Chapter 2
L64801 Integer Unit

This chapter provides a description of the L64801 Integer Unit, also
referred to as the IU. The topics in this chapter include:

General Description (page 2-1)

Internal Registers (page 2-2)

Instruction Pipeline (page 2-10)

Instruction Set (page 2-14)

Trap and Exception Handling (page 2-21)

Extemal Signals (page 2-24)

Functional Waveforms (page 2-31)

Specifications (page 2-44)

2.1 The L64801 Integer Unit (IU) is a high-speed implementation of the
General SPARC 32-bit RISC architecture. LSI Logic fabricates the L64801 IU
Description using LSI Logic’s advanced 1.5-micron CMOS process.

The L64801 IU executes instructions at a rate approaching one instruction
per processor clock cycle. To achieve this level of performance, the
SPARC IU uses Reduced Instruction Set Computer (RISC) architectural
principles such as a simple, sufficient instruction set, a large number of on-
chip registers, an instruction pipeline, and a closely coupled floating-point
coprocessor. The IU is the basic processing engine, and it executes all of
the instruction set except for floating-point operations. In addition, the
L64801 provides hardware support for multitasking operating systems,
and fast interrupt and trap processing. The IU communicates with memory
systems via a 32-bit address bus and a 32-bit data/instruction bus.

The IU provides both user and supervisor modes to support a multitasking
operating system. Some instructions are privileged and can only be

164801 Integer Unit 21

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



executed while in supervisor mode. Changing from user to supervisor
mode requires taking a hardware interrupt or executing a trap instruction.

The following summary lists the key features of the L64801. The L64801:

® Reduced instruction set computer (RISC) architecture
— Simple format instructions
— Most instructions execute in single cycle
m High-performance operation
— 12 VAX MIPS at 20 MHz
m Large windows register file
— 120 general-purpose 32-bit registers
— 7 overlapping windows of 24 windows each
® Hardware pipeline interlocks
m Parallel processing support
m Large virtual address space
— 32-bit virtual address bus
— 8-bit address space identifier
m Multitasking support
— User/supervisor modes
— Privileged instructions
m High-performance floating-point interface
m Availability in three package types
— 160-pin Plastic Quad Flat Pack (PQFP)
— 179-pin Ceramic Pin Grid Array (CPGA)
— 179-pin Plastic Pin Grid Array (PPGA)

22 The L64801 IU has two types of registers that are visible to software:

Internal working registers (R Registers) and control/status registers. Working

Registers registers are used for nommal operations. The control/status registers
control and keep track of the IU’s state. This section describes both types
of registers.

2-2 164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



R Registers The L64801 1U has 120 general-purpose R Registers. Eight of these regis-
ters are Global registers, and the remaining 112 are divided between seven
overlapping windows of 24 registers each. Only one window is active at a
time. The Current Window Pointer in the Processor State Register selects
the active window.

The registers in each window are divided into Ins, Outs, and Locals. Note
that the Globals, while not really part of any particular window, can be
addressed when any window is active. The registers in the active window
and the Global registers are addressed as shown in Table 2.1.

Table 2.1 Register Numbers Name

Register Addressing R[24] o R[31] Tns
R[16] o R[23] Locals
R[8] to R[15] Outs
R[0] o R[7] Globals

Each window shares its Ins and Outs with adjacent windows. The Ins of
the current window are the Outs from the previous window (pointed to by
CWP + 1 (modulo 7)). The Outs of the current window are the Ins of the
next window (pointed to by CWP — 1 (modulo 7)). The Globals are equally
available from all windows, and the Locals are unique to each window.
Figure 2.1 shows this overlapping of register windows.

164801 Integer Unit 2-3

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Figure 2.1 Previous Window

Three Overlapping 3
Windows and the INS
Global Registers r24
r23
r16 LOCALS Current Window
r15 g
ouTS
108
Next Window
INS
LOCALS
ouTS
MDS1.414
The windows are joined together in a circular stack, where the highest
numbered window is adjacent to the lowest. The Ins of window 6 are the
Outs of window 0. Figure 2.2 shows the relationships between the
windows.
2-4 164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Figure 2.2

The Circular Stack
of Register
Windows

Control/Status The L64801’s control/status registers are all 32-bit read/write registers

Registers except as noted below. These registers include the program counters, the
Processor State Register (PSR), the Window Invalid Mask Register
(WIM), the Trap Base Register (TBR), and the Multiply Step Register (Y).

Program Counters

The programmer has access to two program counters, the PC and nPC. The
PC contains the address of the instruction currently being executed. The
nPC holds the address of the next instruction to be executed (assuming a
trap does not occur).

The format of the PC and nPC registers is shown below.

164801 Integer Unit 2-5

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



(n) Program Counter |

K]

Processor State Register (PSR)

This 32-bit register contains various fields describing the state of the IU.
SAVE, RESTORE, Ticc, and RETT instructions modify the register, as do
instructions that modify the condition codes. Use the RDPSR and WRPSR
instructions to read and write the PSR, respectively.

The fields in the PSR are defined as follows:

IMPL VER ICC

R EC| EF PiL S |PS{ET cwp

31 28 27 AN

IMPL

ICC

2019

413121 8 7 6 5 4 0

Implementation [31:28]
This ficld identifies the implementation number of the IU. It is hard-
wired and reads as zero.

Version [27:24]
This field identifies the version of this IU implementation. It is hard-
wired and reads as zero.

Integer Condition Codes [23:20]

The ICC field contains the IU’s condition codes. The IU sets these
bits based on the results of arithmetic and logical instructions whose
names end with the letters cc (for example, ANDcc). Use the WRPSR
instruction to set these bits. The Bicc and Ticc instructions base their
control transfer on these bits, which are defined as follows:

N Z v c
23 a2 21

N Negative 23

This bit indicates whether the ALU result was negative for the last
instruction that modified the ICC field. A value of one indicates a
negative result; zero indicates a non-negative result.

Y A Zero 22

This bit indicates whether the ALU result was zero for the last
instruction that modified the ICC field. A value of one indicates a
result of zero; zero indicates a result that is non-zero.

2-6 164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



EC

v Overflow 21

‘When this bit is one, it indicates that an arithmetic overflow occurred
during the last instruction that modified the ICC field. If zero, this bit
indicates that an arithmetic overflow did not occur. Logical instruc-
tions that modify the ICC field always set the overflow bit to zero.

C Carry 20

‘When this bit is one, it indicates that either an arithmetic carry out of
bit 31 occurred as the result of the last addition that modified the ICC,
or that a borrow into bit 31 occurred as the result of the last subtrac-
tion that modified the ICC. If zero, this bit indicates that a carry did
not occur. Logical instructions that modify the ICC field always set
the carry bit to zero.

Reserved [19:14]
These bits are reserved. When using the WRPSR instruction, set
these bits to zero.

Enable Coprocessor 13
Setting this bit to one enables the coprocessor. Setting it to zero dis-
ables the coprocessor.

If the coprocessor is disabled or enabled and not present, CPop,
CBccc, and coprocessor load/store instructions cause a Coprocessor
Disabled Trap.

‘When the coprocessor is disabled, it retains its state until it is reset or
re-enabled. When disabled, the coprocessor can continue to execute
any instructions in its queue.

‘When a coprocessor is present, software uses the EC bit to determine
whether or not a process can use the coprocessor. If a process does not
use the coprocessor, the coprocessor’s registers do not have to be
saved when switching contexts.

Enable FPU 12
Setting this bit to one enables the FPU. Setting it to zero disables the
FPU.

If the FPU is disabled or enabled and not present, FPop, FBfcc, and
floating-point load/store instructions cause a Floating-Point Disabled
Trap.

When the FPU is disabled, it retains its state until it is reset or re-
enabled. When disabled, the FPU can continue to execute any
instructions in its queue.

L64801 Integer Unit 27

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



When an FPU is present, software uses the EF bit to determine
whether or not a process can use the FPU. If a process does not use
the FPU, the FPU’s registers do not have to be saved when switching
contexts. Also, if the FPU is not present (as indicated by the FP sig-
nal), the Floating-Point Disabled Trap can emulate the floating-point
instruction set.

PIL Processor Interrupt Level [11:8]
The PIL ficld defines the minimum IU interrupt level. The IU only
accepts interrupts whose level is numerically less than the value in
PIL. Since smaller level values equate to higher priority interrupts,
software masks lower priority interrupts to the IU by setting the min-
imum acceptable interrupt level in this field.

Interrupt Level 15 is not masked by PIL and is always accepted when
ETis 1.

S Supervisor 7
‘When set to one, this bit places the IU in supervisor mode. Because
instructions that write the PSR require that the IU be in supervisor
mode, supervisor mode can only be entered by a software or hard-
ware trap. When S = 0, privileged instructions cause a Privileged

Instruction trap.

PS Previous Supervisor 6
This bit indicates the value of the S bit at the time of the most recent
trap.

ET Enable Traps s

When set to one, this bit enables traps. When set to zero, traps are dis-
abled, and all asynchronous traps are ignored. Synchronous traps and
Floating-Point/Coprocessor Traps halt the IU and place it in error
mode (ERROR asserted).

If traps are enabled (ET = 1), take care when you disable them. A
RDPSR/WRPSR instruction sequence is interruptible, and it may not
be appropriate in some situations. Here are two alternatives: 1) gen-
erate a Trap Instruction Trap, which disables traps; or 2) use the
RDPSR/WRPSR sequence and write the interrupt trap handlers so
that, before returning to the supervisor, they restore the PSR to the
value it contained before the trap was taken. The PS bit cannot be
restored. In the first alternative, the trap handler should verify that it
was called from the supervisor before returning to the supervisor.

