FEATURES

- EMI input filter, up to 50 dB attenuation
- -55° to +125°C operation
- · High frequency output filter
- 17 to 40 VDC input
- · Fully isolated, magnetic feedback
- 600 kHz typical-Single Ended Forward
- · Inhibit and synchronization functions
- · Indefinite short circuit protection
- · Trim and remote sense on singles
- Up to 83% efficiency
- Up to 50V for 50 ms transient protection

EMI FILTERED DC/DC CONVERTERS 28 VOLT INPUT

FMTR SERIES 30 WATT

MODELS							
VDC OUTPUT							
SINGLE	DUAL						
3.3	±5						
5	±12						
12	±15						
15							

Size (max): 3.005 x 1.505 x 0.400 inches (76.33 x 38.23 x 10.16 mm)

Weight: 100 grams maximum

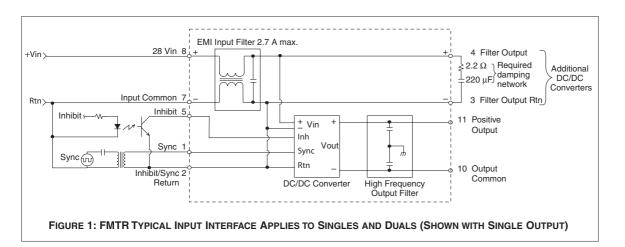
Screening: Standard or ES, see the Environmental Screening table

DESCRIPTION

The FMTR Series™ of DC/DC converters offers up to 30 watts of output power from single or dual output configurations. They operate over the full military temperature range with up to 83% efficiency. FMTR converters are packaged in hermetically sealed metal cases, making them ideal for use in military, aerospace and other high reliability applications.

CONVERTER DESIGN

The FMTR converters are constant frequency, pulse-width modulated switching regulators which use a quasi-square wave, single ended, forward converter design. Tight load regulation is maintained via wide bandwidth magnetic feedback and, on single output models, through use of remote sense.


Indefinite short circuit protection and overload protection are provided by a constant current-limit feature. This protective system senses current in the converter's secondary stage and limits it to approximately 115% of the maximum rated output current.

BUILT-IN FILTERS

The built-in input and output filters reduce layout issues and conserve board space. The 2.7 amp EMI input filter meets MIL-STD-461C, CE03 and allows filtering of additional converters through the filter output pins. The output filter reduces high frequency common and differential mode noise. It allows a higher bandwidth ripple voltage measurement and eliminates the need for external output decoupling capacitors. Both input and output filters reduce radiated emissions providing quieter operation than conventional DC/DC converters.

WARNING: REQUIRED DAMPING NETWORK

To prevent damage to the internal circuitry an external capacitor and resistor are required across the filter outputs (pins 3 and 4) as shown in Figure 1. This applies to both single and dual output models. The recommended capacitor type is wet tantalum, MIL-C-39006.

FMTR SERIES 30 WATT

DC/DC CONVERTERS

ABSOLUTE MAXIMUM RATINGS

Input Voltage
• 17 to 40 VDC

Output Power

- 25 to 30 watts depending on model
- Input filter current, 2.7 A max.

Lead Soldering Temperature (10 sec per pin)

• 300°C

Storage Temperature Range (Case)

• -65°C to +135°C

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range

- 17 to 40 VDC continuous
- 50V for 50 ms transient protection

Case Operating Temperature (Tc)

- –55°C to +125°C full power
- -55°C to +135°C absolute
- **Derating Output Power/Current**
 - Linearly from 100% at 125°C to 0% at 135°C

SYNC AND INHIBIT

Sync (500 to 675 kHz)

- Duty cycle 40% min, 60% max
 Logic low 0.8 V max
- Logic high 4.5 V min, 5 V max
- Referenced to inh/sync return
- · If not used, connect to inh/sync return

Inhibit TTL Open Collector

- · Logic low (output disabled) Voltage ≤0.8 V Inhibit pin current 8.0 mA max
- Referenced to inh/sync return
- Logic high (output enabled) Open collector

FMI FILTER

Noise Rejection - Minimum

500 kHz	55 dB
1 MHz	60 dB
5 MHz	60 dB

TYPICAL CHARACTERISTICS

Output Voltage Temperature Coefficient • 100 ppm/°C typical

Input to Output Capacitance

• 50 pF typ

Current Limit

• 115% of full load typical

Isolation

• 100 megohm minimum at 500 V

Audio Rejection

40 dB typical

- Conversion Frequency
 Free run 550 min, 600 typ, 650 max kHz
- External sync 500 to 675 kHz

Inhibit Pin Voltage (unit enabled)

• 9 to 11 V

Input Filter DC Resistance

• 0.2 ohms max

Electrical Characteristics: -55°C to +125° Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

