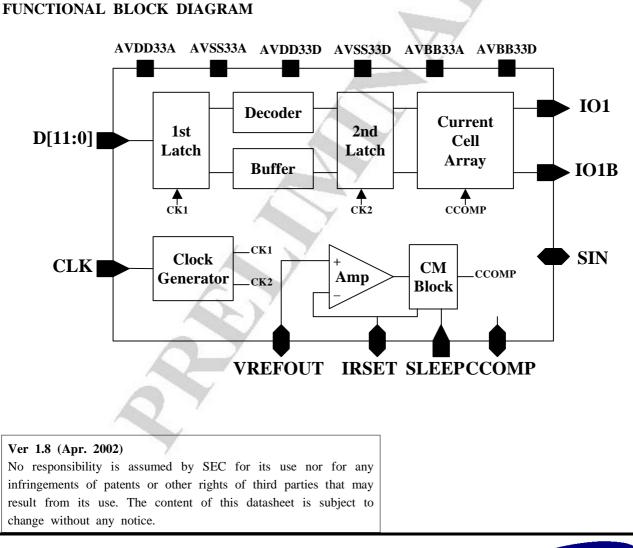
12bit 300MSPS DAC

DAC1268XA

GENERAL DESCRIPTION

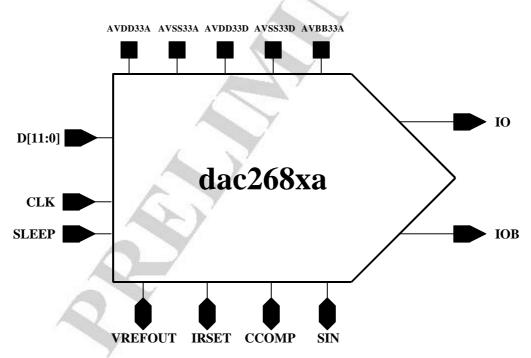

This is CMOS 12-bit D/A Converter for general applications. Its typical conversion rate is 300MHz and Supply voltage is 3.3V

TYPICAL APPLICATIONS

- Graphic display
- General purpose high-speed
- Digital Camera

FEATURES

- 300MHz Operation
- +3.3V power supply
- BGR (Internal / External)
- 12bit Voltage parallel Input
- Power Down mode(High active)


SAMSUNG ELECTRONICS Co. LTD

CORE PIN DESCRIPTION

NAME	I/O TYPE	I/O PAD	PIN DESCRIPTION	I/O TYPE ABBR.
IO1,IO1B	AO	phoa_abb	Analog DAC output	• AI : Analog Input
D9:0>	DI	phicc_abb	Digital input	• DI : Digital Input
CLK	DI	phicc_abb	Clock	• AO : Analog Output
SLEEP	DI	phicc_abb	Power down mode (hign active)	• •
VREFOUT	AB	phoa_abb	Reference voltage input & monitoring	• DO : Digital Output
CCOMP	AB	phoa_abb	External capacitance connection	• AP : Analog Power
SIN	AB	phoa_abb	External capacitance connection	• DP : Digital Power
IRSET	AB	phoa_abb	external resistor connection	• AG : Analog Ground
AVDD33D	DP	vdd3t_abb	Digital Power	• DG : Digital Ground
AVSS33D	DG	vss3t_abb	Digital Ground	• AB : Analog Bidirection
AVDD33A	AP	vdd3t_abb	Analog Power	Ũ
AVSS33A	AG	vss3t_abb	Analog Ground	• DB : Analog Bidirection
AVBB33A	AG	vbb3t_abb	Analog Bulk	5
AVBB33D	AG	vbb3_abb	Digital Bulk	

CORE CONFIGURATION

FUNCTIONAL DESCRIPTION

This is 12bit 300MSPS digital to analog data converter and uses segment architecture for 5bits of MSB sides , binary-weighted architecture for 5bits of LSB side and master slave architecture for 2bit of LSB. it contains of First latch block, decoder block Second latch block, AMP block ,BGR block, switch buffer block, SLEEP block for power down, CM(current mirror)block and analog switch block. This core uses reference current to decide the 1LSB current size by dividing the reference current by 32times. So the reference current must be constant and the switch's physical real size can be constant by using OPA block with high DC gain. The most significant block of this core is analog switch block and it must maintain the uniformity at each switch, so layout designer must care of the matching characteristics on analog switch and CM block. And more than 80% of supply current is dissipated at analog switch block and AMP block. And it uses samsung(SEC) standard cell as all digital cell of latch ,decoder and buffer. And to adjust full current output, you must decide the "Rset" resistor value(connected to IRSET pin) and "Vbias" voltage value(connected to VREFOUT pin). Its voltage output can be obtained by connecting RL1(connected to IO1,IO1B pin) .