2-8 164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



cwp Current Window Pointer [4:0]
The CWP field points to the currently active R Register window. The
CWP is decremented (modulo 7) by traps and the SAVE instruction, and
it is incremented (modulo 7) by RESTORE and RETT instructions.

The CWP cannot point to an unimplemented window. Since the
L64801 IU provides only seven register windows, bits [4:3] of the CWP
always read as zero. The IU ignores attempts to set bits [4:3].

Window Invalid Mask (WIM) Register

The TU uses the WIM register to determine whether a SAVE, RESTORE,
or RETT instruction should generate a Window Overflow or Window
Underflow Trap. Register bits [6:0] correspond to the seven R Register
windows. WO represents Window 0, W1 represents Window 1, and so on.
When software sets one of the bits to one, the IU considers the correspond-
ing window to be invalid. If a SAVE would cause the CWP to point to a
window whose corresponding WIM bit equals one, the IU executes a Win-
dow Overflow Trap. If a RESTORE or RETT would cause the CWP to
point to an invalid window, the IU executes a Window Underflow Trap.

Use the RDWIM and WRWIM instructions to read and write the WIM reg-
ister, respectively. Bits [31:7] are reserved. The Reserved bits read as zero,
and attempts to modify them are ignored.

The WIM register is formatted as shown below.

Reserved W6 |[WS5 [W4 |W3 [W2 [W1 W0
3 7 6 5 4 3 2 1 0

Trap Base Register (TBR)

The IU uses the three fields of the TBR to generate the address of a trap
handler when a trap occurs. After taking a trap and loading the TT field,
the IU loads the value in this register into the PC. The TBR fields are

defined as shown below.

TBA ™ R
31 12 1 13 0
164801 Integer Unit 29

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



TBA Trap Base Address [31:12]
This field contains the 20 most significant bits of the trap table
address. (Note that the Reset Trap is an exception — it traps to address
zero.) Software writes this field using the WRTBR instruction.

T Trap Type [11:4]
At the time of a trap, the IU writes the trap type into this field, and it
provides an offset into the trap table. The TT field retains its value
until a new trap is taken. The WRTBR instruction does not affect this
field.

R Reserved [3:0]
The least significant four bits of the TBR and the least significant four
bits of the trap address are always zero. This feature provides a 4-
word spacing between initial trap instructions in the trap table. The
WRTBR instruction does not affect this field.

Multiply Step Register (Y)

The Multiply Step (Y) register is used with the multiply step instruction
(MULScc) to multiply two integers. The integers may be up to 32 bits long
and the product up to 64 bits long. At the start of a multiply operation, the
IU loads the Y register with the multiplier. To minimize the number of
steps needed to multiply, load the shorter of the two integers into the Y reg-
ister. At the end of multiplication, the Y register contains the least signifi-
cant bits of the product.

Use the RDY and WRY instructions to read and write the Y register. The
register has the following format.

MULScc Intermediate Value

31 0
23 This section describes the pipeline of the L64801. The instruction pipeline
Instruction is depicted in the upper right hand comer of Figure 2.3. The pipeline
Pipeline includes: two instruction buffers (IB1, IB2), three instruction registers

(DIR, EIR, and WIR), Instruction Register Decode, and Control Logic.

Pipelining is a design technique that improves instruction throughput by
overlapping the processing of instructions. A pipelined processor is orga-
nized like an assembly line. The processing of instructions is divided into
a sequence of steps. Each step is performed in a different pipeline stage.
An instruction is passed from stage to stage until all the steps are completed.

2-10 164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



The L64801 uses a four-stage pipeline. Most L64801 instructions flow
through the pipeline in four cycles from start to finish. During these four
cycles, three additional instructions may enter the pipeline. Execution of
instructions overlaps, so that effective execution time is a single cycle per
instruction. The processor achieves its maximum throughput of one
instruction per cycle when a stream of these single-cycle instructions flows
through the pipeline.

Some instructions must use part of the processor during more than one
cycle. Because these additional cycles cannot be overlapped with other
instructions, they increase effective execution time. Instructions that have
an effective execution time greater than one cycle are called multiple-cycle
instructions.

Memory access instructions comprise the majority of multiple-cycle
instructions. All instructions require one Memory Interface cycle to fetch.
Memory access instructions require additional cycles to transfer data.
Because data transfer cycles cannot overlap, these additional cycles delay
instruction fetch and data transfer for other instructions. As a result, the
effective execution time of memory access instructions is the number of
Memory Interface cycles required. For example, Load instructions require
two Memory Interface cycles, and so have an effective execution time of
two cycles.

164801 Integer Unit 2-11

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Figure 2.3

L64801 Block
Diagram Clock CO—» [ Write |

_{>
L<}

Data Bus BE3—

Register File
120x32

A

Controls DG | Instruction Decode

V Y

Address Generation
Unit

Address Bus -
Y

Program Counters
(PC) (nPC)

L !
PSR

Aoating-Point Bus WIM

MOS1LE

The four pipeline stages are designated Fetch, Decode, Execute, and Write.
The operations performed in these four stages are described below. The
Decode, Execute, and Write stages each have an instruction register and an
instruction decoder. Each instruction decoder generates signals that control
operations later during its own stage and early in the next stage.

Fetch Stage

The Memory Interface fetches an instruction from memory into a CPU
register. If the Decode stage is not busy, the instruction is loaded directly
into the Decode Instruction Register (DIR). If the Decode stage is busy
with the execution of a multiple-cycle instruction, the fetched instruction
is queued in the two-word Instruction Buffer (IB1 and 1B2). When the

2-12 164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Decode stage becomes available, each of the queued instructions is loaded
from the Instruction Buffer into the Decode Instruction Register.

Decode Stage

During the Decode stage, the processor performs three types of operations
in parallel: decoding the current instruction, getting the operands required
by the current instruction, and calculating instruction addresses for subse-
quent instructions.

Decoding a single-cycle instruction is straightforward. Decoding a
multiple-cycle instruction may generate one or more Internal Operations
(IOPs). A multiple-cycle instruction may also generate internal no opera-
tions known as Null Cycles. IOPs and Null Cycles are loaded into the
Decode Instruction Register and flow through the Decode, Execute, and
Write pipeline stages like single-cycle instructions.

In parallel with instruction decode, the processor reads the instruction’s
operands from the Register File. Operand register A is loaded with Source
Register R1 from the Register File. Operand register B is either loaded
with Source Register R2 from the Register File or loaded with immediate
data from the instruction. When an instruction uses the result of another
instruction that has not yet exited the pipeline, the bypass paths load the
result into either operand register A or operand register B directly from the
appropriate stage. The bypass paths are used when either Source Register
R1 or Source Register R2 of the instruction in the Decode stage is the Des-
tination Register of an instruction in the Execute or Write stages.

At the same time, the Address Generator calculates the next instruction
address. During the execution of most instructions, the Address Generator
increments the most recent instruction address by four and loads the
resulting instruction address into the Address Register. Branches, Calls, and
memory access instructions are all handled differently from other
instructions.

During the execution of Branches and Calls, the Address Generator adds
the contents of the Program Counter to the displacement field of the
instruction and loads the resulting instruction address into the Address
Register.

At the beginning of memory access instructions, such as Load or Store
instructions, the Address Generator increments the most recent instruction

164801 Integer Unit 2-13

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



address by four and saves the resulting instruction address in the PC
Buffer. When the Address Register becomes available at the end of the
memory access instruction, the Address Generator loads the PC Buffer into
the Address Register.

Execute Stage

The operations performed by the processor during the Execute stage
depend on the type of instruction that is being executed. During execution
of Arithmetic and Logical instructions, either the Arithmetic/Logic Unit
(ALU) or the Shifter processes the contents of operand registers A and B,
and stores the result into the Result Register. During execution of Jump
and Link, Return from Trap, and memory access instructions, the Address
Generator adds together the contents of operand registers A and B and
loads the resulting address into the Address Register. During execution of
Store Byte and Store Halfword instructions, the Shifter shifts the partial
word in operand register A to the correct position within a word and loads
it into the Result Register.

Wirite Stage

During the Write stage, the IU passes the contents of the Result Register
through the Load Data Aligner, and writes them to the Destination Register
in the Register File. When instruction execution results in a trap or excep-
tion, IU does not change the Destination Register. During the Write stage
of Load Byte, Load Halfword, and Atomic Load-Store instructions, the
Load Data Aligner aligns the load data. As the partial word in the Result
Register passes through the Load Data Aligner, the partial word is right-
justified and extended to the left with sign or zero bits.

24 The L64801 IU is the primary data processing engine in a SPARC system.

Instruction Set The IU executes five types of SPARC instructions: load/store, arithmetic/
logical/shift, control-transfer, read/write control register, and floating-
point/coprocessor. These instruction types are summarized below.

1. Load/Store Instructions: These instructions access memory. The load/
store instructions add either the contents of two registers or the con-
tents of one register with a 13-bit signed immediate value to generate
the memory address. The instruction destination register field specifies
the destination of a load or source for a store. Integer load and store

2-14 164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



instructions support 8-, 16-, 32-, and 64-bit transfers. Floating-point
instructions support 32- and 64-bit transfers.

