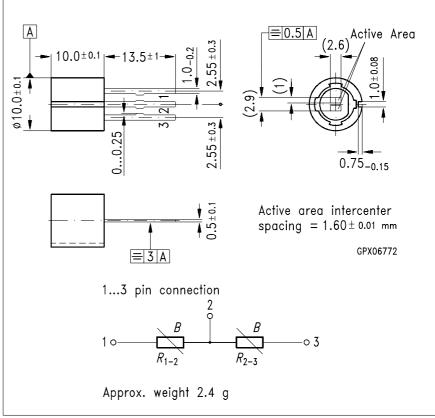
Differential Magnetoresistive Sensor

FP 210 D 250-22


Version 2.0

Features

- High operating temperature
- High output voltage
- Robust cylindrical housing
- · Biasing magnet build in
- Signal amplitude independent of speed
- Easily connectable

Typical Applications

- Detection of speed
- Detection of position
- Detection of sense of rotation
- Angle encoder
- Linear position sensing

Dimensions in mm

Туре	Ordering Code
FP 210 D 250-22	Q65210-D250-W5

The differential magnetoresistive sensor FP 210 D 250-22 consists of two series coupled D-type InSb/NiSb semiconductor resistors. The resitance value of the MRs, which are mounted onto an insulated ferrite substrate, can be magnetically controlled. The sensor is encapsuled in a plastic package with three in-line contacts extending from the base. The basic resistance of the total system in the unbiased state is $2 \times 250 \,\Omega$. A permanent magnet which supplies a biasing magnetic field is built into the housing.

Absolute Maximum Ratings

Parameter	Symbol	Limit Values	Unit
Operating temperature	T_{A}	- 40 / + 140	°C
Storage temperature	T_{stg}	- 40 / + 150	°C
Power dissipation ¹⁾	P_{tot}	400	mW
Supply voltage ²⁾	V_{IN}	7.5	V
Insulation voltage between terminals and casing	V_{I}	> 100	V
Thermal conductivity	$G_{\sf thA}$	≥ 5	mW/K

Electrical Characteristics ($T_A = 25$ °C)

Nominal supply voltage	V _{IN N}	5	V
Total resistance, ($\delta = \infty$, $I \le 1$ mA)	R ₁₋₃	10001600	Ω
Center symmetry ³⁾ ($\delta = \infty$)	M	≤ 10	%
Offset voltage ⁴⁾ (at $V_{\text{IN N}}$ and $\delta = \infty$)	V_0	≤ 130	mV
Open circuit output voltage ⁵⁾ (at $V_{\text{IN N}}$ and δ = 0.2 mm)	$V_{ m outpp}$	> 1100	mV
Cut-off frequency	f_{c}	> 20	kHz

Measuring Arrangements

By approaching a soft iron part close to the sensor a change in its resistance is obtained. The potential divider circuit of the magneto resistor causes a reduction in the temperature dependence of the output voltage V_{OUT} .

- 1) Corresponding to diagram $P_{\rm tot}$ = $f(T_{\rm A})$ 2) Corresponding to diagram $V_{\rm IN}$ = $f(T_{\rm A})$

3)
$$M = \frac{R_{1-2} - R_{2-3}}{R_{1-2}} \times 100\% \text{ for } R_{1-2} > R_{2-3}$$

- 4) Corresponding to measuring circuit in Fig. 2
- 5) Corresponding to measuring circuit in Fig. 2 and arrangement as shown in Fig. 1

1. Digital Revolution Counting

For digital revolution counting, the sensor should be actuated by a magnetically soft iron toothed wheel. The tooth spacing should correspond to about twice the magneto resistor intercenter spacing (see **Figure 1**).

The two resistors of the sensor are supplemented by two additional resistors in order to obtain the sensor output voltage as a bridge voltage $V_{\rm OUT}$. The output voltage $V_{\rm OUT}$ without excitation then is 0 V when the offset is compensated.

