Ambient Light Photo Detect IC

The EL7900 is a light-to-current optical sensor combining a photodiode and a current amplifier on a single monolithic IC. Output current is directly proportionate to the light intensity on the photodiode. Its sensitivity is superior to that of a phototransistor and exhibits little variation. Its spectral sensitivity matches closely to the luminous efficiency and linearity.

Housed in an ultra-compact surface mount clear plastic package, this device is excellent for power saving control function in cell phones, PDAs, and other handheld applications.

Pinout

Features

- Monolithic IC containing photodiode and amplifier
- 1 lux to 8,000 lux range
- Converts light intensity to current
- 2.5 V to 5.5 V supply range
- Low supply current: $1 \mu \mathrm{~A}$
- Fast response time: <200 μ s
- Excellent output linearity of luminance
- Ultra-compact and light surface mount package
- Pb-free plus anneal available (RoHS compliant)

Applications

- Mobile phones
- Notebook PCs
- PDAs
- Video cameras
- Digital cameras

Ordering Information

PART NUMBER (Note)	 REEL	PACKAGE (Pb-free)	PKG. DWG. \#
EL7900ILCZ	-	5 Ld ODFN	L5.2x2.1
EL7900ILCZ-T7	$7 \prime \prime$	5 Ld ODFN	$\mathrm{L} 5.2 \times 2.1$

NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100\% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb-free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

```
Absolute Maximum Ratings \(\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\) )
```

Supply Voltage between $\mathrm{V}_{\text {SD }}$ and GND 6V
Maximum Continuous Output Current . 6mA
Operating Temperature . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ESD Voltage. $2 k$.

Maximum Die Temperature . $+125^{\circ} \mathrm{C}$
Storage Temperature . $-45^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\quad \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, fluorescent light, unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITION	MIN (Note 2)	TYP	$\begin{gathered} \text { MAX } \\ \text { (Note 2) } \end{gathered}$	UNIT
${ }^{\text {CC1 }}$	Supply Current	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{EV}=100$ lux		62		$\mu \mathrm{A}$
		$\mathrm{EV}=0 \mathrm{lux}$		1		$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CC} 2}$	Supply Current When Disabled	$\overline{\mathrm{EN}}=\mathrm{V}_{\mathrm{HI}}$		1.2		$\mu \mathrm{A}$
lL1	Light Current	$E V=100$ lux	39	60.5	82	$\mu \mathrm{A}$
lL2	Light Current	EV = 10 lux		6.2		$\mu \mathrm{A}$
ILEAK	Dark Current	EV = 0 lux		10		pA
$\mathrm{V}_{\mathrm{O} \text { (MAX) }}$	Maximum Output Compliance Voltage	at 95\% of nominal output current, EV = 100 lux		2.7		V
t_{R}	Rise Time (Note 1)	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{EV}=300$ lux		105	125	$\mu \mathrm{s}$
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{EV}=1000$ lux		64		$\mu \mathrm{s}$
t_{F}	Fall Time (Note 1)	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{EV}=300$ lux		170	225	$\mu \mathrm{s}$
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{EV}=1000$ lux		77		$\mu \mathrm{s}$
$t_{\text {D }}$	Delay Time for Rising Edge (Note 1)	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{EV}=300$ lux		165	200	$\mu \mathrm{s}$
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{EV}=1000$ lux		112		$\mu \mathrm{s}$
t_{S}	Delay Time for Falling Edge (Note 1)	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{EV}=300$ lux		65	85	$\mu \mathrm{s}$
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{EV}=1000$ lux		33		$\mu \mathrm{s}$
$\mathrm{V}_{\text {LO }}$	Maximum Voltage at EN Pin to Enable				0.6	V
V_{HI}	Minimum Voltage at $\overline{\mathrm{EN}}$ Pin to Disable		1.8			V
ILO	Input Current at $\overline{\mathrm{EN}}$ Pin	$V_{\text {EN }}=0 V$		0.01		$\mu \mathrm{A}$
I_{HI}	Input Current at $\overline{\mathrm{EN}}$ Pin	$\mathrm{V}_{\overline{\mathrm{EN}}}=3 \mathrm{~V}$		2		$\mu \mathrm{A}$
t_{EN}	Enable Time	EV = 200 lux		140		$\mu \mathrm{s}$
${ }^{\text {D DIS }}$	Disable Time	EV = 200 lux		2		$\mu \mathrm{s}$

NOTES:

1. Switching time measurement is based on Figures 1 and 2.
2. Parts are 100% tested at $+25^{\circ} \mathrm{C}$. Over-temperature limits established by characterization and are not production tested.

FIGURE 1. RISE/FALL TIME MEASUREMENT

FIGURE 2. RISE/FALL TIME MEASUREMENT WAVEFORMS

Typical Performance Curves

FIGURE 3. SPECTRAL RESPONSE

FIGURE 5. DARK CURRENT vs TEMPERATURE

FIGURE 7. OUTPUT COMPLIANCE VOLTAGE vs CURRENT

FIGURE 4. SENSITIVITY

FIGURE 6. GAIN vs TEMPERATURE

FIGURE 8. RADIATION PATTERN

Typical Performance Curves

FIGURE 9. IOUT vs LUMINANCE

Pin Descriptions

PIN	NAME	DESCRIPTION
1	VCC	Supply, 2.5V to 5.5V
2	GND	Ground
3	$\overline{\mathrm{EN}}$	Enable
4	NC	No connect
5	Output	Current output pin

Block Diagram

Application Information

Product Description

The EL7900 is a light-to-current optical sensor combining photodiodes and current amplifiers on a single monolithic IC. The photodiodes are temperature-compensated and their spectrum resembles the human eye response. The output current is directly proportional to the intensity of light falling on the photodiodes. For 100 lux of input fluorescent light, the EL7900 has an output current of $60 \mu \mathrm{~A}$.

The EL7900 is housed in an ultra-compact surface mount clear plastic package.

Light-to-Current and Voltage Conversion

The EL7900 has a responsiveness that is directly proportional to the intensity of light intercepted by the photodiodes. Although the conversion rate varies depending on the light sources (fluorescent light, incandescent light or direct sunlight), in general for a fluorescent light, the light-tocurrent conversion is:
$\mathrm{I}_{\text {OUT }}=\left(\frac{60 \mu \mathrm{~A}}{100 \mathrm{IUX}}\right) \times \mathrm{L}_{\text {INPUT }}$
Here, IOUT is the output current in $\mu \mathrm{A}$, and $\mathrm{L}_{\text {INPUT }}$ is the input light in lux.

For some applications, a load resistor is added between the output and the ground as shown in Figure 1. The output voltage can be expressed in the following equation:
$V_{\text {OUT }}=I_{\text {OUT }} \times R_{\text {LOAD }}=\left(\frac{60 \mu \mathrm{~A}}{100 \text { lux }}\right) \times \mathrm{L}_{\text {INPUT }} \times R_{\text {LOAD }}$

Here, $\mathrm{V}_{\text {OUT }}$ is the output voltage and $\mathrm{R}_{\text {LOAD }}$ is the value of the load resistor added. The compliance of the EL7900's output circuit may result in premature saturation of the output current and voltage when an excessively large $R_{\text {LOAD }}$ is used. The output compliance voltage is 300 mV below the supply voltage as listed in V_{O} (MAX) of the Electrical Specifications table on page 2.

In order to have the linear relationship between the input light and the output current and voltage, a proper resistor value (i.e., gain) should be picked for a specific input light range. The resistor value can be picked according to the following equation:
$R_{\text {LOAD }}=\frac{\left(\mathrm{V}_{\text {SUP }}-0.3 \mathrm{~V}\right)}{60 \mu \mathrm{~A}} \times \frac{100 \mathrm{lux}}{\mathrm{L}_{\text {RANGE }}}$

Here, $\mathrm{V}_{\text {SUP }}$ is the supply voltage, and $\mathrm{L}_{\text {RANGE }}$ is the specific input light range for an application. For example, an indoor light ranges typically from 0 lux to 1,000 lux. A resistor value of $4.5 \mathrm{k} \Omega$ for 3 V supply voltage can be used. For a small light range, a large resistor value should be used to achieve better sensitivity; for a large light range, a small resistor value should be used to prevent non-linear output current and voltage.

Resistor Output R LOAD Selection

The resistor output, R LOAD , determines the voltage transfer function of the device. The device converts light into current then $\mathrm{R}_{\text {LOAD }}$ converts the output current to an output voltage. $R_{\text {LOAD }}$ can range from 10Ω to $10 \mathrm{M} \Omega$ depending on the input lux levels. The table below lists $\mathrm{R}_{\text {LOAD }}$ values to maximize output swing for typical lux range levels. A careful balance of dynamic swing and fast response has to be considered when choosing R LOAD. For faster response, choose a smaller value R LOAD to shunt stray capacitances that may slow down response time. For maximum dynamic range or swing, choose a higher value R LOAD . Although finite, the output impedance of the device is considerably large. Hence, the light-to-current conversion deviation because of resistor loading is infinitesimal. The recommended maximum $R_{\text {LOAD }}$ is $10 M \Omega$.

