

Vishay Siliconix

Dual P-Channel 1.8-V (G-S) MOSFET

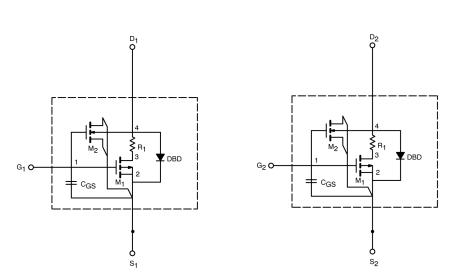
CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- · Level 3 MOS

- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

A novel gate-to-drain feedback capacitance network is used to model

the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized


to provide a best fit to the measured electrical data and are not

intended as an exact physical interpretation of the device(s).

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model schematic is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

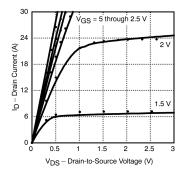
SPICE Device Model Si4967DY

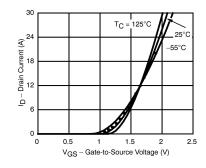
Vishay Siliconix

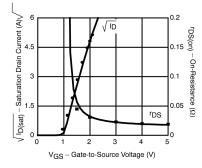
VISHAY

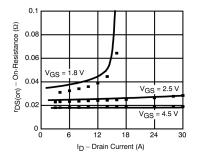
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Typical	Unit	
Static					
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = -250 μ A	0.81	V	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \geq -5 \text{ V}, V_{GS} \text{ = } -4.5 \text{ V}$	189	А	
Drain-Source On-State Resistance ^a		V_{GS} = -4.5 V, I _D = -7.5 A	0.019	Ω	
	r _{DS(on)}	V_{GS} = -2.5 V, I _D = -6.7 A	0.025		
		V_{GS} = -1.8 V, I _D = -5.4 A	0.037		
Forward Transconductance ^a	g _{fs}	$V_{DS} = -10 \text{ V}, \text{ I}_{D} = -7.5 \text{ A}$	29	S	
Diode Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = -1.7 A, $V_{\rm GS}$ = 0 V	0.81	V	
Dynamic ^b					
Total Gate Charge ^b	Qg	V_{DS} = -6 V, V_{GS} = -10 V, I_D = -7.5 A	35	nC	
Gate-Source Charge ^b	Q _{gs}		7		
Gate-Drain Charge ^b	Q _{gd}		7		
Turn-On Delay Time ^b	t _{d(on)}	$V_{DD} = -6 \text{ V}, \text{ R}_{L} = 10 \Omega$ $I_{D} \cong -1 \text{ A}, \text{ V}_{GEN} = -10 \text{ V}, \text{ R}_{G} = 6 \Omega$ $I_{F} = -1.7 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	38	ns	
Rise Time ^b	tr		25		
Turn-Off Delay Time ^b	t _{d(off)}		189		
Fall Time [♭]	t _f		41		
Source-Drain Reverse Recovery Time	t _{rr}		67		

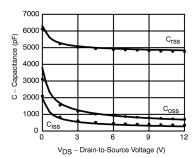
Notes

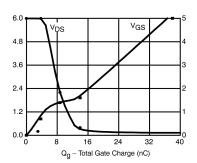

a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si4967DY


Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.