1 Megabit $(128K \times 8)$ **Paged** **CMOS** F²PROM #### **Features** - · Fast Read Access Time 120 ns - Automatic Page Write Operation Internal Address and Data Latches for 128 Bytes internal Control Timer Fast Write Cycle Time Page Write Cycle Tim Page Write Cycle Time - 10 ms maximum 1 to 128 Byte Page Write Operation Low Power Dissipation 80 mA Active Current 300 µA CMOS Standby Current - Hardware and Software Data Protection - DATA Polling for End of Write Detection - High Reliability CMOS Technology Endurance: 10⁴ or 10⁵ Cycles Data Retention: 10 years - Single 5 V ± 10% Supply - CMOS and TTL Compatible Inputs and Outputs - JEDEC Approved Byte-Wide Pinout - Full Military, Commercial and Industrial Temperature Ranges ### Description The AT28C010 is a high-performance Electrically Erasable and Programmable Read Only Memory. Its one megabit of memory is organized as 131,072 words by 8 bits. Manufactured with Atmel's advanced nonvolatile CMOS technology, the device offers access times to 120 ns with power dissipation of just 440 mW. When the device is deselected, the CMOS standby current is less than 300 μA . The AT28C010 is accessed like a Static RAM for the read or write cycle without the need for external components. The device contains a 128-byte page register to allow writing of up to 128 bytes simultaneously. During a write cycle, the address and 1 to 128 bytes of data are internally latched, freeing the address and data bus for other operations. Following the initiation of a write cycle, the device will automatically write the latched data using an internal control timer. The end of a write cycle can be detected by DATA polling of I/O7. Once the end of a write cycle has been detected a new access for a read or write can begin. Atmel's 28C010 has additional features to ensure high quality and manufacturability. The device utilizes internal error correction for extended endurance and improved data retention characteristics. An optional software data protection mechanism is available to guard against inadvertent writes. The device also includes an extra 128 bytes of E²PROM for device identification or tracking. ## **Pin Configurations** | Pin Name | Function | |-------------|------------------------| | A0 - A16 | Addresses | | CE | Chip Enable | | ŌĒ | Output Enable | | WE | Write Enable | | 1/00 - 1/07 | Data
Inputs/Outputs | | NC | No Connect | | NC 1 32 1 VCC 1 32 1 WE A15 1 3 3 1 WE A15 1 3 3 1 WE A15 1 3 3 1 WE A12 1 4 29 1 A14 A7 5 28 1 A13 A6 1 6 27 1 A8 A6 1 7 26 1 A9 A15 1 7 24 1 0 0 A15 | | 10 | p vi | ew | | | |--|---|--|------|--|---|---| | GND Q 16 17 P 1/03 | A16 C C A15 C C A16 C C C A17 C C C C A17 C C C C A17 C C C C C A17 C C C C C C C C C C C C C C C C C C C | 2
3
4
5
6
7
8
9
10
11
12
13
14 | | 31
30
29
28
27
26
25
24
23
22
21
20
19 | 6 | WE
NC
A14
A13
A8
A9
A11
OE
I/O7
I/O6
I/O5 | 2-183 1074177 0005126 390 ### **Block Diagram** ### Absolute Maximum Ratings* | Temperature Under Bias55°C to +125°C | |---| | Storage Temperature65°C to +150°C | | All Input Voltages
(including N.C. Pins)
with Respect to Ground0.6 V to +6.25 V | | All Output Voltages with Respect to Ground0.6 V to Vcc +0.6 V | | Voltage on OE and A9 with Respect to Ground0.6 V to +13.5 V | *NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ## **Device Operation** READ: The AT28C010 is accessed like a Static RAM. When \overline{CE} and \overline{OE} are low and \overline{WE} is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in the high impedance state when either \overline{CE} or \overline{OE} is high. This dual-line control gives designers flexibility in preventing bus contention in their system. BYTE WRITE: A low pulse on the \overline{WE} or \overline{CE} input with \overline{CE} or \overline{WE} low (respectively) and \overline{OE} high initiates a write cycle. The address is latched on the falling edge of \overline{CE} or \overline{WE} , whichever occurs last. The data is latched by the first rising edge of \overline{CE} or \overline{WE} . Once a byte write has been started it will automatically time itself to completion. PAGE WRITE: The page write operation of the AT28C010 allows one to one hundred twenty-eight bytes of data to be written into the device during a single internal programming period. A page write operation is initiated in the same manner as a byte write; the first byte written can then be followed by one to one hundred twenty-seven additional bytes. Each successive byte must be written within 150 µs (tBLC) of the previous byte. If the t_{BLC} limit is exceeded the AT28C010 will cease accepting data and commence the internal programming operation. All bytes during a page write operation must reside on the same page as defined by the state of the A7-A16 inputs. For each \overline{WE} high to low transition during the page write operation, A7 - A16 must be the same. The A0 to A6 inputs are used to specify which bytes within the page are to be written. The bytes may be loaded in any order and may be altered within the same load period. Only bytes which are specified for writing will be written; unnecessary cycling of other bytes within the page does not occur. DATA POLLING: The AT28C010 features DATA Polling to indicate the end of a write cycle. During a byte or page write cycle an attempted read of the last byte written will result in the complement of the written data to be presented on I/O7. Once the write cycle has been completed, true data is valid on all outputs, and the next write cycle may begin. DATA Polling may begin at anytime during the write cycle. (continued on next page) 2-184 AT28C010 1074177 0005127 227 #### **Device Operation (Continued)** TOGGLE BIT: In addition to DATA Polling the AT28C010 provides another method for determining the end of a write cycle. During the write operation, successive attempts to read data from the device will result in I/O6 toggling between one and zero. Once the write has completed, I/O6 will stop toggling and valid data will be read. Reading the toggle bit may begin at any time during the write cycle. DATA PROTECTION: If precautions are not taken, inadvertent writes may occur during transitions of the host system power supply. Atmel has incorporated both hardware and software features that will protect the memory against inadvertent writes. HARDWARE PROTECTION: Hardware features protect against inadvertent writes to the AT28C010 in the following ways: (a) V_{CC} sense - if V_{CC} is below 3.8 V (typical) the write function is inhibited; (b) V_{CC} power-on delay - once V_{CC} has reached 3.8 V the device will automatically time out 5 ms (typical) before allowing a write: (c) write inhibit - holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits write cycles; (d) noise filter - pulses of less than 15 ns (typical) on the \overline{WE} or \overline{CE} inputs will not initiate a write cycle. SOFTWARE DATA PROTECTION: A software controlled data protection feature has been implemented on the AT28C010. When enabled, the software data protection (SDP), will prevent inadvertent writes. The SDP feature may be enabled or disabled by the user; the AT28C010 is shipped from Atmel with SDP disabled. SDP is enabled by the host system issuing a series of three write commands; three specific bytes of data are written to three specific addresses (refer to Software Data Protection Algorithm). After writing the three byte command sequence and after two the entire AT28C010 will be protected against inadvertent write operations. It should be noted, that once protected the host may still perform a byte or page write to the AT28C010. This is done by preceding the data to be written by the same three byte command sequence used to enable SDP. Once set, SDP will remain active unless the disable