The output current must never exceed 6 mA . When using load resistances less than 800Ω, care must be taken when lux go as high as 10,000 lux because the output current rises above 6 mA before reaching the device's output compliance. The output compliance of the device is 300 mV below the supply. The output current stops ramping when the output voltage reaches voltage compliance.

TABLE 1. $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, MAXIMUM OUTPUT VOLTAGE $=4.7 \mathrm{~V}$

ILLUMINATIONRANGE (lux)	RLOAD (k Ω)	CURRENT OUT ($\boldsymbol{\mu} \mathbf{)}$)
0 to 10	783	0 to 6
0 to 200	39.2	0 to 120
0 to 500	15.7	0 to 300
0 to 1,000	7.8	0 to 600
0 to 10,000	0.78	0 to 6,000

Application Examples

The following examples present from fully automatic to fully manual override implementations. These guidelines are applicable to a wide variety of potential light control applications. The EL7900 can be used to control the brightness input of CCFL inverters. Likewise, it can interface well with LED drivers. In each specific application, it is important to recognize the target environment and its ambient light conditions. The mechanical mounting of the sensor, light aperture hole size and use of a light pipe or bezel are critical in determining the response of the EL7900 for a given exposure of light.

The example in Figure 10 shows a fully automatic dimming solution with no user interaction. Choose R_{1} and R_{2} values for any desired minimum brightness and slope. Choose C_{1} to adjust response time and to filter $50 / 60 \mathrm{~Hz}$ room lighting. For example, suppose you wish to generate an output voltage from 0.25 V to 1.25 V to drive the input of an LED driver controller. The 0.25 V represents the minimum LED brightness and 1.25 V represents the maximum. The first step would be to determine the ratio of R_{1} and R_{2} :
$R_{1}=R_{2} \times\left(\frac{3.0 \mathrm{~V}}{0.25 \mathrm{~V}}-1\right)=11 \times \mathrm{R}_{2}$

FIGURE 10. AUTOMATIC DIMMING SOLUTION
Next, the value of R_{2} can be calculated based on the maximum output current coming from the EL7900 under the application's maximum light exposure. Suppose the current has been determined to be about $125 \mu \mathrm{~A}$. Thus, R_{2} can be calculated approximately as follows:
$\mathrm{R}_{2}=\left(\frac{1.25 \mathrm{~V}}{125 \mu \mathrm{~A}}\right)=10 \mathrm{k} \Omega$
and
$R_{1}=11 \times R_{2}=110 k \Omega$

In Figure 11, user adjustable bias control has been added to allow control over the minimum and maximum output voltage. This allows the user to adjust the output brightness to personal preference over a limit range via the 3V PWM control.

Figure 12 shows how a fully manual override can be quickly added by using the $\overline{\mathrm{EN}}$ pin.

FIGURE 12. AUTOMATIC DIMMING SOLUTION WITH ADJUSTABLE BIAS CONTROL AND MANUAL OVERRIDE

Short Circuit Current Limit

The EL7900 does not limit the output short circuit current. If the output is directly shorted to the ground continuously, the output current could easily increase for a strong input light such that the device may be damaged. Maximum reliability is maintained if the output continuous current never exceeds 6 mA by adding a load resistor at the output. This limit is set by the design of the internal metal interconnects.

Suggested PCB Footprint

Footprint pads should be a nominal 1-to-1 correspondence with package pads. The large, exposed central die-mounting paddle in the center of the package requires neither thermal nor electrical connections to PCB, and such connections should be avoided.

Power Supply Bypassing and Printed Circuit Board Layout

The EL7900 is relatively insensitive to the printed circuit board layout due to its low speed operation. Nevertheless, good printed circuit board layout is necessary for optimum performance. Ground plane construction is highly recommended, lead length should be as short as possible and the power supply pins must be well bypassed to reduce the risk of oscillation. For normal single supply operation, where the GND pin is connected to ground, a $0.1 \mu \mathrm{~F}$ ceramic capacitor should be placed from VCC pin to GND pin. A $4.7 \mu \mathrm{~F}$ tantalum capacitor should then be connected in parallel, placed close to the device.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

Package Outline Drawing

L5.2x2.1

5 LEAD OPTICAL DUAL FLAT NO-LEAD PLASTIC PACKAGE Rev 0, 01/07

NOTES:

1. Dimensions are in millimeters.

Dimensions in () for Reference Only.
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.
3. Unless otherwise specified, tolerance : Decimal ± 0.05
4. Dimension b applies to the metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip.
5. Tiebar shown (if present) is a non-functional feature.
6. The configuration of the pin \#1 identifier is optional, but must be located within the zone indicated. The pin \#1 indentifier may be either a mold or mark feature.

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