2. Arithmetic/Logical/Shift Instructions: These instructions perform
arithmetic, tagged arithmetic, logical, and shift operations. They com-
pute a result that is a function of two source operands and either write
the result into a destination register or discard it. The tagged arithmetic
instructions are useful in artificial intelligence applications. The shift
instructions shift the contents of any register left or right any number
of bits in one clock cycle, as specified by a register or by the 13-bit
signed immediate value.

3. Control-Transfer Instructions: Control-transfer instructions include
branches, calls, jumps, and traps. Control transfer is usually delayed so
that the instruction immediately following the control-transfer (called
the delay instruction) is executed before control is transferred to the
target location. Branch and call instructions use program counter rela-
tive displacements. The branch instruction provides a displacement of
plus or minus eight megabytes. The call instruction’s 30-bit displace-
ment allows transfer to any address. The Jump and Link instruction
uses a register indirect displacement, as does the Return from Trap
instruction. The target address is either the sum of the contents of two
registers or the sum of the contents of a register with a 13-bit signed
immediate value.

4. Read/Write Control/Status Register Instructions: These instructions
access the various control/status registers within the L64801. These
registers include the Multiply Step Register, Processor State Register,
Trap Base Register, and Window Invalid Mask Register.

5. Floating-point/Coprocessor Instructions: These instructions include
floating-point calculations, operations on floating-point registers, and
instructions involving the optional coprocessor. Floating-point opera-
tions execute concurrently with IU instructions and with other
floating-point operations when necessary.

All instructions are 32 bits wide and aligned on 32-bit boundaries in
memory. Instructions are classified into three major formats, two of which
include sub-formats. Each instruction format is shown in Figure 2.4 with
its fields and bit positions. For a complete description of the use of the
various instructions and instruction fields, see the SPARC Architecture
Manual.

164801 Integer Unit 2-15

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Figure 2.4

Instruction Formats
Format 1: CALL
op disp0
31 3029 0
Format 2: SETHI and Branches {Bicc, FBfcc, CBecc)
op rd op2 imm22
op a I cond op2 disp22
31 30 29 28 25 24 220 0
Format 3: Remaining Instructions
op rd op3 rsl i=0 asi I rs2
op rd op3 rsl =1 simm13
op rd op3 sl opf I rs2
31 3029 2% 24 19 18 14 13 12 5 4 0
MDA
The fields within the instruction formats are defined below:
a 29
This bit is the annul bit in Format 2 instructions. This bit affects the
operation of the instruction encountered immediately after a control
transfer.
asi [12:5]
This eight-bit field is the address space identifier. Load/store alternate
instructions generate this field.
cond [28:25]
This field selects the condition code for Format 2 instructions.
disp22 [21:0]
disp30 [29:0]
These fields are 22-bit and 30-bit sign-extended word displacements
for branches and PC-relative calls, respectively.
2-16 164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



13
This bit selects the second ALU operand for non-FPop instructions.
If i = 0, the second operand is rfrs2]. If i = 1, the second operand is
sign-extended simm13.

imm22 [21:0]
This field is a 22-bit constant value used by the SETHI instruction.
op [31:30]
This field places the instruction into one of the three major formats as
shown in the following table.
op Format Instruction
00 2 Bicc, FBfcc, CBecc, SETHI
01 1 CALL
1x 3 Remaining instructions
opf [13:5]
This nine-bit field identifies a floating-point operate (FPop) instruc-
tion or a coprocessor operate (CPop) instruction.
op2 [24:22]
This field comprises bits 24 through 22 of Format 2 instructions. The
instructions are encoded as follows:
op2 Instruction
000 UNIMP
010 Bicc
100 SETHI
110 FBfcc
111 CBcce
op3 [24:19]
This field selects one of the Format 3 opcodes.
rd [29:25]
For store instructions, this field selects an R register (or an R register
pair) or an F register (or an F register pair) as the source. For all other
instructions, this field selects an R register (or R register pair) or an F
register (or F register pair) as the destination.
164801 Integer Unit 2-17

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



rsl [18:14]}
This five-bit field selects the first source operand from either the R

registers or the F registers.

rs2 [4:0]
This five-bit field selects the second source operand from either the R
registers or the F registers.

simm13 [12:0]

This field is a sign-extended, 13-bit immediate value used as the sec-
ond ALU operand wheni= 1.

Table 2.2 summarizes the instruction set for the L64801 IU. Refer to the
section entitled “Floating-Point Instructions” in Chapter 3, “L64804 Float-
ing-Point Unit,” for a listing of the FPU instruction set. For a complete
description of the instruction set, refer to the SPARC Architecture Manual.

Table 2.2
164801 Instruction
Set
Instruction Mnemonic Format op op2 op3 Cycles
Add ADD 3 2 00 1
Add and Modify Integer Condition Code ADDcc 3 2 10 1
Add with Carry ADDX 3 2 08 1
Add with Carry and Modify Integer Condition Code ADDXcc 3 2 18 1
And AND 3 2 01 1
And and Modify Integer Condition Code ANDcc 3 2 11 1
And Not ANDN 3 2 05 1
And Not and Modify Integer Condition Code ANDNcc 3 2 15 1
Atomic Load-Store Unsigned Byte LDSTUB 3 3 0D 4
Atomic Load-Store Unsigned Byte LDSTUBA 3 3 1D 4
into Alternate Space!
Branch on Coprocessor Condition? CBxxx 2 0 7 -
Branch on Integer Condition (taken) Bxxx 2 0 2 13
(not taken) 2¢
Call CALL 1 1 1
Coprocessor Operate? CPop Cp 2 37 -
Exclusive Nor XNOR 3 2 07 1

1. Privileged Instruction

2. Coprocessor Instructions cause a Coprocessor_Disabled trap and are implemented in the trap handler
3. Branch Always increases by one cycle when the annul bit a = 1

4. Branch not taken increases by one cycle when the annul bit a = 1

Continued on next page.

2-18 164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Table 22
L64801 Instruction
Set, continued

Instruction Mnemonic Format op op2 op3 Cycles
Exclusive Nor and Modify Integer Condition Code =~ XNORcc 3 2 17 1
Exclusive Or XOR 3 2 03 1
Exclusive Or and Modify Integer Condition Code XORcc 3 2 13 1
Instruction Cache Flush IFLUSH 3 2 3B
Inclusive Or OR 3 2 02 1
Inclusive Or and Modify Integer Condition Code ORcc 3 2 12 1
Inclusive Or Not ORN 3 2 06 1
Inclusive Or Not and Modify Integer Condition Code ORNcc 3 2 16 1
Jump and Link JMPL 3 2 338 2
Load Coprocessor Register! LDC 3 3 30 -
Load Coprocessor State Register' LDCSR 3 3 31 -
Load Double Coprocessor register’ LDDC 3 3 33 -
Load Doubleword LDD 3 3 03 32
Load Doubleword from Alternate Space® LDDA 3 3 13 32
Load Signed Byte LDSB 3 3 0w 24
Load Signed Byte from Alternate Space® LDSBA 3 3 19 2¢
Load Signed Halfword LDSH 3 3 oA 2¢
Load Signed Halfword from Alternate Space® LDSHA 3 3 1A 2¢
Load Unsigned Byte LDUB 3 3 o 2¢
Load Unsigned Byte from Alternate Space® LDUBA 3 3 n 2
Load Unsigned Halfword LDUH 3 3 02 2¢
Load Unsigned Halfword from Alternate Space? LDUHA 3 3 12 2¢
Load Word LD 3 3 o0 2¢
Load Word from Alternate Space® LDA 3 3 10 2¢
Multiply Step and Modify Integer Condition Code =~ MULScc 3 2 2% 1
Read Processor State Register’ RDPSR 3 2 29 1
Read Trap Base Register’ RDTBR 3 2 2B 1
Read Window Invalid Mask register® RDWIM 3 2 2A 1
Read Y Register RDY 3 2 28 1
Restore Caller’'s Window RESTORE 3 2 3D 1
Return from Trap® RETT 3 2 39 2
Save Caller’s Window SAVE 3 2 3C 1

1. Coprocessor Instructions cause a Coprocessor_Disabled trap and are implemented in the trap handler

2. Load Doubleword increases by one cycle when the second word of load data is used by the instruction immedi-

ately following
3. Privileged Instruction

4. Load (except Doubleword) increases by one cycle when the load data are used by the instruction immediately

Jollowing

Continued on next page.

