	(b)	byte $($ eam $) \leftarrow$ imm8	-	-	-	-	-	-	-	-	-	-
MOV	@AL, AH	2	2	(b)	byte $((A)) \leftarrow(A H)$	-	-	-	-	-	*	*	-	-	-
XCH	A, ear	2	(a)	0	byte (A) \leftrightarrow (ear)	Z	-	-	-	-	-	-	-	-	-
XCH	A, eam	2+	$3+$ (a)	$2 \times$ (b)	byte (A) \leftrightarrow (eam)	Z	-	-	-	-	-	-	-	-	-
XCH	Ri, ear	2	4	0	byte (Ri) \leftrightarrow (ear)	-	-	-	-	-	-	-	-	-	-
XCH	Ri, eam	2+	5+ (a)	$2 \times(\mathrm{b})$	byte (Ri) \leftrightarrow (eam)	-	-	-	-	-	-	-	-	-	-

For an explanation of "(a)" and "(b)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 7 Transfer Instructions (Word) [40 Instructions]

Mnemonic	\#		B	Operation	LH		AH	1	S	T	N	z	V	c	RMW
MOVW A, dir	2	2	(c)	word (A) \leftarrow (dir)	-			-					-		
MOVW A, addr	3	2	(c)	word $(A) \leftarrow$ (addr16)	-			-	-	-			-	-	
MOVW A, SP	1	2	0	word (A) $\leftarrow($ SP)	-			-	-	-	*		-	-	
MOVW A, RWi	1	1	0	word $(A) \leftarrow($ RWi)	-			-	-	-	*		-	-	-
MOVW A, ear	2	1	0	word $(A) \leftarrow($ ear $)$	-			-	-	-	*		-	-	-
MOVW A, eam	$2+$	2+ (a)	(c)	word $(A) \leftarrow($ eam $)$	-			-	-	-	*		-	-	-
MOVW A, io	2	2	(c)	word (A) \leftarrow (io)	-			-	-	-			-	-	-
MOVW A, @A	2	2	(c)	word $(A) \leftarrow((A))$	-		-	-	-	-	*		-	-	
MOVW A, \#imm16	3	2	0	word (A) \leftarrow imm16	-			-	-	-			-	-	-
MOVW A, @RWi+disp8	2	3	(c)	word $(A) \leftarrow(($ RWi) + disp8)	-			-	-	-	*		-	-	-
MOVW A, @RLi+disp8	3	6	(c)	word $(A) \leftarrow((\mathrm{RLi})+$ disp8)	-			-		-	*		-	-	-
MOVW A, @SP+disp8	3	3	(c)	word $(A) \leftarrow((\mathrm{SP})+$ disp8	-			-		-	*		-	-	
MOVPWA, addr24	5	3	(c)	word $(A) \leftarrow($ addr24)	-			-		-			-	-	-
MOVPWA, @A	2	2	(c)	word $(A) \leftarrow((A))$	-		-	-	-	-			-	-	
MOVW dir, A	2	2	(c)	word (dir) \leftarrow (A)				-		-			-		-
MOVW addr16, A	3	2	(c)	word (addr16) $\leftarrow(A)$			-	-		-	*		-	-	
MOVW SP, \# imm16	4	2		word $(S P) \leftarrow$ imm16			-	-		-	*		-	-	
MOVW SP, A	1	2	0	word (SP) $\leftarrow(A)$			-	-	-	-	*		-	-	
MOVW RWi, A	1	1	0	word (RWi) $\leftarrow(A)$			-	-	-	-	*		-	-	
MOVW ear, A	2	2	0	word (ear) $\leftarrow(\mathrm{A})$			-	-	-	-	*		-	-	
MOVW eam, A	2+	2+ (a)	(c)	word (eam) $\leftarrow(A)$			-	-		-	*		-	-	
MOVW io, A	2	2	(c)	word (io) $\leftarrow(A)$			-	-		-			-	-	
MOVW @RWi+disp8, A	2	3	(c)	word $((\mathrm{RWi})+$ disp8 $) \leftarrow(\mathrm{A})$	-		-	-	-	-			-	-	-
MOVW @RLi+disp8, A	3	6	(c)	word $((\mathrm{RLI} \mathrm{i})+$ disp8) $\leftarrow(\mathrm{A})$	-		-	-	-	-			-	-	-
MOVW @SP+disp8, A	3	3	(c)	word ((SP) + disp8) $\leftarrow(\mathrm{A})$	-		-	-	-	-			-	-	-
MOVPWaddr24, A	5	3	(c)	word (addr24) $\leftarrow(\mathrm{A})$			-	-	-	-			-	-	
MOVPW@A, RWi	2	3	(c)	word $((A)) \leftarrow(\mathrm{RWi})$			-	-	-	-			-	-	-
MOVW RWi, ear	2	2	0	word (RWi) \leftarrow (ear)			-	-		-			-	-	
MOVW RWi, eam	$2+$	$3+$ (a)	(c)	word $(\mathrm{RWi}) \leftarrow($ eam $)$			-	-	-	-			-	-	-
MOVW ear, RWi	2	3	(c)	word (ear) \leftarrow (RWi)			-	-		-			-	-	
MOVW eam, RWi	$2+$	$3+$ (a)	(c)	word (eam) $\leftarrow(\mathrm{RWi})$			-	-		-			-	-	
MOVW RWi, \#imm16	3	2	(c)	word (RWi) \leftarrow imm16			-	-		-			-	-	
MOVW io, \#imm16	4	3	(c)	word (io) \leftarrow imm16			-	-		-	-		-	-	
MOVW ear, \#imm16	4	2	0	word (ear) \leftarrow imm16				-		-	*			-	
MOVW eam, \#imm16	4+	2+ (a)	(c)	word (eam) \leftarrow imm16	-								-		
MOVW @AL, AH	2	2	(c)	word $((A)) \leftarrow(A H)$	-		-	-	-	-			-		-
XCHW A, ear	2	3	0	word $(A) \leftrightarrow($ ear $)$			-	-		-	-				-
XCHW A, eam	2+	$3+$ (a)	$2 \times$ (c)	word (A) $\leftrightarrow($ eam)				-		-	-	-	-	-	-
XCHW RWi, ear	2	4	0	word (RWi) \leftrightarrow (ear)			-	-	-	-	-	-	-	-	-
XCHW RWi, eam	2+	$5+$ (a)	$2 \times$ (c)	word (RWi) \leftrightarrow (eam)	-		-	-	-	-	-	-	-	-	-

Note: For an explanation of "(a)" and "(c)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90230 Series

Table 8 Transfer Instructions (Long Word) [11 Instructions]

Mnemonic	\#	~	B	Operation	LH	AH	1	S	T	N	z	v	c	RMW
MOVL A, ear	2	1	0	long $(A) \leftarrow$ (ear)	-	-			-				-	
MOVL A, eam	$2+$	$3+$ (a)	(d)	long $(A) \leftarrow($ eam $)$	-	-	-	-	-	*	*	-	-	
MOVL A, \# imm32	5	3	0	long $(A) \leftarrow$ imm32	-	-	-	-	-	*	*	-	-	-
MOVL A, @SP + disp8	3	4	(d)	long $(\mathrm{A}) \leftarrow((\mathrm{SP})+$ disp8)	-	-	-	-	-	*	*	-	-	-
MOVPL A, addr24	5	4	(d)	long $(\mathrm{A}) \leftarrow($ addr24)	-	-	-	-	-	*	*	-	-	-
MOVPL A, @A	2	3	(d)	long $(A) \leftarrow((A))$	-	-	-	-	-	*	*	-	-	-
MOVPL@A, RLi	2	5	(d)	long $((A)) \leftarrow($ RLi)	-	-	-	-	-	*		-	-	-
MOVL @SP + disp8, A	3	4	(d)	long $((\mathrm{SP})+$ disp8 $) \leftarrow(\mathrm{A})$	-	-	-	-	-			-	-	-
MOVPL addr24, A	5	4	(d)	long (addr24) \leftarrow (A$)$	-	-	-	-	-	*	*	-	-	-
MOVL ear, A	2	2	0	long (ear) $\leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	-
MOVL eam, A	2+	$3+(\mathrm{a})$	(d)	long (eam) \leftarrow (A)	-	-	-	-	-	*	*	-	-	-

