N
FAIRCHILD
I

A Schiumberger Company

F6800/F68A00/F68B0O0
8-Bit Microprocessing Unit

Microprocessor Product

Description

The F6800 is a monolithic 8-bit microprocessing unit (MPU}
forming the central control function for the Fairchild F6800
family. Compatibie with TTL, the F6800, as with ali F6800
system parts, requires only one +5.0 V power supply and no
external TTL devices for bus interface.

The F6800 is capable of addressing 65K bytes of memory
with its 16-bit address lines. The 8-bit data bus is
bidirectional as well as 3-state, making direct memory
addressing and multiprocessing applications realizable.

8-Bit Parallel Processing

Bidirectional Data Bus

16-Bit Address Bus — 65K Bytes of Addressing

72 Instructions — Variable Length

7 Addressing Modes — Direct, Relative, Immediate,

Indexed, Extended, Implied and Accumulator

Variable Length Stack

Vectored Restart

Maskable Interrupt Vector

Separate Non-Maskable Interrupt — Internal Registers

Saved in Stack

6 Internal Registers — 2 Accumulators, Index

Register, Program Counter, Stack Pointer, and

Condition Code Register

® Direct Memory Addressing (DMA) and Multiple
Processor Capability

e Simplified Clocking Characteristics

e Clock Rates 1 MHz (F6800), 1.5 MHz (F68A00), and
2 MHz (F68B00)

& Simple Bus Interface Without TTL

e Halt and Single Instruction Execution Capability :

Pin Names

Dg-D7 Bidirectional Data Bus

HALT Halt Input

@1, ¢2 Clock Inputs

IRQ Interrupt Request Input

NMi Non-Maskabile Interrupt Input
DBE Data Bus Enable Input

TSC 3-State Control Input

RESET Reset Input

VMA Valid Memory Address Output
BA Bus Available Output
Ag-Ays Address Bus Cutputs

R/W Read/Write Output

Vee +5 V Power Supply Input
Vssg Ground

Logic Symbot

33 32 31 30 29 28 27 26

L L]

Do Dy Dz D3 Dy D5 Ds Dy

Aop—9
al—10
3 o Ar— 11
37— 52 Agf—12
Ad—13
2 —O|HALT Ash— 14
Agp— 15

4 1RQ
FB800 Ay p—- 16
8 —Of NMI Ag[— 17
Agp— 18
36 —— DBE Aqg p— 19
Apnp—20
3s—]rsc aeb— 22
40 ——{ RESET Aupp— 23
Appb— 24
. Aspb—25

VMA BA RW

1]

5 7 34
Vee=Pin8
Vgg = Pins 1, 21
Connection Diagram
40-Pin DIP
vsdt ~ wlgmEsEr
HALT] 2 W [J71sc
wiZ] 3 33 I Nnce.
[} ¥} a7 [+
vMAl s 36 [_J OBE
Wi 35 LINC.
sal]7 34 CTJRW
vec (] 8 33 [Joo
A0 32 oy
mME] w0 a1 [Jo;
Aaldn 30 []o;
Azl 2 29 [0,
[P ma k] 28 JDs
As] 14 27 [b
As] 1s 26 [Jo;
A7 1€ 25] Ass
A 17 20 [A
AD: 18 230 An
Al 19 22 Az
An] 20 2 vss
(Top Yiew)

ﬁ

F6800/F68A00/F68B00

Block Diagram

Aqs Arg Az A2 Ars Ao Ag Ag

tttttttd

A7 Ag As As A3 A2 Ay A

IEEREEEE

OUTPUT BUFFERS OUTPUT BUFFERS
I
CLOCK, 47 —] ~
PROGRAM |— PROGRAM
CLOCK, 42 — COUNTER | COUNTER |
RESET —a
NON-MASKABLE INTERRUPT (NMI) —
i STACK | STACK
N HALT — ’"“’J:é’ggf" POINTER M = POINTER |
INTERRUPT REQUEST {IRG) — e
3-STATE CONTROL (TSC) —»] CONTROL
INDEX — INDEX
oA NABLE (DBE) —}
TABUSE (DBE) REGISTER 1y | REGISTER |
BUS AVAILABLE (BA) —]
VALID MEMORY ADDRESS (VMA) —»
READ/WRITE (R/W) —nd ‘CCU“:"-‘W“I
INSTRUCTION ACCUMULATOR
REGISTEA B
'CONDITION
CODE
REGISTER
DATA et
BUFFER ALY

‘4

bEE

D5 Dy D3 Dz Dy Dp

MPU Signal Description

Proper operation of the MPU requires that certain control and
timing signals be provided to accomplish specific functions
and that other signal lines be monitored to determine the
state of the processor.

Clocks Phase One and Phase Two (¢1,62)
Two pins are used for a 2-phase non-overlapping clock that
runs at the Vg voltage level.

Figure 27 shows the microprocessor clocks, and the Clock
Timing table shows the static and dynamic clock
specifications. The HIGH level is specified at Vjyc and the
LOW level is specified at V| c. The allowable clock
frequency is specified by f (frequency). The minimum ¢1 and
#2 HIGH level pulse widths are specified by PWgy {pulse
width HIGH time). To guarantee the required access time for
the peripherals, the clock up time, ty, is specified. Clock
separation, tq, is measured at a maximum voltage of Voy
(overlap voltage). This allows for a multitude of clock
variations at the system frequency rate.

Address Bus {(Ag—Aq5)

Sixteen pins are used for the address bus. The outputs are
3-state bus drivers capable of driving one standard TTL load
and 90 pF. When the output is turned off, it is essentially an
open circuit. This permits the MPU to be used in DMA
applications. Putting TSC in its HIGH state forces the
address bus to go into the 3-state mode.

Data Bus (Dg—D7)

Eight pins are used for the data bus. It is bidirectional,
transferring data to and from the memory and peripheral
devices. It also has 3-state output buffers capable of driving
one standard TTL load and 130 pF. The data bus is placed in
the 3-state mode when DBE is LOW.

Data Bus Enable (DBE)

This input is the 3-state control signal for the MPU data bus
and will enable the bus drivers when in the HIGH state. This
input is TTL-compatible; however, in normal operation it
would be driven by the phase two clock. During an MPU read
cycle, the data bus drivers will be disabled internally. When it
is desired that another device control the data bus, such as

X0 R

5-12

]
F6800/F68A00/F68B00

Fig. 1

Notes

1. Reset is recognized at any position in the flowchart.

MPU Flow Chart

HALY

1—» BA

1 — |

Q— BA

|

VECTOR —mPC

FFFE

2. Instructions which affect the I-Bit act upon a one-bit buffer

register, “ITMP”. This has the effect of delaying any clearing of the
)-Bit one clock time. Setting the 1-Bit, however, is not delayed.
3. Refer to tables 8 through 13 for details of instruction execution.

"

ITMP =i 1

|

STACK
PC,X,A, B, CC

swi?

WAI

11— TP
1— |

i

VECTOR —#PC

NMI FFFC

SWI FFFA

1RQ FFF8

O

CONDITION CODE
REGISTER

nponoBne,

'ITEMP’ 1-BIT
BUFFER REGISTER

F6800/F68A00/F68B00

in Direct Memory Access (DMA) applications, DBE should be
held LOW.

If additional data set-up or hold time is required on an MPU
write, the DBE down time can be decreased as shown in
Figure 29 (DBE # ¢2). The minimum down time for DBE is
t5ae as shown and must occur within ¢1 up time. The
minimum delay from the trailing edge of DBE to the trailing
edge of ¢1 is tpgEp. By skewing DBE with respect to E in this
manner, data set-up or hold time can be increased.

Bus Available {BA)

The Bus Available signal will normally be in the LOW state;
when activated, it will go to the HIGH state, indicating that
the microprocessor has stopped and that the address bus is
available. This will occur if the HALT line is in the LOW state
or the processor is in the WAIT state as a result of the
execution of a WAIT instruction. At such time, all 3-state
output drivers will go to their OFF state and other outputs to
their normally inactive level. The processor is removed from
the WAIT state by the occurrence of a maskable (mask bit |
= “0") or nonmaskable interrupt. This output is capabie of
driving one standard TTL load and 30 pF. If TSC is in the
HIGH state, Bus Available will be LOW.

Read/Write (R/W)

This TTL-compatible output signals the peripherals and
memory devices whether the MPU is in a Read (HIGH) or
Write (LOW) state. The normal standby state of this signal is
Read (HIGH). 3-State Control (TSC) going HIGH will turn
Read/Write to the OFF {high-impedance) state. Also, when
the processor is halted, it will be in the OFF state. This
output is capable of driving one standard TTL load

and 90 pF.

Reset (RESET)

The RESET input is used to reset and start the MPU from a
power-down condition resulting from a power failure or initial
start-up of the processor. This input can also be used to
reinitialize the machine at any time after start-up.

It a HIGH level! is detected in this input, this will signal the
MPU to begin the reset sequence. During the reset
sequence, the contents of the last two locations (FFFE,
FFFF) in memory will be loaded into the program counter to
point to the beginning of the reset routine. During the reset
routine, the interrupt mask bit is set and must be cleared
under program control before the MPU can be interrupted by
IRQ. While RESET is LOW {assuming a minimum of eight
clock cycles have occurred) the MPU output signals will be
in the following states: VMA = LOW, BA = LOW, data bus =
high impedance, R/W = HIGH {read state), and the address
bus will contain the reset address FFFE. Figure 2 illustrates
a power-up sequence using the RESET control line. After the
power supply reaches 4.75 V a minimum of eight clock

cycles are required for the processor to stabilize in
preparation for restarting. During these eight cycles, VMA
will be in an indeterminate state so any devices that are
enabled by VMA which could accept a false write during this
time (such as a battery-backed RAM) must be disabled until
VMA is forced LOW after eight cycles. RESET can go HIGH
asynchronously with the system clock any time after the
eighth cycle.

Reset timing is shown in Figure 2 and the Read/Write Timing
table. The maximum rise and fall transition times are
specified by tpc, and tpc;. If RESET is HIGH at tpcg
(processor control set-up time) as shown in Figure 2 in any
given cycle, then the restart sequence will begin on the next
cycle as shown. The RESET control line may also be used to
reinitialize the MPU system at any time during its operation.
This is accomplished by pulsing RESET LOW for the duration
of a minimum of three complete ¢2 cycles. The Reset pulse
can be completely asynchronous with the MPU system clock
and will be recognized during ¢2 if set-up time tpcg is met.

Interrupt Request (IRQ)

This level-sensitive input requests that an interrupt sequence
be generated within the machine. The processor will wait
until it completes the current instruction that is being
executed before it recognizes the request. At that time, if the
interrupt mask bit in the condition code register is not set,
the machine will begin an interrupt sequence. The index
register, program counter, accumulators, and condition code
register are stored away on the stack. Next the MPU will
respond to the interrupt request by setting the interrupt mask
bit HIGH so that further interrupts may occur. At the end of
the cycle, a 16-bit address will be loaded that points to a
vectoring address which is located in memory locations
FFF8 and FFF9. An address loaded at these locations
causes the MPU to branch to an interrupt routine in memory.
Interrupt timing is shown in Figure 3.

The HALT line must be in the HIGH state for interrupts to be
serviced. Interrupts will be latched internally while HALT
is LOW.

The IRQ has a high-impedance pullup device internal to the
chip; however, a 3 k external resistor to V¢ should be
used for wire-OR and optimum control of interrupts.