164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

2-19



Table 22
164801 Instruction
Set, continued

Instruction Mnemonic Format op op2 op3 Cycles
Set High SETHI 2 0 4 1
Shift Left Logical SLL 3 2 25 1
Shift Right Arithmetic SRA 3 2 27 1
Shift Right Logical SRL 3 2 26 1
Store Byte STB 3 3 05 3
Store Byte into Alternate Space! STBA 3 3 15 3
Store Coprocessor’ STC 3 3 34 -
Store Coprocessor State Register? STCSR 3 3 35 -
Store Double Coprocessor” STDC 3 3 37 -
Store Double Coprocessor Queue!? STDCQ 3 3 36 -
Store Doubleword STD 3 3 07 4
Store Doubleword into Alternate Space! STDA 3 3 17 4
Store Halfword STH 3 3 06 3
Store Halfword into Alternate Space! STHA 3 3 16 3
Store Word ST 3 3 04 3
Store Word into Alternate Space! STA 3 3 14 3
Subtract SUB 3 2 04 1
Subtract and Modify Integer Condition Code SUBcc 3 2 14 1
Subtract with Carry SUBX 3 2 oC 1
Subtract with Carry and Modify Integer Condition SUBXcc 3 2 1C 1
Code
Swap R Register with Memory SWAP 3 3 OF
Swap R Register with Alternate Space Memory! SWAPA 3 3 1F
Tagged Add and Modify Integer Condition Code TADDcc 3 2 20 1
Tagged Add, Modify Integer Condition Code, TADDccTV 3 2 22 1
and Trap on Overflow
Tagged Subtract and Modify Integer Condition Code TSUBcc 3 2 21 1
Tagged Subtract, Modify Integer Condition Code, TSUBccTY 3 2 23 1
and Trap on Overflow
Trap on Integer Condition (1aken) Txxx 3 2 3A 4
(not taken) 1
Unimplemented UNIMP 2 0 0
Write Processor State Register! WRPSR 3 2 31 1
Write Trap Base Register! WRTBR 3 2 33 1
Write Window Invalid Mask register' WRWIM 3 2 32 1
Write Y Register WRY 3 2 30 1

1. Privileged Instruction

2. Coprocessor Instructions cause a Coprocessor_Disabled trap and are implemented in the trap handler

2-29 164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



25

Trap and
Exception
Handling

The L64801 generates traps in response to both internal and external
events. These traps switch control from the instruction stream to an address
in a trap table. The only exception is the reset trap, which transfers control
to address zero.

Traps fall into three categories: synchronous, asynchronous, and floating-
point. Either hardware or Trap on Integer Condition Code (Ticc) instruc-
tions cause synchronous traps. Synchronous traps occur during the
instruction that caused them. Interrupt requests on the JRL[3:0] inputs
cause asynchronous traps. The L64801 synchronizes asynchronous traps
and services them after the current instruction has completed. FPop
instructions cause floating-point traps. Floating-point traps occur before
the instruction is completed. However, since the IU and FPU are operating
concurrently, other non-floating-point instructions may have executed in
the meantime.

Synchronous
Traps

Table 2.3
Synchronous Traps
and Exceptions

The IU generates synchronous traps in response to internal conditions,
external signals, or Trap (Ticc) instructions. The IU takes these traps
immediately. When an instruction (other than Ticc) causes a trap, the
L64801 aborts the instruction before the state of the processor is changed.

If a synchronous trap occurs while traps are disabled (PSR[ET] = 0), the
IU enters the error state. The L64801 saves the contents of its internal reg-
isters as if a trap had occurred; then it stops and drives ERROR LOW. The
only way to exit the error state is to force a Reset trap by driving RESET
LOW. The Reset trap transfers control to address zero, but does not change
the information that was loaded into the processor’s internal registers when
it entered the error state. This information determines the cause of the
eITOr.

External hardware such as the memory subsystem may cause synchronous
traps. Table 2.3 lists the synchronous traps that occur in response to exter-

nal signals:

Trap Initiating Signal  Condition

Data_Access_Exception MEXC Error during data access
Instruction_Access_Exception MEXC Error during instruction access
164801 Integer Unit 221

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Asynchronous The L64801 generates asynchronous traps in response to the Interrupt

Traps Request (IRL[3:0]) inputs. The IU waits for the currently executing
instruction to complete before processing the trap. The IRL[3:0] inputs
provide 15 levels of interrupts.

Setting IRL[3:0] all HIGH signifies interrupt level O (no interrupt). Setting
IRL[3:0] all LOW signifies interrupt level 15, which is a non-maskable
interrupt. All other combinations represent interrupt requests that can be
masked by the PIL field in the PSR. For the interrupt to be taken, the Inter-
rupt Request Level, which is the complement of IRL[3:0], must be greater
than the value in the PIL field of the PSR.

Floating-Point The IU generates floating-point traps in response to the FEXC input. The

Traps FPU asserts FEXC upon recognizing a floating-point exception. The IU
asserts FXACK to acknowledge the trap. At this time, the FPU enters an
exception mode state. To exit this state, execute one or more STDFQ
instructions in order to empty the Floating-Point Queue.

The PC that corresponds to a floating-point exception always points to a
floating-point instruction. However, the exception itself is always due to a
previously executed floating-point instruction. The instruction and the
value of the PC from which the instruction was fetched are in the Floating-
Point Queue.

Since the IU and FPU operate concurrently, the floating-point exception
typically occurs sometime after the exception-causing instruction. The IU
does not take the exception trap until another floating-point instruction is
encountered.

Trap Addressing  Each type of trap is assigned a priority. When multiple trap requests occur,
the IU takes the highest priority trap and ignores lower priority traps. To
ensure recognition by the L64801, lower priority traps must either persist
or be repeated.

When the L64801 recognizes a trap, it performs the following actions:

1. It disables traps (PSR[ET] « 0).

2. Itcopies the Supervisor (S) bit of the PSR into the Previous Supervisor
(PS) bit, and then sets the S bit to 1 (Supervisor mode).

2-22 164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



3. It decrements the Current Window Pointer (CWP) field of the PSR by
1 modulo 7. CWP then points to a new window.

4. It saves the PC into R[17] and the nPC into R[18] of the new window.

5. It sets the Trap Type (TT) field of the Trap Base Register (TBR) to the
appropriate value. The Trap Type values are shown in Traps and Prior-
ities (Table 2.4) below.

6. If the trap is not a reset, it loads the PC with the contents of the TBR,
and the nPC with the contents of the TBR plus four. If the trap is a
reset, it loads the PC with zero and the nPC with four.

Table 2.4 shows the traps and their priorities. For most traps, the IU writes
the trap number into the TT field of the TBR. For a Ticc instruction, the
instruction calculates the TT value.

Table 2.4 Trap Type Synchronous or
Traps and Priorities ~ Trap i Asynchronous

Reset Async
Instruction_Access_Exception Sync
Nlegal_Instruction "
Privileged_Instruction
Floating-Point_Disabled
Coprocessor_Disabled
Window_Overflow
Window_Underflow
Memory_Address_Not_Aligned
Floating-Point_Exception
Copl’ocessor__li)u;eption1
Data_Access_Exception
Tag_Overflow

Trap_Instruction (Ticc)
Interrupt_Level_15
Interrupt_Level_14
Interrupt_Level _13
Interrupt_Level_12
Interrupt_Level_11
Interrupt_Level _10
Interrupt_Level 9
Interrupt_Level_8
Interrupt_Level _7
Interrupt_Level_6
Interrupt_Level_5
Interrupt_Level_4
Interrupt_Level _3
Interrupt_Level_2
Interrupt_Level _1 27

WA WNE N
2 3
~

RERBREBEEIAGRERREEOCRIannsuN- ]y
.
R
W
2

SREERRERRRRIBRERGESCEX I

1. The L64801 implements these traps in software

164801 Integer Unit 2-23

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



26 This section describes the signals of the L64801. These signals are

External Signals  described in alphabetical order. Signals that are active LOW are marked
with an overbar; all others are active HIGH. For example NAME is active
LOW and NAME is active HIGH.

A[31:0] IU Address [31:0] Output
A[31:0] comprise the address portion of the Local Bus. The IU uses
these signals to specify the addresses of instructions or data. During
an instruction fetch cycle, the bus contains an instruction address, and
during a load or store data cycle, A[31:0] contains a data address.
AOE controls the output drivers for A[31:0]. The address bus remains
valid during all data cycles of loads, stores, load doubles, and atomic
load/stores. In systems with cache, the low bits of the address read the
cache RAMs and cache tags, and the high bits of the address compare
the tags.

AOE Address Output Enable Input
AOCE controls the output drivers for A[31:0] and ASI[7:0). External
logic drives AOE LOW during normal operation and drives AOE
HIGH when the bus is granted to another bus master (that is, when
either MHOLDA, MHOLDB, or BHOLD is asserted).

ASI[7:0] Address Space Identifier [7:0] 3-State Output
The IU uses the eight ASI bits to specify the address space for an
instruction fetch or data access to memory. During any given cycle,
ASI[7:0] specify the address space that corresponds to the address on
A[31:0] during that same cycle. The IU does not latch these signals,
which the IU outputs at the rising edge of CLK.

ASI[7:0] are three-stated when ASIOE is HIGH.

Of the 256 possible address spaces that these signals represent, the IU
automatically issues four address spaces during instruction fetches
and standard memory accesses. The table below lists the ASIs.

ASI[7:0] Address Space

0x00 — 0x07 Implementation Definable

0x08 User Instruction

0x09 Supervisor Instruction

0x0A User Data

0x0B Supervisor Data

0x0C — OxFF Implementation Definable
2-24 164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



During the data cycles of alternate load and store instructions,
ASI[7:0] contain the space identifier specified by the instruction
opcode.

ASIOE Address Space Identifier Output Enable Input
ASIOE controls the output drivers for ASI[7:0]. External logic drives
AOE LOW during normal operation and drives AOE HIGH when the
bus is granted to another bus master (that is, when either MHOLDA,
MHOLDB, or BHOLD is asserted).

BHOLD Bus Hold Input
External logic (for example a bus controller) asserts BHOLD to the
Local Bus Master. When asserted, BHOLD freezes the processor
pipeline. When BHOLD is deasserted, external logic must guarantee
that all inputs to the IU are in the same state as they were before the
assertion of BHOLD. External logic must assert BHOLD after the ris-
ing edge of CLXK (the start of the clock cycle) and keep the signal
asserted until after the falling edge of CLK (the middle of the cycle).
The IU latches BHOLD before using it.