Linearity Error : Linearity error is defined as the maximum deviation of the actual analog output from the ideal output, determined by a straight line drawn from zero to full scale.

Monotonicity : A D/A converter is monotonic if the output either increases or remains constants as the digital input increases.

Offset Error : The deviation of the output current from the ideal of zero is called offset error. For IO, 0mV output expected when the inputs are all 0s.

Gain Errors : The difference between the actual andideal output span. The actual span is determined by the output when all inputs are set to 1s minus the output when all inputs are set to 0s.

Output Compliance Range : The range of allowable voltage at the output of a current-output DAC.

Operation beyond the maximum compliance limits may cause either output stage saturation or breakdown resulting in nonlinear performance.

Settling Time : The time required for the output to reach and remain within a specified error band about its final value, measured from the start of the output transition

Glitch Impulse : Asymmetrical switching times in a DAC give rise to undesired output transients that are quantified by a glitch impulse. It is specified as the net area of the glitch in pV-s

ABSOLUTE MAXIMUM RATINGS

CHARACTERISTICS	SYMBOL	VALUES	UNIT
Supply Voltage	AVDD33A AVDD33D	-0.5 TO 4.5	v
Voltage on any Digital Voltage	Vin	AVSS33A-0.3 to AVDD33A+0.3	V
Storage Temperature Range	Tstg	-45 to 150	°C

NOTES

- 1. It is strongly recommended that to avoid power latch-up all the supply Pins(AVDD33A,AVSS33A) be driven from the same source.
- 2. Absolute Maximum Rating values applied individually while all other parameters are within specified operating conditions. Function operation under any of these conditions is not implied.
- 3. Applied voltage must be current limited to specified range.
- 4. Absolute Maximum Ratings are value beyond which the device may be damaged permanently. Normal operation is not guaranteed.

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTICS	SYMBOL	MIN	ТҮР	MAX	UNIT
Operating Supply Voltage	AVDD33A	3.0	3.3	3.6	V
Digital input Voltage HIGH	Vih	0.7*AVDD33A	-	-	V
LOW	Vil	-	-	0.3*AVDD33A	v
Operating Temperature Range	Topr	-40	-	85	°C

DC ELECTRICAL CHARACTERISTICS

(Converter Specifications : AVDD33A=AVDD33D=3.3V, AVSS33A=AVSS33D=AVBB33A=AVBB33D=0V SLEEP=Low, Top=25°C, R(IRSET)=1.27k Ω , load resistance=37.5 Ω unless otherwise specified.)

CHARACTERISTICS	SYMBOL	MIN	ТҮР	MAX	UNIT
Resolution	-	-	12	-	Bits
Differential Linearity Error	DLE	-	-	±1	LSB
Integral Linearity Error	ILE	-	-	±4	LSB
Monotonicity	Guaranteed				
Maximum Output Compliance	Voc	0	A	+1.2	V
Internal BGR Reference Voltage	-	0.63	0.7	0.77	V
Full Scale Output Current	Ifs	15.87	16.7	17.54	mA
Power Supply Current	Is	17	18.35	23	mA

NOTES

1. Full Scale Voltage can be changed by using external RSET resistor

2. Converter Specifications (unless otherwise specified)

AVDD33A=3.3V AVDD33D=3.3V AVSS33A=GND

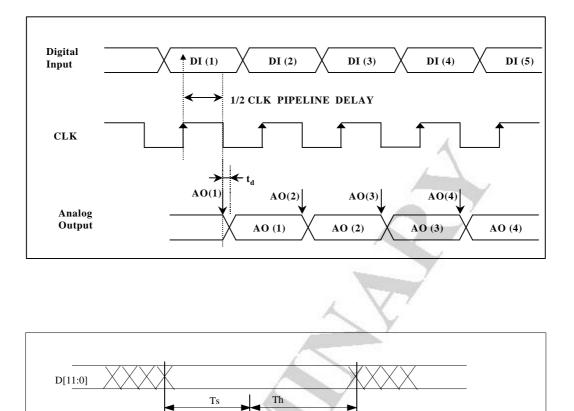
Ta=33°C C(load)=10pF VREFOUT=0.7V

AVSS33D=GND

AC ELECTRICAL CHARACTERISTICS

(Converter Specifications : AVDD33A=AVDD33D=3.3V, AVSS33A=AVSS33D=AVBB33A=AVBB33D=0V