Non-Maskable Interrupt (NMI) and Wait for Interrupt (WAI)
The F6800 is capable of handling two types of interrupts:
maskable (IRQ) as described earlier, and non-maskable
(NMJ). IRQ is maskable by the interrupt mask in the condition
code register while NMI is not maskable. The handling of
these interrupts by the MPU is the same except that each
has its own vector address. The behavior of the MPU when
interrupted is shown in Figure 3 which details the MPU
response to an interrupt while the MPU is executing the

60—

5-14

F6800/F68A00/F68B00

Fig. 2 Reset Timing

iC‘I:’iLE #2 { #3 1 #7 I #8 | #9 l n I n+1 I n+2 | n+3 I nta I n+5 L m | m+1| ‘ I
POWER ON 45 55 55
SWITCH |
powen oV ‘C << e

SUPPLY i jod i
y‘.ﬁ v -i -— tpcs ‘.|([— {pcs
RESET £ £< _/ '\
rL r
——l tpce |<— tpct

NN SIS S S S, S S, e e

FFFE ~ FFFE FFFE FFFE FFFF NEW PC FFFE FFFE

~ - T XY
o TG MR o/ pm=y
oara svs T X XX X O XXX

PC 815 PC 0-7 FIRST

INSTRUCTION
5 i

eP4

e - INDETERMINATE

Fig. 3 Interrupt Timing

!CY#C‘ILEl #2 | #3 | #4 | #5 I #6 | &7 | #8 | 49 l #10 { 411 | #12 | #13] #14 I #15 |

«_ ML rririireruriiriirier
ADDRESS X X X X X X X I XA XA

NEXT INST SP{n} SP(n - 1) SP(n - 2) SP(n - 3) $P(n - 4) SP(n - §) SP(n - 6) SP(n - 7) FFF8 FFF9 NEW PC
FETCH ADDRESS ADDRESS ADDRESS
IRQ OR NWI \
—hl [— tpcs

INTERRUPT
MASK J

DATA BUS X X X) S G ¢ X XA A m A A 4{

INST {x} PC0-7 PCB8-15 X0-7 X815 ACCA ACCB CCR NEW PC 8-15 NEW PC 0-7 FIRST INST OF

ADDRESS ADDRESS INTERRUPT ROUTINE
A WY N\ /

VMA W \ /

m

F6800/F68A00/F68B00

control program. The interrupt shown could be either IRQ or
NMi and can be asynchronous with respect to ¢2. The
interrupt is shown going LOW at time tpcg in cycle # 1 which
precedes the first cycle of an instruction (OP code fetch),
This instruction is not executed, but instead, the program
counter (PC), index register (IX), accumulators (ACCX), and

the condition code register (CCR) are pushed onto the stack.

The Interrupt Mask bit is set to prevent further interrupts. The
address of the interrupt service routine is then fetched from
FFFC, FFFD for an NMi interrupt and from FFF8, FEF9 for an
IRQ interrupt. Upoen completion of the interrupt service
routine, the execution of RTI will pull the PC, IX, ACCX, and
CCR off of the stack; the Interrupt Mask bit is restored to its
condition prior to Interrupts.

Figure 4 is a similar interrupt sequence, except in this case,
a WAIT instruction has been executed in preparation for the
interrupt. This technique speeds up the MPU's response to
the interrupt because the stacking of the PC, 1X, ACCX, and
the CCR is already done. While the MPU is waiting for the
interrupt, Bus Available will go HIGH indicating the foliowing
states of the control lines: VMA is LOW, and the address
bus, R/W and data bus are all in the high impedance state.
After the interrupt occurs, it is serviced as

previously described.

Table 1 Memory Map for Interrupt Vectors

Vector
MS LS Description
FFFE FFFF Restart
FFFC FFFD Non-maskabie Interrupt
FFFA FFFB Software Interrupt
FFF8 FFF9 Interrupt Request

Refer to Figure 4 for program flow for Interrupts.

3-State Control (TSC)

When the 3-State Control (TSC) line is a logic “1”, the
address bus and the R/W line are placed in a high
impedance state. VMA and BA are forced LOW when TSC =
“1” to prevent false reads or writes on any device enabled
by VMA. It is necessary to delay program execution while
TSC is held HIGH. This is done by insuring that no transitions
of ¢1 (or ¢2) occur during this period. {Logic levels of the
clocks are irrelevant so long as they do not change.) Since
the MPU is a dynamic device, the ¢1 clock can be stopped
for a maximum time PWgy without destroying data within the
MPU. TSC then can be used in a short Direct Memory
Access (DMA) application.

Figure & shows the effect of TSC on the MPU. TSC must
have its transitions at tysg (3-state enable) while holding ¢1
HIGH and ¢2 LOW as shown. The address bus and R/W line

will reach the high impedance state at tygp (3-state delay),
with VMA being forced LOW. In this example, the data bus is
also in the high impedance state while $2 is being held LOW
since DBE = ¢2. At this time, a DMA transfer could occur on
cycles #3 and #4. When TSC is returned LOW, the MPU
address and R/W lines return to the bus. Because it is too
late in cycle #5 to access memory, this cycle is dead and
used for synchronization. Program execution resumes in
cycle #6.

Valid Memory Addrass (VMA)

This output indicates to peripheral devices that there is a
valid address on the address bus. In normai operation, this
signal should be utilized for enabling peripheral interfaces
such as the PIA and ACIA. This signal is not 3-state. One
standard TTL load and 90 pF may be directly driven by this
active HIGH signal.

HALT
When this level sensitive input is in the LOW state, all
activity in the machine will be halted.

The HALT line provides an input to the MPU to allow control
of program execution by an outside source. If HALT is HIGH,
the MPU will execute the instructions; if it is LOW, the MPU
will go to a halted, or idle, mode. A response signal, Bus
Available (BA) provides an indication of the current MPU
status. When BA is LOW, the MPU is in the process of
executing the control program; if BA is HIGH, the MPU has
haited and all internal activity has stopped.

When BA is HIGH, the address bus, data bus, and R/W line
will be in a high impedance state, effectively removing the

MPU from the system bus. VMA is forced LOW so that the

floating system bus will not activate any device on the bus

that is enabied by VMA.

While the MPU is halted, all program activity is stopped, and
if either an NMI or IRQ interrupt occurs, it will be latched into
the MPU and acted on as soon as the MPU is taken out of
the halted mode. If a RESET command occurs while the

MPU is halted, the following states occur: VMA = LOW,

BA = LOW, data bus = high impedance, R/W = HIGH (read
state), and the address bus will contain address FFFE as
long as RESET is LOW. As soon as the HALT line goes HIGH,
the MPU will go to locations FFFE and FFFF for the address
of the reset routine.

Figure 6 shows the timing relationships involved when halting
the MPU. The instruction illustrated is a 1-byte, 2-cycle
instruction such as CLRA. When HALT goes LOW, the MPU
will halt after completing execution of the current instruction.
The transition of HALT must occur tpcg before the trailing
edge of ¢1 of the last cycle of an instruction (Point A of

F6800/F68A00/F68B00
Fig. 4 Wait Instruction Timing
icv::LE n” I 3 I - l 7 I] | (] I no l n I n+ I LR Z 1 l n+3 I nN+4 In+§ I
2
ADORESS
aoomess Y\ XXX YO O—+———O X
INSTRUCTION SP(n} SP(n-1) SP(n-4)8P(n-S)SP(n-#) SP(n-7) FFF§ FFFY

TS "

o \ I

2

I

/—
VYMA - \-
L e ————
INTERRUPT ’
MASK {4 £C

24 27

e . FINST INSTY
> ? RoUTINE,
RO OR NWi \
tres
DATA BUS x X X x :ﬁ) ¢ O-__ﬁ_(X X X
WALT PCO-T PCH-15 ACCA ACCB CCR NEW PC 8-15 NEW PC 0-7

INST

ADDRESS ADDRESS
BA ¢ \

— tpa

Note
Midrange form indi high-imped state.

5-17

C- 7004637 0293033 00L WB

F6800/F68A00/F68B00
Fig. 5 3-State Control Timing
| CY:iLE #2 ! #3 | #4 l #5 | H6 | 7 | #6 l #9
i T S e I o I o O S N N O O
[PWasimax |
MPU 41 L] J LJ bd 1
—| [|e— s trsp—#~| . [*+—
;SIS)RESS x x x (

RW 1
vMa 3

DATA BUS X

w=0se _ [| I g L LJ 1
TSC I
-—-I |<— 11SE trsg — |<——
Fig. 6 Halt and Single Instruction Execution for System Debug
LAST CYCLE
OF CURRENT
INSTRUCTION INSTRUCTION INSTRUCTION

] bl
R e I s T N N N o O O

FETCH | EXECUTE
tea

1

}4— trcs trcs

—

|-<— tpcs |

S S R NS R N R B 3 -

HALT A\

= tpCt

|

tpce ——my

%

111

BA

—
—

—D{ I‘-—laA tpa >
—
/ - \
VMA 3 x_y N\ L 4 (\
.
o e — 5 ~—
V4 r)am
FETCH EXECUTE
> £ « ADDR M + 1 Y

ADDRESS
BUS :X‘D"“ w XX

" 4 27

DATA
BUS —O x

—

) LG

INST
X

Note
Midrange waveform indicates high impedance state.

F6800/F68A00/F68B00

Figure 6). HALT must not go LOW any time later than the
minimum tpcg specified.

The fetch of the OP code by the MPU is the first cycle of the
instruction. If HALT had not been LOW at Point A, but went
LOW during ¢2 of that cycle, the MPU would have halted
after completion of the following instruction. BA will go HIGH
by time tga (bus available delay time) after the last
instruction cycle. At this time, VMA is LOW and R/W,
address bus, and the data bus are in the

high-impedance state.

To debug programs it is advantageous to step through
programs instruction by instruction. To do this, HALT must be
brought HIGH for one MPU cycle and then returned LOW as
shown at Point B of Figure 6. Again, the transitions of HALT
must occur tpcg before the trailing edge of the next ¢1,
indicating that the Address Bus, Data Bus, VMA and R/W
lines are back on the bus. A single-byte, 2-cycle instruction
such as LSR is used for this example also. During the first
cycle, the instruction Y is fetched from address M + 1. BA
returns HIGH at tga on the last cycle of the instruction
indicating the MPU is off the bus. instruction Y had been
three cycles, the width of the BA LOW time would have been
increased by one cycle.

MPU Registers

The MPU has three 16-bit registers and three 8-bit registers
available for use by the programmer (Figure 7).

Program Counter
The program counter is a 2-byte (16 bits) register that points
to the current program address.

Stack Pointer

The stack pointer is a 2-byte register that contains the
address of the next available location in an external push-
down/pop-up stack. This stack is normally a random access
read/write memory that may have any location {address)
that is convenient. In those applications that require storage
of information in the stack when power is lost, the stack must
be nonvolatile.

index Register

The index register is a 2-byte register that is used to store
data or a 16-bit memory address for the Indexed mode of
memory addressing.

Accumulators
The MPU contains two 8-bit accumulators that are used to
hold operands and results from an arithmetic logic unit (ALU).

Condition Code Register
The condition code register indicates the results of an

arithmetic logic unit operation: negative (N), zero (2),
overflow (V), carry from bit 7 (C), and half carry from bit 3
(H). These bits of the condition code register are used as
testable conditions for the conditional branch instructions. Bit
4 is the interrupt mask bit (I). The unused bits of the
condition code register (bit 6 and bit 7) are ones.

MPU Instruction Set

The FE800 instructions are described in detail in the F6800
Programming Manual. This section will provide a brief
introduction and discuss their use in developing F6800
control programs. The F6800 has a set of 72 different
executable source instructions. Included are binary and
decimal arithmetic, logical, shift, rotate, load, store,
conditional or unconditional branch, interrupt and stack
manipulation instructions.

Each of the 72 executable instructions of the source
language assembles into one to three bytes of machine
code. The number of bytes depends on the particular
instruction and on the addressing mode. (The addressing
modes which are available for use with the various executive
instructions are discussed later.)

The coding of the first (or only) byte corresponding to an
executable instruction is sufficient to identify the instruction
and the addressing mode. The hexadecimal equivalents of
the binary codes, which result from the transiation of the 72
instructions in all valid modes of addressing, are shown in
Table 2. There are 197 valid machine codes, 59 of the 256
possible codes being unassigned.

When an instruction translates into two or three bytes of
code, the second byte, or the second and third bytes
contain(s) an operand, an address, or information from which
an address is obtained during execution.

Microprocessor instructions are often divided into three
general classifications: (1) memory reference, so called
because they operate on specific memory locations; (2)
operating instructions that function without needing a memory
reference; (3) |70 instructions for transferring data between
the microprocessor and péripherai devices.

In many instances, the F6800 performs the same operation
on both its internal accumulators and the external memory
locations. In addition, the F6800 interface adapters (PIA and
ACIA) allow the MPU to treat peripheral devices exactly like
other memory locations, hence, no I/ 0 instructions as such
are required. Because of these features, other
classifications are more suitable for introducing the F6800’s
instruction set: (1) accumulator and memory operations; (2)
program control operations; (3) condition code

register operations.