CLK Clock ' Input
This 50-percent duty-cycle clock synchronizes all system operations,
including the IU, MCT, FPU, and transactions on the Mbus. It is
HIGH during the first half of the processor cycle, and LOW during
the second half. The rising edge of CLK defines the beginning of each
pipeline stage in the U chip.

D[31:0] IU Data Bus [31:0] 3-State Bidirectional
D[31:0] is a bidirectional bus that comprises the data portion of the
Local Bus. D31 corresponds to the most significant bit of the 32-bit
word.

The IU drives the bus when executing integer store instructions and
during the store cycle of atomic load/store instructions. D[31:0] are
valid at the rising edge of CLK. Once latched by external logic, store
data are valid during the second data cycle of a store word access, the
second and third data cycle of a store doubleword access, and the
third data cycle of an atomic load/store access.

The IU samples the bus when executing integer load instructions,
when fetching instructions, and during the load cycles of atomic load/
store instructions.

The IU aligns the data internally for both load and store instructions.
It aligns a doubleword on an eight-byte boundary, a word on a four-
byte boundary, and a halfword on a two-byte boundary. If a

164801 Integer Unit 2-25

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



doubleword, word, or halfword load or store instruction generates an
improperly aligned address, the IU generates a Memory Address Not
Aligned Trap. Instructions and operands are always fetched from
modulo-32 addresses.

DFETCH Data Fetch Output
The IU asserts DFETCH to indicate that the current bus cycle is adata
transfer cycle. The L64801 deasserts DFETCH to indicates that the
current bus cycle is an instruction cycle. The IU asserts NULL_CYC
to nullify an instruction or data cycle.

DOE Data Output Enable Input
External logic deasserts DOE to three-state the IU output drivers for
D{31:0]. External logic should deassert this signal only when the bus
is granted to another bus master (that is, when either MHOLDA,
MHOLDBE, MHOLDC, SHOLD, or BHOLD is asserted). DOE must
be asserted during normal operations.

ERROR Error Output
If traps are disabled (the ET bit in the PSR is 1), the IU asserts this
signal when a trap is encountered. In this situation, the IU saves the
PC and nPC, sets the TT value in the TBR, enters into an error state,
asserts ERROR and halts. Assert RESET to restart the IU.

F[31:0] Floating-Point Bus Output
This 32-bit bus sends floating-point instructions and addresses to the
L64804. Each floating-point instruction uses this bus for two cycles:
the first cycle carries the instruction and the second cycle carries the
address.

FADR Floating-Point Address Output
The IU asserts FADR during the cycle that F[31:0] contains a valid
floating-point instruction address. When FADR is asserted, the
L64804 latches the address into its address register.

FCCJ[1:0] Floating-Point Condition Codes Input
The FCC[1:0] bits contain the current condition code of the L64804
FPU. These bits are valid only when FCCYV is HIGH.

The IU checks FCC[1:0] when executing an FBfcc instruction, If
FCC[1:0] are not valid during the execute cycle, the IU delays the
execute cycle. The following table lists the condition code encoding.

2-26 164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



FCCl FCCo Condition

0 0 Equal
0 1 opl < op2
1 0 opl > op2
1 1 Unordered
FCCV Floating-Point Condition Code Valid Input

The L64804 FPU asserts the FCCV signal when FCC[1:0] contain a
valid condition. The FPU deasserts FCCV if pending floating-point
compare instructions are in the Floating-Point Queue. The L64804
reasserts FCCV when the compare instruction completes and
FCC[1:0] contain valid data.

FEND End Floating-Point Instruction Output
The IU asserts FEND during the last cycle of a floating-point instruc-
tion in the TU pipeline. The FPU uses FEND to synchronize the
instruction/address in the FPU pipeline with the IU pipeline.

FEXC Floating-Point Exception Input
The FPU asserts FEXC when a floating-point exception occurs.
FEXC remains asserted until the IU asserts FXACK, which indicates
the IU has taken a trap. Floating-point exceptions are taken only dur-
ing the execution of floating-point instructions.

FHOLD Floating-Point Hold Input
The FPU asserts FHOLD if it cannot continue execution due to a
resource or operand dependency. The FPU checks for all dependen-
cies in the write stage and, if necessary, asserts FHOLD in the same
cycle. When FHOLD is asserted, the TU freezes its pipeline in the
next cycle. The IU releases its pipeline when the FPU deasserts
FHOLD.

FINS Floating-Point Instruction Output
When the IU encounters a floating-point instruction, it asserts FINS
during the IU’s Execute stage. At this time, F[31:0] contains a valid
floating-point instruction. When FINS is asserted, the FPU latches the
instruction from F[31:0] into its instruction register.

FLUSH Floating-Point Instruction Flush Output
The IU asserts FLUSH to tell the FPU to flush the instructions in the
FPU instruction registers. This operation may happen when the IU
takes a trap. The IU restarts the flushed instructions after returning
from the trap. The FLUSH signal does not affect instructions in the
floating-point queue.

164801 Integer Unit 2-27

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



FP Floating-Point Present Input w/Pullup
FP indicates whether an FPU is present in the system (0 = FPU;
1 = no FPU). FP is tied to VDD through an internal resistor. The IU
generates an fp_disabled trap if FP is HIGH during the execution of
a floating-point instruction.

FXACK Floating-Point Exception Acknowledge Output
The IU asserts FXACK to acknowledge to the FPU that the current
FEXC trap is taken.

HAL Hold Address Latch Output

The IU asserts HAL in order to freeze the clock to the external mem-
ory address register. HAL is asserted during the execution of some
multiple-cycle instructions, internal interlocks, and whenever at least
one of the hold signals (MBOLDA, MBOLDEB, MHOLDC, SHOLD,
or BHOLD) is asserted.

IH_NULL Null Cycle Reset Input
When asserted, this signal resets NULL_CYC to LOW.

IRL[3:0] Interrupt Level Input
The data on these pins define the External Interrupt Level. IRL[3:0]
equal to 0000, indicates that no external interrupts are pending.
Because interrupts are asynchronous events, a given interrupt level
must remain valid for at least two consecutive cycles for the IU to rec-
ognize it. The IU uses two on-chip synchronizing latches to sample
these signals on the rising edge of CLK. IRL[3:0] equal to 1111, sig-
nifies a non-maskable interrupt. All other interrupt levels are mask-
able. Use the PIL field of the PSR to mask the other levels.

LDST Load/Store Cycle 3-State Qutput
The IU asserts this signal during all data cycles of atomic load/store
instructions. The IU three-states LDST if ASIOE is deasserted.

LOCK Bus Lock Request Output
The IU asserts LOCK during multiple cycle transactions to indicate
that no other device should attempt to seize the Local Bus. Multiple
cycle transactions include atomic load/stores, doubleword loads, and
doubleword stores. Since the IU asserts LOCK to signal an atomic
operation, external logic should not assert BHOLD until LOCK is
deasserted. This signal is valid at the rising edge of CLK.

MDS Memory Data Strobe Input
Memory management hardware asserts MDS to indicate that data on
D[31:0] are valid during cache misses or slow memory accesses.
When asserted, MDS enables the clock input to the TU’s Instructions

2-28 164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



MEXC

MHOLDA,
MHOLDB,
MHOLDC,
SHOLD

NULL_CYC

Register (for an instruction fetch) or to the IU’s Load Result Register
(for a load). Memory management hardware may only assert MDS

when MAHOLDA, MHOLDB, MHOLDC, or SHOLD have halted the
IU’s pipeline.

Memory Exception Input

The memory or cache controller asserts MEXC to indicate to the TU
that the memory system was unable to supply a valid instruction or
data. The IU latches MEXC at the rising edge of CLK and uses
MEXC in the following cycle. If MEXC is asserted during an instruc-
tion fetch cycle, the IU generates an instruction access exception. If
MEXC is asserted during a data fetch cycle, the IU generates a data
access exception.

The memory or cache controller may only assert MEXC while assert-
ing MHOLDA, MAOLDB, or MHOLDC and MDS. When MDS is
applied with MEXC, the IU ignores the contents of the data bus.
MEXC must be deasserted in the clock cycle in which the Hold from
Memory signal is released.

Hold from Memory Input
Memory management hardware asserts any of these signals in order
to freeze the clock to the IU and FPU during a cache miss (for systems
with cache) or when a slow memory is accessed. These inputs freeze
the IU pipeline and cause the IU outputs to maintain the cutput values
they had at the rising edge of the clock in the cycle before one of the
Hold from Memory signals was asserted. The IU logically ORs all
hold signals (MAOLDA, MHOLDB, MHOLDC, SHOLD, BHOLD)
to generate a final MHOLD signal for freezing the IU pipeline.

Memory management hardware also uses the MDS signal for strob-
ing memory exceptions (see the MEXC definition).

Null Cycle 3-State Output
When asserted, this signal indicates that the IU nullified the current
memory address (whose address is held in the external memory
address register). NULL_CYC disables cache misses in systems with
cache and to handle memory exceptions during the current memory
access.

164801 Integer Unit 2-29

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



RD Read Cycle 3-State Output
The IU uses this signal to classify the current memory access as aread
or write operation (1 = read; 0 = write). The IU deasserts RD only
during the data cycles of store instructions and the store cycles of
atomic load/store instructions. For atomic load/stores, the RD signal
is asserted during the first data cycle (read) and deasserted during the
second and third data cycles (write).

In conjunction with SIZE[1:0], ASI{7:0], and LDST, RD can deter-
mine the type of bus transaction and check read/write access rights.
RD also can turn off the output drivers of data RAMs during a store
operation.

RD is three-stated if ASIOE is deasserted.

RESET Reset Input
The external system asserts RESET in order to reset the IU. The
RESET signal must be asserted for a minimum of eight processor
clock cycles. On the first rising edge of clock after RESET is driven
HIGH, the processor starts fetching instructions from address zero.
When RESET is driven LOW, the processor is initialized as follows:

1. Supervisor mode is selected (PSR[S] = 1).
2. The Fetch Program Counter is set to 0.

All other registers and PSR bits are unchanged. At power on, all other
registers and PSR bits are undefined until software initializes them.

SHOLD Hold from Memory Input
See the MHOLD signal description for a definition of the SHOLD
signal.

SIZE[1:0] Size [1:0] 3-State Output

SIZE[1:0] represent the data size of the memory address currently on
A[31:0]. These bits remain valid during all data cycles of load, store,
load-double, store-double, and atomic load/store instructions. Since
all instructions are 32 bits long, SIZE[1:0] is set to 10, during all
instruction fetch cycles. The following table shows the encoding of
the SIZE[1:0] bits.

SIZE[1:0] are three-stated if ASIOE is deasserted.

2-30 164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



SIZE1 SIZEO  Data Transfer Type

0 0 Byte
0 1 Halfword
1 0 ‘Word
1 1 ‘Word (Load/Store Double)
TC Trap Condition Input

This signal controls the behavior of the IFLUSH instruction. If TC is
HIGH, IFLUSH executes like a NOP with no side effects. If TC is
LOW, IFLUSH causes an unimplemented instruction trap.

3

Write Enable 3-State Output
The IU asserts WE during the second data cycle of store word instruc-
tions, the second and third data cycles of store doubleword instruc-
tions, and the third data cycle of atomic load/store instructions. This
signal is valid at the rising edge of CLK.

WE is three-stated when not asserted and three-stated when ASIOE
is deasserted.

27 This section describes the various memory operations of the L64801 IU.

Functional Functional timing diagrams are provided for load operations, store opera-

Waveforms tions, atomic transactions, and floating-point operations. All IU signals are
referenced to the rising edge of the clock.

Figure 2.5 shows the functional timing for several instruction fetches. The
instruction addresses are presented on the A[31:0] lines. The address space
identifier for each instruction is output on the ASI[7:0] lines. The instruc-
tion is fetched on the D[31:0] bus. The SIZE[1:0] pins indicate the size of
the data transfer.

164801 Integer Unit 231

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Figure 2.5 CLK -\ '_\ '_\ ’_\ f_\ '_\

Instruction Fetch
Timing Al31.0] x instl_addr X ins2_addr X inst3_addr X instd_addr X inst5_addr X

s TE Y w e ® _® X
D{31:0{ X X instl x inst2 x inst3 I

SIZE{10] 2 X 2 Y 2z Y 2z Y 2

WE

LDST

DFETCH

LOCK

NULL_CYC

m MOSLALS

2-32 164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Load Figure 2.6 shows the timing for a load single byte instruction. The L64801

Transactions outputs the instruction address on A[31:0] during clock T1 and outputs the
address space identifier on the following cycle. The IU feiches the LDSB
instruction on D{31:0] in T2. The L64801 asserts DFETCH during T4 to
indicate that the address refers to the data that is fetched during the next
clock cycle, TS, on D{31:0]. SIZE[1:0] equals O to indicate the data size is
a byte.

Figure 2.6
Load Integer Timing

n

CLK __/_\ I\ I\ I\ N\ I\
)¢
Y

n
A1) X inst_addr: X X : X dm_ndd:' X

H

asmo X X w X J x 08 :
oo X j X idsb X r J I
I | . 7 : : :

<
><
-
>ﬁ

WE

LDST

DFETCH \

LOCK

NULL_CYC

MOSt417

164801 Integer Unit 2-33

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Figure 2.7

Load Double Integer

Timing

x "\

Al31:0) X inst_addr

Figure 2.7 shows the timing for a load double integer instruction. This
operation is similar to the load integer operation except that the processor
uses one additional cycle to repeat the load operation for the second word.
The IU fetches the instruction during T2. The IU drives the load address
for the first data word (the most significant word) during T4 and drives the
load address for the second data word (the least significant word) during
TS. The IU asserts DFETCH during T4 to indicate that the address refers
to the data that is fetched during TS and T6. Note that the address of the
second data word is equal to the address of the first data word + 4. The TU
drives LOCK HIGH to indicate a multiple cycle transaction is occurring.
SIZE[1:0] equal 115 to indicate a double operand.

n T2 3 T4 15

: X date_addr X dm_nddn»: X

ASI[70)

o - U o U o U o U o U
>
X

D[310]

x - x x x pese x X

SIZE

[ x 53 :x

RD

WE

LDST

DFETCH

LOCK

NULL_CYC

2-34

Mos1.418

164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Figure 2.8 shows the timing for a load floating-point instruction. This oper-
ation is similar to the load integer instruction except that the IU also gen-
erates the floating-point control signals, FINS, FADR, and FEND. The IU
asserts FINS during T4 when the floating-point instruction is on F[31:0].
The IU then asserts FADR during TS to indicate that the floating-point
instruction address is on F{31:0].

Figure 2.8
Load Floating-Point
Timing

m LK} T4

1] T5
ax _ [\ I\ M\ N\ M\ M\
X X

A X instaddr X X deta_adar X
U { J x 1at X J x x: deta J:
F X X X D SR T X

SIZE 2 X

T6
M\
X
)

RD

|

LDST

DFETCH [ i\

LOCK

FINS \

FAOID MOsIAIS

164801 Integer Unit 2-35

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Figure 2.9 shows the timing for a load double floating-point instruction.
This operation is similar to the load double integer instruction except that
the TU also generates the floating-point signals FINS, FADR, and FEND.

Figure 2.9
Flostng-Porn
Timing
n n n n . » "

M\ I\ I\ I\ N
AT Y imeeaar X X X dotn_sode Y dua_saarea X X
_
S S S SR S SR S—
. %x L éx
o

WE

-

orercn T\

tock 0\
wiL_cre

HAL

M\

M\

.
o MO#1.420
2-36 164801 integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Store Figure 2.10 shows a store integer instruction. During T1, the IU places the

Transactions store address on the A[31:0] bus. During T2, the IU fetches the ST instruc-
tion from D[31:0]. During T4, the IU asserts DFETCH to indicate that the
data address for the store is on A[31:0]. The IU asserts WE and then places
the store data on D[31:0]. The data is stored during T6 when the IU deas-
serts WE. This operation takes two extra cycles to complete over load inte-
ger operations as the processor cannot send both the address and the data
simultaneously, and because the processor must wait to see if the store gen-
erates an exception or a cache miss.

gg;;eli}g;er Timing

ak [\ 1'2\ 'lz\ /E\ /l‘\ fE\ J'E\
anol X inetodir X X N o XX _A

S E——— ——

S GE GICI G SR S S
SIZE[10) 2

RD \

we ___/J

DFETCH / -\
LoCK \

NULL_CYC -

:

164801 Integer Unit 2-37

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Figure 2.11 shows the timing for a store double integer instruction. This
operation is similar to the store integer operation except that the processor
uses one additional cycle to repeat the store operation for the second word.
The IU fetches the instruction from D[31:0] during T2. The IU drives the
store address for the first data word during T4 and drives the store address
for the second data word during TS. Note that the address of the second
store is equal to the first address + 4. The L64801 drives the data during T6
and T7. D[31:0] contain the most significant word during T6; D[31:0] con-
tain the least significant word during T7. The size bits are set to 115 to indi-
cate a double operand.

Figure 2.11
Store Double
Integer Timing

1L 7 LK) T4 5 T6

ax [T\ M\ M\ M\ M\ M\ M\
'S | inst_nddril E Y E Y dltl.uddl; X u:u_addm EJ

Asl X : 09 ‘ X : 08

A
X

H H : : H : :x
e s
=

~

size Y E : : :x : 3
AD \

we \

LDST

DFETCH \

LocK i
NULL_CYC i\

2-38 164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Figure 2.12 shows the timing for a store floating-point operation. This
operation is similar to the store integer operation except that the IU also
generates the additional floating-point signals, FINS, FADR, and FEND.

Figure 2.12
Store Floating-Point
Timing

m

ax_f\ M\ M\ I\ M\ M\
X X

3 T4

T n
M\ M\
' | inst_addr Y _ A_dsu_sddr X X ) O
AsH L A:X X :
)  CE G G R R ST
e
SIZE . ' : . : z :
R0 \ / -
e WA
DFETCH / \
Lock \
N eve .\ / 1 U N
AL ./
FINS / \
FADR / \
FEND / \_

Figure 2.13 shows the timing for a store double floating-point instruction.
This operation is similar to the store floating-point operation except that
the IU requires an extra cycle to store the second half of the floating-point
operand.

