
800 mA, 2.85 V, SCSI-2 Active Terminator, Low Dropout Voltage Regulator

The MC34268 is a medium current, low dropout positive voltage regulator specifically designed for use in SCSI–2 active termination circuits. This device offers the circuit designer an economical solution for precision voltage regulation, while keeping power losses to a minimum. The regulator consists of a 1.0 V dropout composite PNP/NPN pass transistor, current limiting, and thermal limiting. These devices are packaged in the 8–pin SOP–8 and 3–pin DPAK and SOT–223 surface mount power packages.

Applications include active SCSI-2 terminators and post regulation of switching power supplies.

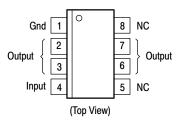
- 2.85 V Output Voltage for SCSI-2 Active Termination
- 1.0 V Dropout
- Output Current in Excess of 800 mA
- Thermal Protection
- Short Circuit Protection
- Output Trimmed to 1.4% Tolerance
- No Minimum Load Required
- Space Saving DPAK, SOT–223 and SOP–8 Surface Mount Power Packages

Simplified Block Diagram

ON Semiconductor™

http://onsemi.com

SOP-8 D SUFFIX CASE 751



A = Assembly Location

L = Wafer Lot

Y = Year

W = Work Week

DPAK DT SUFFIX CASE 369A

SOT-223 ST SUFFIX CASE 318E

Pin 1. Ground 2. Output

3. Input 4. Output

(Top View)

Heatsink surface (shown as terminal 4 in case outline drawing) is connected to Pin 2.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Input Voltage	V _{in}	15	V
Power Dissipation and Thermal Characteristics DT Suffix, Plastic Package, Case 369A $T_{\Delta} = 25^{\circ}\text{C}$, Derate Above $T_{\Delta} = 25^{\circ}\text{C}$	D	Internally Limted	W
Thermal Resistance, Junction–to–Case	P _D R _{θJC}	Internally Limted 5.0	°C/W
Thermal Resistance, Junction–to–Air D Suffix, Plastic Package, Case 751	R ₀ JA	87	°C/W
$T_A = 25^{\circ}C$, Derate Above $T_A = 25^{\circ}C$	PD	Internally Limited	W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	22	°C/W
Thermal Resistance, Junction-to-Air ST Suffix, Plastic Package, Case 318E	$R_{\theta JA}$	140	°C/W
$T_A = 25$ °C, Derate Above $T_A = 25$ °C	P_{D}	Internally Limited	W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	15	°C/W
Thermal Resistance, Junction-to-Air	$R_{\theta JA}$	245	°C/W
Operating Junction Temperature Range	TJ	0 to +150	°C
Storage Temperature	T _{stg}	- 55 to +150	°C

ELECTRICAL CHARACTERISTICS

 $(V_{in} = 4.25 \text{ V}, C_O = 10 \ \mu\text{F, for typical values } T_J = 25^{\circ}\text{C, for min/max values } T_J = 0^{\circ}\text{C to } + 125^{\circ}\text{C, unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = 25^{\circ}C$, $I_O = 0$ mA) Output Voltage, over Line, Load, and Temperature ($V_{in} = 3.9$ V to 15 V, $I_O = 0$ mA to 490 mA)	V _O	2.81 2.76	2.85 2.85	2.89 2.93	V
Line Regulation (V_{in} = 4.25 V to 15 V, I_O = 0 mA, T_J = 25°C)	Reg _{line}	_	_	0.3	%
Load Regulation ($I_O = 0$ mA to 800 mA, $T_J = 25^{\circ}C$)	Reg _{load}	_	_	0.5	%
Dropout Voltage (I _O = 490 mA)		_	0.95	1.1	V
Ripple Rejection (f = 120 Hz)	RR	55	_	_	dB
Maximum Output Current (V _{in} = 5.0 V)		800	_	_	mA
Bias Current (V _{in} = 4.25 V, I _O = 0 mA)		_	5.0 to 3.0	8.0	mA
Minimum Load Current to maintain Regulation (V _{in} = 15 V)		_	_	0	mA

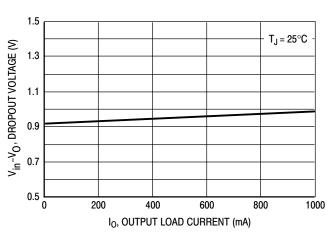


Figure 1. Dropout Voltage versus
Output Load Current

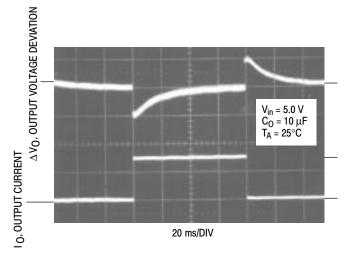


Figure 2. Transient Load Regulation

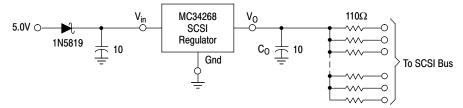


Figure 3. Typical SCSI Application

Figure 3 is a circuit of a typical SCSI terminator application. The MC34268 is designed specifically to provide 2.85 V required to drive a SCSI–2 bus. The output current capability of the regulator is in excess of 800 mA; enough to drive standard SCSI–2, fast SCSI–2, and some wide SCSI–2 applications. The typical dropout voltage is less than 1.0 V, allowing the IC to regulate to input voltages less than 4.0 V. Internal protective features include current and thermal limiting.

The MC34268 requires an external $10\,\mu F$ capacitor with an ESR of less than $10\,\Omega$ for stability over temperature. With economical electrolytic capacitors, cold temperature operation can pose a stability problem. As temperature decreases, the capacitance also decreases and the ESR increases, which could cause the circuit to oscillate. Tantalum capacitors may be a better choice if small size is a requirement. Also, the capacitance and ESR of a tantalum capacitor is more stable over temperature.

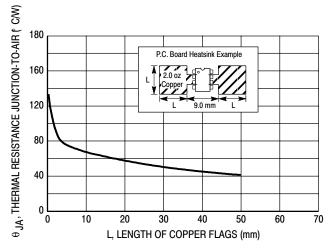
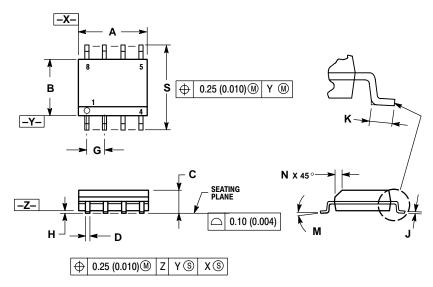


Figure 4. SOP–8 Thermal Resistance versus P.C.B. Copper Length




Figure 5. DPAK Thermal Resistance versus P.C.B. Copper Length

ORDERING INFORMATION

Device	Package	Shipping Information
MC34268D	SO-8	98 Units / Rail
MC34268DR2	SO-8	2500 Units / Tape & Reel
MC34268DT	DPAK	75 Units / Rail
MC34268DTRK	DPAK	2500 Units / Tape & Reel
MC34268STT3	SOT-223	4000 Units / Tape & Reel

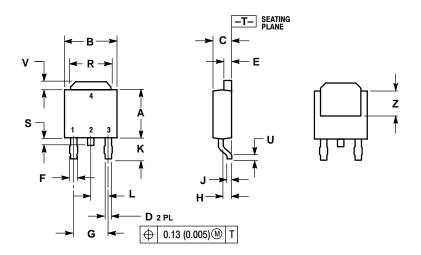
PACKAGE DIMENSIONS

SOP-8 **D SUFFIX** CASE 751-07 **ISSUE W**

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

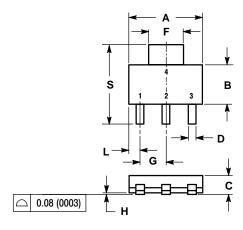

 2. CONTROLLING DIMENSION: MILLIMETER.

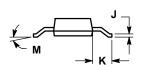
 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.

 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- 4. MAXIMUM MOLD PHOTHUSION 0.15 (0.000) 1. ...
 SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27 BSC		0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
M	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

DPAK DT SUFFIX CASE 369A-13 **ISSUE AB**


NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.250	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.033	0.040	0.84	1.01
F	0.037	0.047	0.94	1.19
G	0.180 BSC		4.58 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.102	0.114	2.60	2.89
L	0.090	BSC	2.29 BSC	
R	0.175	0.215	4.45	5.46
S	0.020	0.050	0.51	1.27
U	0.020		0.51	
٧	0.030	0.050	0.77	1.27
Z	0.138		3.51	

PACKAGE DIMENSIONS

SOT-223 ST SUFFIX CASE 318E-04 ISSUE K

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

DON'T TO LETNO DIMENSION: INOT:						
	INCHES		MILLIN	IETERS		
DIM	MIN	MAX	MIN	MAX		
Α	0.249	0.263	6.30	6.70		
В	0.130	0.145	3.30	3.70		
С	0.060	0.068	1.50	1.75		
D	0.024	0.035	0.60	0.89		
F	0.115	0.126	2.90	3.20		
G	0.087	0.094	2.20	2.40		
Н	0.0008	0.0040	0.020	0.100		
J	0.009	0.014	0.24	0.35		
K	0.060	0.078	1.50	2.00		
L	0.033	0.041	0.85	1.05		
M	0 °	10 °	0 °	10 °		
S	0.264	0.287	6.70	7.30		

Notes

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 **Email**: r14525@onsemi.com

 $\textbf{ON Semiconductor Website}: \ \text{http://onsemi.com}$

For additional information, please contact your local

Sales Representative.