 $SLEEP=Low, \quad Top=25^{\circ}C, \ R(IRSET)=1.27 k \Omega, \ load \ resistance=37.5 \Omega \ , \ load \ cap.=10 pF \ unless \ otherwise \ specified.)$


CHARACTERISTICS	SYMBOL	MIN	ТҮР	MAX	UNIT
Conversion Speed	Fop	300	-	-	MHz
Analog Output Delay	Td	-	0.5	2	ns
Analog Output Rise Time	Tr	-	0.24	2	ns
Analog Output Fall Time	Tf	-	0.98	2	ns
Analog Output Settling Time	Ts	-	114.5	200	ns
Glitch Impulse	GI	-100	31.7	100	pVsec
Setup Time	Ts	-	-	0.5	nsec
Hold Time	Th	-	-	0.5	nsec
THD(Total Harmonic Distortion)	THD	-55	-65	-	dB
SNDR(Fin=5MHz , Fck=300MHz)	SNDR	-60	-65	-	dB

NOTES

- 1. The above parameters are guaranteed over the full temperature range.
- 2. Clock and data feed through is a function of the amount of overshoot and undershoot on the digital inputs .Settling time does not include clock and data feed through . Glitch impulse include clock and data feed through.
- 3. Setup and Hold Time are simulation values, not a test result

TIMING DIAGRAM (FOR ONE CHANNEL)

Td

50%

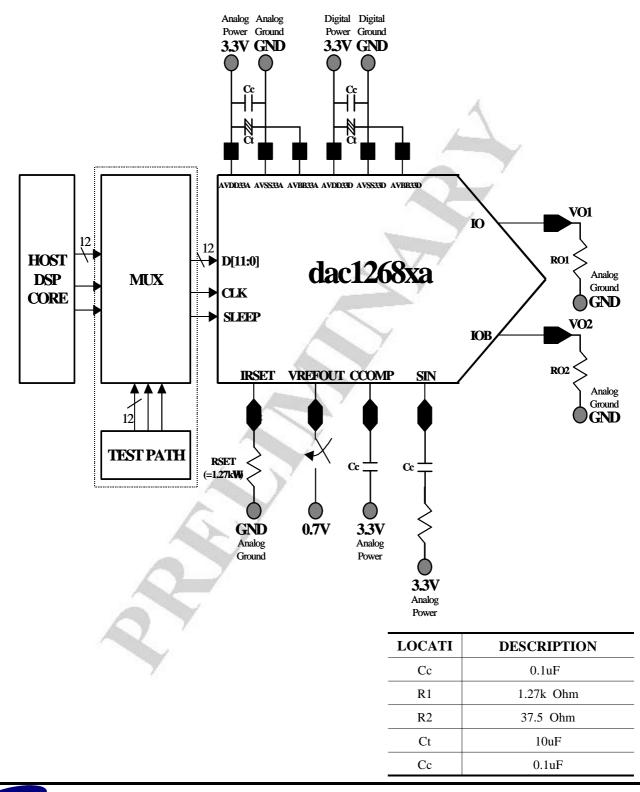
Tset

0.1%

NOTES

1. Output delay measured from the 50% point of the rising edge of CLK to the full scale transition

Half clock pipeline delay


- 2. Settling time measured from the 50% point of full scale transition to the output remaining within $\pm 1,2$ LSB.
- 3. Output rise/fall time measured between the 10% and 90% points of full scale transition.

CLK

ю

CORE EVALUATION GUIDE

SAMSUNG SEC ASIC

ANALOG

The voltage is scaled factor of 1/32 for VIDEO. The full scale current is given as the decimal value equivalent to the digital code.

1. Resolution

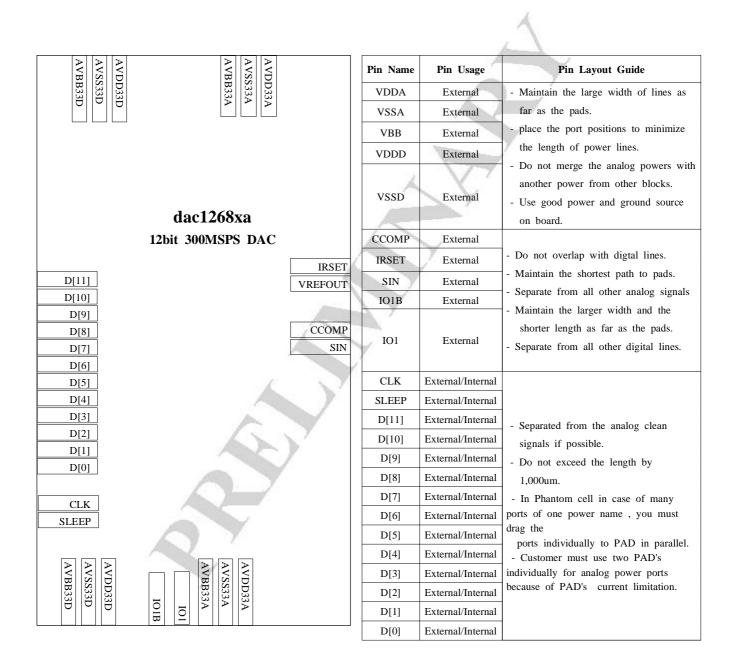
If you want to change the resolution, use as many appear bits as you want and connect the rest lower bits to the ground as above diagram which is 12bit application.

2. Output Range Alteration

In order to change the output swing, use following equation.

Vout = { V(IRSET)/(RSET*32)}*(DAC_CODE)*Rio

Output swing level is a function of V(IRSET), RSET, and Rio, The maximum output swing level is 0.66V


12BIT 300MSPS DAC

PHANTOM CELL INFORMATION

- Pins of the core can be assigned externally (Package pins) or internally (internal ports) depending on design methods.

The term "External" implies that the pins should be assigned externally like power pins.

The term "External/internal" implies that the applications of these pins depend on the user.

SAMSUNG SEC ASIC

12BIT 300MSPS DAC

FEEDBACK REQUEST

We appreciate your interest in out products. If you have further questions, please specify in the attached form. Thank you very much.

Characteristics	Min	Тур	Max	Unit	Remarks
Supply Voltage		- 7 F		V	
Power dissipation				mW	
Resolution				Bits	S.
Analog Output Voltage				V	7
Operating Temperature				°C	
Output Load Capacitor				pF	
Output Load Resistor				Ohm	
Integral Non-Linearity Error				LSB	
Differential Non-Linearity Error		, set	$\langle \rangle$	LSB	
Maximum Conversion Rate				MHz	

VOLTAGE OUTPUT DAC							
Reference Voltage TOP BOTTOM		V					
Analog Output Voltage Range	3	V					
Digital Input Format	Binary	Code or 2's Complement	t Code				
5-2							

CURRENT OUTPUT DAC					
Analog Output Maximum Current	mA				
Analog Output Maximum Signal Frequency	MHz				
Reference Voltage	V				
External Resistor for Current Setting(RSET)	Ohm				
Pipeline Delay	sec				

- Do you want to Power down mode?

- Do you want to Internal Reference Voltage(BGR)?

- Which do you want to Serial Input TYPE or parallel Input TYPE?

VERSION LIST

Version	Date	Modified Items	Comments
Ver 10	00.05.20	Original version published	
Ver 11	00.07.20	DC spec TBD(to be determine) adding Scaling factor M=8> M=128 modify Output voltage level Vmax=1V> Vmax=0.66 modify	
Ver 1.2	00.10.28	I/O pad vss3t_abb> vbb3t_abb	
Ver 1.3	00.11.20		1
Ver 1.4	01.06.27	Core specification completion	
Ver.1.5	01.07.02	Typo correction (There are no spec modification)	
Ver 1.6	01.07.06	Test chip evaluation guide addition	
Ver 1.7	02.02.27	Internal BGR Reference Voltage range modified	
Ver 1.8	02.04.20	Add phantom cell guide	

SAMSUNG SEC ASIC

ANALOG