164801 Integer Unit 2-39

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



..I:ﬂ....|\ N
i/ uaw
i/ SNH
[T\ m
R S 249TION
\ / V w07
(U HO1340
S — \ m
1/ \ oy
. _ : : A X X s
Hx xm - x x x x Isv
5 \ v A Y _ \ y w y _ ‘o
U U U U U U U e
o u o 51 " & u m

Bujwy
uiog-Buneol4
ajgnog aiols
€17 ainbiy

164801 Integer Unit

2-40

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Atomic Atomic transactions consist of two or more uninterrupted steps. Once the
Transactions sequence has started, it cannot be interrupted. To ensure that the bus is
available for the next transaction, the IU asserts LOCK for as long as nec-
essary. The atomic load and store unsigned byte is the only atomic trans-
action currently supported (see Figure 2.14). This instruction takes seven
cycles to complete.
Figure 2.14
Atomic Load/Store
Unsigned Byte
Timing
mn T2 LK} T4 T5 76 n
ok T\ M\ I\ M\ \ M\ [\ M\
A :x inst_addr x x x x data_addr x x
As| m : X : X 08 : X
0 X VT ' Y Tosd_dma }-{ oo dem X
Sz : :x :x : 5 :X
RD \ /
wE |/
LDST / \
DFETCH / \
LocK / \
NuLL_CYC / \
FAT \ /
MOf1.425
164801 Integer Unit 241

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Floating-Point The IU fetches and decodes FPops, then sends them to the FPU over the

Operations floating-point bus (F[31:0]). The IU also provides the FPU with control
signals to indicate that an FPop is decoded. During an FPop, the IU places
the instruction on the floating-point bus during the execute cycle and puts
the instruction address on the floating-point bus during the write cycle.

If the FPU cannot execute the current floating-point instruction, it informs
the IU by asserting FHOLD. This occurrence can happen under the follow-
ing conditions:

m When a store FSR instruction starts execution and FPops are pending
in the floating-point queue. In this case, the FPU detects the condition
and asserts FHOLD. The store FSR instruction must wait until all
pending FPops complete execution.

m When an FPop is issued and either a resource or an operand depen-
dency exists between the present FPop and one or more of the previ-
ously fetched instructions.

® When a branch on floating-point condition (FBfcc) starts executing
while the floating-point conditions are not ready. This condition occurs
when one of the previously fetched instructions is a floating-point
compare (FCMP) that the FPU has not yet completed.

Figure 2.15 shows the timing for a floating-point operation.

2-42 164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Figure 2.15
Floating-Point
Operation Timing

FINS /T I\

FEND ‘ [ i\

NULL_CYC / \

164801 Integer Unit 243

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



28
Specifications

This section presents the L64801’s electrical and mechanical characteris-

tics. This section is divided into three subsections:
m  AC Timing (page 2-44)

m Electrical Requirements (page 2-47)

m Packaging (page 2-50)

AC Timing

Table 2.5
Timing
Specifications

2-4

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

This subsection describes the AC timing specifications of the L64801 1U.
The test conditions for the AC timing values are VDD =5 V £+ 5% and
TA =0°C to 70°C. Table 2.5 lists the AC timing specifications. Figure 2.16

through Figure 2.20 illustrate the AC timing waveforms.

Parameter Description Min Max Units
1 System Clock Cycle Time 50 ns
2 System Clock Rise/Fall Times 3 ns
3 System Clock High Duration 15 ns
4 System Clock Low Duration 15 ns
5 RESET Active Time 10 ns
6 Address Valid Delay from CLK Rising 5 44 ns
7 ASI Valid Delay from CLK Rising 5 32 ns
8 Read Data Setup before CLK Rising 5 ns
9 Read Data Hold after CLK Rising 5 ns
10 Write Data Valid from CLK Rising 5 32 ns
1 Write Data Turn Off from CLK 5 ns
12 SIZE Valid Delay from CLK Rising 5 20 ns
13 RD Valid Delay from CLK Rising 5 20 ns
14 WE Valid Delay from CLK Rising 5 21 ns
15 LDST Valid Delay from CLK Rising 5 20 ns
16 NULL_CYC Valid Delay from CLK Rising 5 41 ns
17 MHOLD Vatid to NULL_CYC ’ 5 22 ns
18 TH_NULL Valid 1o NULL_CYC 5 14 ns
19 HAL Valid Delay from CLK Rising 5 36 ns
20 MHOLD Valid to HAL 4 20 ns
21 LOCK Valid Delay from CLK Rising 5 21 ns
2 DFETCH Valid Delay from CLK Rising 5 32 ns
23 MDS Setup before CLK Falling 27 ns
24 MDS Hold after CLK Rising 0 ns
25 MHGCLD, SHOLD, BHOLD Setup before CLK Rising 27 ns
26 MHOLD, SHOLD, BHOLD Hold after CLK Rising 0 ns
27 MHOLD, SHOLD, BHOLD Setup before CLK Falling 9 ns

Continued on next page.

164801 Integer Unit



Table 2.5

Timin Parameter Description Min Max Units

[

Spgc]gﬁcations' 28 MHOLD, SHOLD, BHOLD Hold after CLK Falling O ns

continued 29 FCC Setup before CLK Rising 5 ns
30 FCC Hold after CLK Rising 0 ns
31 FCCV Setup before CLK Rising 3 ns
32 FCCY Hold after CLK Rising 0 ns
33 FHOLD Setup before CLK Rising 2 ns
34 FHOLD Hold after CLK Rising 1 ns
35 FEXC Setup before CLK Rising 2 ns
36 FEXC Hold after CLK Rising 2 ns
37 F Valid Delay after CLK Rising 5 43 ns
38 FINS Valid Delay after CLK Rising 5 30 s
39 FADR Valid Delay after CLK Rising 5 29 ns
40 FEND Valid Delay after CLK Rising 5 29 ns
4 FLUSH Valid Delay after CLK Rising 5 25 9ns
42 FXACK Valid Delay after CLK Rising 5 29 ns
43 TC Setup before CLK Rising 12 ns
44 TT Hold after CLK Rising 4] ns
45 IRL Setup before CLK Rising 18 ns
46 IRL Hold after CLK Rising 2 ns
47 RESET Setup before CLK Rising 2 ns
48 RESET Hold after CLK Rising 2 ns
49 ERROR Valid Delay after CLK Rising 5 23 ns
50 Address Drivers Off/On after ACE 4 19 ns
51 ASI Drivers Off/On after ASIOE 4 16 ns
52 WE Driver Off/On afier ASIOE 4 16 ns
53 RD Driver Off/On after ASIOE 4 16 ns
54 LDST Driver Off/On after ASIOE 4 16 ns
55 Data Bus Drivers Off/On after DOE 4 25 ns

Figure 2.16 - 1 >

Clock Timing ——3 4 —>
CLK ) 1 H

2 2
MO

164801 Integer Unit 245

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Figure 2.17 CLK
Data Bus Timing —

D{31.0]
(Write

Figure 2.18 CLK
Clock-to-Output — .
Timing —
Outputs ': :
SRR
MDS1 406
1. Clock-to-output time tq applies to parameters 6,7, 11 through 15, 18, 20, 21,
36 through 41, and 48.
Figure 2.19
Input-to-Clock CLk |
Timing
Falling-Edge
Triggered
Inputs
Rising-Edge
Triggered
Inputs
1. Setup time tgg applies to parameters 22 and 26.
2. Setup time tgy applies to parameters 24, 28, 30, 32, 34,42, 44, and 46.
3. Hold time tyy, applies to parameters 23, 25, 29, 31, 33, 35,43, and 45.
2-46 164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Figure 2.20
Input-to-Output

Input
Timing -
Output
Control
Output
1. 1O time t;g applies to parameters 16, 17, and 19.
2. Driver offion time om0, applies to parameters 49 through 54.
Electrical This subsection specifies the electrical requirements for the L64801. Five
Requirements tables list electrical data in the following categories:
m Absolute Maximum Ratings (Table 2.6)
m Recommended Operating Conditions (Table 2.7)
m Capacitance (Table 2.8)
m DC Characteristics (Table 2.9)
m Pin Description Summary (Table 2.10)
Table 2.6 Symbol Parameter Limiss” Units
g:tsizl‘;“’ Maximum 5 DC Supply 0310 +7.0 v
¢ Vi Input Voltage 20310 Vpp +03 v
I DC Input Current +10 mA
TstG Storage Temperature -65 to +150 °C
Range (Ceramic)
Storage Temperature 40 to +125 °C
Range (Plastic)
1. Referenced to Vg
Table 2.7 Symbol Parameter Limits Units
g"’;‘r’m ended Vop DC Supply 47510525 v
oo Ta Ambient Temperature 0o +70 °C
164801 Integer Unit 247

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Table 2.8

Capacitance

Symbol Parameter Condition Min Typ Max Usits
ClN Input Capacitance! Vpp=5 V5%, f=1MHz, T, =25°C 5 pF
Cour Output Capacitance? Vpp =5 V5%, f=1MHz, T, = 25°C 15 pF

1. Not applicable to assigned bidirectional buffer (excluding package).
2. Output using single buffer structure (excluding package).

