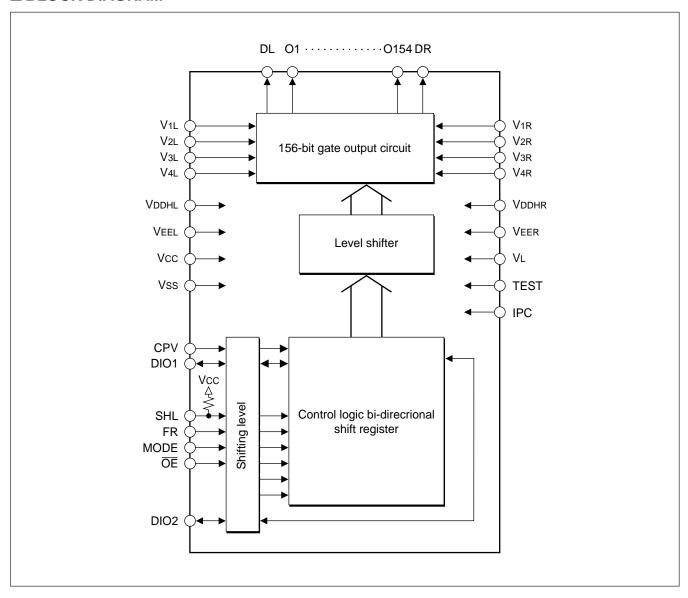


SED1796D_{0B}

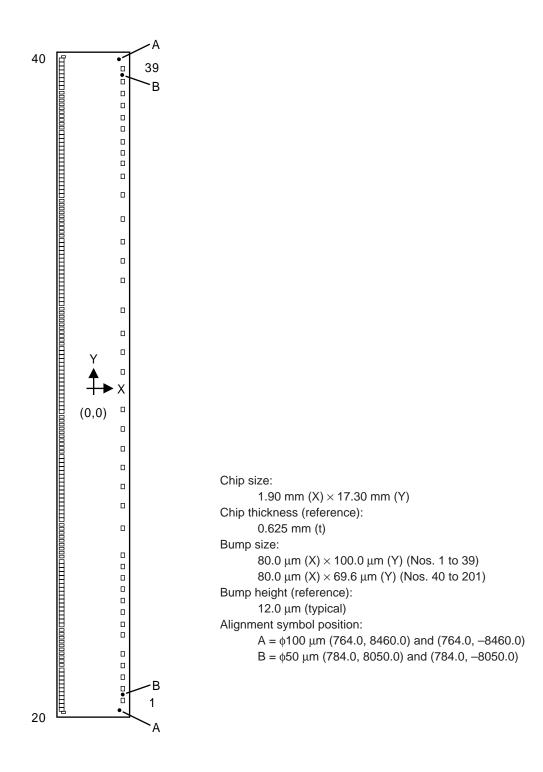
TFT LCD Driver

■ DESCRIPTION

The gate driver IC SED1796 is designed to drive an SVGA and XGA display TFT-LCD panel and enables capacity combining drive and punch-through voltage compensatory drive thanks to gate output voltage control. The maximum gate output voltage amplitude is 40V, enabling negative voltage output. It also enables double ON gate drive, which outputs ON twice in the same field during "H" reverse rotation drive.


This IC has a built-in power supply circuit for the internal logic and you can select whether or not to use it. When using the circuit, no internal logic power needs to be supplied.

The bump layout of this IC is designed for COG mounting, enabling a module architecture to be narrowed.


■ FEATURES

- Gate output voltage level: 4 values (V1 to V4)
- Gate output voltage amplitude: 40 V (max.)
- Low voltage operation available: 2.7 V (min.)
- Output shift direction-pin selection.
- Gate output voltage can be forcibly fixed thanks to the output enable function.
- Gate output negative voltage output available thanks to the level shift circuit.
- Double ON gate drive available.
- Built-in internal logic power supply circuit.
- Package to be shipped
- Au bump chip
- This product is not designed to resist radiation or light.