SINGLE OUTPUT MODELS		FMTR283R3S			FMTR2805S			FMTR2812S			FMTR2815S			
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	25°C	3.26	3.30	3.34	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	
	-55°C TO +125°C	3.20	3.30	3.40	4.85	5.00	5.15	11.64	12.00	12.36	14.55	15.00	15.45	VDC
OUTPUT CURRENT ¹	V _{IN} = 17 to 40 VDC	0		6.06	0	_	5.0	0	_	2.5	0	_	2.0	Α
OUTPUT POWER ¹	V _{IN} = 17 to 40 VDC	0	_	20	0		25	0	_	30	0		30	W
OUTPUT RIPPLE	25°C	_	70	140	_	110	220	_	60	120	_	25	50	
VOLTAGE	10 kHz – 2 MHz	_	_	180	_	_	260	_	_	160	_	_	90	mV p-p
LINE REGULATION ²	V _{IN} = 17 to 40 VDC	_	_	10	_	15	50	_	15	50	_	15	50	mV
LOAD REGULATION	NO LOAD TO FULL	_	_	10	_	15	50	_	15	50	_	15	50	mV
INPUT VOLTAGE ¹	NO LOAD TO FULL	17	28	40	17	28	40	17	28	40	17	28	40	VDC
INPUT CURRENT ¹	NO LOAD	_	30	75	_	35	75	_	35	75	_	35	75	mA
	INHIBITED	_	7	8	_	3	8	_	3	8	_	3	8	mA
INPUT RIPPLE														
CURRENT	10 kHz – 10 MHz	_	5	10	—	5	10	—	5	10	_	5	10	mA p-p
EFFICIENCY	INCLUDES FILTER 25°C	73	75	_	75	77	_	79	82	_	80	83	_	- %
	INCLUDES FILTER ——	70	72	_	72	74	_	76	78	_	77	79	70	
LOAD FAULT ³	POWER DISSIPATION													
	SHORT CIRCUIT 25°C	_	_	10	_	_	10	_	_	10	_	_	10	w
	-55°C TO +125°C	_	_	12	_	_	12	_	_	12	_	_	12	VV
	RECOVERY 4, 6	_	1.4	6	_	1.4	5	_	1.4	5	_	1.4	5	ms
STEP LOAD RESP.	50% - 100% - 50%													
	TRANSIENT	_	±125	±250	_	±200	±300	_	±250	±400	_	±350	±500	mV pk
	RECOVERY ^{4, 6}	_	_	200	_	60	200	_	60	200	_	60	200	μs
STEP LINE RESP.6	17 – 40 – 17 VDC													
	TRANSIENT ⁵	_	_	±300	_	±200	±300	_	±400	±500	_	±500	±600	mV pk
	RECOVERY ⁴	_	_	300	_	_	300	_	_	300	_	_	300	μs
START-UP ¹	DELAY	_	1.4	5	_	1.4	5	_	1.4	5	_	1.4	5	ms
	OVERSHOOT ⁶													
	FULL LOAD	_	0	50	—	0	50	—	0	120	_	0	150	\/ -
	NO LOAD	_	33	150	_	50	250	_	120	600	_	150	750	mV pk

Notes

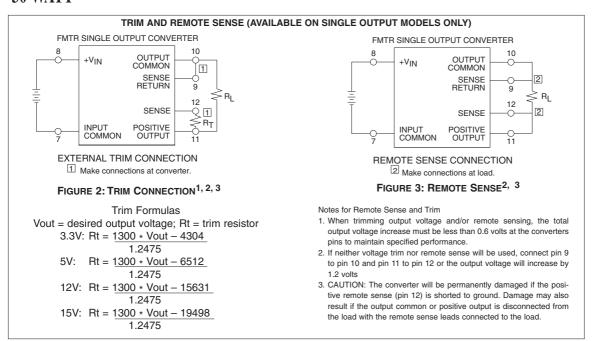
- 1. Tc = -55°C to +125°C
- 2. Operation is limited below 17V (see Figure 19). 3. Indefinite short circuit protection not guaranteed above 125°C case.
- 4. Recovery time is measured from application of the transient to point at which Vout is within 1% of final value.
- 5. Transition time ≥10 us.
- 6. Parameter shall be tested as part of device characterization and after design and process changes. Thereafter, parameters shall be guaranteed to the limits specified in the electrical Characteristics table.