RV

m

F6800/F68A00/F68B0O0
Fig. 7 Programming Model of The Microprocessing Unit

7 1]

I ACCA j ACCUMULATCR A

7 0

[ACCB _] ACCUMULATOR B
15 0
l X _I INDEX REGISTER
15 0
L pC] PROGRAM COUNTER
15 4]
l SP] STACK POINTER

0

l1l 1|H| 'INIZI Vlc CONDITION CODE
REGISTER

L— CARRY (FROM BIT 7)
‘— OVERFLOW

ZERO

NEGATIVE

INTERRUPT MASK

HALF CARRY (FROM BIT 3)

Table 2 Microprocessor Instruction Set— Alphabetic Sequence

ABA Add Accumulators CLV Clear Overflow ROR Rotate Right

ADC Add with Carry CMP Compare RTI Return from interrupt

ADD Add COM Complement RTS Return from Subroutine

AND Logical And CPX Compare Index Register SBA Subtract Accumulators

ASL Arithmetic Shift Left DAA Decimal Adjust SBC Subtract with Carry

ASR Arithmetic Shift Right DEC Decrement SEC Set Carry

BCC Branch if Carry Clear DES Decrement Stack Pointer SEl Set Interrupt Mask

BCS Branch if Carry Set DEX Decrement Index Register SEV Set Overflow

BEQ Branch if Equal to Zero ECR Exclusive OR STA Store Accumulator

BGE Branch if Greater or Equal Zero STS Store Stack Register

BGT Branch if Greater than Zero INC Increment STX Store Index Register

BHI Branch if Higher INS Increment Stack Pointer SUB Subtract

BIT Bit Test INX Increment Index Register SWi Software Interrupt

BLE Branch if Less or Equal JMP Jump TAB Transfer Accumulators

BLS Branch if Lower or Same JSR Jump to Subroutine TAP Transfer Accumulators to Condition
BLT Branch !f Lgss than Zero LDA Load Accumulator Code Reg.

BMI Branch if Minus LDS Load Stack Pointer TBA Transfer Accumulators

BNE Branch if Not Equal to Zero LDX Load Index Register TPA Transfer Condition Code Reg. to
8Pt Branchif Plus LSR Logical Shift Right Accumulator

BRA Branch Always TST Test

BSR Branch to Subroutine NEG Negate TSX Transfer Stack Pointer to Index
BVC Branch if Overflow Clear NOP No Operation Register

BVS Branch if Overflow Set ORA Inclusive OR Accumulator TXS Transfer Index Register to Stack
CBA Compare Accumulators PSH Push Data Pointer

CLC Clear Carry PUL Pull Data WAI Wait for Interrupt

cui Clear Interrupt Mask

CLR Clear ROL Rotate Left

0
5-20

F6800/F68A00/F68B00
Table 3 Hexadecimal Values of Machine Codes
00 . 3B RTI 76 ROR EXT Bl CMP A EXT EC *
01 NOP 3C . 77 ASR EXT B2 SBC A EXT ED *
02 . 3D * 78 ASL EXT B3 " EE LDX IND
03 " 3E WAl 79 ROL EXT B4 AND A EXT EF STX IND
04 * 3F Swi 7A DEC EXT B5 BIT A EXT F0 SUB B EXT
05 . 40 NEG A 7B * B6 LDA A EXT F1 CMP B EXT
06 TAP 41 * 7C INC EXT B7 STA A EXT F2 SBC B EXT
Q7 TPA 42 i 70 TST EXT B8 EOR A EXT F3 *
08 INX 43 COM A 7E JMP EXT B9 ADC A EXT F4 AND B EXT
09 DEX 44 ISR A 7F CLR EXT BA ORA A EXT F5 BIT B EXT
0A CLV 45 * 80 SuB A IMM BB ADD A EXT F6 LDA B EXT
0B SEV 46 ROR A 81 CMP A IMM BC CPX EXT F7 STA B EXT
0C CLC 47 ASR A 82 SBC A (MM BD JSR EXT F8 ADC B EXT
0D SEC 48 ASL A 83 * BE LDS EXT F9 ADC B EXT
0E CLI 49 ROL A 84 AND A IMM BF STS EXT FA ORA B EXT
OF SEI 4A DEC A 85 BIT A IMM CO SuB B8 MM FB ADD B EXT
10 SBA 4B * 86 LDA A IMM C1 CMP B IMM FC .
11 CBA 4C INC A 87 * Cc2 SBC B IMM FD *
12 * 4D TST A 88 EOR A IMM C3 * FE LDX EXT
13 . 4E * 83 ADC A IMM C4 AND B IMM FF STX EXT
14 " 4F CLR A 8A ORA A IMM Cb5 BIT B IMM
15 " 50 NEG B 88 ADD A IMM Cs LDA B IMM
16 TAB 51 - 8C CPX A IMM C7 .
17 TBA 52 * 8D BSR REL C8 EOR B IMM
18 . 53 COM B 8E LDS IMM C3 ADC B IMM
19 DAA 54 LSR B 8F . CA ORA B IMM
1A . 55 * 96 SUB A DIR CB ADD B IMM
18 ABA 56 ROR B 91 CMP A DIR CC *
1C * 57 ASR B 92 SBC A DIR cD *
10 * 58 ASL B 93 ‘ CE LDX IMM
1E * 59 ROL B 94 AND A DIR CF *
1F . 5A DEC B 95 BIT A DIR DO SUB B DiR
20 BRA REL 5B * 96 LDA A DIR D1 CMP B DIR
21 N 5C INC B 97 STA A DIR D2 sSBC B DIR
22 BHI REL &D TST B 98 EOR A DIR D3 *
23 BLS REL SE * 99 ADC A DIR D4 AND B DIR
24 BCC REL. 5F CLR B 9A ORA A DIR D5 BIT B DIR
25 BCS REL 60 NEG IND 98 ADD A DIR D6 LDA B DIR
26 BNE REL 61 . 9C CPX DIR D7 STA B DIR
27 BEQ REL 62 * 9D * D8 EOR B8 DIR
28 BVC REL 63 COM IND 9E LDS DIR D8 ADC B DIR
29 BVS REL 64 LSR IND 9F S8TS DIR DA ORA B DIR
2A BPL REL 65 * AQD SUB A IND DB ADD B DIR
28 BMI REL 66 ROR IND A1 CMP A IND DC *
2C BGE REL 67 ASR IND A2 SBC A IND DD -
2D BLT REL 68 ASL IND A3 * DE LDX DIR
2E BGT REL 69 ROL IND A4 AND A IND DF STX DIR
2F BLE REL 6A DEC IND A5 BIT A IND EO SuB B IND
30 TSX 6B * A6 LDA A IND E1 CMP B IND.
31 INS 6C INC IND A7 STA A IND E2 SBC B IND
32 PUL A 6D TST IND A8 EOR A IND E3 .
33 PUL B 6E JMP IND A9 ADC A IND E4 AND B IND
34 DES 6F CLR IND AA ORA A IND ES BIT B IND
35 TXS 70 NEG EXT AB ADD A IND E6 LDA B IND
36 PSH A 71 " AC CPX IND E7 STA "B IND
37 PSH B 72 AD JSR IND E8 EOR B IND
38 " 73 COM EXT AE LDS IND E9 ADC B IND
39 RTS 74 LSR EXT AF STS IND EA QORA B IND
3A " 75 * BO SUB A EXT EB ADD B IND
Notes
1. Addressing Modes: A = Accumulator A MM = Immediate REL = Relative
B = Accumulator B DIR = Direct iND = |ndexed

2. Unassigned code indicated by an asterisk (*)

F
5-21

s
F6800/F68A00/F68B00

Table 4 Accumulator and Memory Operations
The accumulator and memory operations and their effect on the CCR are shown in Table 4.
included are Arithmetic Logic, Data Test and Data Handling instructions.

Addressing Modes Booleani/Arithmetic Operation Cond. Code Reg. *

Operations Mnemonic Immed Direct Index Extnd Implied (All register labels 5(4(3[2(1]0

oP - #lop - #|lop - #|op - #lop - # refer to contents H| 1 In|z|v]c

Add ADDA 88 2 2|9B 3 2/AB 5 2!BB 4 A+ M-A A I O I O I O

ADDB cB 2 2|/DB 3 2|EB 5 2([FB 4 3 B+M-B A I O I O I O I

Add Acmltrs ABA 1B 2 1 |A+B-A LA I O O O I O

Add with Carry ADCA 83 2 21|99 3 2|A9 5 2i{B9 4 3 A+M+C-—A 1| e |1 1 ! 1
ADCB Cc9 2 2(b9 3 2(E9 5 2|F9 4 3 B+M+C-B et