For an explanation of "(a)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Mnemonic	\#		B	Operation	LH	AH	1	S	T	N	z	V	C	RMW
ADD \#imm8	2	2	0	byte $(A) \leftarrow(A)+$ imm8	Z		-	-	-					
ADD A, dir	2	3	(b)	byte $(A) \leftarrow(A)+($ dir $)$	Z	-	-	-	-	*	*	*	,	-
ADD A, ear	2	2)	byte $(A) \leftarrow(A)+$ (ear)	Z	-	-	-	-	*	*	*	*	-
ADD A, eam	2+	$3+$ (a)	(b)	byte $(A) \leftarrow(A)+(e a m)$	Z	-	-	-	-	*	*	*	*	-
ADD ear, A	2	(a)	0	byte (ear) \leftarrow (ear) + (A)		-	-	-	-	*	*	*	*	
ADD eam, A	2+	$3+$ (a)	$2 \times$ (b)	byte (eam) \leftarrow (eam) $+(\mathrm{A})$	Z	-	-	-	-	*	*			
ADDC A	1	2	(b)	byte $(A) \leftarrow(A H)+(A L)+(C)$	Z	-	-	-	-	*	*		*	-
ADDC A, ear	2	2	0	byte $($ A $) \leftarrow(\mathrm{A})+($ ear $)+(\mathrm{C})$	Z	-		-	-	*	*	*	*	-
ADDC A, eam	$2+$	$3+$ (a)	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{eam})+(\mathrm{C})$	Z	-			-	*			*	-
ADDDC A	1	3	0	byte $(A) \leftarrow(A H)+(A L)+(C)($ Decimal $)$	Z		-		-					-
B A, \#imm	2	2	0	$(A) \leftarrow(A)-i m m 8$	Z	-	-	-	-					-
SUB A, dir	2	3	(b)	byte $(A) \leftarrow(A)-$ (dir)	Z	-	-	-	-					
SUB A, ear	2	2	0	byte $(A) \leftarrow(A)-$ (ear)	Z	-	-	-	-					-
SUB A, eam	$2+$	$3+$ (a)	(b)	byte $(A) \leftarrow(A)-($ eam $)$	Z	-	-	-	-	*	*			
SUB ear, A	2	2	0	byte (ear) $\leftarrow($ ear) - (A)					-		*			
SUB eam, A	2+	$3+$ (a)	$2 \times$ (b)	byte (eam) $\leftarrow($ eam $)-(A)$	-	-		-	-					
SUBC A	1	2	0	byte $(A) \leftarrow(A H)-(A L)-(C)$	Z	-		-	-					
SUBC A, ear	2	(a)	0	byte $(A) \leftarrow(A)-($ ear $)-(\mathrm{C})$	Z	-		-					*	-
SUBC A, eam	2+	$3+$ (a)	(b)	byte $(A) \leftarrow(A)-$ eam $)-(C)$	Z	-		-	-				*	-
SUBDC A	1	3	0	byte $(A) \leftarrow(A H)-(A L)-(C)$ (Decimal)	Z	-	-	-						-
ADDW A	1	2	0	$\mathrm{d}(\mathrm{A}) \leftarrow(\mathrm{AH})+(\mathrm{AL})$		-	-	-	-					-
ADDW A, ear		(a)	(c)	word $(A) \leftarrow(A)+(e a r)$	-	-	-	-	-					
ADDW A, eam	$2+$	$3+$ (a)	(c)	word $(A) \leftarrow(A)+($ eam $)$	-	-	-	-	-					-
ADDW A, \#imm16	3	2	0	word $(A) \leftarrow(A)+$ imm16	-	-	-		-					-
ADDW ear, A	2	2	0	word (ear) $\leftarrow(\mathrm{ear})+(\mathrm{A})$	-	-	-		-					
ADDW eam, A	$2+$	$3+$ (a)	$2 \times$ (c)	word (eam) \leftarrow (eam) $+(A)$	-		-		-					
ADDCW A, ear		${ }^{2}$	(c)	word $(A) \leftarrow(A)+(e a r)+(C)$					-					
ADDCW A, eam	2+	$3+$ (a)	(c)	word $(A) \leftarrow(A)+($ eam $)+(C)$	-		-		-					
SUBW A	1	2	0	rd $(A) \leftarrow(A H)-(A L)$	-	-	-	-	-					
SUBW A, ear	2	2	0	word $(A) \leftarrow(A)-(e a r)$	-	-	-	-	-	*	*			
SUBW A, eam	2+	$3+(a)$	(c)	word $(A) \leftarrow(A)-($ eam $)$	-	-	-	-	-	*	*			
SUBW A, \#imm16	3	2	0	word $(A) \leftarrow(A)-$ imm16	-	-	-	-	-	*				-
SUBW ear, A		2	0	word (ear) \leftarrow (ear) - (A)	-	-	-	-	-	*				
SUBW eam, A	2+	$3+$ (a)	$2 \times$ (c)	word (eam) \leftarrow (eam) - (A)	-	-	-	-	-	*	*			
SUBCW A, ear	2	2	(word $(\mathrm{A}) \leftarrow(\mathrm{A})-(\mathrm{ear})-(\mathrm{C})$	-	-	-	-	-	*	*			-
SUBCW A, eam	2+	$3+$ (a)	(c)	word $(A) \leftarrow(A)-($ eam $)-(C)$	-	-	-	-	-					-
	2			long $(A) \leftarrow(A)+($			-	-						
ADDL A, eam	$2+$	6+ (a)	(d)	long $(A) \leftarrow(A)+($ eam $)$	-			-	-					-
ADDL A, \#imm32	5	4	0	long $(A) \leftarrow(A)+$ imm32	-	-	-	-	-					
SUBL A, ear	2	5	0	long $(\mathrm{A}) \leftarrow(\mathrm{A})-$ (ear)	-	-	-	-	-	*	*	*	*	-
SUBL A, eam	$2+$	6+ (a)	(d)	long $(A) \leftarrow(A)-($ eam $)$	-	-	-	-	-	*	*	*	*	-
SUBL A, \#imm32	5	(a)	(long $(A) \leftarrow(A)-$ imm32	-	-	-	-	-	*	*	*		-