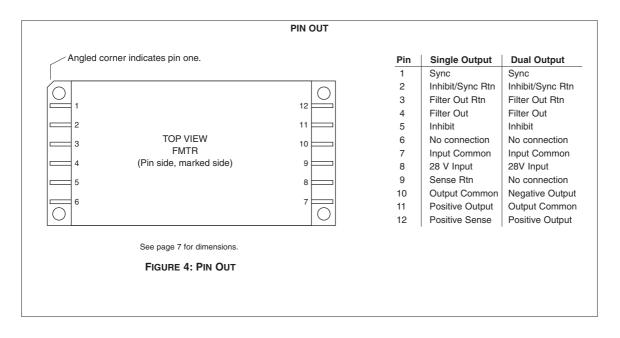
DC/DC CONVERTERS

FMTR SERIES 30 WATT

Electrical Characteristics: -55°C to +125°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

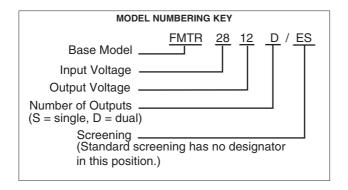
DUAL OUTPUT MODELS		FMTR2805D		FMTR2812D			FM				
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	25°C +V _{OUT}	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	
	-V _{OUT}	4.90	5.00	5.08	11.80	12.00	12.18	14.76	15.00	15.23	VDC
	-55°C TO +125°C +V _{OUT}	4.85	5.00	5.15	11.64	12.00	12.36	14.55	15.00	15.45	VDC
	-V _{OUT}	4.80	5.00	5.18	11.56	12.00	12.42	14.46	15.00	15.53	
OUTPUT CURRENT ^{1, 2}		0	2.5	4.5	0	1.25	2.25	0	1.0	1.8	Α
OUTPUT POWER ^{1, 2}	V _{IN} = 17 TO 40 VDC	0	_	25	0	_	30	0	_	30	W
OUTPUT RIPPLE	25°C	_	75	140	_	25	80	_	40	80	mV p-p
VOLTAGE +/- V _{OUT}	10 kHz - 2 MHz	_	_	180	_	_	120	_	_	120	
LINE REGULATION	+V _{OUT}	_	10	50	_	10	50	_	10	50	.,
V _{IN} = 17 TO 40VDC	-V _{OUT}	_	50	100	_	50	150	_	50	180	mV
LOAD REGULATION	+V _{OUT}	_	5	50	_	15	50	_	15	50	
NO LOAD TO FULL	-V _{OUT}	<u> </u>	45	120	_	45	170	_	40	190	mV
CROSS REGULATION	25°C SEE NOTES 4 & 9	<u> </u>	8		_	5		_	3	_	0/
EFFECT ON -V _{OUT}	25°C SEE NOTES 5 & 9	_	5	_	_	4	_	_	4	_	%
INPUT VOLTAGE ¹	CONTINUOUS	17	28	40	17	28	40	17	28	40	VDC
NO LOAD TO FULL	TRANSIENT 50 ms	0	_	50	0	_	50	0	_	50	V
INPUT CURRENT	NO LOAD		35	75	_	50	75	_	50	75	mA
	INHIBITED		3	8		3	8		3	8	mA
INPUT RIPPLE CURRENT ¹	10 kHz - 10 MHz	_	5	10	_	5	10	_	5	10	mA p-
EFFICIENCY	25°C	75	77	_	78	80		79	82	_	
		72	74	_	75	77	_	76	78		%
LOAD FAULT ⁶	POWER DISSIPATION										
	SHORT CIRCUIT 25°C		_	10			10	_		10	w
				12			12			12	**
	RECOVERY9		1.4	5.0	_	1.4	5.0		1.4	5.0	ms
STEP LOAD RESPONSE ± V _{OUT}	50 – 100 – 50% BALANCED TRANSIENT	_	±200	±300	_	±150	±300	_	±200	±400	mV pl
001	RECOVERY ^{7, 9}	_	100	200	_	100	200	_	100	200	μs
STEP LINE ⁹	17 – 40 – 17 V _{IN}										P-C
RESPONSE ± V _{OUT}	TRANSIENT8"	–	±200	±400	_	±200	±400	_	±400	±500	mV pl
	RECOVERY ⁷	_	_	300	_	_	300	_	_	300	μs
START-UP ¹	DELAY	_	1.4	5	_	1.4	5	_	1.4	5	ms
	OVERSHOOT ⁹										
	FULL LOAD	<u>_</u>	0	50	_	0	120		0	150	mV pl
	NO LOAD	I —	50	250		120	600	_	150	750	iiiv pr


Notes


- 1. Tc = -55°C to +125°C.
- 2. Up to 90% of the total output current/power is available from either output providing the positive output is carrying at least 10% of the total output power.
- 3. Operation is limited below 17 V (see Figure 19).
- 4. Effect on the negative output under the following conditions:
- +P_{out} 20% to 80%; -P_{out} 80% to 20% 5. Effect on the negative output under the following conditions: +P_{out} 50%; -P_{out} 10% to 50%
- 6. Indefinite short circuit protection not guaranteed above 125°C case.
- 7. Recovery time is measured from application of the transient to point at which Vout is within 1% of final value.
- 8. Transition time \geq 10 μ s.
- 9. Parameter shall be tested as part of device characterization and after design and process changes. Thereafter, parameters shall be guaranteed to the limits specified in the electrical Characteristics table.