command sequence is issued. Power transitions do not disable SDP and SDP will protect the AT28C010 during power-up and power-down conditions. All command sequences must conform to the page write timing specifications. The data in the enable and disable command sequences is not written to the device and the memory addresses used in the sequence may be written with data in either a byte or page write operation. After setting SDP, any attempt to write to the device without the three byte command sequence will start the internal write timers. No data will be written to the device; however, for the duration of twc, read operations will effectively be polling operations. DEVICE IDENTIFICATION: An extra 128 bytes of E^2 PROM memory are available to the user for device identification. By raising A9 to 12 V \pm 0.5 V and using address locations 1FF80H to 1FFFFH the bytes may be written to or read from in the same manner as the regular memory array. # Pin Capacitance $(f = 1 \text{ MHz}, T = 25^{\circ}\text{C})^{(1)}$ | | Тур | Max | Units | Conditions | |------|-----|-----|-------|------------| | Cin | 4 | 10 | pF | VIN = 0 V | | Соит | 8 | 12 | pF | Vout = 0 V | Note: 1. This parameter is characterized and is not 100% tested. 2-185 **■ 1**074177 0005128 163 **■** ## D.C. and A.C. Operating Range | | | AT28C010-12 | AT28C010-15 | AT28C010-20 | AT28C010-25 | |------------------------------|------|---------------|---------------|---------------|---------------| | ., | Com. | 0°C - 70°C | 0°C - 70°C | 0°C - 70°C | 0°C - 70°C | | Operating Temperature (Case) | Ind. | -40°C - 85°C | -40°C - 85°C | -40°C - 85°C | -40°C - 85°C | | remperature (Case) | Mil. | -55°C - 125°C | -55°C - 125°C | -55°C - 125°C | -55°C - 125°C | | Vcc Power Supply | | 5 V ± 10% | ### **Operating Modes** | Mode | CE | ŌĒ | WE | 1/0 | |-----------------------|-----|------------------|-----|--------| | Read | VIL | VIL | VIH | Dout | | Write ⁽²⁾ | VIL | VIH | VIL | DIN | | Standby/Write Inhibit | VIH | X ⁽¹⁾ | X | High Z | | Write Inhibit | X | X | ViH | | | Write Inhibit | X | VIL | X | | | Output Disable | X | ViH | X | High Z | Notes: 1. X can be VIL or VIH. 2. Refer to A.C. Programming Waveforms. ### **D.C. Characteristics** | Symbol | Parameter | Condition | Min | Max | Units | |------------------|--------------------------|--|-----|-----|-------| | 1LI | Input Load Current | V _{IN} = 0 V to V _{CC} + 1 V | | 10 | μА | | llo | Output Leakage Current | VI/O = 0 V to VCC | | 10 | μА | | ISB1 | Vcc Standby Current CMOS | CE = Vcc-0.3 V to Vcc + 1 V | | 300 | μA | | ISB2 | Vcc Standby Current TTL | CE = 2.0 V to Vcc + 1 V | | 3 | mA | | lcc | Vcc Active Current | f = 5 MHz; lout = 0 mA | | 80 | mA | | VIL | Input Low Voltage | | | 0.8 | V | | ViH | Input High Voltage | | 2.0 | | V | | Vol | Output Low Voltage | I _{OL} = 2.1 mA | | .45 | ٧ | | V _{OH1} | Output High Voltage | IOH = -400 μA | 2.4 | | ٧ | | V _{OH2} | Output High Voltage CMOS | IOH =- 100 μA; Vcc = 4.5 V | 4.2 | | V | 2-186 AT28C010 ■ | 1074177 0005129 OTT 📟 #### A.C. Read Characteristics | | | AT280 | 2010-12 | AT280 | AT28C010-15 AT28C010-20 | | AT28C010-25 | | | | |-----------------------|--|-------|---------|-------|-------------------------|-----|-------------|-----|-----|-------| | Symbol | Parameter | Min | Max | Min | Max | Min | Max | Min | Max | Units | | tacc | Address to Output Delay | | 120 | | 150 | | 200 | | 250 | ns | | tcE (1) | CE to Output Delay | | 120 | | 150 | | 200 | | 250 | пѕ | | toE (2) | OE to Output Delay | 0 | 50 | 0 | 55 | 0 | 55 | 0 | 55 | ns | | t _{DF} (3,4) | CE or OE to Output Float | 0 | 50 | 0 | 55 | 0 | 55 | 0 | 55 | ns | | tон | Output Hold from OE, CE or Address, whichever occurred first | 0 | | 0 | | 0 | | 0 | | ns | #### A.C. Read Waveforms #### Notes: - CE may be delayed up to t_{ACC} t_{CE} after the address transition without impact on t_{ACC}. - OE