■ BLOCK DIAGRAM

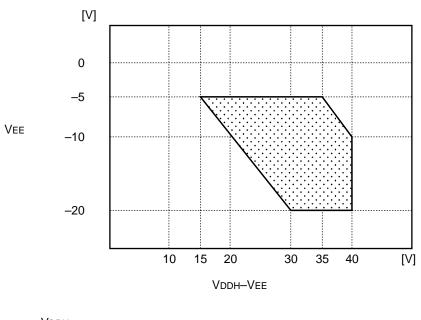
■ BUMP LAYOUT

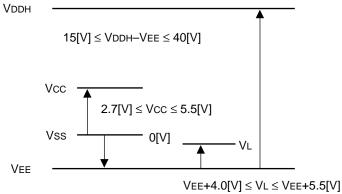
■ ABSOLUTE MAXIMUM RATINGS (Vss = 0 V)

Parameter	Symbol	Rating	Unit	
Supply voltage (1)	Vcc	−0.3 to +7.0	V	
Supply voltage (2)	VDDH	-0.3 to +45.0	V	
Supply voltage (3)	VEE	-23.0 to +0.3	V	
Supply voltage (4)	VL	VEE -0.3 to VEE +7.0	V	
Supply voltage (5)	VDDH – VEE	-0.3 to +45.0	V	
Supply voltage (6)	V1	-0.3 to VDDH + 0.3	V	
Supply voltage (7)	V2, V3, V4	VEE -0.3 to VDDH +0.3	V	
Supply voltage (8)	V1 – V4	-0.3 to +45.0	V	
Input voltage	VIN	-0.3 to Vcc +0.3	V	
Input current	lin	±10	mA	
Output current	lo	±10	mA	
Ambient operating temperature	Та	-25 to +85	°C	
Storing temperature	Tstg2	-55 to +125	°C	

Notes

- 1. All voltages refer to Vss unless otherwise specified.
- 2. The element may permanently break if used outside the absolute maximum ratings shown above. The element reliability may disadvantageously be affected if it is exposed to the absolute maximum rating conditions for a long time.
- 3. For voltages VDDH, VEE, VCC, Vss and VL, be sure to keep the condition of "VEE \leq VL \leq Vss \leq VCC \leq VDDH". For voltages V1, V2, V3 and V4, also be sure to keep the conditions of "VEE \leq V4", "V1 \leq VDDH" and "V4 \leq V2, V3 \leq V1".
- 4. Never float the logic system power supply while the high-voltage logic and gate output power supplies are turned on or allow Vcc to go under 2.6 V, otherwise, the IC reliability may disadvantageously be affected.


■ RECOMMENDED OPERATING CONDITIONS (Vss = 0 V)


Parameter	Symbol	Rating	Unit	
Supply voltage (1)	Vcc	+2.7 to +5.5	V	
Supply voltage (2)	VDDH	+10.0 to +30.0	V	
Supply voltage (3)	VEE	-20.0 to +5.0	V	
Supply voltage (4)	VL	-16.0 to +0.5	V	
Supply voltage (5)	VDDH – VEE	+15.0 to +40.0	V	
Supply voltage (6)	V1	+8.0 to +30.0	V	
Supply voltage (7)	V2	-20.0 to +10.0	V	
Supply voltage (8)	V3	-20.0 to +20.0	V	
Supply voltage (9)	V4	-20.0 to +10.0	V	
Supply voltage (10)	V1 – V4	+8.0 to +40.0	V	
Operating frequency	fcpv	DC to 200	kHz	

Notes

- 1. IC operation is guaranteed within the recommended operating condition range.
- 2. Insert a bypass capacitor for noiseproof measures near the power supply pin.
- 3. Unless swinging the V1 supply voltage, make the electric potential the same as that of VDDH.
- 4. When swinging the V1 supply voltage, the guaranteed output resistance, rise and fall time ratings will differ.
- 5. When the output voltage during an output fixed period is 1 level only, make the V2 electric potential the same as that of V4 and fix FR at either the Vcc or Vss level.
- 6. VEE + $4.0 (V) \le VL \le VEE + 5.5 (V)$

The recommended operating voltage is based on the combination of the high-dielectric strength logic system power supply conditions and the logic system power supply conditions (the hatched portion in the figure below). For the internal logic power supply, keep the condition of "VEE + 4.0 (V) \leq VL \leq VEE + 5.5 (V)".

■ ELECTRICAL CHARACTERISTICS UNDER THE RECOMMENDED OPERATING RANGE

DC Characteristics

 $(Ta = -25 \text{ to } +85^{\circ}\text{C}, \text{ VCC} = 3.3 \pm 0.3 \text{ V}, \text{ VSS} = 0 \text{ V}, \text{ VDDH} = 30 \text{ V}, \text{ VEE} = -10 \text{ V}, \text{ VL} = -5 \text{ V})$

$(1a = -25 \text{ to } +65 \text{ C}, \text{ VCC} = 3.5 \pm 0.3 \text{ V}, \text{ VSS} = 0 \text{ V}, \text{ VDDH} = 30 \text{ V}, \text{ VEE} = -10 \text{ V}, \text{ VL} = -5 \text{ V})$								
Parameter	Cumbal	Condition	Rating			Units	Pin used	
Farameter Symi	Symbol	Condition	Min.	Тур.	Max.	Ullits	riii useu	
"L" input voltage	VIL	_	Vss	_	Vss + 0.2 × (Vcc – Vss)	V	All input pins	
"H" input voltage	ViH	— Vss + 0.8 × — Vcc (Vcc − Vss)		Vcc	V	All input pins		
"L" output voltage	Vol	Ιοι = 40 μΑ	Vss	_	Vss + 0.4	V	DIO1, DIO2	
"H" output voltage	Vон	Іон = 40 μА	Vcc - 0.4	_	Vcc	V	DIO1, DIO2	
Output resistance	Ron	$\Delta V_1 = 0.5 \text{ V}$ $V_1 = 30 \text{ V}, V_2 = 10 \text{ V},$ $V_3 = 0 \text{ V}, V_4 = -10 \text{ V}$	_	0.73	1.47	kΩ	O1 to O154	
Input leakage current	ILI		-1.0	_	+1.0	μΑ	All input pins	
Input capacity	CIN	Ta = 25°C	_	_	15	pF	All input pins	
Static current consumption (1)	Ics	_	_	(80)	250	μΑ	Vcc	
Static current consumption (2)	IDS	_	_	(45)	100	μА	VDDHL, VDDHR	
Dynamic current consumption (1)	Icc	*1	_	(150)	300	μΑ	Vcc	
Dynamic current consumption (2)	IL		_	(30)	60	μΑ	VL	
Dynamic current consumption (3)	Іррн		_	(75)	140	μА	VDDHL, VDDHR	

^{*1:} SVGA display, 150 outputs, $f_{DIO} = 65 \text{ Hz}$, $f_{CPV} = f_{\overline{OE}} = 40 \text{ kHz}$, output pin unloaded, double gate output

AC Characteristics

• Input Timing Characteristics

 $(Ta = -25 \text{ to } +85^{\circ}\text{C}, \ \text{Vcc} = 3.3 \pm 0.3 \ \text{V}, \ \text{Vss} = 0 \ \text{V}, \ \text{VDDH} = 30 \ \text{V}, \ \text{VEE} = -10 \ \text{V}, \ \text{VL} = -5 \ \text{V})$

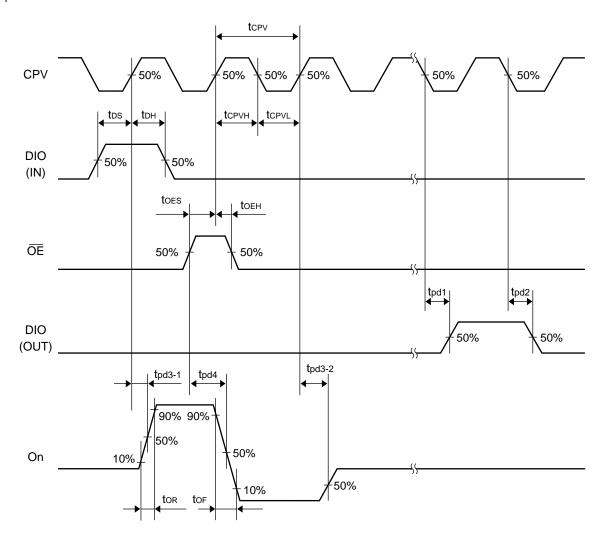
Parameter	Symbol	Condition	Min.	Max.	Unit
CPV cycle	tcpv	_	5.0	_	μs
CPV high-level pulse width	t CPVH	_	1.0	_	μs
CPV low-level pulse width	tcpvl	_	1.7	_	μs
Data setup time	tos	_	400	_	ns
Data hold time	tон	_	400	_	ns
OE setup time	toes	_	0 (*2)	*3	μs
OE hold time	t oeh	_	0.2 (*2)	*3	μs

^{*1:} The input signal rise and fall times (tr and tr) are specified at 30 ns or less.

6

^{*2:} The values shown above will not apply when all $\overline{\text{OE}}$ s are set at "L".

^{*3:} tcpv applies unless all $\overline{\text{OE}}$ s are set at "H".


^{*4:} Expected output waveform may not be obtained if the output load is large and the $\overline{\text{OE}}$ width is small.

• Output Timing Characteristics

(Ta = -25 to +85°C, Vcc = 3.3 ± 0.3 V, Vss = 0 V, VddH = 30 V, VEE = -10 V, VL = -5 V)

Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit
CPV to DIO output delay time		t pd1	CL = 20 pF	_	0.4	1.3	μs
		tpd2		_	0.47	1.3	μs
CPV to On output delay time *1	$V3 \rightarrow V1$	t pd3-1	CL = 700 pF	_	0.68	1.2	μs
	$V4 \rightarrow V3$ $V2 \rightarrow V3$	t pd3-2	V1 = 30 V, V2 = 10 V V3 = 0 V, V4 = -10 V	_	0.6	1.2	μs
OE to On output delay time	$V4 \rightarrow V1$	t pd4-1		_	0.9	1.7	μs
	$V1 \rightarrow V4$	t pd4-2		_	0.54	1.0	μs
On output rise time	$V4 \rightarrow V1$ $V2 \rightarrow V1$	tor		_	1.44	2.2	μs
On output fall time	$\begin{array}{c} V1 \rightarrow V2 \\ V1 \rightarrow V4 \end{array}$	tof		_	1.2	1.8	μs

^{*1:} Applies when all $\overline{\text{OE}}$ s are set at "L".

SED1796D0B

NOTICE:

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Morever, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Control Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency.

IBM is registered trademark of International Business Machines Corporation, U.S.A.

© Seiko Epson Corporation 1996 All right reserved.

SEIKO EPSON CORPORATION

ELECTRONIC DEVICE MARKETING DEPARTMENT

IC Marketing & Engineering Group 421-8 Hino, Hino-shi, Tokyo 191, JAPAN Phone: 0425-87-5816 FAX: 0425-87-5624

International Marketing Department I (Europe, U.S.A.)

421-8 Hino, Hino-shi, Tokyo 191, JAPAN Phone: 0425-87-5812 FAX: 0425-87-5564 International Marketing Department II (Asia) 421-8 Hino, Hino-shi, Tokyo 191, JAPAN Phone: 0425-87-5814 FAX: 0425-87-5110