

Rugged 40Mbps, 8 Channel Multiprotocol Transceiver with Programmable DCE/DTE and Termination Resistors

- Fast 40Mbps Differential Transmission Rates
- Improved ESD Tolerance for Analog I/Os
- Internal Transceiver Termination Resistors for V.11 and V.35
- Interface Modes:
 - ✓ RS-232 (V.28) ✓ EIA-530 (V.10 & V.11)
 ✓ **X.21** (V.11) ✓ EIA-530A (V.10 & V.11)
- ✓ RS-449/V.36 (v.10 & v.11) ✓ V.35

 Protocols are Software Selectable with 3-Bit
- Eight (8) Drivers and Eight (8) Receivers
- Termination Network Disable Option
- Internal Line or Digital Loopback for Diagnostic Testing
- Adheres to NET1/NET2 and TBR-2 Compliancy Requirements
- Easy Flow-Through Pinout
- +5V Only Operation
- Individual Driver and Receiver Enable/Disable Controls
- Operates in either DTE or DCE Mode

DESCRIPTION

The **SP508** is a monolithic device that supports eight (8) popular serial interface standards for Wide Area Network (WAN) connectivity. The **SP508** is fabricated using a low power BiCMOS process technology, and incorporates a Sipex regulated charge pump allowing +5V only operation. Sipex's patented charge pump provides a regulated output of ±5.8V, which will provide enough voltage for compliant operation in all modes. Eight (8) drivers and eight (8) receivers can be configured via software for any of the above interface modes at any time. The **SP508** requires no additional external components for compliant operation for all of the eight (8) modes of operation other than four capacitors used for the internal charge pump. All necessary termination is integrated within the **SP508** and is switchable when V.35 drivers and V.35 receivers, or when V.11 receivers are used. The **SP508** provides the controls and transceiver availability for operating as either a DTE or DCE.

Additional features with the **SP508** include internal loopback that can be initiated in any of the operating modes by use of the LOOPBACK pin. While in loopback mode, receiver outputs are internally connected to driver inputs creating an internal signal path bypassing the serial communications controller for diagnostic testing. The **SP508** also includes a latch enable pin with the driver and receiver address decoder. The internal V.11 or V.35 termination can be switched off using a control pin (TERM_OFF) for monitoring applications. All eight (8) drivers and receivers in the **SP508** include separate enable pins for added convenience. The **SP508** is ideal for WAN serial ports in networking equipment such as routers, access concentrators, network muxes, DSU/CSU's, networking test equipment, and other access devices.

Applicable U.S. Patents-5,306,954; and others patents pending

ABSOLUTE MAXIMUM RATINGS

□ These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

V _{cc}		+7V
Input Voltages:		
Lo	ogic	0.3V to (V _{cc} +0.5V)
D	rivers	0.3V to (V _{cc} +0.5V)
R	eceivers	±15.5V
Output Voltage	s:	
Lo	ogic	0.3V to (V _{cc} +0.5V)
D	rivers	±15V
R	eceivers	0.3V to (V _{cc} +0.5V) 65°C to +150°C
Power Dissipat	ion	1520mW
(derate 19.0mV	V/°C above +70°C)	
Package De	erating:	
ø	ΙΔ	52.7 °C/W

STORAGE CONSIDERATIONS

Due to the relatively large package size of the 100-pin quad flatpack, storage in a low humidity environment is preferred. Large high density plastic packages are moisture sensitive and should be stored in Dry Vapor Barrier Bags. Prior to usage, the parts should remain bagged and stored below 40°C and 60%RH. If the parts are removed from the bag, they should be used within 48 hours or stored in an environment at or below 20%RH. If the above conditions cannot be followed, the parts should be baked for four hours at 125°C in order to remove moisture prior to soldering. Sipex ships the 100-pin LQFP in Dry Vapor Barrier Bags with a humidity indicator card and desiccant pack. The humidity indicator should be below 30%RH.

SPECIFICATIONS

 $T_{\star} = +25^{\circ}\text{C}$ and $V_{cc} = +4.75\text{V}$ to +5.25V unless otherwise noted.