And ANDA 84 2 2|94 3 2|A4 5 2|B4 4 3 A-M-—A e e || |R|®

ANDB C4 2 2|D4 3 2/E4 5 2|F4 4 3 B-M—-B e e || IR|e

Bit Test BITA 865 2 2(9 3 2|A5 5 2|B5 4 3 AeM e(® ||t |R|e

BITB cs 2 2|b5 3 2|E5 5 2|F5 4 3 B.«M e|® || 1 (R |e®

Ciear CLR 6F 7 2|7F 6 3 00 - M e|l® |R|{S|{R R

CLRA 4F 2 1 [00—~ A e|® | R|S|R|R

CLRB 5F 2 1 |0~—-B e|® R|S|R|R

Compare CMPA 81 2 2(91 3 2{A1 5 2|B1 4 3 A-M ®i® 1|1 |11

CMPB |Ct 2 2|D1 3 2 El 5 2|Ft 4 3 B-M ®ie® | 1|1 |11

Compare Acmitrs CBA 11 2 1| A-B o & | 1|11 |1

Complement, 18 COM 63 7 2|73 6 3 M-M e @& |:|1|R|S

COMA 43 2 1 A~ A e & | 1t |R|S

COMB 53 2 1[|B-8B e & ;[RIS

Complement, 2s NEG 60 7 2|70 6 3 00-M-M e|e® || 1]1]2

(Negate) NEGA 40 2 1 |00-A-A e|e® |1 1|12

NEGB 5 2 1[|0-B-B e|® |1 | 1|12

Decimal Adjust, A DAA 19 2 1 | Converts Binary Add. of BCD e|® | | 1|13

Characters into BCD Format

Decrement DEC 6A 7 2|7A 6 3 M-1-M e e |t |14 @

DECA 4A 2 t | A-1-A e & | 1|14 @

DECB 5A 2 1 B-1-8 LI I 1[4 e

Exclusive OR EORA 88 2 2|98 3 2|A8 5 2|B8 4 3 A+ M-—-A ¢ o 1 |1 |Rle

EORB c8 2 2|D8 3 2(E8 5 2|F8 4 3 B + M-8 e e | |1 |R|e

Increment INC 6C 7 2|7C 6 3 M+1-M e o 1|1 |5]|e

INCA 4 2 1t |A+ T A o e 1|1 |5|e

INCB 5C 2 1 |B+1-8B ® e | (|5 e

Load Acmiltr LDAA 86 2 2|96 3 2|A8 5 2/B6 4 3 M~ A ® o | {R @

LDAB cé 2 2|D6 3 2|E6 5 2|F6 4 3 M- B ® 8|1 |1 R |®

Or, Inclusive ORAA 8A 2 218A 3 2|AA 5 2|BA 4 3 A+ M-~ A L2 I 1 |RI®

ORAB |CA 2 2/DA 3 2|EA 5 2/FA 4 3 B+M-B e|e | |1 |R|e

Push Data PSHA 3 4 1 |A-—MspSP-1-5P o oo s |0

PSHB 37 4 1 | B~ Mg, SP-1—-5P o e o oo @

Pull Data PULA 32 4 1 |SP+1—5P Mgp—~A o e o 0|s o

PULB 33 4 t | SP +1—-5P Mgp -8B o o0 o o |

5-.22

F6800/F68A00/F68B00
Table 4 Accumulator and Memory Operations (Cont.)
Addressing Modes Boolean/Arithmetic Operation Cond. Code Reg. *
Operations Mnemonic Immed Direct Index Extnd Implied (All register labels 5432110
oP - #lop ~ #iOP - #|OP - #loP - # reter to contents Hit Nl Z]y
Rotate Left ROL €69 7 2|79 6 M ,_| o e 11|86
ROLA 9 2 1 |A I—D - I 11I11Td ® o | |61
ROLB 59 2 18 c b =— w0 e|le |1 |1]6]
Rotate Right ROR 66 7 2,76 6 3 M ® ® |t |6t
RORA 6 2 1]A L—D — EDZIZ"_EE]ZDj e ® |16 1
RORB s 2 1/8) ¢ Y oo ole|i|1]8]:
Shift Left, ASL 68 7 2|78 6 2 M e |0 1|61t
Asithmetic ASLA 8 2 1 |A O[T TITT]=0 |®|®|t]|1]86]:
ASLB s 2 118) ¢ 07 b0 eje|iltle |t
Shift Right, ASR 67 7 2|77 6 3 M LA I 1161
Arithmetic ASRA a7 2 1 | A QDZD___DZD —0O oo | 16|t
b7
ASRB 57 2 1|8 00 C o|o 1|18
Shift Right, LSR 64 7 2|74 6 3 M e (@ Rt |6t
Logic LSRA 44 2 1 |A pO~[TTTITIT]—[] (@ @ (R| |61
7
LSRB 54 2 1|8 o B C lelelali|6l:
Store Acmltr STAA 97 4 2]A7 6 2|B7 5 3 A—-M e el IR |e®
STAB D7 4 2|E7T 6 2|F7 5 3 B-M e | @ tiR|e
Subtract SUBA 60 2 2(9 3 2|A0 5 2|80 4 3 A-M-—A L tprtt
suBB co 2 2|DO 3 2|EO0 5 2|F0 4 3 B-M-B el e | [I O
Subtract Acmitrs SBA 0 2 1|A-B-A o &l it |t
Subtr. with Carry SBCA 82 2 2|92 3 2|A2 5 2|B2 4 3 A-M-C—~A e e | it gt
SBCB c2 2 2|D2 3 2{E2 5 2|F2 4 3 B-M-C-B LA tpr e
Transfer Acmitrs TAB 6 2 1|A~B ele |1 |1 |R|e
TBA 17 2 1 |{B-A e o | | |[R]e
Test, Zero TST 6D 7 2|70 6 3 M - 00 e|® |t | 1|R|R
or Minus TSTA 4D 2 1 A-00 LA t|R{R
TSTB sb 2 1 {B-00 e ® | | |RI|R
Hil |[N[Z]|V]C
Note
Accumulator addressing mode instructions are included in the cotumn for IMPLIED addressing
*See condition coda register notes page 26
Legend: Condition Code Symboils:
OP Operation Code (Hexadecimal); H Half-carry from bit 3;
~ Number of MPU Cycles; | Interrupt mask
-4 Number of Program Bytes; N Negative (sign bit)
+ Arithmetic Plus; Z Zero (byte)
- Arithmetic Minus; v Overflow, 2's complement
. Boolean AND; o} Carry from bit 7
Mge Contents of memory location R Reset Always
pointed to be Stack Pointer; S Set Always
+ Boolean Inclusive OR; Test and set if true, cleared otherwise
® Boolean Exclusive OR; . Not Affected
M Complement of M;
- Transter Into;
0 Bit = Zero;
00 Byte = Zero;

5-23

L .

F6800/F68A00/F68B00
Program Control Operations register. This causes the next byte to be pulled from the
stack to come from the location indicated by the index
Program Control operation can be subdivided into two register. The utility of these two instructions can be clarified
categories: (1) index register/stack pointer instructions; (2) by describing the stack concept relative to the
jump and branch operations. F6800 system.
Index Register/Stack Pointer Operations The stack can be thought of as a sequential list of data
The instructions for direct operation on the MPU’s index stored in the MPU's read/write memory. The stack pointer
register and stack pointer are summarized in Table 5. contains a 18-bit memory address that is used to access the
Decrement (DEX, DES), increment (INX, INS), load (LDX, list from one end on a last-in-first-out (LIFQ) basis in contrast
LDS), and store (STX, STS) instructions are provided for to the random access mode used by the MPU's other
both. The compare instruction, CPX, can be used to compare addressing modes.
the index register to a 16-bit value and update the condition
code register accordingly. The F6800 instruction set and interrupt structure allow
extensive use of the stack concept for efficient handiing of
The TSX instruction causes the index register to be loaded data movement, subroutines and interrupts. The instructions
with the address of the last data byte put onto the stack. can be used to establish one or more stacks anywhere in
The TXS instruction loads the stack pointer with a value read/write memory. Stack length is limited only by the
equal to one less than the current contents of the index amount of memory that is made available.
Table 5 Index Register and Stack Pointer Instructions
. . Cond. Code Reg.*
Pointer . Immed Direct Index Extend Implied Booliean/Arithmetic sTalslz11 o
Operations Mnemonic Operation
OP| - |#|oP|~| #lop| - | #ioP|~| #|OP|~|# Hit1|NJZ]|V
Compare CPX [8C| 3 |3|9C|4|2]|AC| 6|2 |BC|{5]3 Xo — M, XL — (M + 1) oo (D 1|Be
Index Reg
Decrement DEX B4 11| X=-1-X e|o|o| 1 |e]e
Index Reg
Decrement DES 34|4|1|SP-1~8P [B NN EE BN BN}
Stack Pntr
Increment INX 084 1| X+1-=-X LB NN BN NN
Index Reg
Increment INS 31[4{1|SP+1-~38P [BE BN EBE RN BN
Stack Pntr
Load LDX |CE|3 |3|pE|412 |EE[6|2|FE|5] 3 M= Xp (M + 1) = XL o o1 |R|®
Index Reg
Load LDS |8E|3 (3 |9E|4| 2 |AE[6 |2 |BE|5| 3 M-=SPy,M+1)—~SP. |e|e|@|1|R]e
Stack Pntr
Store STX DF |5 |2 |EF| 7 |2 |FF|6 | 3 XH = M, XL~ (M + 1) o o|@1|R|e
Index Reg
Store sTS 9F (5| 2 |AF| 7 |2 |BF| 6|3 SPH—-MSPL-M+1) |o|e(Q1!R|e
Stack Pntr
Indx Reg — TXS B4 (1| X~-1-~8P e 0o (000 le
Stack Pntr
Stack Pntr — TSX 304 (1]SP+1~X o|o o |00 |fe
Indx Reg

*See condition code register notes page 26

524

F6800/F68A00/F68B0O0

Operation of the stack pointer with the push and pull
instructions is illustrated in Figures 8 and 9. The push
instruction (PSHA) causes the contents of the indicated
accumulator (A in this example) to be stored in memory at
the location indicated by the stack pointer. The stack pointer
is automatically decremented by one following the storage
operation and is “pointing” to the next empty stack location.
The pull instruction (PULA or PULB) causes the last byte
stacked to be loaded into the appropriate accumulator. The
stack pointer is automatically incremented by one just prior
to the data transfer so that it will point to the last byte
stacked rather than the next empty location. Note that the
pull instruction does not remove the data from memory; in the
example, 1A is still in location (m + 1) following execution of
PULA. A subsequent push instruction would overwrite that
location with the new pushed data.

Execution of the branch to subroutine (BSR) and jump to

subroutine {JSR) instructions cause a return address to be
saved on the stack as shown in Figures 11 through 13. The
stack is decremented after each byte of the return address

is pushed onto the stack. For both of these instructions, the
return address is the memory location following the bytes of
code that correspond to the BSR and JSR instruction. The
code required for BSR or JSR may be either two or three
bytes, depending on whether the JSR is in the indexed (two
bytes) or the extended (three bytes) addressing mode.
Before it is stacked, the program counter is automatically
incremented the correct number of times to be pointing at the
location of the next instruction, The return from subroutine
instruction, RTS, causes the return address to be retrieved
and loaded into the program counter as shown in Figure 14.

There are several operations that cause the status of the
MPU to be saved on the stack. The software interrupt (SWI)
and wait for interrupt (WAI) instructions as well as the
maskable (IRQ) and non-maskable (NM}) hardware interrupts
all cause the MPU's internal registers {(except for the stack
pointer itself) to be stacked as shown in Figure 16. MPU
status is restored by the return from interrupt, RTI, as shown
in Figure 15.

Fig. 8 Stack Operation, Push Instruction

MPU

ween [

m-2
w
m-1 2
o
SP—a=m P
+1 7F a
pREVIOUSLY | ™ e
STACKED {m + 2 63
DATA [.3 D
3c
|
PC —p PSHA
NEXT INSTR \l
e — L~

(a) BEFORE PSHA

MPU
reor (5]
f
m-2
SP—m - 1
NEW DATA m F3
m+1 F
PREVIOUSLY
STACKED {m + 2 63
DATA m+3 FD
3c
f
PSHA
PC —=] NEXT INSTR

5-25

{b) AFTER PSHA

F6800/F68A00/F68BO0O

Fig. 9 Stack Operation, Pull Instruction
MPU MPU
acea [+] Acca
/—-
m-2 m-2
m-1 m-1
§P—am m
PREVIOUSLY m+1 1A $Pp—— m +1 1A
STACKED {m + 2 Ic PREVIOUSLY {1, , » 3C
DATA STACKED
m+3 DS DATA{m +3 D5 _-
EC EC
A A
e
PC—iy PULA PULA
NEXT INSTR PC ——1 NEXT INSTR
f\ \
_/-4
{a) BEFORE PULA (b) AFTER PULA
Fig. 10 Program Flow for Jump and Branch Instructions
PC MAIN PROGRAM
PC MAIN PROGRAM MAIN PROGRAM
n
n| 8E = JMP] 2¢ = BRA
n + 1 [KH=NEXT ADDRESS
n+ 1] K= OFFSET n+1 K = OFFSET"
*
2 2k
K
‘K = SIGNED 7-8IT VALUE
{a) JUMP {b) BRANCH
Fig. 11 Program Flow for BSR
m-2 SP—m-m-2
m -1 m-1 (n+2)H
SP— m m {(n+2)L
m+1 TE m+1 7€
]
e —
PC—» n BSR n BSR
n+1 *K = OFFSET* n+1 +K = OFFSET
n+2 NEXTMA!NINSTRl n + 2 INEXT MAIN INSTFI‘
“K = SIGNED 7-BIT e
VALUE
PC—»(n +2) *K J1STSUBR INSTR
{a) BEFORE EXECUTION

{b) AFTER EXECUTION

F6800/F68A00/F68B00
Fig. 12 Program Flow for JSR (Extended)
m-2 m-3
m-1 SP—m-m - 2
SP —ae-m m-1 (n +3)H
m+1 TE m {n+3)L
m+2 A m+1 TE
7D m+2 TA
f —
/‘ \-y—
PC—wmn JSR = BD —]
n+1 | Sn = SUBRADDR n JsR
n+2 | 5 = SUBR ADDR n+1 | Sy=SUBRADDR
n+3 [NEXT MAIN INSTR n+2 | S = SUBRADDR
n +3 | NEXT MAIN INSTR
_/_hu _/-\
{a) BEFORE EXECUTION
pc—»5 | 1STSUBR INSTR
(S FORMED FROM
SHAND S} e
{b) AFTER EXECUTION
Fig. 13 Program Flow for JSR (Indexed)
m-2 SP—=m-2 ‘
m-1 m-1 (n+2)H
SP—pm m (n+2)L
m+1 7E m+1 7E
_/n-\ -
PC=—n JSR = AD n JSR = AD
n+1 K = OFFSET* n+1 K = OFFSET
n+2 |NEXT MAININSTR n+2 {NEXT MAIN INSTR
/—__- -——-'—'\
*K = 8-BIT
UNSIGNED VALUE PC— X*+K 1ST SUBR INSTR
{a) BEFORE EXECUTION

*CONTENTS OF
INDEX REGISTER

{b) AFTER EXECUTION

F6800/F68A00/F68B00
Fig. 14 Program Flow for RTS
W N Pt
SP—»m -2 m-2
m-1 {n +3)H m-1
m (n+3}L SP—m
m+t 7E m+1 TE
._’.’R Z
n JSR = BD n JSR =BD
n-+1 Sy = SUBR ADDR n+1 Sy = SUBR ADDR
n+2 S = SUBR ADDR n+2 S = SUBR ADDR
n +3 § NEXT MAIN INSTR PC—n +3 | NEXT MAIN INSTR
~._-___,.—-—\
LAST SUBR INSTR LAST SUBR INSTR
PC —» S, RTS Sn RTS
| —— L ————

(a) BEFORE EXECUTION

(b) AFTER EXECUTION

Fig. 15 Program Flow for RTI

SP —»

Sn
PC —

CCR

ACCB

ACCA

Xn (INDEX REG)

X, (INDEX REG})

PC{n + 1)H

PC(n + 1)L

7E

e

NEXT MAIN INSTR

e
B

LAST INTER INSTR

RTI

h—/\

(a) BEFORE EXECUTION

PC—#n +1

Sn

5-28

CCR
AcCCB
ACCA

XH
Xi
PCH
PCL

NEXT MAIN INSTR

P sy

LAST INTER INSTR
RTI

b

(b) AFTER EXECUTION

F6800/F68A00/F68B00

Fig. 16 Program Flow for Interrupts

WAIT FOR HARDWARE INTERRUPT OR
SOFTWARE INTERRUPT INTERRUPT NON-MASKABLE INTERRUPT (NMI)
MAIN PROGRAM MAIN PROGRAM MAIN PROGRAM
n n 3E - WAL NG A\ NO
MASK SET?
NEXT MAIN INSTR n+1| NEXT MAIN INSTR n | LAST PROG BYTE (CCR 4
YES
” CONTINUE MAIN PROG *
YES n+ 1] NEXT MAIN INSTR
r
STACK
Y SP—wm -7
STACK MPU
REGISTER CONTENTS m-6 CONDITION CODE

m-s ACMLTR B
m-4 ACMLTR A
m-3 INDEX REGISTER (Xy)
m-2 INDEX REGISTER {Xy)
m-1 PCin + NH

m PC(n - L

B

swi HDWR wal NMI
INT . @nnr

4
NMI
Loop)— -

WAIT

FFFA FFFS FFFC FFFE
FFFB FFF9 FFED § FFFF
INTERRUPT MEMORY T
ASSIGNMENT. SET INTERRUPT
FFF8 | CONSTANT, HDWARE | MS MASK (CCR 4)
FEF9 | CONSTANT, HOWARE | LS FIRST INSTR ‘
ADDR FORMED LOAD INTERRUPT
FFFA SOFTWARE Ms VECTOR INTQ
g‘;:;;g:g‘;ﬂ PROGRAM COUNTER
FFFB SOFTWARE Ls Al i
FFFC | NON-MASKABLE INT { MS ASSIGN

~ _—
INTERRUPT PROGRAM

FFFD | NON-MASKABLE INT | LS
18T INTERRUPT INSTR

FFFE RESTART MS

FFFF RESTART LS

Note
MS = Most Significant Address Byte
LS = Least Significant Address Byte

F6800/F68A00/F68B00
Jump and Branch Operation Execution of the jump instruction, JMP, and branch always,
The jump and branch instructions are summarized in Table 6. BRA, affects program flow as shown in Figure 10. When the
These instructions are used to control the transter of MPU encounters the jump (indexed) instruction, it adds the
operation from one point to another in the control program. offset to the value in the index register and uses the result

as the address of the next instruction to be executed. In the
The no operation instruction, NOP, while included here, is a extended addressing mode, the address of the next
jump operation in a very limited sense. Its only effect is to instruction to be executed is fetched from the two locations
increment the program counter by one. It is useful during immediately following the JMP instruction. The branch always
program development as a stand-in for some other (BRA) instruction is similar to the JMP (extended) instruction
instruction that is to be determined during debug. It is also except that the relative addressing mode applies and the
used for equalizing the execution time through alternate branch is limited to the range within —125 or +127 bytes of
paths in a control program. the branch instruction itself. The opcode for the BRA

instruction requires one less byte than JMP (extended) but
takes one more cycle to execute.

Table 6 Jump and Branch Instructions

Relative Index Extend Implied Cond. Code Reg. t

Operations Mnemonic Branch Test 5|4|3|21]1]0

OP|~ | #]OP| ~ | # |OP| ~ | # |[OP|~ | # Hlt|N]lZIV]C
Branch Aiways BRA 20|42 None ([EE EE R NE BE]
Branch if Carry Clear BCC 24 | 4| 2 C=90 (A BN R NE BN}
Branch if Carry Set BCS 25142 cC=1 [BN BN BN R]
Branch if = Zero BEQ 27144 2 Z=1 [R BN NN BN NN
Branch if = Zero BGE 2C | 4| 2 N + Vv=0 ([BE NN BX BN NN]
Branch if > Zero BGT 2E | 4 | 2 Z+ (N + V=0 [W B NN NN NN]
Branch if Higher BHI 22| 4| 2 C+Z2=10 e | o o |00 |0
Branch if < Zero BLE 2F | 4 2 Z+(N + V)=1 oo o e|o|e
Branch it Lower or Same BLS 234] 2 C+Z=1 o ®o'® 0|8 e
Branch it < Zero BLT 20| 4| 2 N + V=1 [BN BN BN BN BN]
Branch if Minus BMI 2B| 4|2 N =1 (BN BN NN BE NN]
Branch if not Equal Zero BNE 2614 | 2 Z=0 o |e |0 o |00
Branch if Overflow Clear BVC 2814 2 V=20 oo (eo|0o|0ie
Branch if Overflow Set BVS 29 4| 2 V=1 [BN BN BN BE BX]
Branch it Plus BPL 2A (4 2 N 0 [BN BN BN BN BN]
Branch to Subroutine BSR gD{8 | 2 o e o oo
Jump JMP 6B} 412]7E13 |3 } See Special Operations bbb bl b
Jump to Subroutine JSR AD| 8 |2 (BD|9 |3 ¢e|eo (o oo |
No Operation NOP 01| 2| 1 | Advances Prog. Cntr. Only LR BN R NS BN
Return from Interrupt RTI 3B |10
Return from Subroutine RTS 39| 5|1 ®e|e & & |® 0@
Software Interrupt sSwi 3F (12 1] See Special Operations ¢ | |0 0 o o
Wait for Interrupt* WAL 3B| 91 L LER SR BR

*WAI puts address bus, R/W, and data bus in the 3-state mode while VMA is held LOW.
tSee condition code register notes page 26.

5-30

I

F6800/F68A00/F68B00

The effect on program fiow for the jump to subroutine (JSR)
and branch to subroutine (BSR) is shown in Figures 11
through 13, Note that the program counter is properly
incremented to be pointing at the correct return address
before it is stacked. Operation of the branch to subroutine
and jump to subroutine (extended) instruction is similar
except for the range. The BSR instruction requires less
opcode than JSR (2 bytes versus 3 bytes) and also executes
one cycle faster than JSR. The return from subroutine, RTS,
is used at the end of a subroutine to return to the main
program as indicated in Figure 14.

The effect of executing the software interrupt, SWI, and the
wait for interrupt, WAI, and their relationship to the hardware
interrupts is shown in Figure 15. SWi causes the MPU
contents to be stacked and then fetches the starting address
of the interrupt routine from the memory locations that
respond to the addresses FFFA and FFFB. Note that as in
the case of the subroutine instructions, the program counter
is incremented to point at the correct return address before
being stacked. The return from interrupt instruction, RTI,
(Figure 15) is used at the end of an interrupt routine to
restore control to the main program. The SWI instruction is
useful for inserting break points in the control program, that
is, it can be used to stop operation and put the MPU
registers in memory where they can be examined. The WAI
instruction is used to decrease the time required to service a
hardware interrupt; it stacks the MPU contents and then
waits for the interrupt to occur, effectively removing the
stacking time from a hardware interrupt sequence.

Fig. 17 Conditional Branch instructions

BMI: N=1; BEQ: Z2=1;
BPL: N=¢; BNE: Z=¢;
BVC: V=¢; BCC: C=¢;
BVS: Vv=1; BCS: C=1;
BHI: C+Z=¢; BLT : Dv=1;
BLS: C+2Z=1; BGE: @v=9;

N
N

BLE: Z+(N® V) =1;

BGT: Z+ (N V)

The conditional branch instructions, Figure 17, consist of
seven pairs of complementary instructions. They are used to
test the results of the preceding operation and either
continue with the next instruction in sequence (test fails), or
cause a branch to another point in the program

(test succeeds).

Four of the pairs are used for simple tests of status bits N, Z,
V, and C:
1. Branch on minus (BMI) and branch on plus (BPL)
tests the sign bit, N, to determine if the previous result

was negative or positive, respectively.

2. Branch on equal (BEQ) and branch on not equal
(BNE) are used to test the zero status bit, Z, to
determine whather or not the result of the previous
operation was equal to zero. These two instructions are
useful following a compare (CMP) instruction to test for
equality between an accumulator and the operand.
They are also used foliowing the bit test (BIT) to
determine whether or not the same bit positions are set
in an accumulator and the operand.

3. Branch on overflow clear (BYC) and branch on
overflow set (BVS) tests the state of the V bit to
determine if the previous operation caused an
arithmetic overflow.

4. Branch on carry clear (BCC) and branch on carry
set (BCS) tests the state of the C bit to determine if
the previous operation caused a carry to occur. BCC
and BCS are useful for testing relative magnitude when
the values being tested are regarded as unsigned
binary numbers, that is, the values are in the range 00
(lowest) to FF (highest). BCC following a comparison
(CMP) will cause a branch if the (unsigned) value in the
accumulator is higher than or the same as the value of
the operand. Conversely, BCS will cause a branch if
the accumulator value is lower than the operand.

The fitth complementary pair, branch on higher (BHI) and
branch on lower or same (BLS) are in a sense complements
to BCC and BCS. BHiI tests for both C and Z = O, if used
following a CMP, it will cause a branch if the value in the
accumulator is higher than the operand, Conversely, BLS will
cause a branch if the unsigned binary value in the
accumulator is lower than or the same as the operand.

The remaining two pairs are useful in testing results of
operations in which the values are regarded as signed two's
complement numbers. This differs from the unsigned binary
case in the following sense: In unsigned, the orientation is
higher or lower; in signed two’s complement, the comparison
is between larger or smaller where the range of values is
between —-128 and +127.

Branch on less than zero (BLT) and branch on greater than

or equal zero (BGE) test the status bits for N @ Vv = “1”

and N @ V = “0", respectively. BLT will always cause a
branch following an operation in which two negative numbers
were added. In addition, it will cause a branch following a
CMP in which the value in the accumulator was negative and
the operand was positive. BLT will never cause a branch
following a CMP in which the accumulator value was positive
and the operand negative. BGE, the complement to BLT, will
cause a branch following operations in which two positive
values were added or in which the result was zero.

The last pair, branch on less than cor equal zero (BLE) and

“

F6800/F68A00/F68B00

branch on greater than zero (BGT) test the status bits for Z
@ (N+V)="1"and Z @ (N + V) = "0", respectively.
The action of BLE is identical to that for BLT except that a
branch will also occur if the result of the previous result was
zero. Conversely, BGT is similar to BGE except that no
branch will occur following a zero result.

Condition Code Register Operations

The condition code register (CCR) is a 6-bit register within

Table 7 Condition Code Register Instructions

the MPU that is useful in controlling program flow during
system operation. The bits are defined in Figure 18.

The instructions shown in Table 7 are available to the user
for direct manipulation ot the CCR. In addition, the MPU
automatically sets or clears the appropriate status bits as
many of the other instructions on the condition code register
were indicated as they were introduced.

implled Cond. Code Reg.*
mplie:
Operations Mnemonic P Booiean Operation 5 4 3 2 1 0
oP | ~ # H | N Z vic
Clear Carry CLC ocC 2 1 0-C] o [® ® R
Ciear Interrupt Mask CLI OE 2 1 01 ® R [) ° °
Clear Overflow CLV OA 2 1 o0-V . ° ° [R ®
Set Carry SEC oD 2 1 1-C ® ®) e ° S
Set Interrupt Mask SEl OF 2 1 1-1 ® S ° [® ®
Set Overflow SEV 0B 2 1 1-V ® ® [o S)
Acmitr A — CCR TAP 06 2 1 A — CCR
CCR — Acmltr A TPA 07 2 1 CCR - A ® | o | e (o | o | ®

R = Reset
S= Set
® = Not affected

1 (ALL) Set according to the contents of Accumulator A.

*See Condition Code Register notes below

Condition Code Register Notes: (Bit set if test is true and
cleared otherwise)

]

1 (Bit V) Test: Result

2 {Bit C) Test: Result

100000007

000000007

3 (Bit C) Test: Decimal value of most significant BCD

character greater than nine? (Not cleared if

previously set.)

4 (Bit V) Test: Operand = 10000000 prior to execution?

5 (Bit V) Test: Operand = 01111111 prior to execution?

& (Bit V) Test: Set equal to result of N ® C after shift

has occurred.

7 (Bit N) Test: Sign bit of most significant (MS) byte = 17

5.32

8 (Bit V) Test: 2s complement overflow from subtraction of
MS bytes?

9 (Bit N} Test: Result less than “0"7? (Bit 156 = 1)

10 (All) Load condition code register from stack.
(See Special Operations)

11 (Bit I} Set when interrupt occurs. If previously set,
a non-maskable interrupt is required to exit
the wait state.

12 (Al)) Set according to the contents of
accumulator A.

O

F6800/F68A00/F68B00

Fig. 18 Condition Code Register Bit Definition

bs bsy by by by b
(nlvfwfzfv]ec]

H = Half-carry; set whenever a carry from bg to b, of the
result is generated by ADD, ABA, ADC; cleared if no bg
to bg carry; not affected by other instructions.

| = Interrupt Mask; set by hardware or software interrupt or
SEl instruction; cleared by CLI instruction. (Normally not
used in arithmetic operations.) Restored to a zero as a
result of an RTI instruction if |, stored on the stack is

LOW.

N = Negative; set if high order bit (b;) of result is set;
cleared otherwise

Z = Zero; set if result = 0; cleared otherwise.

V = Overiow, set if there were arithmetic overflow as a
result of the operation; cleared otherwise.

C = Carry; set if there were a carry from the most

significant bit (b7) of the resuit; cleared otherwise.

A CLI-WAI instruction sequence operated properly with early
F6800 processors only if the preceding instruction were odd.
(Least Significant Bit = “1”.) Similarly it was advisable to
precede any SEl instruction with an odd opcode—such as
NOP. These precautions are not necessary for F6800
processors indicating manufacture in November, 1977

or later.

Systems which require an interrupt window to be opened
under program control should use a CLI-NOP-SEI| sequence
rather than CLI-SEI.

Addressing Modes

The MPU operates on 8-bit binary numbers presented to it
via the data bus. A given number (byte) may represent either
data or an instruction to be executed, depending on where it
is encountered in the control program. The F6800 has 72
unique instructions; however, it recognizes and takes action
on 197 of the 256 possibilities that can occur using an 8-bit
word length. This larger number of instructions results from
the fact that many of the executive instructions have more
than one addressing mode.

These addressing modes refer to the manner in which the
program causes the MPU to obtain its instructions and data.
The programmer must have a method for addressing the
MPU's internal registers and all of the external

memory locations.

Selection of the desired addressing mode is made by the
user as the source statements are written. Translation into
appropriate opcode then depends on the method used. If
manual translation is used, the addressing mode is inherent
in the opcode. For example, the immediate, direct, indexed,
and extended modes may all be used with the ADD
instruction. The proper mode is determined by selecting
(hexadecimal notation) 8B, 9B, AB, or BB, respectively.

The source statement format includes adequate information
for the selection if an assembler program is used to gen-
erate the opcode. For instance, the immediate mode is
selected by the assembler whenever it encounters the “#"
symbol in the operand field. Similarly, an X" in the operand
field causes the indexed mode to be selected. Only the
relative mode applies to the branch instructions; therefore,
the mnemonic instruction itself is enough for the assembler
to determine addressing mode.

For the instructions that use both direct and extended
modes, the assembler selects the direct mode if the operand
value is in the range 0-255 and extended otherwise. There
are a number of instructions for which the extended mode is
valid but the direct is not. For these instructions, the
assembler automatically selects the extended mode even if
the operand is in the 0-255 range. The addressing modes are
summarized in Figure 19.

Inherent (Includes “Accumulator Addressing”) Mode

The successive fields in a statement are normally separated
by one or more spaces. An exception to this rule occurs for
instructions that use dual addressing in the operand field and
for instructions that must distinguish between the two
accumuiators. In these cases, A and B are “operands” but
the space between them and the operator may be omitted.
This is commonly done, resulting in apparent four character
mnemonics for those instructions.

The addition instruction, ADD, provides an example of dual
addressing in the operand field:

Operator Operand Comment
ADDA MEM12 ADD CONTENTS OF MEM12
TO ACCA
or ADDB MEM12 ADD CONTENTS OF MEM 12
TO ACCB

The example used earlier for the test instruction, TST, also
applies to the accumulators and uses the “accumulator
addressing mode” to designate which of the two
accumuiators is being tested:

Operator Comment
TSTB TEST CONTENTS OF ACCB
or TSTA TEST CONTENTS OF ACCA

5-33

F6800/F68A00/F68B00

A number of the instructions either alone or together with an
accumutator operand contain all of the address information
that is required, that is, “inherent” in the instruction itself.
For instance, the instruction ABA causes the MPU to add the
contents of accumulators A and B together and place the
result in accumulator A. The instruction INCB, another
example of “accumulator addressing”, causes the contents
of accumulator B to be increased by one. Similarly, INX,
incrementing the index register, causes the contents of the
index register to be increased by one.

Program flow for instructions of this type is illustrated in
Figures 20 and 21. In these figures, the general case is
shown on the left and a specific example is shown on the
right. Numerical examples are in decimal notation.
Instructions of this type require only one byte of opcode.
Cycle-by-cycle operation of the inherent mode is shown
in Table 8.

Direct and Extended Addressing Modes
In the direct and extended modes of addressing, the operand
field of the source statement is the address of the value that
is to be operated on. The direct and extended modes differ
only in the range of memory locations to which they can
direct the MPU. Direct addressing generates a single 8-bit
operand and, hence, can address only memory locations O
through 255; a two byte operand is generated for extended
addressing, enabling the MPU to reach the remaining
memory locations, 256 through 65535. An example of direct
addressing and its effect on program flow is illustrated

in Figure 23.

The MPU, after encountering the opcode for the instruction
LDAA (direct) at memory location 5004 (program counter =
5004), looks in the next location, 5005, for the address of
the operand. It then sets the program counter equal to the

Fig. 19 Addressing Mode Summary

DIRECT: n DO INSTRUCTION

EXAMPLE: SUBB Z n+ 1| Z=OPRND ADDRESS

ADDR. RANGE = 0-255

A n+2 NEXT INSTR
.
L]
L]
{K = ONE-BYTE OPRND) z [K = OPERAND
CR
(K = TWO-BYTE OPERAND) Z Ky = OPERAND

Z+1 Ki = OPERAND

IF Z < 255, ASSEMBLER SELECT DIRECT MODE
IF Z > 255, EXTENDED MODE IS SELECTED

EXTENDED: n FO INSTRUCTION
EXAMPLE: CMPA Z n+ 1|2z = OPRND ADDRESS
ADDR. RANGE: n+ 2 | 2 = OPRND ADDRESS
Q 256-65535

n+3 NEXT INSTR

(K =ONE-BYTE OPRND})

z K = OPERAND

OR
(K = TWO-BYTE OPERAND) Z Ky = OPERAND
Z+1 KL = OPERAND

5-34

IMMEDIATE: n INSTRUCTION
EXAMPLE: LDAA #K n+1 K = OPERAND
(K = ONE-BYTE OPRND)
n+2 NEXT INSTR
OR
(K = TWO-BYTE OPRND) n INSTRUCTION

(CPX, LDX, AND LDS)

n+1 Kn = OPERAND
n+2 KL = OPERAND

n+3 NEXT INSTR
RELATIVE: n INSTRUCTION
EXAMPLE: BNE K n+ 1] +K = BRNCH OFFSET

(K =SIGNED 7-8IT VALUE) n+ 2

NEXT INSTR /\
.

ADDR. RANGE:
—-125TO +129 L]
RELATIVE TO n. O

(n+2) K NEXT INSTR /3\

/2\ IF BRNCH Tot FALSE, 3\ IF BRNCH Tat TRUE.

INDEXED: n INSTRUCTION
EXAMPLE: ADDA Z, X n+1 Z = OFFSET
ADDR. RANGE: n+2 NEXT INSTR
0-255 RELATIVE TO

INDEX REGISTER, X .

{Z = B-BIT UNSIGNED

X+2Z K = OPERAND
VALUE)

“

F6800/F68A00/F68B00
Table 8 Inherent Mode Cycle-by-Cycle Operation
Address Mode Cycle | VMA RIW
and instructions Cycles # Line Address Bus Line Data Bus
tnherent
ABA DAA SEC 1 1 Op Code Address 1 Op Code
ASL DEC SEI 2 1 Op Code Address + 1 1 Op Code of Next instruction
ASR INC SEV
CBA LSR TAB
CLC NEG TAP 2
CLI NOP TBA
CLR ROL TPA
CLV ROR TST
COM SBA
DES 1 1 Op Code Address 1 Qp Code
DEX 4 2 1 Op Code Address + 1 1 Op Code of Next Instruction
INS 3 0 Previous Register Contents 1 Irrelevant Data (Note 1)
INX -4 0 New Register Contents 1 Irrelevant Data (Note 1)
PSH 1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 1 Stack Pointer 0 Accumulator Data
4 0 Stack Pointer — 1 1 Accumulator Data
PUL 1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address +1 1 Op Code of Next Instruction
3 0 Stack Pointer 1 Irrelevant Data (Note 1)
4 1 Stack Pointer 41 1 Operand Data from Stack
TSX 1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 0 Stack Pointer 1 Irrelevant Data (Note 1)
4 0 New Index Register 1 Irrelevant Data (Note 1)
TXS 1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address +1 1 Op Code of Next Instruction
3 0 Index Register 1 Irrelevant Data
4 0 New Stack Pointer 1 irrelevant Data
RTS 1 1 Op Code Address 1 Op Code
2 1 Op Code Address +1 1 trrelevant Data (Note 2)
3 0 Stack Pointer 1 Irrelevant Data (Note 1}
5 4 1 Stack Pointer +1 1 Address of Next Instruction
(High Order Byte)
5 1 Stack Pointer +2 1 Address of Next Instruction

(Low Order Byte)

5-35

F6800/F68A00/F68B00
Table 8 Inherent Mode Cycle-by-Cycle Operation (Cont.)
Address Mode Cycle | VMA RIW
and Instructions Cycles # Line Address Bus Line Data Bus
Inherent (Cont'd)
WAI 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 1 Stack Pointer 0 Return Address (Low Order Byte)
4 1 Stack Pointer —1 0 Return Address (High Order Byte)
9 5 1 Stack Pointer —2 0 Index Register (Low Order Byte
8 1 Stack Pointer -3 0 Index Register {(High Order Byte)
7 1 Stack Pointer — 4 0 Contents of Accumulator A
8 1 Stack Pointer =5 0 Contents of Accumulator B
9 1 Stack Pointer —6 {Note 3) 1 Contents of Cond. Code Register
RTI 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 irrelevant Data (Note 2)
3 0 Stack Pointer 1 Irrelevant Data (Note 1)
4 1 Stack Pointer +1 1 Contents of Cond. Code Register from
Stack
5 1 Stack Pointer + 2 1 Contents of Accumulator B from Stack
6 1 Stack Pointer +3 1 Contents of Accumulator A from Stack
10 7 1 Stack Pointer +4 1 Index Register from Stack
(High Order Byte)
8 1 Stack Pointer +5 1 Index Register from Stack
(Low Order Byte)
9 1 Stack Pointer +6 1 Next Instruction Address from Stack
(High Order Byte)
10 1 Stack Pointer +7 1 Next Instruction Address from Stack
(Low Order Byte)
SwWi 1 1 Op Code Address 1 Op Code
2 1 Op Code Address +1 1 Irrelevant Data (Note 1)
3 1 Stack Pointer 0 Return Address (Low Crder Byte)
4 1 Stack Pointer ~1 4] Return Address (High Order Byte)
5 1 Stack Pointer -2 0 Index Register (Low Order Byte)
12 6 1 Stack Pointer -3 0 Index Register (High Order Byte)
7 1 Stack Pointer —4 0 Contents of Accumulator A
8 1 Stack Pointer -5 0 Contents of Accumulator B
9 1 Stack Pointer —6 0 Contents of Cond. Code Register
10 0 Stack Pointer —7 1 irrelevant Data (Note 1)
11 1 Vector Address FFFA (Hex) 1 Address of Subroutine (High Order Byte)
12 1 Vector Address FFFB (Hex) 1 Address of Subroutine (Low Order Byte)
Notes

1. If device which is addressed during this cycle uses VMA, then the data bus will go to the high impedance 3-state condition. Depending on bus

capacitance, data from the previous cycle may be retained on the data bus.
2. Data is ignored by the MPU.
3. While the MPU is waiting for the interrupt, Bus Avaitable will go HIGH indicating the following states of the control tines: VMA is LOW, address bus,

R/W, and data bus are all in the high impedance state.

5-36

F6800/F68A00/F68B00

Fig. 20 Inherent Addressing Fig. 22 Immediate Addressing Mode
MPU MPU MPU MPU
INDEX ‘ ACCA
<[L_— == <L,:“ <b = <ﬁ'—
RAM RAM AAM RAM
— — [~
: [E‘ PROGRAM PROGRAM
MEMORY MEMORY
——-__ r—-_
PROGRAM '-" PROGRAM = PC INSTR : PC = 5002 LDA A
MEMORY MEMORY DATA - <—.
Q ‘Q _—-\- /—\-‘

GENERAL FLOW EXAMPLE
PC INSTR PC = 5000 INX

— p—— Fig. 23 Direct Addressing Mode
GENERAL FLOW EXAMPLE mMpPU MPU
ACCA A_
Fig. 21 Accumulator Addressing <: N
RAM RAM
MPU MPU - .
ACcB / ‘ ADDR DATA ADDR = 100 35
‘ 15—16
N f—— b
PROGRAM PROGRAM
RAM RAM MEMORY MEMORY
m— —~ — —_

PC INSTR PC = 5004 LDA A
: :: PC +1 ADDR 5005 100

ADDR - 0 = 255

GENERAL FLOW EXAMPLE
PROGRAM PROGRAM
MEMORY MEMORY
BC INSTR PC = 5001 INC B 4
N m
GENERAL FLOW EXAMPLE

”

F6800/F68A00/F68B00
Table 9 immediate Mode Cycle-by-Cycle Operation
Address Mode Cycle | VMA RIW
and Instructions Cycles # Line Address Bus Line Data Bus
Immaediate
ADC EOR 1 1 Op Code Address 1 Op Code
ADD LDA 2 1 Op Code Address +1 1 Operand Data
AND ORA 2
BIT SBC
CMP SUB
CPX 1 1 Op Code Address 1 Op Code
LDS 3 2 1 Op Code Address +1 1 Operand Data (High Order Byte)
LDX 3 1 Op Code address +2 1 Operand Data {Low Order Byte)
Table 10 Direct Mode Cycle-by-Cycle Operation
Address Mode Cycle | VMA RW
and Instructions Cycles # Line Address Bus Line Data Bus
Direct
ADC EOR 1 1 Op Code Address 1 Op Code
ADD LDA 2 1 Op Code Address +1 1 Address of Operand
AND ORA 3 3 1 Address of Operand 1 Operand Data
BIT SBC
CMP SUB
CPX 1 1 Qp Code Address 1 Op Code
LDS 4 2 1 Op Code Address +1 1 Address of Operand
LDX 3 1 Address of Operand 1 Operand Data (High Order Byte)
4 1 Operand Address + 1 1 Operand Data (Low Order Byte)
STA 1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address +1 1 Destination Address
3 o Destination Address 1 Irrelevant Data (Note}
4 1 Destination Address 0 Data from Accumulator
STS 1 1 Op Code Address 1 Op Code
STX 2 1 Op Code Address +1 1 Address of Operand
5 3 Q Address of Operand 1 irrelevant Data (Note)
4 1 Address of Operand 0 Register Data (High Order Byte)
5 1 Address of Operand +1 0 Register Data (Low Order Byte)
Note

It device which is addressed during this cycle uses VMA, then the data bus will go to the high impedance 3-state condition. Depending on bus
capacitance, data from the previous cycCle may be ratained on the data bus.

5-38

“

F6800/F68A00/F68B00

value found there (100 in the example) and fetches the
operand, in this case a value to be loaded into accumulator
A, from that location. For instructions requiring a 2-byte
operand such as LDX (load the index register), the operand
bytes would be retrieved from locations 100 and 101. Table
10 shows the cycle-by-cycle operations for the direct mode
of addressing.

Extended addressing, Figure 24, is similar except that a two-
byte address is obtained from locations 5007 and 5008 after
the LDAB {extended) opcode shows up in location 50086.
Extended addressing can be thought of as the standard
addressing mode, that is, it is a method of reaching any
place in memory. Direct addressing, since only one address
byte is required, provides a faster method of processing data
and generates fewer bytes of control code. In most
applications, the direct addressing range, memory locations
0-255, are reserved for RAM. They are used for data
buffering and temporary storage of system variables, the
area in which faster addressing is of most value. Cycle-by-
cycle operation is shown in Table 11 for extended
addressing.

Fig. 24 Extended Addressing Mode

MPU MPU
j ACCB
RAM RAM
ADDR DATA K ADDR = 300 45
PROGRAM PROGRAM
MEMORY MEMORY
- _— e
INSTR A PC = 5006 LDA B
PC ADDR
300
ADDR \ \I‘
5008
N N
ADDR 256

GENERAL FLOW EXAMPLE

tmmediate Addressing Mode
In the immediate addressing mode, the operand is the value
that is to be operated on. For instance, the instruction

Comment
LOAD 25 INTO ACCA

Operand
#25

Operator
LDAA

causes the MPU to “immediately load accumulator A with the
value 25”; no further address reference is required. The
immediate mode is selected by preceding the operand value

with the “#” symbol. Program flow for this addressing mode
is illustrated in Figure 22,

The operand format allows either properly defined symbols
or numerical values. Except for the instructions CPX, LDX,
and LDS, the operand may be any value in the range O to
255. Since compare index register (CPX), load index register
(LDX), and load stack pointer (LDS), require 16-bit values,
the immediate mode for these three instructions requires
two-byte operands. In the immediate addressing mode, the
“address” of the operand is effectively the memory location
immediately following the instruction itself. Table 9 shows the
cycle-by-cycle operation for the immediate addressing mode.

Relative Addressing Mode

In both the direct and extended modes, the address obtained
by the MPU is an absolute numerical address. The relative
addressing mode, implemented for the MPU's branch
instructions, specifies a memory location relative to the
program counter’s current location. Branch instructions
generate two bytes of machine code, one for the instruction
opcode and one for the “relative” address. (See Figure 25.)
Since it is desirable to be able to branch in either direction,
the 8-bit address byte is interpreted as a signed 7-bit value;
the 8th bit of the operand is treated as a sign bit, “0” = plus
and “1" = minus. The remaining seven bits represent the
numerical vaiue. This results in a relative addressing range of
* 127 with respect to the location of the branch instruction
itself. However, the branch range is computed with respect
to the next instruction that would be executed if the branch
conditions are not satisfied. Since two bytes are generated,
the next instruction is located at PC + 2. If D is defined as
the address of the branch designation, the range is then:

(PC+2)— 127 =D = (PC + 2) + 127
or PC - 125 <D < PC + 129

that is, the destination of the branch instruction must be
within —125 to +129 memory locations of the branch
instructions itself. For transferrring control beyond this range,
the unconditionai jump (JMP), jump to subroutine (JSR), and
return from subroutine (RTS) are used.

In Figure 25, when the MPU encounters the opcode for BEQ
(branch if result of last instruction was zero), it tests the zero
bit in the condition code register. If that bit is “0", indicating
a non-zero result, the MPU continues execution with the next
instruction (in location 5010 in Figure 25). If the previous
result were zero, the branch condition is satisfied and the
MPU adds the offset, 15 in this case, to PC + 2 and
branches to location 5025 for the next instruction.

“

5-3¢

H

F6800/F68A00/F68B00
Table 11 Extended Mode Cycle-by-Cycle Operation
Address Mode Cycle | VMA RIW
and Instructions Cycles # Line Address Bus Line Data Bus
Extended
STS 1 1 Op Code Address 1 Op Code
STX 2 1 Op Code Address +1 1 Address of Operand (High Qrder Byte)
6 3 1 Op Code Address +2 1 Address of Operand {Low Order Byte)
4 0 Address of Operand 1 Irrelavant Data (Note 1)
5 1 Address of Operand 0 Operand Data (High Order Byte)
6 1 Address of Operand +1 0 Operand Data (Low Order Byte)
JSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address +1 1 Address of Subroutine (High Order Byte)
3 1 Op Code Address +2 1 Address of Subroutine (Low Order Byte)
4 1 Subroutine Starting Address 1 Op Code of Next Instruction
9 5 1 Stack Pointer 0 Return Address (Low Order Byte)
6 1 Stack Pointer -1 0 Return Address (High Order Byte)
7 0 Stack Pointer -2 1 Irrelevant Data (Note 1)
8 0 Op Code Address +2 1 Irrelevant Data (Note 1)
9 1 Op Code Address +2 1 Address of Subroutine (Low Order Byte)
JMP 1 1 Op Code Address 1 Op Cede
3 2 1 Op Code Address +1 1 Jump Address (High Order Byte)
3 1 Op Code Address +2 1 Jump Address (Low Order Byte)
ADC EOR 1 1 Op Code Address 1 Op Code
ADD LDA 2 1 Op Code Address +1 1 Address of Operand (High Order Byte)
AND ORA 4 3 1 Op Code Address +2 1 Address of Operand {Low Order Byte)
BIT SBC 4 1 Address of Operand 1 Qperand Data
CMP SUB
CPX 1 1 Op Code Address 1 QOp Code
LDS 2 1 Op Code Address +1 1 Address of Qperand (High Order Byte)
LDX 5 3 1 Op Code Address +2 1 Address of Qperand (Low Order Byte)
4 1 Address of Operand 1 Operand Data (High Order Byte)
5 1 Address of Operand +1 1 Operand Data (Low Order Byte)
STA A 1 Op Code Address 1 Op Code
STA B 2 1 Op Code Address + 1 1 Destination Address (High Order Byte)
5 3 1 Op Code Address +2 1 Destination Address (Low Order Byte)
4 0 Operand Destination Address 1 irrelevant Data (Note 1)
5 1 COperand Destination Address 0 Data from Accumulator
ASL LSR 1 1 Op Code Address 1 Op Code
ASR NEG 2 1 Op Code Address +1 1 Address of Operand (High Order Byte)
CLR ROL 3 1 Op Code Address +2 1 Address of Operand (Low Order Byte)
COM ROR 6 4 1 Address of Operand 1 Curent Operand Data
DEC TST 5 0 Address of Operand 1 Irrelevant Data (Note 1)
INC 6 1/0 Address of Operand 0 New Operand Data (Note 2)
(Note :
2)
Notes

1 If device which is addressed during this cycle uses VMA, then the data bus will go to the high impedance 3-state condition. Depending on bus
capacitance, data from the previous cycle may be retained on the data bus.
2. For TST, VMA = “0" and operand data does not change.

5-40

“

F6800/F68A00/F68B00

The branch instructions allow the programmer to efficiently
direct the MPU to one point or another in the control program
depending on the outcome of test results. Since the control
program is normally in read-only memory and cannot be
changed, the relative address used in execution of branch
instructions is a constant numerical value. Cycle-by-cycle
operation is shown in Table 12 for relative addressing.

Indexed Addressing Mode

With indexed addressing, the numerical address is variable
and depends on the current contents of the index register. A
source statement such as

Operator Operand Comment
STAA X Put A in indexed
Location

causes the MPU to store the contents of accumulator A in
the memory location specified by the contents of the index
register (recall that the label “X" is reserved to designate
the index register). Since there are instructions for
manipulating X during program execution (LDX, INX, DEX,
etc.), the indexed addressing mode provides a dynamic on-
the-fly way to modity program activity.

Fig. 25 Relative Addressing Mode

MPU MPU

RAM RAM

[~

{E

=

e

PROGRAM
MEMORY
pc [insTR
OFFSET \l PC 5008 BEQ
{PC + 2) | NEXT INSTR 15
PC 5010 | NEXT INSTR
{PC +2) I ERT INSTR PC 5025 | NEXT INSTR
+ (OFFSET)

\

The operand field can also contain a numerical value that will
be automatically added to X during execution. This format is
illustrated in Figure 26.

When the MPU encounters the LDAB (Indexed) opcode in
location 5006, it looks in the next memory location for the
value to be added to X (5 in the example) and calculates the
required address by adding 5 to the present index register
value of 400. In the operand format, the offset may be
represented by a label or a numerical value in the range O-
255 as in the example. In the earlier example, STAA X, the
operand is equivalent to 0, X, that is, the 0 may be omitted
when the desired address is equal to X, Table 73 shows the
cycle-by-cycle operation for the indexed mode of addressing.

Fig. 26 Indexed Addressing Mode
MPU
aid ACCB
K npeEx K
RAM RAM
ADDR =INDX = .
OFFSET DATA ADDR = 405 59
PROGRAM PROGRAM
MEMORY MEMORY
.
PC INSTR /! PC = 5006 LDAR 4
OFFSET \j 5 \l

OFFSET < 255

GENERAL FLOW EXAMPLE

5-41

“

F6800/F68A00/F68B00
Table 12 Relative Mode Cycle-by-Cycle Operation
Address Mode Cycle | VMA RIW
and Instructions Cycles # Line Address Bus Line Data Bus
Relative
BCC BHI BNE 1 1 Op Code Address 1 Op Code
BCS BLE BPL 4 2 1 Op Code Address +1 1 Branch Offset
BEQ B8LS BRA 3 0 Op Code Address +2 1 irrelevant Data (Note)
BGE BLT BVC 4 v Branch Address 1 Irrelevant Data (Note)
BGT BMI BVS
BSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Branch Oftset
3 0 Return Address of Main Program 1 Irrelevant Data (Note)
8 4 1 Stack Pointer 0 Return Address (Low Order Byte)
5 1 Stack Pointer —1 0 Return Address (High Order Byte)
6 0] Stack Pointer —2 1 Irrelevant Data (Note)
7 0 Return Address of Main Program 1 Irrelevant Data (Note)
8 0 Subroutine Address 1 Irrelevant Data (Note)
Note

If device which is addressed during this cycle uses VMA, then the data bus will go to the high impedance 3-state condition. Depending on bus
capacitance, data from the previous cycle may be retained on the data bus.

Table 13 Indexed Mode Cycle-by-Cycle Operation
Address Mode Cycle | VMA RIW
and Instructions Cycles # Line Address Bus Line Data Bus
Indexed
JMP 1 1 QOp Code Address 1 Op Code
2 1 Op Code Address + 1 1 Offset
4 3 0 Index Register 1 Irrelevant Data (Note 1)
4 0 Index Register Plus Offset 1 lrrelevant Data (Note 1)
(wfo Carry)
ADC ECR 1 1 Op Code Address 1 Op Code
ADD LDA 2 1 Op Code Address +1 1 Offset
AND ORA 5 3 0 Index Register 1 irrelevant Data (Note 1)
BIT SBC 4 0 Index Register Pius Offset 1 Irrelevant Data (Note 1)
CMP SUB (wfo Carry)
5 1 Index Register Plus Offset 1 Operand Data
CPX 1 1 Op Code Address 1 Op Code
LDS 2 1 Op Code Address +1 1 Offset
LDX 3 0 Index Register 1 Irrelevant Data (Note 1)
5 4 0 Index Register Pius Offset 1 Irrelevant Data (Note 1)
{w/o Carry}
5 1 Index Register Plus Offset 1 Operand Data (High Order Byte)
6 1 Index Register Plus Offset + 1 1 Operand Data (Low Order Byte)
STA 1 1 Op Code Address 1 Op Code
2 1 Op Code Address +1 1 Offset
3 0 Index Register 1 Irretevant Data (Note 1)
6 4 0] Index Register Plus Offset 1 Irrelevant Data (Note 1)
(wfo Garry)
5 0 Index Register Plus Offset 1 Irrelevant Data (Note 1)
6 1 Index Register Plus Offset 0 Operand Data

5-42

h

F6800/F68A00/F68B00
Table 13 Indexed Mode Cycle-by-Cycle Operation (Cont.)
Address Mode Cycle | VMA RIW
and Instructions Cycles # Line Address Bus Line Data Bus
Indexed (Cont)
ASL LSR 1 1 Op Code Address 1 Op Code
ASR NEG 2 1 Op Code Address + 1 1 Offset
CLR ROL 3 0 Index Register 1 lrrelevant Data (Note 1)
COM ROR 4 0 Index Register Plus Offset 1 Irrelevant Data (Note 1)
DEC TST {wio Carry}
INC 7 5 1 Index Register Plus Offset 1 Current Operand Data
6 0 Index Register Plus Offset 1 Irrelevant Data (Note 1)
7 1/0 | index Register Plus Offset 0 New Operand Data (Note 2)
{Note
2)
STS 1 1 Op Code Address 1 Op Code
STX 2 1 Op Code Address + 1 1 Offset
3 0 Index Register 1 Irrelevant Data (Note 1)
7 4 0 Index Register Plus Offset 1 irrelevant Data (Note 1)
(w/o Carry)
5 0 Index Register Plus Offset 1 Irrelevant Data {Note 1)
6 1 Index Register Plus Offset 0 Operand Data {High Order Byte}
7 1 Index Register Plus Offset + 1 0 Operand Data (Low Order Byte)
JSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Offset
3] Index Register 1 Irrelevant Data {(Note 1)
4 1 Stack Pointer 0 Return Address {Low Order Byte)
8 5 1 Stack Pointer —1 0 Return Address (High Crder Byte)
6 0 Stack Pointer — 2 1 Irrelevant Data {Note 1)
7 0 Index Register) 1 Irrelevant Data (Note 1)
8 0 Index Register Plus Offset 1 Irrelevant Data (Note 1)
(wfo Carry)
Note

1. If device which is addressed during this cycle uses VMA, then the data bus witt go to the high impedance 3-state condition. Depending on bus
capacitance, data from the previous cycle may be retained on the data bus.

2. For TST, VMA = “0" and operand data does not change,

#

F6800/F68A00/F68B00
Absolute Maximum Ratings This déevice contains circuitry to protect the inputs against damage due 1o
Supply Voltage —-0.3V,+7.0V high static voltages or electric fields; however, it is advised that normal
Input Voltage —0.3V.+7.0V precautions be taken to avoid application of any voltage higher than

) maximum rated voltages to this high-impedance circuit.
Operating Temperature Range—T| to T P

F6800, FEBA00, FESB00 0°C, +70°C
F6800C, F6BA00C, FE8BCOC —40°C, +85°C
F6800DM, F6BA00DM, FESBOODM —565°C, +125°C
Storage Temperature Range —~55°C, +150°C
Thermal Resistance

Plastic Package 70°C/W
Ceramic Package 50°C/W

DC Characteristics Vge = 5.0V * 5%, Vgg = 0, Tp = T to Ty, unless otherwise noted

Symbol | Characteristic Min Typ Max Unit | Conditions

Vin Input HIGH Voltage Logic {Vgg + 2.0 Veo v

ViHe ¢1, 2 |Voo— 0.6 Voo + 0.3

Vi input LOW Voltage Logic |Vgg — 0.3 Vgs+ 08| V

ViLe o1, 92 [Vgs— 0.3 Vgg + 0.4

In Input Leakage Current Logic 1.0 2.5 uA VIN= 0105.25 V, Voo = Max

@1, 62 100 VN=01t05.256V,Vgc =00V
Itsi 3-State (OFF State) Do-D7 2.0 10 pA Vin = 0.4 t0 2.4V, Vo = Max
Input Current Ap-Ays, RIW 100

Vou Output HIGH Voltage _Do-D7 Vgs + 2.4 Vv ILoad = —205 pA, Ve = Min

Ag-As, R/W, VMA | Vgg + 2.4 lLoad = — 145 pA, Vgc = Min

BA |Vgg+ 2.4 ILoad = —100 pA, Voo = Min
VoL Cutput LOW Voltage Vgg + 0.4 v I gad = 1.6 mA, Vo = Min
Po Power Dissipation 0.5 1.0
CiN input Capacitance ¢1 25 35 pF
¢2 45 70 ViN= 0, Tp = 25°C, f = 1.0 MHz
Dg-D7 10 12.5
Logic Inputs 6.5 10
Cour Output Capacitance .
Ag-Aqs, R/W, VMA 12 pF

5-44

%

F6800/F68A00/F68B00

Clock Timing Voo = 5.0V + 5%, Vgg = 0, Tp = T to Ty, unless otherwise noted

Symbol | Characteristic Min Typ Max Unit | Conditions
f Frequency of Operation
F6800 0.1 1.0 MHz
F68A00 0.1 1.5
F68B00 0.1 2.0
teye Cycle Time (Figure 27) F&800 1.000 10 us
FE8A00 0.666 10
F68B00 0.500 10
PWgh Clock Pulse Width
$1, $2 - F6800 400 9500 ns Ve — 06V
¢1, $2 - F68A00 230 9500
o1, 2 - F68B0OO 180 9500
tut Total ¢1 and ¢2 F6800 900 ns
Up Time F68A00 600
F68800 440
tor tof Rise and Fall Times 100 ns Measured Between
Vgg+ 0.4Vand Vo~ 06V
tq Delay Time or Clock 0 8100 ns Voy=Vgs+06V@t =1t < 100 ns
Separation (Figure 27) 0 9100 Vov=Vgg+10V@t =1t <35ns
Read/Write Timing (Reference Figures 28 through 32)
F&800 F68A00 F68B00
Symbol Characteristic Min Typ Max Min Typ Max Min Typ Max | Unit
tap Address Delay ns
C = 90 pF 270 180 150
C =30 pF 250 165 135
tacc Peripheral Read Access Time 530 360 250 ns
tacc = tut — (tap + tpsp)
tose Data Set-up Time (Read) 100 60 40 ns
tH Input Data Hold Time 10 10 10 ns
ty Output Data Hold Time 10 25 10 25 10 25 ns
taH Address Hold Time 30 50 30 50 30 50 ns
(Address, R/W, VMA)
ten Enable HIGH Time for DBE Input 450 280 220 ns
toow Data Delay Time (Write) 225 200 160 ns
Processor Controls
tpcs Processor Control Set-up Time 200 140 110 ns
tecr tret Processor Control Rise and
Fall Time 100 100 100 ns
taa Bus Available Delay 250 165 135 ns
trse 3-State Enable 40 40 40 ns
trsp 3-State Delay . 270 270 220 ns
toBE Data Bus Enable Down Time
During ¢1 Up Time 150 120 75 ns
toeer tDBES Data Bus Enable Rise and
Fall Times 25 25 25 ns

L -

5-45

F6800/F68A00/F68B00

Fig. 27 Clock Timing Waveform

1,
Leye

p— At

&1

3
Vine
&2
Vov
Vic

tor ——I

[PW yy—————= gt
Fig. 28 Read Data From Memory or Peripherals
/START OF CYCLE
L
Vee -06V
31
S oav 0.4V
| | — t, = 25ns
Vec 086V
0.4V
[t g p—— W
24V
RIW
———— - tan
2.4V — =
ADDRESS 20V
FROM MPU
0.4V e osv
b —— tpp———
24V —
VMA
———— - Feg—~—— ty
jt———1tap tagoe———————————————p - lpSR I
DATA 20V
FROM MEMORY DATA VALID
OR PERIPHERALS 08V

PR DATA NOT VALID

5-46

F6800/F68A00/F68B00

Fig. 29 Write In Memory or Peripherals

[START OF CYCLE
1
teye -

Vec -0.6V '
_/ \ /
i 04V
—

tan —imy ft——

ADDRESS
FROM MPU

S vy

DATA
FROM MPU

DATA VALID

Ny oara NoT vaLiD

PromeeeimmmmmmE———— e e

F6800/F68A00/F68B00
Fig. 30 Typical Data Bus Output Delay Fig. 31 Typical READ/WRITE, VMA, and Address
vs Capacitive Loading (tppw) Output Delay vs Capacitive Loading (tap)
SOr—T—T—T T T]I SO =TT T T 1
Ion = —205 W AMAX @ 2.4V lon = 145 KAMAX @ 2.4V
[loL = 1.6MAMAX @ 0.4V [1oL = 1.6MAMAX @ 0.4V
Vec =50V Voo = 5.0V

400 |— 1, = 25°C 400 [— T, = 25°C
E :
300 300 VMA—]
¥ Prad 1

=
> L~ % /'/ADDRE'SS
3 200 3 200 — R/W
g 1/ Q ‘/ //
/, g /
100 = 100 Pa
CtINCLUDES STRAY CAPACITANCE CLINCLUDES STRAY CAPACITANCE
1 L L L
oll 100 200 300 400 500 N 0 100 200 aoo 400 500
€L — LOAD CAPACITANCE — pF €| — LOAD CAPACITANCE — pF

Fig. 32 Bus Timing Test Loads

Test Conditions
The dynamic test load for the data bus is 130 pF and one
standard TTL foad, as shown. The Address, R/W, and VMA
RL = 2.2k outputs are tested under two conditions to allow optimum
operation in both buffered and unbuffered systems. The resistor
TEST POINT —4 (R) is chosen to insure specified load currents during
Vo Measurement.

(o= N

7!
k-

IN914 Notice that the data bus lines, the address lines, the interrupt
OR EQUIV request line, and the DBE line are all specified and tested to
guarantee 0.4 V of dynamic noise immunity at both “1" and "0
= logic levels.

= c

130 pF for Dg-D;, E
90 pF for Ag-A5, R/W, and VMA
(except 14pp)
= 30 pF for Ay-A,s, R/W, and VMA
(taps Only)
= 30 pF for BA.

R = 11.7 k2 tor Dg-D; B
= 16.5 k{2 for Ay-A5, R/W, and VMA
= 24 kf) for BA

e —
F6800/F68A00/F68B00

Ordering Information

Speed Order Code Temperature Range

1.0 MHz F6800P,S 0 to +70°C
F8800CP,CS —40 to +85°C
F6800DM -55to +125°C

1.5 MHz FB8ACOP, S 0to +70°C
F68A00C, CS —40 to +85°C
F68A00DM —55to +125°C

2.0 MHz FB8BOOP, S 0to +70°C
F68B00C,CS —40 to +85°C
F68BOODM —55to0 +125°C

*P = ptastic package, S = CER-DIP package.