Table 2.9

DC Characteristics

Symbol Parameter Condition! Min Typ Max Units

Vi Voltage Input High Vpp =MIN 2.0 v

v Voltage Input Low Vpp = MIN 08 V

Vou Voltage Output High Iog=-40mA 24 v

VoL Yoltage Output Low IoL =40 mA 04 V

In Input Leakage Current Vpp =MAX, V[y=0V -100 2 HA

Vpp =MAX, Viy=35V -100 2 uHA

IOZ Current 3-State Outpu[ Leakage VDD = MAX. VOUT =01t VDD -10 10 uA

Tozu Current 3-State Data Bus Vpp =MAX, Vour=0t103.5V -100 2 HA

Iosp Current P-Channel, Output Short  Vpp =MAX, Voyr =0 -100 5 mA
Circuit

Iosn Current N-Channel, Output Short  Vpp = MAX, Your = Ypp 15 130 mA
Circuit

Ipp Quiescent Supply Current Vin = Vpp or Vss. Vpp = MAX 2 mA

Icc Dynamic Supply Current Vpp =MAX, f=20MHz 200 mA

1. Specified at Vpp equals 5 V + 5% at ambient temperature over the specified range.

2-48

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

164801 Integer Unit



Tabie 2.10 Drive

Pin Description Mnemonic  Description Type (mA)  Active

Summary AB10]  IU Address [31:0] Output Z
AOCE Address Output Enable Input - Low
ASI[7:0]  Address Space Identifier [7:0] 3-State Output 4
ASIOE Address Space Identifier Output Enable  Input - Low
BHOLD Bus Hold Input - Low
CLK Clock Input -
D[31:0] IU Data Bus [31:0] 3-State 4

Bidirectional

DFETCH  Data Fetch Output 4  High
DOE Data Output Enable Input - Low
ERROR Error Output 4 Low
F[31:0] Floating-Point Bus [31:0] Output 4
FADR Floating-Point Address Output 4 High
FCC[1:0] Floating-Point Condition Codes Input -
FCCV Floating-Point Condition Code Valid Input - High
FEND End Floating-Point Instruction Output 4 High
FEXC Floating-Point Exception Input - Low
FHOLD Floating-Point Hold Input - Low
FINS Floating-Point Instruction Output 4 High
FLUSH Floating-Point Instruction Flush Output 4 High
FP Floating-Point Present Input w/Pullup - Low
FXACK Floating-Point Exception Acknowledge  Output 4 High
HAL Hold Address Latch Output 4 Low
TH_RULL  Null Cycle Reset Input - Low
IRL[3:0] Interrupt Level {3:0] Input -
LDST Load/Store Cycle 3.State Output 4  High
LOCK Bus Lock Request Output 4 High
MDS Memory Data Strobe Input - Low
MEXC Memory Exception Input - Low
MHOIDA  Hold from Memory Input - Low
MHOLDEB  Hold from Memory Input - Low
MHOLDC  Hold from Memory Input - Low
NULL_CYC Null Cycle 3-State Output 4 High
RD Read Cycle 3-State Output 4 High
RESET Reset Input - Low
SHOLD Hold from Memory Input - Low
SIZE[1:0] Size [1:0] 3-State Output 4
TC Trap Condition Input - Low
WE Write Enable 3-State OQutput 4 Low
164801 Integer Unit 249

’

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Packaging The L64801 IU is available in either a 160-pin PQFP, a 179-pin PPGA, or
a 179-pin CPGA. Figure 2.21 and Figure 2.22 show the pinout and
mechanical dimensions for the 160-pin PQFP package. Figure 2.23 shows
the pinout for the 179-pin packages. Figure 2.24 shows the mechanical
dimensions for the 179-pin CPGA package.

Figure 2.21
164801 160-pin PQFP
Pinout

oo nnannNonnnononoAonnaAnnnonnanonAnROnNnnoan
BRI RN C RIS IPYST SRR RINNSNRSNENENNE
M CI]1 120 FO
A4 ] 2 M 012
AS o 3 nef—mo  vss
A0 I 4 Index Mark W D4
= = Ne—o D8
A8 Iy 6 N o
AS I 1 M 016
A3 I s mpEm 0»
vss ] mEm oM
A% ] 10 mEm 02
VDD I 1 10 D18
AT o 1 (] ="= 1]
AM 1 3 18— D9
A o] W07f—3 VDD
VDO ] 15 16— 013
A2 s 18 1sm P
A% o v 14— 0w
oV o 168 017
AY g 18 12T 02
A® ] » 1M vss
vss I 2 Top View 10— 025
A I 2 w1 028
A oo B s 02
A9 o M [1] == =1 13
A ] s % VDD
VDD I 2% [ = =1 ]
A2 O 77 #— 03
A3 O » 9T ERROR
A7 o R 0%
A I 0 i DX
V§$§S g N o DN
[V = [ ] = =T A
PAK I B [ Jom e ]
Al o » T 07
[r="= % VSS
AU ] % [ === 11
AlS | 37 #fm 01
VSsS I » 83— ASIOE
A O % RFm Xt
AR o] @ N ASI7
SIS SRS ELR885033388s82_R N 2R RRe MDS1AZ
UHHHHEHEEEHHE A EHHEBEEHE DL HHEEHHEHHEHHHH L
00000000000 000000000000000c000000D00O0D000d
sEN—S9oIVNKS ONEXNO=ERINaON DOk v Yo oa
22325523 EparAcIRESnE P30SR pPERSERIRE
& d
4
NC pins are not connected
2-50 L64801 Integer Unit

N

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Figure 2.22
164801 160-pin PQFP

Side View

J{HP}/ L

Mechanical
Drawing
e A >
< Al >
= A2 =i
b T 1 il B
=[O} e L[]
r‘= Index Mark =‘1 .
| |
| |
| |
| |
'tc: =I=i / g
== e 81 ( q
Wil _HJU /80 AN
v
Detail ' W™
(No{e 3) D
— ¥
L-J {Note 2) Detail 'Y
H (Note 3)
Tolerar:’ce window
o for | kew fr
forlad skow fom
f - \ c+1 2 position.
J{ = H ¥___*
M (Note 2)
164801 Integer Unit

\
2 S

Millimeters

Dimension (Inches)

A Min | 31.60Sq(1.244)
Max | 32.40 Sq (1.276)

Al Min | 27.90 Sq {1.098)
Max | 28.10 Sq (1.106)

A2 | Ref 25.35 Sq (0.998)

C | Max | 3.94(0.155)

C1 | Max | 3.55(0.140)

D | Max | 0.030(0.012)
Mia | 0.061(0.024)
Max | 1.00(0.039)

F Min | 0.10{0.004)
Max | 0.25(0.010)

6 Min | Odegrees
Max | 10degrees

H | Nom | 0.65(0.026)

J Min | 0.25(0.010)
Max | 0.35(0.014)

M | Max | 0.10{0.004)

P | Max | 0.05(0.002)

Notes:

1. Controlling dimension — mm.

2. Coplanarity of all leads shall
be within .010 mm (difference
between the highest and
lowest lead with seating
plane —K- as reference).

3. Lead pitch determined at—L—.

4. Drawing is not to scale.

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

MD9013E

2-51




Figure 2.23

L64801 179-pin
Pinout

1 2 3 4 5 6 7 8 9 0 11 12 3 “ 15
A A0 ] F25 31 21 R F4 ] a FI§ FCel FI5 Fli Flo D10
B A2 Ft n F7 NC A Fcce ClK (] A 177 5 D14 D12 vss
c| as Al5 M vsS NC (2] Fi2 F20 2] 22 R F2%6 Ffg  |TANUIL| D3
D AN A5 Fi4 Al 3 NC VDD vss VoD NC NC F30 D4 016 D20
E A3 voD Y] NC 2 D8 oM D28 D18
F | roev AZ7 A2 vss NC DS NC D9
6 A2 A A28 vDD VDD D13 P D18
H| an A28 A18 vss vss on D25 D17
J A NC A31 VDD VDD NC D6 D28
K A2 AB A1 vss NC D} | ERAOR | o2
L AS NC A? BROM A0 ASI7 vss D3 D% D1
M| pack | an Al4 A2 NC vss VoD vss vOD vss Do FEND | ASTOE | w¢ 7 <]
N A3 A IRL1 FADR | Asic |MADIDA|MHOIDC| size1 | ASI3 ASIs | RESET | DFETCH | FEXC oz o1t
p | vss As ki RD |MHOOB| sizeo | Asi D2 | MEXC | Asi5 | SHOD | ANs BOE puu cvy D7
R | w2 Asn | RusH | WE IRL3 RAT Lock | ost NC Ass | WMDS | FAOID | AGE IRLD D15

NC pins sre not connected Moot

2-52 164801 Integer Unit

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



Figure 2.24

164801 179-pin CPGA
Mechanical
Drawing
Top View Side View
E —»  |[a—Al
fe——— K———> —P(_(—Ai
TB
index Mark
Lid !
) \‘
\G
)[:ir
Bottom View T
E2 — r—L
—> et —> a
AfOdODOOOOOOOO0O O & Dimeasion [ Tnches [ma] | Dimeesion |
PloooPCO0OOOPEOOO0 et reea— e
NIOOOOOOOOROOOOOO Max | 0.127(3. Sl
Mo00000000000000[ [ [HE eI it
LIOGOOOO loNoNoNoNo! E |Min | 1484 (37.69) Max | 0.812 Sq (20.6)
KlI©o© 00 ©000 Wi ] _o'osu(z':is)_L 275—0.197%
JIOO OO 0000 L KA U T KAL)
"I foXoXoXoO] loXoXRoXo) [Min [ 139(3531 | Max | 0.055(1.40)
tle@0 0 | WM 0000 ool R
Flooo O oNoNONo) Vel o
Ele @ 0 of ©000d
(I foNoXoXoRoRoRoNoXoRoRoNoNcRoNo]
i foXoRoNoNoNoNoNoNoRoRoNoNoRoNo)
BlOOOOOOOOOOEOEOOOO
Al@eOOOOOOOOOO OO O @« Standoff Pin
1 2 3 4567 8910112131415 4 Places)
64801 Integer Unit 253

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003