· · · · · · · · · · · · · · · · · · ·	MIN.	TYP.	MAX.	UNITS	CONDITIONS
LOGIC INPUTS					
V _{IL} V _{IH}	2.0		0.8	Volts Volts	
LOGIC OUTPUTS					
V _{OL} V _{OH}	2.4		0.4	Volts Volts	I _{OUT} = -3.2mA I _{OUT} = 1.0mA
V.28 DRIVER					
<u>DC Parameters</u> Outputs					
Open Circuit Voltage Loaded Voltage	±5.0		±15 ±15	Volts Volts	per <i>Figure 1</i>
Short-Circuit Current	±5.0		±100	mA	per <i>Figure 2</i> per <i>Figure 4</i>
Power-Off Impedance	300		_ 100	Ω	per <i>Figure 5</i>
AC Parameters					V _{CC} = +5V for AC parameters
Outputs					
Transition Time Instantaneous Slew Rate			1.5 30	μs V/μs	per <i>Figure 6</i> ; +3V to -3V per <i>Figure 3</i>
Propagation Delay			30	ν/μ5	per rigure 3
t _{PHL}	0.5	1	5	μs	
t _{PIH}	0.5	1	5	μs	
Max.Transmission Rate	120	230		kbps	
V.28 RECEIVER					
DC Parameters					
Inputs			_		
Input Impedance	3		7 +2.0	kΩ Volts	per <i>Figure 7</i>
Open-Circuit Bias HIGH Threshold		1.7	+2.0 3.0	Volts	per <i>Figure 8</i>
LOW Threshold	0.8	1.2	0.0	Volts	
AC Parameters					V _{CC} = +5V for AC parameters
Propagation Delay					
t _{PHL}	50	100	500	ns	
t _{PLH}	50	100	500	ns	

... 6.5 °C/W

SPECIFICATIONS

 $T_A = +25$ °C and $V_{CC} = +4.75$ V to +5.25V unless otherwise noted.

	1 _A = +23 C and v _{cc} = +4.73V to +3.23V un	MIN.	TYP.	MAX.	UNITS	CONDITIONS
	V.28 RECEIVER (continu AC Parameters (cont.) Max.Transmission Rate	120	230		kbps	
	V.10 DRIVER DC Parameters Outputs Open Circuit Voltage Test-Terminated Voltage Short-Circuit Current Power-Off Current	±4.0 0.9V _{OC}		±6.0 ±150 ±100	Volts Volts mA μA	per Figure 9 per Figure 10 per Figure 11 per Figure 12
	AC Parameters Outputs Transition Time Propagation Delay	30	100	200 500	ns ns	V _{cc} = +5V for AC parameters per <i>Figure 13</i> ; 10% to 90%
	t _{PHL} t _{PLH} Max.Transmission Rate	30 120	100	500	ns kbps	
	V.10 RECEIVER DC Parameters Inputs Input Current Input Impedance Sensitivity AC Parameters Propagation Delay the Policy Impedance	-3.25 4		+3.25 ±0.3	mA kΩ Volts	per <i>Figures 14</i> and <i>15</i> $V_{CC} = +5V \text{ for AC parameters}$
	t _{PLH} Max.Transmission Rate	120		50	ns kbps	
MINAR	V.11 DRIVER DC Parameters Outputs Open Circuit Voltage Test Terminated Voltage Balance Offset Short-Circuit Current Power-Off Current AC Parameters Outputs Transition Time Propagation Delay	±2.0 0.5V _{OC}		±6.0 0.67V _{OC} ±0.4 +3.0 ±150 ±100	Volts Volts Volts Volts Volts mA µA	per <i>Figure 16</i> per <i>Figure 17</i> per <i>Figure 17</i> per <i>Figure 17</i> per <i>Figure 18</i> per <i>Figure 19</i> V _{CC} = +5V for AC parameters per <i>Figures 21</i> and <i>36</i> ; 10% to 90% Using C _L = 50pF;
	t _{PHL} t _{PLH} Differential Skew Max.Transmission Rate	40	30 30	50 50 10	ns ns ns Mbps	per <i>Figures 33</i> and <i>36</i> per <i>Figures 33</i> and <i>36</i> per <i>Figures 33</i> and <i>36</i>
	V.11 RECEIVER DC Parameters Inputs Common Mode Range Sensitivity	-7		+7 ±0.2	Volts Volts	

SPECIFICATIONS

 $T_A = +25^{\circ}C$ and $V_{CC} = +4.75V$ to +5.25V unless otherwise noted.