may be delayed up to t_{CE} t_{OE} after the falling edge of CE without impact on t_{CE} or by t_{ACC} - t_{OE} after an address change without impact on t_{ACC}. - 3. tpF is specified from \overline{OE} or \overline{CE} whichever occurs first (CL = 5pF). - 4. This parameter is characterized and is not 100% tested. ### Input Test Waveforms and Measurement Level ### **Output Test Load** 2-187 **■ 1**074177 0005130 811 ■ #### A.C. Write Characteristics | Symbol | Parameter | Min | Max | Units | |-----------|------------------------------|-----|-----|-------| | tas, toes | Address, OE Set-up Time | 0 | | ns | | tah | Address Hold Time | 50 | | ns | | tcs | Chip Select Set-up Time | 0 | | ns | | tсн | Chip Select Hold Time | 0 | | ns | | twp | Write Pulse Width (WE or CE) | 100 | | ns | | tos | Data Set-up Time | 50 | | ns | | tDH,tOEH | Data, OE Hold Time | 0 | | ns | | twc | Write Cycle Time | | 10 | ms | ### A.C. Write Waveforms- WE Controlled # A.C. Write Waveforms- CE Controlled 2-188 AT28C010 = 1074177 0005131 758 🖿 ### **Page Mode Characteristics** | Symbol | Parameter | Min | Max | Units | |--------|------------------------|-----|-----|-------| | twc | Write Cycle Time | | 10 | ms | | tas | Address Set-up Time | 0 | | ns | | tah | Address Hold Time | 50 | | ns | | tos | Data Set-up Time | 50 | | ns | | ton | Data Hold Time | 0 | | ns | | twp | Write Pulse Width | 100 | | ns | | tBLC | Byte Load Cycle Time | | 150 | μs | | twpH | Write Pulse Width High | 50 | | ns | ### **Page Mode Write Waveforms** Notes: A7 through A16 must specify the page address during each high to low transition of \overline{WE} (or \overline{CE}). \overline{OE} must be high only when \overline{WE} and \overline{CE} are both low. 2-189 1074177 0005132 694 ■ #### Software Data Protection Enable Algorithm (1) #### Notes: - Data Format: I/O7 I/O0 (Hex); Address Format: A14 A0 (Hex). - Write Protect state will be activated at end of write even if no other data is loaded. - Write Protect state will be deactivated at end of write period even if no other data is loaded. - 4. 1 to 128 bytes of data are loaded. #### Software Data Protection Disable Algorithm (1) ## **Software Protected Program Cycle Waveform** Notes: A0-A14 must conform to the addressing sequence for the first three bytes as shown above. After the command sequence has been issued and a page write operation follows, the page address inputs (A7-A16) must be the same for each high to low transition of \overline{WE} (or \overline{CE}). \overline{OE} must be high only when \overline{WE} and \overline{CE} are both low. 2-190 AT28C010 **1**074177 0005133 520 **1** # Data Polling Characteristics(1) | Symbol | Parameter | Min | Тур | Max | Units | |--------|---------------------|-----|-----|-----|-------| | tрн | Data Hold Time | 10 | | | ns | | toeh . | OE Hold Time | 10 | | | ns | | toe | OE to Output Delay | | | 100 | пѕ | | twn | Write Recovery Time | 0 | | | ns | Note: 1. These parameters are characterized and not 100% tested. ### **Data Polling Waveforms** # Toggle Bit Characteristics(1) | Symbol | Parameter | Min | Тур | Max | Units | |-----------------|---------------------|-----|-----|-----|-------| | t _{DH} | Data Hold Time | 10 | | | ns | | t OEH | OE Hold Time | 10 | | | ns | | toe | OE to Output Delay | | | 100 | ns | | toehp | OE High Pulse | 150 | | | ns | | twn | Write Recovery Time | 0 | | | ns | Note: 1. These parameters are characterized and not 100% tested. # **Toggle Bit Waveforms** #### Notes: - 1. Toggling either \overline{OE} or \overline{CE} or both \overline{OE} and \overline{CE} will operate toggle bit. - 2. Beginning and ending state of I/O6 will vary. - 3. Any address location may be used but the address should not vary. 2-191 **1**074177 0005134 467 # **Ordering Information** | tacc | lcc | (mA) | | | | | |------|--------|---------|---|-------------------------------|---|--| | (ns) | Active | Standby | Ordering Code | Package | Operation Range | | | 120 | 80 | 0.3 | AT28C010-12BC (E)