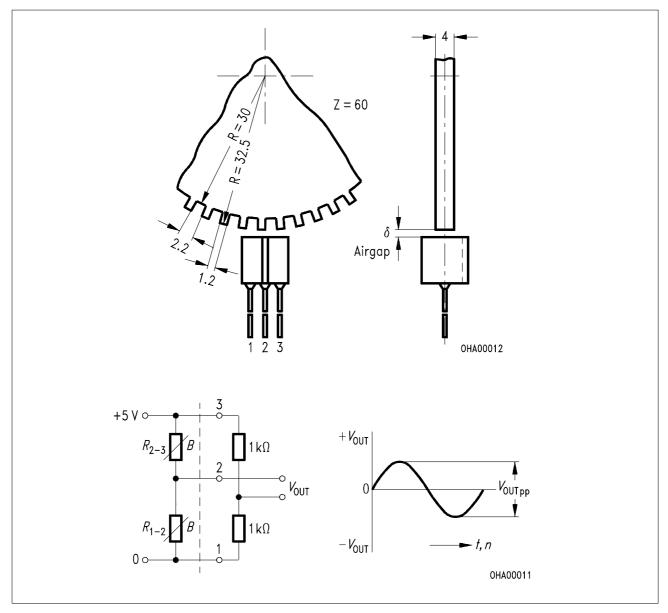


Figure 1 Schematic Representation of a Toothed Wheel actuating an FP 210 D 250-22 Figure 2 Measuring Circuit and Output Voltage $V_{\rm OUT}$ Waveform

2. Linear Distance Measurement

To convert small distances into a proportional electric signal, a small soft iron part of definite width (e.g. b = 1.8 mm) is moved over the face of the sensor.

Proportional signals for distances up to 1.5 mm can be obtained in this way. The sinusoidal output signal gives a voltage proportional to distance in the zero crossover region (see **Figure 3**).

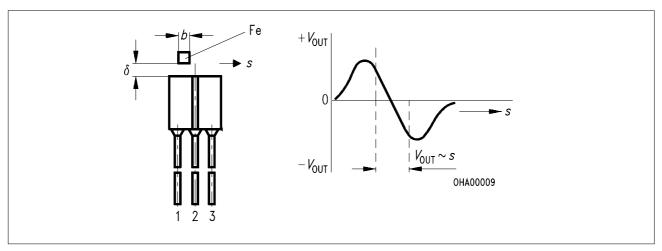
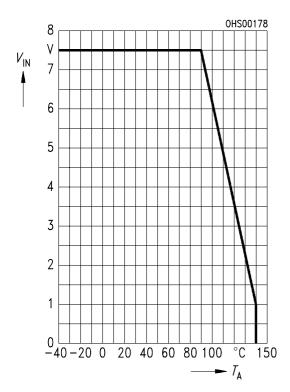
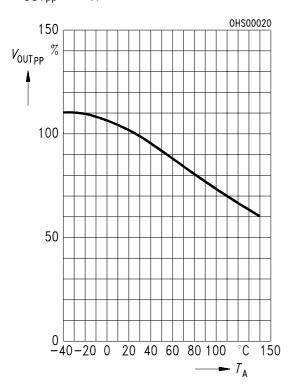
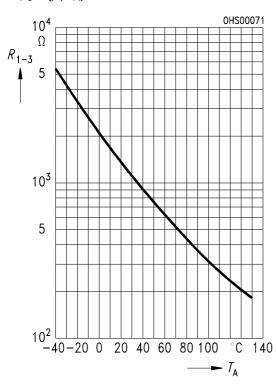



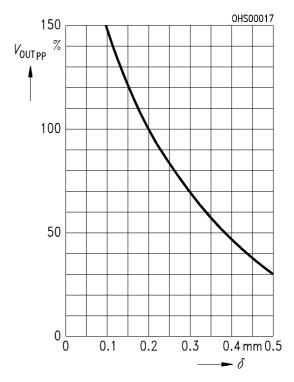
Figure 3
Arrangement for Analogue Application


Maximum supply voltage versus temperature

$$V_{\mathsf{IN}} = f(T_{\mathsf{A}}), \ \delta = \infty$$

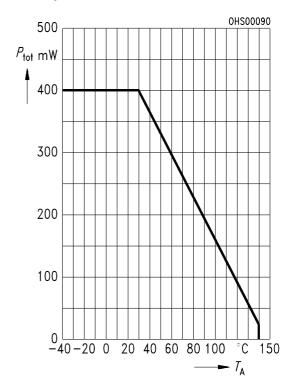


Output voltage (typical) versus temperature $V_{\text{OUTpp}} = f(T_{\text{A}}), \ \delta = 0.2 \ \text{mm}$ V_{OUTpp} at $T_{\text{A}} = 25 \ ^{\circ}\text{C} \ \triangleq \ 100\%$



Total resistance (typical) versus temperature

$$R_{1-3} = f(T_A), \ \delta = \infty$$



Output voltage (typical) versus airgap $V_{\text{OUTpp}} = f(\delta), T_{\text{A}} = 25 \, ^{\circ}\text{C}$ V_{OUTpp} at $\delta = 0.2 \, \text{mm} \triangleq 100\%$

Max. power dissipation versus temperature

$$P_{\text{tot}} = f(T_{\text{A}}), \ \delta = \infty$$