$I_A = +25^{\circ}\text{C}$ and $V_{CC} = +4.75\text{V}$ to +5.25V un	MIN.	TYP.	MAX.	UNITS	CONDITIONS
V.11 RECEIVER (continu	ied)				
DC Parameters (cont.)					-
Input Current	-3.25		±3.25	mA	per <i>Figure 20</i> and <i>22</i> ; power on or off
Current w/ 100Ω Termination	I		±60.75	mA	per <i>Figure 23</i> and <i>24</i>
Input Impedance AC Parameters	4			kΩ	V _{CC} = +5V for AC parameters
Propagation Delay		00	50		Using $C_1 = 50pF$;
t _{PHL} t _{PLH}		30 30	50 50	ns ns	per <i>Figures 33</i> and 38 per <i>Figures 33</i> and <i>38</i>
Skew	40	5		ns	per <i>Figure 33</i>
Max.Transmission Rate	40			Mbps	
V.35 DRIVER					
DC Parameters					
Outputs Test Terminated Voltage	±0.44		±0.66	Volts	per <i>Figure 25</i>
Offset			±0.6	Volts	per <i>Figure 25</i>
Output Overshoot Source Impedance	-0.2V _{ST}		+0.2V _{ST}	Volts Ω	per <i>Figure 25</i> ; V _{ST = Steady state value} per <i>Figure 27</i> ; Z _S = V ₂ /V ₁ x 50
Short-Circuit Impedance	135		165	Ω	per <i>Figure 28</i>
AC Parameters Outputs					V _{CC} = +5V for AC parameters
Transition Time		7	20	ns	per <i>Figure 29</i> ; 10% to 90%
Propagation Delay t _{PHL}		30	50	ns	per <i>Figures 33</i> and <i>36</i> ; C ₁ = 20pF
t _{PLH}		30	50	ns	per <i>Figures 33</i> and <i>36</i> ; C _L = 20pF
Differential Skew Max.Transmission Rate	40		5	ns Mbps	per <i>Figures 33</i> and <i>36</i> ; C _L = 20pF
				-	
V.35 RECEIVER					
DC Parameters Inputs					
Sensitivity	00	±50	+100	mV	7 - Figure 20 7 V N v 500
Source Impedance Short-Circuit Impedance	90 135		110 165	$\Omega \Omega$	per Figure 30 ; $Z_S = V_2/V_1 \times 50\Omega$ per Figure 31
AC Parameters					V _{CC} = +5V for AC parameters
Propagation Delay t _{PHL}		30	50	ns	per <i>Figures 33</i> and <i>38</i> ; C _L = 20pF
t _{PLH} Skew		30 3	50	ns	per <i>Figures 33</i> and <i>38</i> ; C ₁ = 20pF
Max.Transmission Rate	40	3		ns Mbps	per <i>Figure 33</i> ; C _L = 20pF
TD 4 100 FB (FB) F 4 ()		ENIT?			
TRANSCEIVER LEAKAG Driver Output 3-State Current	IE CURR	ENTS 100	500	μА	per Figure 32 ; Drivers disabled
Rcvr Output 3-State Current		1	10	μΑ	T_X & R_X disabled, 0.4V - V_O - 2.4V
POWER REQUIREMENT	S				
V _{CC} (Shutdown Mode)	4.75	5.00	5.25	Volts	All L voluce are with \/
I _{CC} (Shutdown Mode) (V.28/RS-232)		1 95		μA mA	All I_{CC} values are with $V_{CC} = +5V$ $f_{IN} = 120$ kbps; Drivers active & loaded
(V.11/RS-422)		230		mΑ	f _{IN} = 10Mbps; Drivers active & loaded
(EIA-530 & RS-449) (V.35)		270 170		mA mA	f _{IN} = 10Mbps; Drivers active & loaded V.35 @ f _{IN} = 10Mbps, V.28 @ 20kbps
(EIA-530A)		200		mA	$f_{IN} = 10$ Mbps; Drivers active & loaded
	1				

ELIMINARY INFORMATI

OTHER AC CHARACTERISTICS

 $T_A = +25^{\circ}\text{C}$ and $V_{CC} = +5.0\text{V}$ unless otherwise noted.

	$I_A = +25^{\circ}\text{C}$ and $V_{CC} = +5.00^{\circ}$ unless otherwise r	MIN.	TYP.	MAX.	UNITS	CONDITIONS
((DRIVER DELAY TIME BETWEE	N ACTIVI	MODE A	ND TRI-S	TATE MODE	
	RS-232/V.28					
	t _{PZL} ; Tri-state to Output LOW		0.11	5.0	μs	C _L = 100pF, Fig. 34 & 40 ; S ₂ closed
	$t_{\rm PZH}$; Tri-state to Output HIGH		0.11	2.0	μs	C _L = 100pF, Fig. 34 & 40 ; S ₂ closed
	t_{PLZ} ; Output LOW to Tri-state		0.05	2.0	μs	C _L = 100pF, Fig. 34 & 40 ; S ₂ closed
	t _{PHZ} ; Output HIGH to Tri-state		0.05	2.0	μs	C _L = 100pF, Fig. 34 & 40 ; S ₂ closed
	RS-423/V.10					
	t _{PZL} ; Tri-state to Output LOW		0.07	2.0	μs	C _L = 100pF, Fig. 34 & 40 ; S ₂ closed
	t _{PZH} ; Tri-state to Output HIGH		0.05	2.0	μs	C _L = 100pF, Fig. 34 & 40 ; S ₂ closed
	t _{PLZ} ; Output LOW to Tri-state		0.55	2.0	μs	C _L = 100pF, Fig. 34 & 40 ; S ₂ closed
	t _{PHZ} ; Output HIGH to Tri-state		0.12	2.0	μs	$C_L = 100pF$, Fig. 34 & 40 ; S_2 closed
ПП	RS-422/V.11 t _{PZL} ; Tri-state to Output LOW		0.04	10.0	μs	C ₁ = 100pF, Fig. 34 & 37 ; S ₁
	t _{PZH} ; Tri-state to Output HIGH		0.05	2.0	μs	closed C ₁ = 100pF, Fig. 34 & 37 ; S ₂
	t _{PLZ} ; Output LOW to Tri-state		0.03	2.0	μs	closed C ₁ = 15pF, Fig. 34 & 37 ; S ₁
	t _{PHZ} ; Output HIGH to Tri-state		0.11	2.0	μs	closed C _L = 15pF, Fig. 34 & 37 ; S ₂
	V.05					closed
	V.35 t _{PZL} ; Tri-state to Output LOW		0.85	10.0	μs	C _L = 100pF, Fig. 34 & 37 ; S ₁
	t _{PZH} ; Tri-state to Output HIGH		0.36	2.0	μs	closed C _L = 100pF, Fig. 34 & 37 ; S ₂ closed
	t_{PLZ} ; Output LOW to Tri-state		0.06	2.0	μs	C _L = 15pF, Fig. 34 & 37 ; S ₁ closed
	t _{PHZ} ; Output HIGH to Tri-state		0.05	2.0	μs	$C_L = 15pF$, Fig. 34 & 37 ; S_2 closed
	RECEIVER DELAY TIME BETV	VEEN ACT	IVE MOD	E AND TR	I-STATE MOD	
	RS-232/V.28					
	t _{PZL} ; Tri-state to Output LOW		0.05	2.0	μs	C _L = 100pF, Fig. 35 & 40 ; S ₁ closed
	t _{PZH} ; Tri-state to Output HIGH		0.05	2.0	μs	C _L = 100pF, Fig. 35 & 40 ; S ₂ closed
	t_{PLZ} ; Output LOW to Tri-state		0.65	2.0	μs	C _L = 100pF, Fig. 35 & 40 ; S ₁ closed
	t _{PHZ} ; Output HIGH to Tri-state		0.65	2.0	μs	$C_L = 100 pF$, Fig. 35 & 40 ; S_2 closed
	RS-423/V.10					
	t _{PZL} ; Tri-state to Output LOW		0.04	2.0	μs	C _L = 100pF, Fig. 35 & 40 ; S ₁ closed
	t _{PZH} ; Tri-state to Output HIGH		0.03	2.0	μs	$C_L = 100 pF$, Fig. 35 & 40 ; S_2 closed
	t _{PLZ} ; Output LOW to Tri-state		0.03	2.0	μs	C _L = 100pF, Fig. 35 & 40 ; S ₁ closed
	t _{PHZ} ; Output HIGH to Tri-state		0.03	2.0	μs	C _L = 100pF, Fig. 35 & 40 ; S ₂ closed
(())		I				

OTHER AC CHARACTERISTICS (Continued)

.\	$_{\rm c}$ = +25°C and V $_{\rm cc}$ = +5.0V unless otherwise r	MIN.	TYP.	MAX.	UNITS	CONDITIONS
))	RS-422/V.11					
	t _{PZL} ; Tri-state to Output LOW		0.04	2.0	μs	C _L = 100pF, Fig. 35 & 39 ; S ₁ closed
7	$t_{\rm PZH}$; Tri-state to Output HIGH		0.03	2.0	μs	C _L = 100pF, Fig. 35 & 39 ; S ₂ closed
_	t_{PLZ} ; Output LOW to Tri-state		0.03	2.0	μs	C _L = 15pF, Fig. 35 & 39 ; S ₁
	t _{PHZ} ; Output HIGH to Tri-state		0.03	2.0	μs	closed C _L = 15pF, Fig. 35 & 39 ; S ₂ closed
	v.35 t _{PZL} ; Tri-state to Output LOW		0.04	2.0	μs	C _L = 100pF, Fig. 35 & 39 ; S ₁
	t _{PZH} ; Tri-state to Output HIGH		0.03	2.0	μs	C _L = 100pF, Fig. 35 & 39 ; S ₂
1	t_{PLZ} ; Output LOW to Tri-state		0.03	2.0	μs	closed C _L = 15pF, Fig. 35 & 39 ; S ₁ closed
\	t _{PHZ} ; Output HIGH to Tri-state		0.03	2.0	μs	C _L = 15pF, Fig. 35 & 39 ; S ₂ closed
/	TRANSCEIVER TO TRANSCEI	VER SKE	 W		(per Fig	ures 32, 33, 36, 38)
H	RS-232 Driver		100		ns	$[(t_{phl})_{Tx1} - (t_{phl})_{Txn}]$
-	NO 202 BING		100		ns	
7 7 -	RS-232 Receiver		20			$\begin{bmatrix} (t_{pih})_{Tx1} - (t_{pih})_{Txn} \end{bmatrix}$
	K3-232 Receiver				ns	$[(t_{phl})_{Rx1} - (t_{phl})_{Rxn}]$
" -	DO 400 Delega		20		ns	$[(t_{phl})_{Rx1} - (t_{phl})_{Rxn}]$
7	RS-422 Driver		2		ns	$[(t_{phi})_{Tx1} - (t_{phi})_{Txn}]$
			2		ns	$[(t_{plh})_{Tx1} - (t_{plh})_{Txn}]$
	RS-422 Receiver		2		ns	$[(t_{phl})_{Rx1} - (t_{phl})_{Rxn}]$
' -	DC 400 Deliver		3		ns	$[(t'_{phl})_{Rx1} - (t'_{phl})_{Rxn}]$
4	RS-423 Driver		5		ns	$[(t_{phi})_{Tx2} - (t_{phi})_{Txn}]$
	50.005		5		ns	$[(t_{pih})_{Tx2} - (t_{pih})_{Txn}]$
2 2	RS-423 Receiver		5		ns	$[(t_{phl})_{Rx2} - (t_{phl})_{Rxn}]$
2 <u> </u>			5		ns	$[(t_{phl})_{Rx2} - (t_{phl})_{Rxn}]$
	V.35 Driver		2		ns	$[(t_{phl})_{Tx1} - (t_{phl})_{Txn}]$
7			2		ns	$[(t_{plh})_{Tx1} - (t_{plh})_{Txn}]$
	V.35 Receiver		2		ns	$[(t_{phl})_{Rx1} - (t_{phl})_{Rxn}]$
-			2		ns	$[(t_{phl}^{'})_{Rx1} - (t_{phl}^{'})_{Rxn}]$

TEST CIRCUITS

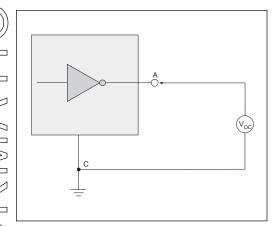


Figure 1. V.28 Driver Output Open Circuit Voltage

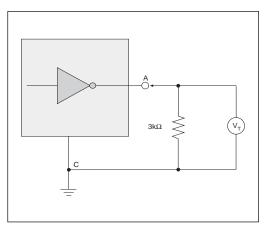
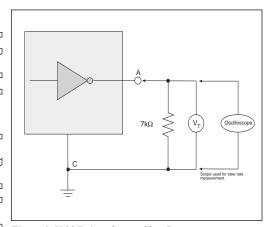



Figure 2. V.28 Driver Output Loaded Voltage

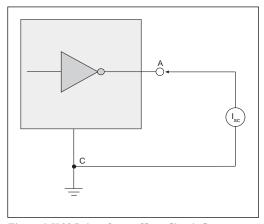


Figure 4. V.28 Driver Output Short-Circuit Current

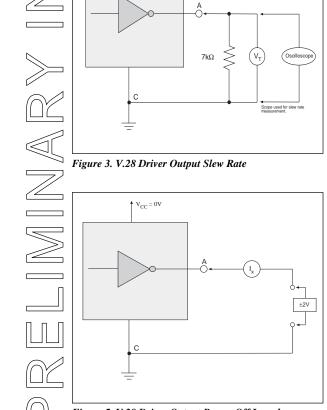


Figure 5. V.28 Driver Output Power-Off Impedance

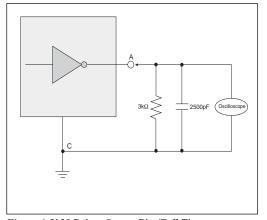
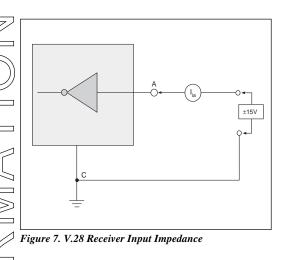



Figure 6. V.28 Driver Output Rise/Fall Times

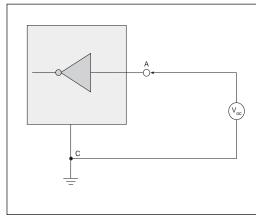


Figure 8. V.28 Receiver Input Open Circuit Bias

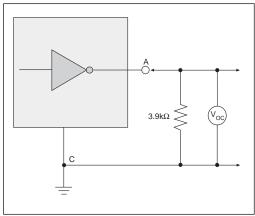


Figure 9. V.10 Driver Output Open-Circuit Voltage

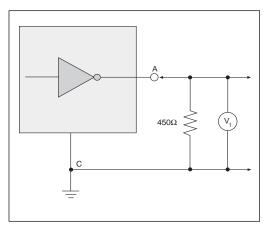


Figure 10. V.10 Driver Output Test Terminated Voltage

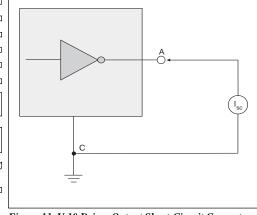


Figure 11. V.10 Driver Output Short-Circuit Current

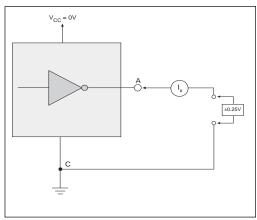
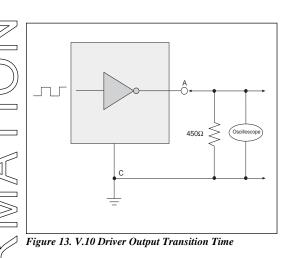



