

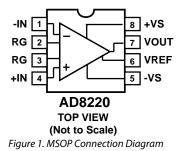
Preliminary Technical Data

FEATURES

High accuracy dc performance 90 dB CMRR (G = 1), typ 4pA typ input bias current 1 nA max input bias current over temperature 2 uV/°C typ input offset voltage drift **Excellent ac specificatons** 80 dB min CMRR to 10 kHz (G = 1), typ 1.75 MHz -3dB bandwidth (G=1) Low Settling Time Versatile **Rail-to-rail output** 700 µA quiscent supply current (typ) Available in space-saving MSOP package Gain set with one resistor (gain range 1 to 1000) ±2.3 V to ±18 V dual supplies +4.6 V to +36 V single supply Specified over -40°C to +85°C

APPLICATIONS

Medical instrumentation Precision data acquisition systems Transducer interfaces


GENERAL DESCRIPTION

The AD8220 is a gain programmable, high performance instrumentation amplifier that draws a typical input bias current of 4pA and rejects high frequency common mode signals. The CMRR of instrumentation amplifiers on the market today falls off at 200 Hz. In contrast, the AD8220 maintains a CMRR of 80 dB over an extended frequency at G = 1. The combination of extremely high input impedance and high CMRR over frequency makes the AD8220 useful in applications such as patient monitoring where input impedance is high and high frequency disturbances must be rejected.

Rail-to-Rail Output JFET Input Instrumentation

AD8220

CONNECTION DIAGRAM

The rail to rail output, low power consumption and small MSOP package make this precision instrumentation amplifier attractive for use in multi-channel applications.

Programmable gain affords the user design flexibility. A single resistor sets the gain from 1 to 1000. The AD8220 operates on both single and dual supplies and is well suited for situations where ± 10 V input voltages are encountered. In addition its rail to rail output stage allows for maximum dynamic range when constrained by low single supply voltages.

Performance is specified over the entire industrial temperature range of -40° C to $+85^{\circ}$ C.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

www.DataSheet4U.com

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.461.3113
 ©2005 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Features	
Applications	1
Connection Diagram	1
General Description	1
Revision History	2

Specifications
Absolute Maximum Ratings6
Thermal Characteristics6
ESD Caution
Outline Dimesions7

REVISION HISTORY

8/05—Revision PrA: Preliminary Version

SPECIFICATIONS

 $V_{\text{S}}=\pm5,\pm15$ V, V_{REF} = 0 V, T_{A} = +25°C, G = 1, R_{L} = 2 k Ω , unless otherwise noted.

Table 1.

	ARM Grade					
Parameter	Min	Тур	Мах	Unit	Conditions	
COMMON-MODE REJECTION RATIO (CMRR)						
CMRR DC to 60 Hz with 1 k Ω Source Imbalance					$V_{CM} = -10 V \text{ to } +10 V$	
G = 1		90		dB		
G = 10		110		dB		
G = 100		116		dB		
G = 1000		116		dB		
CMRR at 10 kHz					$V_{CM} = -10 V \text{ to } +10 V$	
G = 1		80		dB		
G = 10		100		dB		
G = 100		116		dB		
G = 1000		116		dB		
NOISE					$RTI noise = \sqrt{e_{NI}^2 + (e_{NO}/G)^2}$	
Voltage Noise, 1 kHz						
Input Voltage Noise, e _{NI}		15		nV/√Hz	$V_{IN+}, V_{IN-}, V_{REF} = 0$	
Output Voltage Noise, e _{NO}		100		nV/√Hz	,,	
RTI					f = 0.1 Hz to 10 Hz	
G = 1				μV p-p		
G = 10				μV p-p		
G = 100 to 1000				μV p-p		
Current Noise		1		fA/√Hz	f = 1 kHz	
		6		pA p-p	f = 0.1 Hz to 10 Hz	
VOLTAGE OFFSET ¹		-		P. P. P.		
Input Offset, V _{osi}		0.2	1	mV	$V_s = \pm 15 V$	
Over Temperature			1.6	mV	$V_s = \pm 15 V$; T = -40°C to +85°C	
Average TC		2	10	μV/°C	$V_{s} = \pm 15 V$	
Output Offset, Voso			1	mV	$V_{s} = \pm 5 V \text{ to } \pm 15 V$	
Over Temperature			1.6	mV	$T = -40^{\circ}C \text{ to } +85^{\circ}C$	
Average TC			10	μV/°C		
Offset RTI vs. Supply (PSR)				p., c	$V_{s} = \pm 2.5 V \text{ to } \pm 15 V$	
G = 1	80	90		dB		
G = 10	95	110		dB		
G = 100 G = 100	110	130		dB		
G = 1000 G = 1000	110	130		dB		
INPUT CURRENT						
Input Bias Current		4	20	pА		
Over Temperature		·	1	nA	T = -40°C to +85°C	
Average TC				pA/°C		
Input Offset Current			5	pA/ C pA		
Over Temperature			1	nA	T = -40°C to +85°C	
Average TC		1	I	pA/°C		
REFERENCE INPUT		I		prv C		
RIN RIN		40		kΩ		
Rin I _{IN}		40 50			V	
	V.	20	11/	μA V	$V_{IN+}, V_{IN-}, V_{REF} = 0$	
Voltage Range	–Vs	1	+Vs			
Gain to Output		1 ± 0.0001		V/V		