AT28C010-12FC
AT28C010-12LC (E) | 32B
32F
44L | Commercial
(0° to 70°C) | | | | | | AT28C010-12BI (E)
AT28C010-12FI
AT28C010-12LI (E) | 32B
32F
44L | Industrial
(-40° to 85°C) | | | | | | AT28C010-12BM (E)
AT28C010-12FM
AT28C010-12LM (E) | 32B
32F
44L | Military
(-55°C to 125°C) | | | | | | AT28C010-12BM/883 (E)
AT28C010-12FM/883
AT28C010-12LM/883 (E) | 32B
32F
44L | Military/883C
Class B, Fully Compliant
(-55°C to 125°C) | | | 150 | 80 | 0.3 | AT28C010-15BC (E)
AT28C010-15FC
AT28C010-15LC (E)
AT28C010-15UC
AT28C010-15VC | 32B
32F
44L
30U
V | Commercial
(0° to 70°C) | | | | | | AT28C010-15BI (E) AT28C010-15FI AT28C010-15LI (E) AT28C010-15UI AT28C010-15VI | 32B
32F
44L
30U
V | Industrial
(-40° to 85°C) | | | | | | AT28C010-15BM (E)
AT28C010-15FM
AT28C010-15LM (E)
AT28C010-15UM
AT28C010-15VM | 32B
32F
44L
30U
V | Military
(-55°C to 125°C) | | | | | | AT28C010-15BM/883 (E)
AT28C010-15FM/883
AT28C010-15LM/883 (E)
AT28C010-15UM/883 | 32B
32F
44L
30U | Military/883C
Class B, Fully Compliant
(-55°C to 125°C) | | | 200 | 80 | 0.3 | AT28C010-20BC (E) AT28C010-20FC AT28C010-20LC (E) AT28C010-20UC AT28C010-20VC | 32B
32F
44L
30U
V | Commercial
(0° to 70°C) | | | | | | AT28C010-20BI (E)
AT28C010-20FI
AT28C010-20LI (E)
AT28C010-20UI
AT28C010-20VI | 32B
32F
44L
30U
V | Industrial
(-40° to 85°C) | | | | | | AT28C010-20BM (E) AT28C010-20FM AT28C010-20LM (E) AT28C010-20UM AT28C010-20VM | 32B
32F
44L
30U
V | Military
(-55°C to 125°C) | | 2-192 AT28C010 - **■** 1074177 0005135 3T3 **■** # **Ordering Information** | tacc | lcc | (mA) | Oudoring Codo | Dooksoo | Operation Renge | |------|--------|---------|---|--------------------------------------|---| | (ns) | Active | Standby | Ordering Code | Package | Operation Range | | 200 | 80 | 0.3 | AT28C010-20BM/883 (E)
AT28C010-20FM/883
AT28C010-20LM/883 (E)
AT28C010-20UM/883 | 32B
32F
44L
30U | Military/883C
Class B, Fully Compliant
(-55°C to 125°C) | | 250 | 80 | 0.3 | AT28C010-25BC (E) AT28C010-25FC AT28C010-25LC (E) AT28C010-25UC AT28C010-25VC AT28C010-W | 32B
32F
44L
30U
V
DIE | Commercial
(0° to 70°C) | | | | | AT28C010-25BI (E)
AT28C010-25FI
AT28C010-25LI (E)
AT28C010-25UI
AT28C010-25VI | 32B
32F
44L
30U
V | Industrial
(-40° to 85°C) | | | | | AT28C010-25BM (E)
AT28C010-25FM
AT28C010-25LM (E)
AT28C010-25UM
AT28C010-25VM | 32B
32F
44L
30U
V | Military
(-55°C to 125°C) | | | | | AT28C010-25BM/883 (E)
AT28C010-25FM/883
AT28C010-25LM/883 (E)
AT28C010-25UM/883 | 32B
32F
44L
30U | Military/883C
Class B, Fully Compliant
(-55°C to 125°C) | | 120 | 80 | 0.3 | 5962-38267 07M XX
5962-38267 07M YX
5962-38267 07M ZX | 32B
44L
32F | Military/883C
Class B, Fully Compliant
(-55°C to 125°C) | | 150 | 80 | 0.3 | 5962-38267 05M XX
5962-38267 05M YX
5962-38267 05M ZX | 32B
44L
32F | Military/883C
Class B, Fully Compliant
(-55°C to 125°C) | | 200 | 80 | 0.3 | 5962-38267 03M XX
5962-38267 03M YX
5962-38267 03M ZX | 32B
44L
32F | Military/883C
Class B, Fully Compliant
(-55°C to 125°C) | | 250 | 80 | 0.3 | 5962-38267 01M XX
5962-38267 01M YX
5962-38267 01M ZX | 32B
44L
32F | Military/883C
Class B, Fully Compliant
(-55°C to 125°C) | 2-193 ## **Ordering Information** | | Package Type | | | | | |-------|--|--|--|--|--| | 32B | 32 Lead, 0.600" Wide, Ceramic Side Braze Dual Inline (Side Braze) | | | | | | 32F | 32 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack) | | | | | | 44L | 44 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC) | | | | | | 30U | 30 Pin, Ceramic Pin Grid Array (PGA) | | | | | | ٧ | Tape Automated Bond (TAB) Carrier | | | | | | W | Die | | | | | | | Options | | | | | | Blank | Standard Device: Endurance = 10K Write Cycles; Write Time = 10 ms | | | | | | E | High Endurance Option: Endurance = 100K Write Cycles | | | | | 2-194 AT28C010 = **■ 1074177 0005137 176 ■**