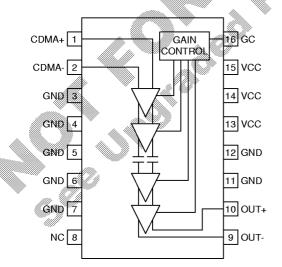
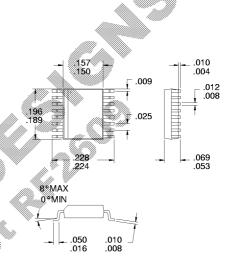


CDMA/FM TRANSMIT AGC AMPLIFIER

Typical Applications


- CDMA/FM Cellular Systems
- Supports Dual-Mode AMPS/CDMA
- Supports Dual-Mode TACS/CDMA
- General Purpose Linear IF Amplifier
- Portable Battery Powered Equipment

Product Description


The RF9909 is a complete AGC amplifier designed for the transmit section of dual-mode CDMA/FM cellular applications. It is designed to amplify IF signals while providing 84dB of gain control range. Noise Figure, IP3, and other specifications are designed to be compatible with the IS-95 Interim Standard for CDMA cellular communications. This circuit is designed as part of the RFMD CDMA Chip Set, consisting of this Transmit IF AGC Amp, a Transmit Upconverter, a Receive LNA/Mixer, and a Receive IF AGC Amp. The IC is manufactured on an advanced Gallium Arsenide Heterojunction Bipolar Transistor (HBT) process, and is packaged in a standard miniature 16-lead plastic SSOP package.

Optimum Technology Matching® Applied

√ GaAs HBT ☐ GaAs MESFET ☐ Si BJT Si Bi-CMOS

Functional Block Diagram

Package Style: SSOP-16

Features

- Supports Dual Mode Operation
- -45dB to +39dB Gain Control Range
- Single 3.6V Power Supply
- Monolithic Construction
- DC to 200 MHz Operation
- Miniature Surface Mount Package

Ordering Information

RF9909 CDMA/FM Transmit AGC Amplifier RF9909 PCBA Fully Assembled Evaluation Board

RF Micro Devices, Inc. 7625 Thorndike Road Greensboro, NC 27409, USA

Tel (336) 664 1233 Fax (336) 664 0454 http://www.rfmd.com

Rev B3 970822 10-91

RF9909

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	-0.5 to +7.0	V_{DC}
Control Voltage	-0.5 to +5.0	V
Input Power Levels	+12	dBm
Operating Ambient Temperature	-40 to +85	°C
Storage Temperature	-40 to +150	°C

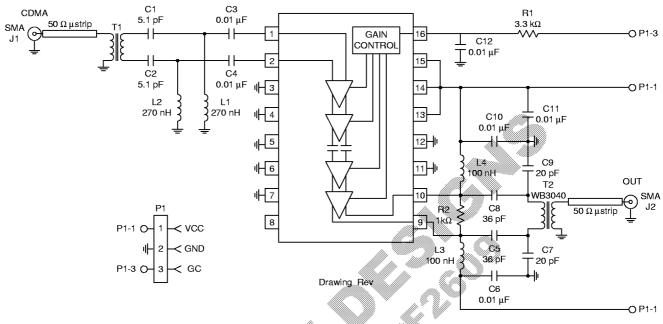
RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Parameter Parame		Specification	<u> </u>	Unit	Condition		
	Min.	Тур.	Max.	Unit	Condition		
Overall					T=25 ° C, 130 MHz, V_{CC} =3.6 V, Z_{S} =1 kΩ, Z_{L} =1 kΩ, 1 kΩ External Output Terminating Resistor (Effective Z_{L} =500 Ω) (See Application Example)		
Frequency Range		DC to 200		MHz	ion Example)		
Maximum Gain	+39	+42		dB ≪	V _C =2.76V		
Minimum Gain		-52	-45	dB	V _G =0.2V		
Gain Slope	30	47	60	dB/V	Measured in 0.5V increments		
Gain Control Voltage Range		0 to 3		V _{DC}			
Gain Control Input Impedance		30		kΩ			
Input IP3	-29	-26		dBm	At +10 gain and referenced to $1 \text{ k}\Omega$		
Input Impedance		1		kΩ	Differential		
Stability (Max VSWR)	10:1				Spurious<-70 dBm		
Power Supply							
Voltage		3.6±5%		N			
Current Consumption		23		mA	Maximum gain		
Current Consumption		22	28	mA	Minimum gain		
			>				

10-92 Rev B3 970822

Pin	Function	Description	Interface Schematic
1	CDMA+	CDMA Balanced Input Pin. This pin is internally DC biased and should	
		be DC blocked if connected to a device with a DC level, other than V_{CC} , present. A DC to connection to V_{CC} is acceptable. For single-ended	
		input operation, one pin is used as an input and the other CDMA input	
		is AC coupled to ground. The balanced input impedance is $1 k\Omega$, while	
	CDMA-	the single-ended input impedance is 500Ω.	
2	GND	Same as pin 1, except complementary input. Ground connection. Keep traces physically short and connect immedi-	
3		ately to ground plane for best performance.	
4	GND	Same as pin 3.	
5	GND	Same as pin 3.	
6	GND	Same as pin 3.	
7	GND	Same as pin 3.	
8	NC	No Connection pin. This pin is internally biased and should not be connected to any external circuitry, including ground or V_{CC} .	»
9	OUT-	Balanced Output pin. This is an open-collector output, designed to operate into a 500Ω balanced load. The load sets the operating impedance, but an external choke or matching inductor to V_{CC} must also be supplied in order to correctly bias this output. This bias inductor is typically incorporated in the matching network between the output and next	
		stage. Because this pin is biased to V _{CC} , a DC blocking capacitor must be used if the next stage's input has a DC path to ground.	
10	OUT+	Same as pin 9, except complementary output.	
11	GND	Same as pin 3.	
12	GND	Same as pin 3.	
13	vcc	Supply Voltage pin. External bypassing is required. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane. Pins 13, 14, and 15 may share one bypass capacitor if trace lengths are kept minimal.	
14	VCC	Same as pin 13.	
15	VCC	Same as pin 13.	
16	GC	Analog gain adjustment for all amplifiers. Valid control ranges are from 0 V to 3.0 V. Maximum gain is selected with 3.0 V. Minimum gain is selected with 0 V. These voltages are only valid for a $3.3 \mathrm{k}\Omega$ DC source impedance.	
		OV to 3.0V Maximum gain is selected with 3.0V. Minimum gain is selected with 0V. These voltages are only valid for a 3.3kΩ DC source impedance.	

Rev B3 970822 10-93


IF AMPLIERS

Application Schematic

10-94 Rev B3 970822

Evaluation Board Schematic

Bill of Materials

Used on: 9909410B.PCB

				<u> </u>		
				Туре		Ref Designator
RF9909						DUT1
40012	_	Digi-Key	P1.Q0KFTR-ND	Resister 1206		R2
40018				Resistor, 1206		R1
42010			100A360JP150X	Capacitor, ATC	36pF	C5, C8
42020			100A5R1CP150X	Capacitor, ATC		C1, C2
42034				Capacitor, 0805		C3, C4, C6, C10, C11, C12
42059				Capacitor, ATC		C7, C9
44001				Inductor, 0805		L3, L4
44020				Inductor, 1206		L1, L2
46001				Connector, Panduit		P1
46003				SMA End Connector	SMA	J1, J2
49003	2	Coilcraft	WB3040-SM	Transform	WB3040	T1, T2

Rev B3 970822 10-95