FMTR SERIES 30 WATT

DC/DC CONVERTERS



DC/DC CONVERTERS

FMTR SERIES 30 WATT

Typical Performance Curves: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

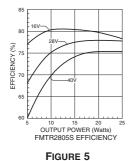
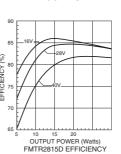



FIGURE 6

FIGURE 9

10 15 20 OUTPUT POWER (Watts) FMTR2812S EFFICIENCY

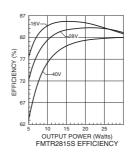


FIGURE 7

1 10 FREQUENCY (kHz) AUDIO REJECTION, FMTR SERIES

FIGURE 10

FIGURE 8

10 15 20 OUTPUT POWER (Watts) FMTR2812D EFFICIENCY

FMTR SERIES 30 WATT

DC/DC CONVERTERS

Typical Performance Curves: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

25W to 12.5W

12.5W to 25W

12.5W to 25W

50µs/div
50% 6→100%

FMTR2805S STEP LOAD RESPONSE

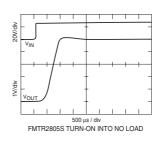


FIGURE 11

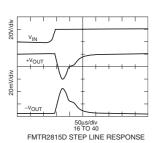


FIGURE 12

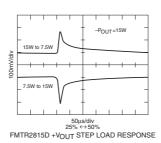


FIGURE 13

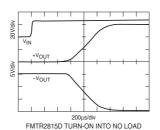


FIGURE 14

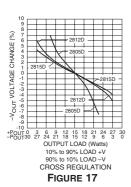


FIGURE 15

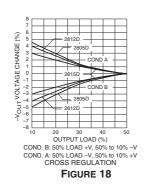
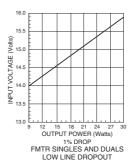
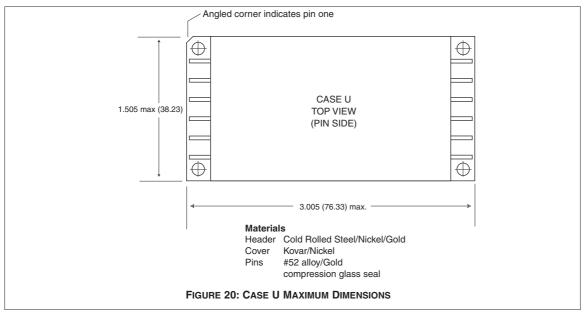
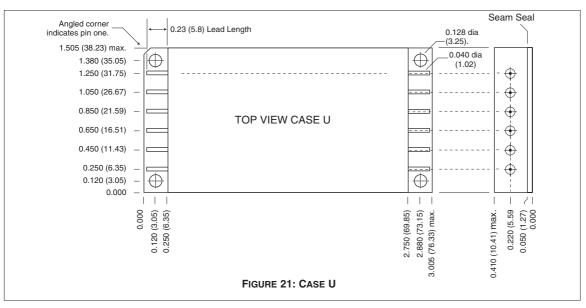


FIGURE 16


FIGURE 19

DC/DC CONVERTERS

FMTR SERIES 30 WATT

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Case dimensions in inches (mm)

Tolerance ±0.005 (0.13) for three decimal places, ±0.01 (0.2) for two decimal places unless otherwise specified

Although every effort has been made to render the case drawings at actual size, variations in the printing process may cause some distortion. Please refer to the numerical dimensions for accuracy.

FMTR SERIES 30 WATT

DC/DC CONVERTERS

ENVIRONMENTAL SCREENING

TEST	125°C STANDARD	125°C /ES
PRE-CAP INSPECTION 25°C Method 2017, 2032	yes	yes
TEMPERATURE CYCLE (10 times) Method 1010, Cond. B, -55°C to 125°C	no	yes
CONSTANT ACCELERATION 25°C Method 2001, 500 g	no	yes
BURN-IN 96 hours at 125°C case (typical)	no	yes
FINAL ELECTRICAL TEST MIL-PRF-38534, Group A Subgroups 1 and 4: +25°C case	yes	yes
HERMETICITY TESTING 25°C Fine Leak, Method 1014, Cond. A Gross Leak, Method 1014, Cond. C Gross Leak, Dip (1 x 10 ⁻³)	no no yes	yes yes no
FINAL VISUAL INSPECTION 25°C Method 2009	yes	yes

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

Contact Information: www.interpoint.com

Interpoint Headquarters USA Phone: 1-800-822-8782

+425-882-3100 power@intp.com Interpoint UK Interpoint France

Phone: +44-1252-872266 Phone: +33-134285455
Email: poweruk@intp.com Email: powerfr@intp.com

Email: