


EPA120D-CP083

High Efficiency Heterojunction Power FET

FEATURES

UPDATED 01/13/2006

- NON-HERMETIC SURFACE MOUNT **160MIL METAL CERAMIC PACKAGE**
- +29 dBm OUTPUT POWER AT 1dB COMPRESSION
- 18.0 dB GAIN AT 2 GHz
- 0.5x1200 MICRON RECESSED "MUSHROOM" GATE
- Si₃N₄ PASSIVATION
- ADVANCED EPITAXIAL DOPING PROFILE PROVIDES HIGH POWER EFFICIENCY, LINEARITY AND RELIABILITY

All Dimensions in mil Tolerance: ± 3 mil

Caution! ESD sensitive device.

ELECTRICAL CHARACTERISTICS (T _a = 25°C) $\cancel{7}$			Caution! ESD sensitive device.			
SYMBOL	PARAMETER/TEST CONDITIONS		TYP	MAX	UNITS	
P _{1dB}	Output Power at 1dB Compression $f = 2.0 \text{ GHz}$ Vds = 8 V, Ids=50% Idss $f = 4.0 \text{ GHz}$	27.5	29.0 29.0		dBm	
G _{1dB}		16.5	18.0 13.0		dB	
PAE	Power Added Efficiency at 1dB CompressionVds = 8 V, Ids=50% Idssf = 2.0 GHz		44		%	
I _{DSS}	Saturated Drain Current $V_{DS} = 3 V, V_{GS} = 0 V$	210	360	510	mA	
G _M	Transconductance $V_{DS} = 3 V, V_{GS} = 0 V$	240	380		mS	
V _P	Pinch-off Voltage V_{DS} = 3 V, I_{DS} = 3.6 mA		-1.0	-2.5	V	
BV_{GD}	Drain Breakdown Voltage I _{GD} = 1.2 mA	-13	-15		V	
BV _{GS}	Source Breakdown Voltage I _{GS} = 1.2 mA	-7	-14		V	
R _{TH} *	Thermal Resistance		45	50	°C/W	

Notes: * Overall Rth depends on case mounting.

MAXIMUM RATINGS AT 25°C

Note:

SYMBOLS	PARAMETERS		CONTINUOUS ²	
Vds	Drain-Source Voltage	12V	8V	
Vgs	Gate-Source Voltage	-5V	-3V	
lgsf	Forward Gate Current	5.4 mA	1.8 mA	
lgsr	Reserve Gate Current	0.9 mA	0.3 mA	
Pin	Input Power	26 dBm	@ 3dB Compression	
Tch	Channel Temperature	175°C	175°C	
Tstg	Storage Temperature	-65/175°C	-65/175°C	
Pt	Total Power Dissipation	3.0 W	3.0 W	

1. Exceeding any of the above ratings may result in permanent damage. 2. Exceeding any of the above ratings may reduce MTTF below design goals.