AD8220

		ARM Grad	e		
Parameter	Min	Тур	Max	Unit	Conditions
POWER SUPPLY		-76			
Operating Range	±2.3		±18	v	$V_{s} = \pm 2.3 V \text{ to } \pm 18 V$
Quiescent Current		700		μA	
Over Temperature		,	1,000	μΑ	T = -40°C to +85°C
DYNAMIC RESPONSE			1,000	μπ	
Small Signal –3 dB Bandwidth					
G = 1		1,800		kHz	
G = 1 G = 10				кни kHz	
		1,000			
G = 100		120		kHz	
G = 1000		12		kHz	1014
Settling Time 0.01%		_			10 V step
G = 1 to 10		5		μs	
G = 100		12		μs	
G = 1000		100			
Settling Time 0.001%					10 V step
G = 1 to 100				μs	
G = 1000				μs	
Slew Rate	1.7	2		V/µs	G = 1
	2	2.5		V/µs	G = 5 to 100
GAIN					G = 1 + 49.4 kΩ/RG
Gain Range	1		1,000	V/V	
Gain Error					V _{OUT} ±10 V
G = 1		0.10	0.30	%	
G = 10		0.10	0.30	%	
G = 100		0.10	0.30	%	
G = 1000 G = 1000		0.10	0.30	%	
Gain Nonlinearity		0.10	0.50	70	$V_{OUT} = -10 V \text{ to } +10 V$
G = 1		F	10		
		5	10	ppm	$R_L = 10 k\Omega$
G = 10				ppm	$R_L = 10 k\Omega$
G = 100				ppm	$R_L = 10 k\Omega$
G = 1 to 100				ppm	$R_L = 2 k$
Gain vs. Temperature					
G = 1		3	10	ppm/°C	
G > 1 ²			-50	ppm/°C	
INPUT					
Input Impedance					
Differential		1000 6			GΩ pF
Common Mode		1000 12			GΩ pF
Input Operating	-Vs		+Vs - 2.5	V	$V_{s} = \pm 2.3 V \text{ to } \pm 5 V$
Voltage Range ³					
Over Temperature				v	T = -40°C to +85°C
Input Operating	-Vs + 0.2		+Vs - 2.5	V	$V_s = \pm 5 V \text{ to } \pm 18 V$
Voltage Range				1	
Over Temperature				v	T = -40°C to +85°C
Overload Recovery					
OUTPUT				μs	$R_L = 10 \text{ k}\Omega$
			V 01	V	
Output Swing	-Vs + 0.1		$-V_{s} - 0.1$	V	$V_{s} = \pm 2.3 V \text{ to } \pm 5 V$
Over Temperature	$-V_{s} + 0.1$		$-V_{s} - 0.1$	V	$T = -40^{\circ}C \text{ to } +85^{\circ}C$

	AF			
Parameter	Min Ty	'p Max	Unit	Conditions
Output Swing	$-V_{s} + 0.1$	$-V_{s} - 0.1$	V	$V_s = \pm 5 V \text{ to } \pm 18 V$
Over Temperature	-Vs + 0.1	$-V_{s} - 0.1$	V	$T = -40^{\circ}C \text{ to } +85^{\circ}C$
Capacitance Load Drive	30	0	pF	
Short-Circuit Current	20)	mA	
TEMPERATURE RANGE				
Specified Performance	-40	+85	°C	
TBD Specified Performance	-40	+125	°C	

 1 Total RTI Vos = (Vos) + (Voso/G). 2 Does not include the effects of External Resister Rg. 3 One input grounded. G = 1.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	±18 V
Internal Power Dissipation	
Output Short Circuit Current	
Input Voltage (Common-Mode)	±Vs
Differential Input Voltage	$\pm V_s$
Storage Temperature	–65°C to +150°C

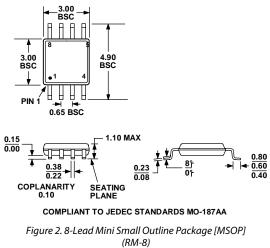
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Specification is for device in free air.

Table 3.

Package Type	$\theta_{JA}{}^1$	Unit
MSOP	135	°C/W


¹ 4-layer JEDEC board.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

OUTLINE DIMESIONS

Dimensions shown in millimeters

AD8220

NOTES

©2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D03579-0-8/05(PrA)

www.analog.com

Rev. PrA | Page 8 of 8