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90230 Series

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic	$\#$	\sim	B	Operation	LH	AH	I	s	T	N	z	v	C	RMw
CMP A	1	2	0	byte (AH) - (AL)		-	-	-	-	-	$*$	$*$	$*$	$*$
CMP	A, ear	2	2	0	byte (A) - (ear)	-								
CMP A, eam	$2+$	$2+$ (a)	(b)	byte (A) - (eam)	-	-	-	-	-	$*$	$*$	$*$	$*$	-
CMP A, \#imm8	2	2	0	byte (A) - imm8	-	-	-	-	-	$*$	$*$	$*$	$*$	-
CMPW A	1	2	0	word (AH) - (AL)	-	-	-	-	-	$*$	$*$	$*$	$*$	-
CMPW A, ear	2	2	0	word (A) - (ear)	-	-	-	-	-	$*$	$*$	$*$	$*$	-
CMPW A, eam	$2+$	$2+$ (a)	(c)	word (A) - (eam)	-	-	-	-	-	$*$	$*$	$*$	$*$	-
CMPW A, \#imm16	3	2	0	word (A) - imm16	-	-	-	-	-	$*$	$*$	$*$	$*$	-
CMPL A, ear	2	3	0	long (A) - (ear)	-	-	-	-	$*$	$*$	$*$	$*$	-	
CMPL A, eam	$2+$	$4+$ (a)	(d)	long (A) - (eam)	-	-	-	-	-	$*$	$*$	$*$	$*$	-
CMPL A, \#imm32	5	3	0	long (A) - imm32	-	-	-	-	-	$*$	$*$	$*$	$*$	-

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 12 Unsigned Multiplication and Division Instructions (Word/Long Word) [11 Instructions]

Mnem	onic	\#	~	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
DIVU	A	1	*1	0	word (AH) /byte (AL)	-	-	-	-	-	-	-	*	*	-
DIVU	A, ear	2	*2	0	Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH) word (A)/byte (ear)	-	-	-	-	-	-	-	*	*	-
					Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)										
DIVU	A, eam	2+	*3	*6	word (A)/byte (eam) Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam)	-	-	-	-	-	-	-	*	*	-
DIVUW	A, ear	2	*4	0	long (A)/word (ear)	-	-	-	-	-	-	-	*	*	-
DIVUW	A, eam	2+	*5	*7	Quotient \rightarrow word (A) Remainder \rightarrow word (ear) long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	-	-	-	-	-	-	-	*	*	-
MULU	A	1	*8	0	byte (AH) \times byte (AL) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU	A, ear	2	*9	0	byte (A) \times byte (ear) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU	A, eam	2+	*10	(b)	byte (A) \times byte (eam) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A	1	*11	0	word (AH) \times word $(A L) \rightarrow$ long (A)	-	-	-	-	-	-	-	-	-	
MULUW	A, ear	2	*12	0	word $(A) \times$ word (ear) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A, eam	2+	*13	(c)	word $(A) \times$ word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-

For an explanation of "(b)" and "(c), refer to Table 5, "Correction Values for Number of Cycle Used to Calculate Number of Actual Cycles."
*1: 3 when dividing into zero, 6 when an overflow occurs, and 14 normally.
*2: 3 when dividing into zero, 5 when an overflow occurs, and 13 normally.
*3: $5+(\mathrm{a})$ when dividing into zero, $7+(\mathrm{a})$ when an overflow occurs, and $17+(\mathrm{a})$ normally.
*4: 3 when dividing into zero, 5 when an overflow occurs, and 21 normally.
*5: $4+$ (a) when dividing into zero, $7+$ (a) when an overflow occurs, and $25+$ (a) normally.
*6: (b) when dividing into zero or when an overflow occurs, and $2 \times$ (b) normally.
*7: (c) when dividing into zero or when an overflow occurs, and $2 \times$ (c) normally.
*8: 3 when byte (AH) is zero, and 7 when byte (AH) is not 0 .
*9: 3 when byte (ear) is zero, and 7 when byte (ear) is not 0 .
*10: $4+(\mathrm{a})$ when byte (eam) is zero, and $8+(\mathrm{a})$ when byte (eam) is not 0 .
*11: 3 when word $(A H)$ is zero, and 11 when word $(A H)$ is not 0 .
*12: 3 when word (ear) is zero, and 11 when word (ear) is not 0.
*13: $4+(\mathrm{a})$ when word (eam) is zero, and $12+(\mathrm{a})$ when word (eam) is not 0 .

MB90230 Series

Table 13 Signed Multiplication and Division Instructions (Word/Long Word) [11 Insturctions]

For an explanation of "(b)" and "(c)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."
*1: 3 when dividing into zero, 8 or 18 when an overflow occurs, and 18 normally.
*2: 3 when dividing into zero, 10 or 21 when an overflow occurs, and 22 normally.
*3: $4+$ (a) when dividing into zero, $11+$ (a) or $22+$ (a) when an overflow occurs, and $23+$ (a) normally.
*4: When the dividend is positive: 4 when dividing into zero, 10 or 29 when an overflow occurs, and 30 normally. When the dividend is negative: 4 when dividing into zero, 11 or 30 when an overflow occurs, and 31 normally.
*5: When the dividend is positive: $4+$ (a) when dividing into zero, $11+$ (a) or $30+$ (a) when an overflow occurs, and $31+$ (a) normally.
When the dividend is negative: $4+(a)$ when dividing into zero, $12+(a)$ or $31+(a)$ when an overflow occurs, and $32+$ (a) normally.
*6: (b) when dividing into zero or when an overflow occurs, and $2 \times$ (b) normally.
*7: (c) when dividing into zero or when an overflow occurs, and $2 \times$ (c) normally.
*8: 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*9: 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.
*10: $4+(a)$ when byte (eam) is zero, $13+(a)$ when the result is positive, and $14+(a)$ when the result is negative.
*11: 3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*12: 3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.
*13: $4+(\mathrm{a})$ when word (eam) is zero, $17+$ (a) when the result is positive, and $20+(\mathrm{a})$ when the result is negative.
Note: Which of the two values given for the number of execution cycles applies when an overflow error occurs in a DIV or DIVW instruction depends on whether the overflow was detected before or after the operation.

Table 14 Logical 1 Instructions (Byte, Word) [39 Instructions]

Mnemonic		\#	\sim	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
AND	A, \#imm8	2	2	0	byte $(A) \leftarrow(A)$ and imm8	-	-	-	-	-	*		R	-	-
AND	A, ear	2	2	0	byte $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-	*	*	R	-	-
AND	A, eam	2+	$3+(\mathrm{a})$	(b)	byte $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	*	*	R	-	-
AND	ear, A	2	3	0	byte (ear) \leftarrow (ear) and (A)	-	-	-	-	-	*	*	R	-	*
AND	eam, A	2+	$3+$ (a)	$2 \times(\mathrm{b})$	byte (eam) $\leftarrow($ eam $)$ and (A)	-	-	-	-	-	*	*	R	-	*
OR	A, \#imm8	2	2	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ or imm8	-	-	-	-	-	*	*	R	-	-
OR	A, ear	2	2	0	byte $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-	*	*	R	-	-
OR	A, eam	2+	$3+(\mathrm{a})$	(b)	byte $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*	*	R	-	-
OR	ear, A	2	3	0	byte (ear) \leftarrow (ear) or (A)	-	-	-	-	-	*	*	R	-	*
OR	eam, A	2+	$3+$ (a)	$2 \times(\mathrm{b})$	byte (eam) $\leftarrow($ eam $)$ or (A)	-	-	-	-	-	*	*	R	-	*
XOR	A, \#imm8	2	2	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ xor imm8	-	-	-	-	-	*	*	R	-	-
XOR	A, ear	2	2	0	byte $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-	*	*	R	-	-
XOR	A, eam	2+	$3+$ (a)	(b)	byte $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-	*	*	R	-	-
XOR	ear, A	2	3	0	byte (ear) \leftarrow (ear) xor (A)	-	-	-	-	-	*		R	-	*
XOR	eam, A	2+	$3+$ (a)	$2 \times$ (b)	byte (eam) \leftarrow (eam) xor (A)	-	-	-	-	-	*	*	R	-	*
NOT	A	1	2	0	byte $(\mathrm{A}) \leftarrow$ not (A)	-	-	-	-	-	*	*	R	-	-
NOT	ear	2	2	0	byte (ear) \leftarrow not (ear)	-	-	-	-	-	*	*	R	-	*
NOT	eam	2+	$3+$ (a)	$2 \times(\mathrm{b})$	byte (eam) \leftarrow not (eam)	-	-	-	-	-	*	*	R	-	*
ANDW	A	1	2	0	word $(\mathrm{A}) \leftarrow(\mathrm{AH})$ and (A)	-	-	-	-	-	*	*	R	-	-
ANDW	A, \#imm16	3	2	0	word $(A) \leftarrow(A)$ and imm16	-	-	-	-	-	*	*	R	-	-
ANDW	A, ear	2	2	0	word $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-	*	*	R	-	-
ANDW	A, eam	2+	$3+$ (a)	(c)	word $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	*	*	R	-	-
ANDW	ear, A	2	3	0	word (ear) \leftarrow (ear) and (A)	-	-	-	-	-	*	*	R	-	*
ANDW	eam, A	2+	$3+$ (a)	$2 \times(\mathrm{c})$	word (eam) $\leftarrow($ eam $)$ and (A)	-	-	-	-	-	*	*	R	-	*
ORW	A	1	2	0	word $(\mathrm{A}) \leftarrow(\mathrm{AH})$ or (A)	-	-	-	-	-	*	*	R	-	-
ORW	A, \#imm16	3	2	0	word $(A) \leftarrow(A)$ or imm16	-	-	-	-	-	*		R	-	-
ORW	A, ear	2	2	0	word $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-	*		R	-	-
ORW	A, eam	2+	$3+$ (a)	(c)	word $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*	*	R	-	-
ORW	ear, A	2	3	0	word (ear) \leftarrow (ear) or (A)	-	-	-	-	-	*	*	R	-	*
ORW	eam, A	2+	$3+$ (a)	$2 \times(\mathrm{c})$	word $($ eam $) \leftarrow($ eam $)$ or (A)	-	-	-	-	-	*	*	R	-	*
XORW		1	2	0	word $(A) \leftarrow(A H)$ xor (A)	-	-	-	-	-	*	*	R	-	-
XORW	A, \#imm16	3	2	0	word $(A) \leftarrow(A)$ xor imm16	-	-	-	-	-	*		R	-	-
XORW	A, ear	2	2	0	word $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-	*	*	R	-	-
XORW	A, eam	2+	$3+$ (a)	(c)	word $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-	*	*	R	-	-
XORW	ear, A	2	3	0	word (ear) \leftarrow (ear) xor (A)	-	-	-	-	-	*		R	-	*
XORW	eam, A	2+	$3+$ (a)	$2 \times$ (c)	word (eam) \leftarrow (eam) xor (A)	-	-	-	-	-	*	*	R	-	*
NOTW	A	1	2	0	word $(\mathrm{A}) \leftarrow \operatorname{not}(\mathrm{A})$	-	-	-	-	-	*	*	R	-	-
NOTW	ear	2	2	0	word (ear) \leftarrow not (ear)	-	-	-	-	-	*	*	R	-	*
NOTW	eam	2+	$3+$ (a)	$2 \times(\mathrm{c})$	word (eam) \leftarrow not (eam)	-	-	-	-	-	*	*	R	-	*

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90230 Series

Table 15 Logical 2 Instructions (Long Word) [6 Instructions]

Mnemonic		\#	~	B	Operation	LH	AH	1	S	T	N	z	v	C	RMW
ANDL	A, ear	2	5	(d)	long $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-	*	*	R	-	
ANDL	A, eam	2+	6+ (a)	(d)	long $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	*	*	R	-	-
ORL	A, ear	2	5	0	long $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-	*	*	R	-	-
ORL	A, eam	2+	6+ (a)	(d)	long $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*	*	R	-	-
XORL	A, ear	2	5	0	long $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-	*	*	R	-	-
XORL	A, eam	2+	6+ (a)	(d)	long $(\mathrm{A}) \leftarrow(\mathrm{A})$ xor (eam)	-	-	-	-	-			R	-	-

For an explanation of "(a)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 16 Sign Inversion Instructions (Byte/Word) [6 Instructions]

For an explanation of "(a)", "(b)" and "(c)" and refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 17 Absolute Value Instructions (Byte/Word/Long Word) [3 Insturctions]

Mnemonic	\#	\sim	B	Operation	LH	AH	1	s	T	N	Z	v	c	RMW
ABS A	2	2	0	byte $(A) \leftarrow$ absolute value (A)	Z	-	-	-	-	*	*	*	-	-
ABSW A	2	2	0	word (A) \leftarrow absolute value (A)	-	-	-	-	-	*	*	*	-	-
ABSL A	2	4	0	long (A) \leftarrow absolute value (A)	-	-	-	-	-	*	*	*	-	-

Table 18 Normalize Instructions (Long Word) [1 Instruction]

Mnemonic	$\#$	\sim	B	Operation	LH	AH	I	s	T	N	Z	V	C	RMW
NRML A, R0	2	$*$	0	long $($ A $) \leftarrow$ Shifts to the position at which " 1 " was set first byte $(R 0)$ \leftarrow current shift count	-	-	-	-	$*$	-	-	-	-	-

[^1]Table 19 Shift Instructions (Byte/Word/Long Word) [27 Instructions]

Mnemonic	\#	\sim	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
RORC A	2	2	0	byte $(\mathrm{A}) \leftarrow$ Right rotation with carry	-	-	-	-	-	*	*	-	*	-
ROLC A	2	2	0	byte $(A) \leftarrow$ Left rotation with carry	-	-	-	-	-	*	*	-	*	-
RORC ear	2	2	0	byte (ear) \leftarrow Right rotation with carry	-	-	-	-	-	*	*	-	*	*
RORC eam	2+	$3+$ (a)	$2 \times$ (b)	byte (eam) \leftarrow Right rotation with carry	-	-	-	-	-	*	*	-	*	*
ROLC ear	2	2	0	byte (ear) \leftarrow Left rotation with carry	-	-	-	-	-	*	*	-	*	*
ROLC eam	2+	$3+(\mathrm{a})$	$2 \times(\mathrm{b})$	byte (eam) \leftarrow Left rotation with carry	-	-	-	-	-		*	-	*	*
ASR A, R0	2	*1	0	byte $(A) \leftarrow$ Arithmetic right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSR A, R0	2	*1	0	byte $(A) \leftarrow$ Logical right barrel shift (A, R0)	-	-	-	-	*	*	*	-		-
LSL A, RO	2	*1	0	byte $(A) \leftarrow$ Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-
ASR A, \#imm8	3	*3	0	byte (A) \leftarrow Arithmetic right barrel shift (A, imm8)	-	-	-	-	*	*	*	-	*	-
LSR A, \#imm8	3	*3	0	byte (A) \leftarrow Logical right barrel shift (A, imm8)	-	-	-	-	*	*	*	-	*	-
LSL A, \#imm8	3	*3	0	byte (A) \leftarrow Logical left barrel shift (A, imm8)	-	-	-	-	-	*	*	-	*	-
ASRW A	1	2	0	word $(A) \leftarrow$ Arithmetic right shift (A, 1 bit)	-	-	-	-	*	*	*	-	*	-
LSRW A/SHRW A	1	2	0	word $(A) \leftarrow$ Logical right shift (A, 1 bit)	-	-	-	-	*	R	*	-	*	-
LSLW A/SHLW A	1	2	0	word $(A) \leftarrow$ Logical left shift (A, 1 bit)	-	-	-	-	-	*	*	-	*	-
ASRW A, R0	2	*1	0	word (A) \leftarrow Arithmetic right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSRW A, RO	2	*1	0	word $(A) \leftarrow$ Logical right barrel shift (A, RO)	-	-	-	-	*		*	-		-
LSLW A, RO	2	*1	0	word $(A) \leftarrow$ Logical left barrel shift (A, R0)	-	-	-	-	-		*	-	*	-
ASRW A, \#imm8	3	*3	0	word $(\mathrm{A}) \leftarrow$ Arithmetic right barrel shift (A , imm8)	-	-	-	-			*	-	*	-
LSRW A, \#imm8	3	*3	0	word $(A) \leftarrow$ Logical right barrel shift (A, imm8)	-	-	-	-	*	*	*	-	*	-
LSLW A, \#mm8	3	*3	0	word $(A) \leftarrow$ Logical left barrel shift (A , imm8)	-	-	-	-	-	*	*	-	*	-
ASRL A, R0	2	*2	0	long $(A) \leftarrow$ Arithmetic right shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSRL A, RO	2	*2	0	long $(A) \leftarrow$ Logical right barrel shift (A, RO)	-	-	-	-	*	*	*	-	*	-
LSLL A, R0	2	*2	0	long $(A) \leftarrow$ Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-
ASRL A, \#imm8	3	*4	0	long $(A) \leftarrow$ Arithmetic right shift (A, imm8)	-	-	-	-	*	*	*	-	*	-
LSRL A, \#imm8	3	*4	0	long (A) \leftarrow Logical right barrel shift (A, imm8)	-	-	-	-	*		*	-	*	-
LSLL A, \#imm8	3	*4	0	long $(A) \leftarrow$ Logical left barrel shift (A , imm8)	-	-	-	-	-	*	*	-	*	-

For an explanation of "(a)" and "(b)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."
*1: 3 when R0 is $0,3+(R 0)$ in all other cases.
*2: 3 when R0 is $0,4+(\mathrm{RO})$ in all other cases.
*3: 3 when imm8 is $0,3+(\mathrm{imm} 8$) in all other cases.
*4: 3 when imm8 is $0,4+(\mathrm{imm} 8)$ in all other cases.

MB90230 Series

Table 20 Branch 1 Instructions [31 Instructions]

Mnemonic	\#	\sim	B	Operation	LH	A		1	S	T	N	z	v	C	RMW
BZ/BEQ	2	*1	0	Branch when (Z) = 1	-	-			-	-	-		-	-	
BNZ/BNE rel	2	${ }^{*}$	0	Branch when (Z) $=0$	-	-		-	-	-	-	-	-	-	-
BC/BLO rel	2	*	0	Branch when (C) = 1	-	-		-	-	-	-	-	-	-	-
BNC/BHS rel	2	*1	0	Branch when (C) $=0$	-	-		-	-	-	-	-	-	-	-
BN rel	2	*1	0	Branch when (N) $=1$	-	-		-	-	-	-	-	-	-	-
BP rel	2	*	0	Branch when (N) $=0$	-	-		-	-	-	-	-	-	-	-
BV rel	2	*1	0	Branch when (V) $=1$	-	-		-	-	-	-	-	-	-	-
BNV rel	2		0	Branch when (V) $=0$	-	-		-	-	-	-	-	-	-	-
BT rel	2	${ }_{1}$	0	Branch when (T) = 1	-	-		-	-	-	-	-	-	-	-
BNT rel	2	,	0	Branch when (T) $=0$	-	-		-	-	-	-	-	-	-	
BLT rel	2	${ }_{* 1}$	0	Branch when (V) xor (N) $=1$	-	-		-	-	-	-	-	-	-	-
BGE rel	2	*1	0	Branch when (V) $\operatorname{xor}(\mathrm{N})=0$	-	-			-	-	-	-	-	-	-
BLE	2	*1	0	((V) xor (N)) or (Z) = 1	-	-			-	-	-	-	-	-	-
BGT	2		0	$(\mathrm{V}) \mathrm{xor}(\mathrm{N})$) or $(\mathrm{Z})=0$	-	-		-	-	-	-	-	-	-	-
BLS	2	${ }^{*}$	0	Branch when (C) or $(Z)=1$	-	-		-	-	-	-	-	-	-	-
BHI rel	2	${ }_{* 1}^{* 1}$	0	Branch when (C) or (Z) $=0$	-	-			-	-	-	-	-	-	
BRA rel	2	*	0	Branch unconditionally	-	-		-	-	-	-	-	-	-	-
JMP @A	1	2	0	word (PC) \leftarrow (A$)$	-	-			-	-	-	-	-	-	-
JMP addr16	3	2	0	word $(\mathrm{PC}) \leftarrow$ addr16	-	-		-	-	-	-	-	-	-	-
JMP @ear	2	3	0	word (PC) \leftarrow (ear)	-	-			-	-	-	-	-	-	
JMP @eam	$2+$	$4+$ (a)	(c)	word $(\mathrm{PC}) \leftarrow(\mathrm{eam})$	-	-			-	-	-	-	-	-	
JMPP @ear*3	2	3	0	word $(\mathrm{PC}) \leftarrow(\mathrm{ear}),(\mathrm{PCB}) \leftarrow(\mathrm{ear}+2)$	-	-			-	-	-	-	-	-	
JMPP @eam*3	$2+$	4+ (a)	(d)	word $(\mathrm{PC}) \leftarrow(\mathrm{eam}),(\mathrm{PCB}) \leftarrow(\mathrm{eam}+2)$	-	-			-	-	-	-	-	-	
JMPP addr24	4	,	d	word $(\mathrm{PC}) \leftarrow$ ad24 0 to 15 $(\mathrm{PCB}) \leftarrow \operatorname{ad} 2416$ to 23	-	-			-	-	-	-	-	-	-
CALL @ear*4	2	4	(c)	word (PC) \leftarrow (ear)	-	-			-	-	-	-	-	-	-
CALL @eam*4	$2+$	$5+$ (a)	$2 \times$ (c)	word (PC) $\leftarrow($ eam $)$	-	-		-	-	-	-	-	-	-	-
CALL addr16*5	3	5	(c)	word $(\mathrm{PC}) \leftarrow$ addr 16	-	-		-	-	-	-	-	-	-	
CALLV \#vct4*5	1	5	$2 \times$ (c)	Vector call linstruction	-	-		-	-	-	-	-	-	-	-
CALLP @ear *6	2	7	$2 \times$ (c)	word $(\mathrm{PC}) \leftarrow$ (ear) 0 to 15, $(\mathrm{PCB}) \leftarrow($ ear $) 16$ to 23	-	-			-	-	-	-	-	-	-
CALLP @eam *6	2+	8+ (a)	*2	word $(\mathrm{PC}) \leftarrow($ eam $) 0$ to 15 , $(\mathrm{PCB}) \leftarrow($ eam $) 16$ to 23	-	-			-	-	-	-	-	-	-
CALLP addr24*7	4	7	$2 \times$ (c)	word $(\mathrm{PC}) \leftarrow$ addr 0 to 15 , (PCB) \leftarrow addr 16 to 23	-	-		-	-	-	-	-	-	-	-

For an explanation of "(a)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."
*1: 3 when branching, 2 when not branching.
*2: $3 \times(\mathrm{c})+(\mathrm{b})$
*3: Read (word) branch address.
*4: W: Save (word) to stack; R: Read (word) branch address.
*5: Save (word) to stack.
*6: W: Save (long word) to W stack; R: Read (long word) branch address.
*7: Save (long word) to stack.

Table 21 Branch 2 Instructions [20 Instructions]

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic \& \# \& \sim \& B \& Operation \& LH \& AH \& 1 \& s \& T \& N \& z \& v \& c \& RMW

\hline CBNE A, \#imm8, rel \& 3 \& ${ }^{*}$ \& 0 \& Branch when byte (A) $=$ imm8 \& - \& - \& - \& - \& - \& * \& * \& * \& \& -

\hline CWBNE A, \#imm16, rel \& 4 \& *1 \& 0 \& Branch when byte $(A) \neq$ imm16 \& - \& - \& - \& - \& - \& * \& * \& * \& * \&

\hline CBNE ear, \#imm8, rel \& 4 \& $*$
$*$
$*$ \& 0 \& Branch when byte (ear) $=$ imm8 \& - \& - \& - \& - \& - \& * \& * \& * \& * \& -

\hline CBNE eam, \#imm8, rel \& 4+ \& *1 \& (b) \& Branch when byte (eam) \neq imm8 \& - \& - \& - \& - \& - \& * \& * \& * \& * \& -

\hline CWBNE ear, \#imm16, rel \& 5 \& *3 \& 0 \& Branch when word (ear) $=$ imm16 \& - \& - \& - \& - \& - \& * \& * \& * \& * \& -

\hline CWBNE eam, \#imm16, rel \& $5+$ \& *2 \& (c) \& Branch when word (eam) \neq imm16 \& - \& - \& - \& - \& - \& * \& * \& * \& * \& -

\hline DBNZ ear, rel \& 3 \& * 4 \& 0 \& Branch when byte (ear) = \& - \& - \& - \& - \& - \& * \& * \& * \& - \& -

\hline \& \& \& \& (ear) - 1, and (ear) $=0$ \& \& \& \& \& \& \& \& \& \&

\hline DBNZ eam, rel \& 3+ \& *2 \& $2 \times$ (b) \& Branch when byte (ear) $=$ (eam) -1 , and $(e a m) \neq 0$ \& - \& - \& - \& - \& - \& * \& * \& * \& - \&

\hline DWBNZ ear, rel \& 3 \& *4 \& 0 \& Branch when word (ear) = (ear) -1 , and (ear) $\neq 0$ \& - \& - \& - \& - \& - \& * \& * \& * \& - \& -

\hline DWBNZ eam, rel \& 3+ \& $$
\begin{aligned}
& 14 \\
& 12
\end{aligned}
$$ \& $2 \times$ (c) \& Branch when word (eam) = (eam) - 1, and (eam) $\neq 0$ \& - \& - \& - \& - \& - \& * \& * \& * \& - \& *

\hline INT \#vct8 \& 2 \& 13 \& $8 \times$ (c) \& Software interrupt \& - \& - \& R \& S \& - \& - \& - \& - \& \& -

\hline INT addr16 \& 3 \& 14 \& 6x (c) \& Software interrupt \& - \& - \& R \& S \& - \& - \& - \& - \& - \& -

\hline INTP addr24 \& 4 \& 9 \& $6 \times$ (c) \& Software interrupt \& - \& - \& R \& S \& - \& - \& - \& - \& - \& -

\hline INT9 \& 1 \& 11 \& $8 \times$ (c) \& Software interrupt \& - \& - \& R \& S \& - \& - \& - \& - \& - \& -

\hline RETI \& 1 \& \& $6 \times$ (c) \& Return from interrupt \& - \& - \& * \& * \& * \& * \& * \& * \& * \& -

\hline RETIQ *6 \& 2 \& 6 \& *5 \& Return from interrupt \& - \& - \& * \& * \& * \& * \& * \& * \& * \& -

\hline LINK \#imm8 \& 2 \& \& (c) \& At constant entry, save old frame pointer to stack, set \& - \& - \& - \& - \& - \& - \& - \& - \& - \& -

\hline UNLINK \& 1 \& 5

4
5 \& (c) \& new frame pointer, and allocate local pointer area At constant entry, retrieve old frame pointer from stack. \& - \& - \& - \& - \& - \& - \& - \& - \& - \& -

\hline RET \& 1 \& \& (c) \& Return from subroutine \& - \& - \& - \& - \& - \& - \& - \& - \& - \& -

\hline RETP *8 \& 1 \& \& (d) \& Return from subroutine \& - \& - \& - \& - \& - \& - \& - \& - \& - \& -

\hline
\end{tabular}

For an explanation of "(b)", "(c)" and "(d)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."
*1: 4 when branching, 3 when not branching
*2: 5 when branching, 4 when not branching
*3: $5+$ (a) when branching, $4+$ (a) when not branching
*4: $6+$ (a) when branching, $5+$ (a) when not branching
*5: $3 \times$ (b) $+2 \times$ (c) when an interrupt request is generated, $6 \times$ (c) when returning from the interrupt.
*6: High-speed interrupt return instruction. When an interrupt request is detected during this instruction, the instruction branches to the interrupt vector without performing stack operations when the interrupt is generated.
*7: Return from stack (word)
*8: Return from stack (long word)

MB90230 Series

Table 22 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]

Mnemonic	\#	\sim	B	Operation	LH		AH	1	s	T	N	z	v	c	RMV
PUSHW A	1	3	(c)	word (SP) $\leftarrow(\mathrm{SP})-2,($ (SP) $) \leftarrow(\mathrm{A})$	-		-	-	-	-	-	-	-	-	-
PUSHW AH	1	3	(c)	word (SP) $\leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{AH})$	-		-	-	-	-	-	-	-	-	-
PUSHW PS	1	3	(c)	word (SP) $\leftarrow(S P)-2,((S P)) \leftarrow(P S)$	-		-	-	-	-	-	-	-	-	-
PUSHW rlst	2	*3	*4	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-2 \mathrm{n},((\mathrm{SP})) \leftarrow(\mathrm{rlst})$	-		-	-	-	-	-	-	-	-	-
POPW A	1	3	(c)	word $(A) \leftarrow((S P)),(S P) \leftarrow(S P)+2$	-			-	-	-	-	-	-	-	-
POPW AH	1	3	(c)	word $(\mathrm{AH}) \leftarrow((\mathrm{SP})$), (SP) $) \leftarrow(\mathrm{SP})+2$	-		-	-	-	-	-	-	-	-	-
POPW PS	1	3	(c)	word (PS) $\leftarrow((\mathrm{SP})$), $(\mathrm{SP}) \leftarrow(\mathrm{SP})+2$	-		-	*					*	*	-
POPW rlst	2	*2	*4	$(\mathrm{rlst}) \leftarrow((\mathrm{SP})),(\mathrm{SP}) \leftarrow(\mathrm{SP})$	-		-	-	-	-	-	-	-	-	-
JCTX @A	1	9	$6 \times$ (c)	Context switch instruction	-		-	*	*	*	*	*	*	*	-
AND CCR,\#imm8	2	3	0	byte $(C C R) \leftarrow(C C R)$ and imm8	-		-	*		*	*	*	*	*	-
OR CCR, \#imm8	2	3	0	byte $(C C R) \leftarrow(C C R)$ or imm8	-		-	*		*	*		*	*	
MOV RP, \#imm8	2	2	0	byte (RP) \leftarrow imm8	-			-		-	-	-	-	-	-
MOV ILM, \#imm8	2	2	0	byte (ILM) \leftarrow imm8	-		-	-	-	-	-	-	-	-	
MOVEA RWi, ear	2	3	0	word $(\mathrm{RWi}) \leftarrow$ ear	-		-	-				-		-	-
MOVEA RWi, eam	$2+$	$2+$ (a)	0	word $($ RWi $) \leftarrow$ eam	-			-		-	-	-	-	-	
MOVEA A, ear	2	2	0	word $(\mathrm{A}) \leftarrow$ ear	-			-		-	-	-	-	-	
MOVEA A, eam	$2+$	1+ (a)	0	word $(A) \leftarrow e a m$	-			-	-	-	-	-	-	-	-
ADDSP \#imm8	2	3	0	word (SP) \leftarrow ext (imm8)	-		-	-		-	-	-	-	-	-
ADDSP \#imm16	3	3	0	word (SP) \leftarrow imm16	-			-	-	-	-		-	-	
MOV A, brgl	2	*1	0	byte $(\mathrm{A}) \leftarrow($ brgl $)$	Z			-	-	-	*		-	-	-
MOV brg2, A	2	1	0	byte (brg2) $\leftarrow(A)$	-		-	-	-	-	*		-	-	-
MOV brg2,\#imm8	3	2	0	byte (brg2) \leftarrow imm8	-		-	-	-	-	*		-	-	-
NOP	1	1	0	No operation	-			-	-	-	-	-	-		-
ADB	1	1	0	Prefix code for AD space access	-		-	-		-	-	-	-	-	-
DTB	1	1	0	Prefix code for DT space access	-		-	-		-	-	-	-	-	-
PCB		1	0	Prefix code for PC space access	-		-	-		-	-	-	-	-	-
SPB	1	1	0	Prefix code for SP space access	-		-	-		-	-	-	-	-	-
NCC	,	1	0	Prefix code for no flag change	-		-	-		-	-	-	-	-	-
CMR	1	1	0	Prefix code for the common register bank	-		-	-	-	-	-	-	-	-	-
MOVW SPCU, \#imm16		2	0	word (SPCU) \leftarrow (imm16)	-		-	-		-	-	-	-	-	-
MOVW SPCL, \#imm16	4	2	0	word (SPCL) \leftarrow (imm16)	-		-	-		-	-	-	-	-	-
SETSPC	2	2	0	Stack check operation enable	-		-	-		-	-	-	-	-	-
CLRSPC	2	2	0	Stack check operation disable	-		-	-	-	-	-	-	-	-	-
BTSCN A	2	*5	0	byte (A) \leftarrow position of "1" bit in word (A)	Z			-			-		-	-	-
BTSCNSA	2	* 6	0	byte (A) \leftarrow position of "4" bit in word (A) $\times 2$	Z		-	-	-	-	-	*	-	-	-
BTSCNDA	2	*7	0	byte (A) \leftarrow position of " 1 " bit in word (A) $\times 4$	Z		-	-	-	-	-		-	-	-

For an explanation of "(a)" and "(c)", refer to Tables 4 and 5.

[^2]*3: $3+4 \times$ (push count)

MB90230 Series

Table 23 Bit Manipulation Instructions [21 Instructions]

Mnemonic	\#	\sim	B	Operation	LH	AH	1	s	T	N	z	v	c	RMW
MOVB A, dir:bp	3	3	(b)	byte (A) \leftarrow (dir:bp) b	Z	*	-	-	-	*	*	-	-	-
MOVB A, addr16:bp	4	3	(b)	byte $(A) \leftarrow($ addr16:bp) b	Z	*	-	-	-	*	*	-	-	-
MOVB A, io:bp	3	3	(b)	byte $(A) \leftarrow$ (io:bp) b	Z	*	-	-	-	*	*	-	-	-
MOVB dir:bp, A	3	4	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	*
MOVB addr16:bp, A	4	4	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	
MOVB io:bp, A	3	4	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	
SETB dir:bp	3	4	$2 \times$ (b)	bit (dir: bp) $\mathrm{b} \leftarrow 1$	-	-	-	-	-	-	-	-	-	
SETB addr16:bp	4	4	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow 1$	-	-	-	-	-	-	-	-	-	
SETB io:bp	3	4	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 1$	-	-	-	-	-	-	-	-	-	
CLRB dir:bp	3	4	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 0$	-	-	-	-	-	-	-	-	-	
CLRB addr16:bp	4	4	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow 0$	-	-	-	-	-	-	-	-	-	
CLRB io:bp	3	4	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 0$	-	-	-	-	-	-	-	-	-	
BBC dir:bp, rel	4	*1	(b)	Branch when (dir:bp) $\mathrm{b}=0$	-	-	-	-	-	-	*	-	-	-
BBC addr16:bp, rel	5	*1	(b)	Branch when (addr16:bp) $b=0$	-	-	-	-	-	-	*	-	-	-
BBC io:bp, rel	4	*1	(b)	Branch when (io:bp) $\mathrm{b}=0$	-	-	-	-	-	-	*	-	-	-
BBS dir:bp, rel	4	*1	(b)	Branch when (dir:bp) $\mathrm{b}=1$	-	-	-	-	-	-	*	-	-	-
BBS addr16:bp, rel	5	*1	(b)	Branch when (addr16:bp) $b=1$	-	-	-	-	-	-	*	-	-	-
BBS io:bp, rel	4	*1	(b)	Branch when (io:bp) $\mathrm{b}=1$	-	-	-	-	-	-	*	-	-	-
SBBS addr16:bp, rel	5	*2	$2 \times$ (b)	Branch when (addr $16: \mathrm{bp}$) $\mathrm{b}=1, \mathrm{bit}=1$	-	-	-	-	-	-	*	-	-	
WBTS io:bp	3	*3	* 4	Wait until (io:bp) $\mathrm{b}=1$	-	-	-	-	-	-	-	-	-	-
WBTC io:bp	3	*3	*4	Wait until (io:bp) $\mathrm{b}=0$	-	-	-	-	-	-	-	-	-	-

For an explanation of "(b)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."
*1: 5 when branching, 4 when not branching
*2: 7 when condition is satisfied, 6 when not satisfied
*3: Undefined count
*4: Until condition is satisfied

MB90230 Series

Table 24 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	\#	~	B	Operation	LH	AH	1	s	T	N	z	v	C	RMW
SWAP	,	3	0	byte (A) 0 to $7 \leftarrow \rightarrow$ (A) 8 to 15	-	-	-	-	-	-	-	-	-	
SWAPW	1	2	0	word (AH) $\leftarrow \rightarrow(\mathrm{AL})$	-	*	-	-	-	-	-	-	-	-
EXT	1	1	0	Byte code extension	X	-	-	-	-	*	*	-	-	-
EXTW	1	2	0	Word code extension	-	X	-	-	-	*	*	-	-	-
ZEXT	1	1	0	Byte zero extension	Z	-	-	-	-	R	*	-	-	-
ZEXTW	1	2	0	Word zero extension	-	Z	-	-	-	R	*	-	-	-

Table 25 String Instructions [10 Instructions]

Mnemonic	\#	\sim	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
MOVS/MOVSI	2	*2	*3	Byte transfer @AH+ ¢@AL+, counter = RW0	-	-	-	-	-	-	-	-	-	-
MOVSD	2	*2	*3	Byte transfer @AH- ¢ @AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCEQ/SCEQI	2	*1	*4	Byte retrieval @AH+ - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
SCEQD	2	*1	*4	Byte retrieval @AH-- AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FILS/FILSI	2	$5 \mathrm{~m}+3$	*5	Byte filling @AH+ \leftarrow AL, counter $=$ RW0	-	-	-	-	-	*	*	-	-	-
MOVSW/MOVSWI	2	*2	*6	Word transfer @AH+ ¢@AL+, counter = RW0	-	-	-	-	-	-	-	-	-	-
MOVSWD	2	*2	*6	Word transfer @AH- ¢ @AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCWEQ/SCWEQI	2	${ }^{*}$	*7	Word retrieval @AH+-AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
SCWEQD	2	${ }^{*}$	*7	Word retrieval @AH- - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FILSW/FILSWI	2	$5 \mathrm{~m}+3$	*8	Word filling @AH+ \leftarrow AL, counter $=$ RW0	-	-	-	-	-	*	*	-	-	-

m : RW0 value (counter value)
*1: 3 when RW0 is $0,2+6 \times($ RW0) for count out, and $6 n+4$ when match occurs
*2: 4 when RW0 is $0,2+6 \times($ RW0) in any other case
*3: (b) $\times($ RW0)
*4: (b) $\times n$
*5: (b) $\times($ RW0 $)$
*6: (c) $\times($ RW0)
*7: (c) $\times n$
*8: (c) $\times($ RW0 $)$

Table 26 Multiple Data Transfer Instructions [18 Instructions]

Mnemonic	\#	\sim	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
MOVM @A, @RLi, \#imm8	3	*1	*3	Multiple data trasfer byte $((\mathrm{A})) \leftarrow(($ RLi) $)$		-	-	-	-	-	-	-	-	
MOVM @A, eam, \#imm8	3+	*2	*3	Multiple data trasfer byte $((\mathrm{A})) \leftarrow$ (eam)	-	-	-	-	-	-	-	-	-	-
MOVM addr16, @RLi, \#imm8	5	*1	*3	Multiple data trasfer byte (addr16) $\leftarrow(($ RLi))	-	-	-	-	-	-	-	-	-	-
MOVM addr16, eam, \#imm8	5+	*2	*3	Multiple data trasfer byte (addr16) \leftarrow (eam)	-	-	-	-	-	-	-	-	-	-
MOVMW @A, @RLi, \#imm8	3	*1	*4	Multiple data trasfer word $((\mathrm{A})) \leftarrow((\mathrm{RLL})$)	-	-	-	-	-	-	-	-	-	-
MOVMW @A, eam, \#imm8	$3+$	*2	*4	Multiple data trasfer word $((\mathrm{A})) \leftarrow($ eam $)$	-	-	-	-	-	-	-	-	-	-
MOVMW addr16, @RLi, \#imm8	5	*1	*4	Multiple data trasfer word (addr16) $\leftarrow((\mathrm{RLi})$)	-	-	-	-	-	-	-	-	-	
MOVMW addr16, eam, \#imm8	5+	*2	*4	Multiple data trasfer word (addr16) \leftarrow (eam)	-	-	-	-	-	-	-	-	-	-
MOVM @RLi, @A,\#imm8	3	*1	*3	Multiple data trasfer byte ((RLi)) $\leftarrow((\mathrm{A})$)	-	-	-	-	-	-	-	-	-	-
MOVM eam, @A, \#imm8	$3+$	*2	*3	Multiple data trasfer byte (eam) $\leftarrow((\mathrm{A})$)	-	-	-	-	-	-	-	-	-	
MOVM @RLi, addr16, \#imm8	5	*1	*3	Multiple data transfer byte $($ (RLi) $) \leftarrow$ (addr16)	-	-	-	-	-	-	-	-	-	-
MOVM eam, addr16, \#imm8	5+	*2	*3	Multiple data transfer byte (eam) \leftarrow (addr16)	-	-	-	-	-	-	-	-	-	-
MOVMW @RLi, @A, \#imm8	3	${ }^{*}$	*4	Multiple data trasfer word $((\mathrm{RL} \mathrm{L})) \leftarrow((\mathrm{A}))$	-	-	-	-	-	-	-	-	-	-
MOVMW eam, @A, \#imm8	$3+$	*2	*4	Multiple data trasfer word (eam) $\leftarrow((\mathrm{A})$)	-	-	-	-	-	-	-	-	-	-
MOVMW @RLi, addr16, \#imm8	5	${ }^{*}$	*4	Multiple data transfer word ((RLi)) $\leftarrow($ addr16)	-	-	-	-	-	-	-	-	-	-
MOVMW eam, addr16, \#imm8	$5+$	*2	${ }^{*} 4$	Multiple data transfer word (eam) \leftarrow (addr16)	-	-	-	-	-	-	-	-	-	-
MOVM bnk: addr16, *5 bnk : addr16, \#imm8	7	*1	*3	Multiple data transfer byte (bnk:addr16) $\leftarrow($ bnk:addr16)		-	-	-	-	-	-	-	-	
MOVMW bnk: addr16, *5 bnk : addr16, \#imm8	7	*1	*4	Multiple data transfer word (bnk:addr16) \leftarrow (bnk:addr16)	-	-	-	-	-	-	-	-	-	-

*1: $5+\mathrm{imm} 8 \times 5,256$ times when imm8 is zero.
*2: $5+\mathrm{imm} 8 \times 5+(\mathrm{a}), 256$ times when imm8 is zero.
*3: Number of transfers $\times(b) \times 2$
*4: Number of transfers \times (c) $\times 2$
*5:The bank register specified by "bnk" is the same as for the MOVS instruction.

MB90230 Series

ORDERING INFORMATION

Model	Package	Remarks
MB90233PFV-XXX		
MB90234PFV-XXX	100-pin Plastic LQFP (FPT-100P-M05)	
MB90234PFV	100-pin Plastic LQFP (FPT-100P-M05)	Only ES
MB90W234ZFV	100-pin Ceramic SQFP (FPT-100C-C01)	Only ES

MB90230 Series

PACKAGE DIMENSIONS

100-pin Plastic LQFP
 (FPT-100P-M05)

© 1995 FUJITSU LIMTED F100007S-CL-3
Dimensions in mm (inches)

100-pin Ceramic LQFP (FPT-100C-C01)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: 81(44) 754-3763
Fax: 81(44) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am-5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/

```
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD \#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/
```

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F9901
© FUJITSU LIMITED Printed in Japan

[^0]: *: A load capacity of 20 pF is assumed.

[^1]: * $: 5$ when the contents of the accumulator are all zeroes, $5+(\mathrm{R} 0)$ in all other cases.

[^2]: *1: PCB, ADB, SSB, USB, and SPB: 1 cycle DTB: 2 cycles
 DPR: 3 cycles
 *2: $3+4 \times$ (pop count)
 *4: Pop count $\times(\mathrm{c})$, or push count $\times(\mathrm{c})$
 ${ }^{*} 5: 3$ when $A L$ is 0,5 when $A L$ is not 0 .
 ${ }^{*} 6: 4$ when $A L$ is 0,6 when AL is not 0 .
 ${ }^{*} 7: 5$ when $A L$ is 0,7 when AL is not 0 .