Figure 12. V.10 Driver Output Power-Off Current

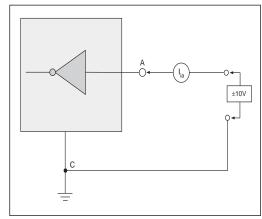


Figure 14. V.10 Receiver Input Current

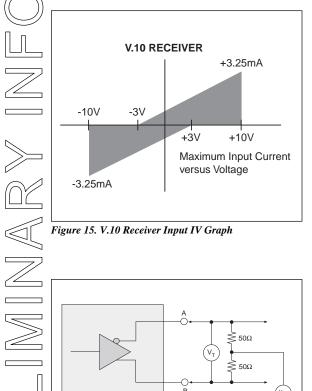


Figure 15. V.10 Receiver Input IV Graph

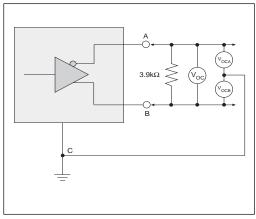


Figure 16. V.11 Driver Output Open-Circuit Voltage

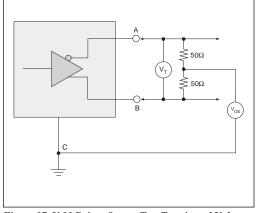


Figure 17. V.11 Driver Output Test Terminated Voltage

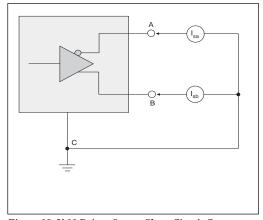
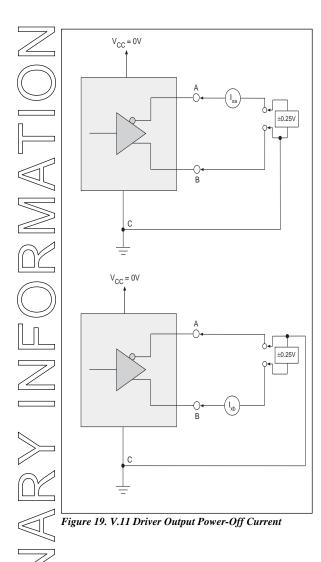



Figure 18. V.11 Driver Output Short-Circuit Current

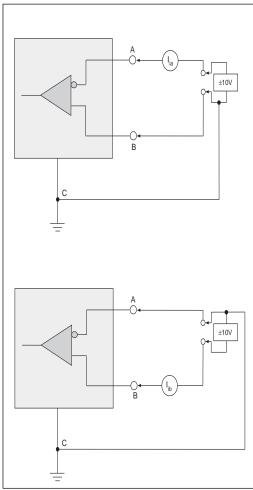


Figure 20. V.11 Receiver Input Current

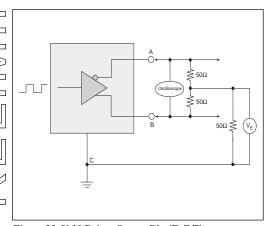


Figure 21. V.11 Driver Output Rise/Fall Time

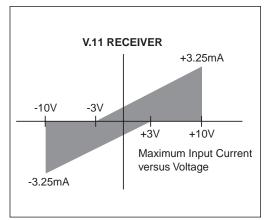
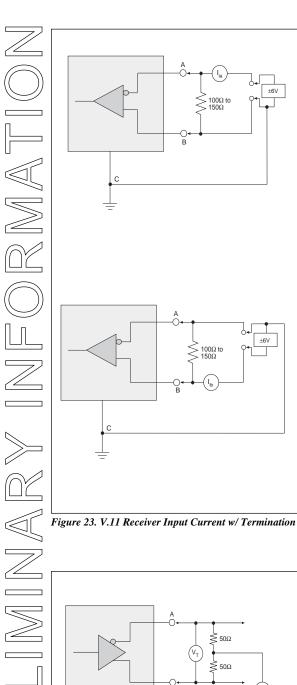



Figure 22. V.11 Receiver Input IV Graph

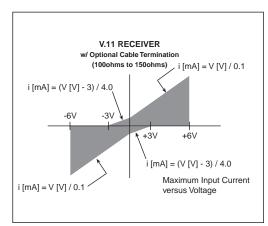


Figure 24. V.11 Receiver Input Graph w/ Termination

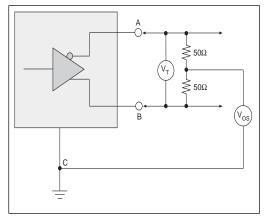


Figure 25. V.35 Driver Output Test Terminated Voltage

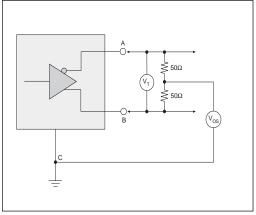


Figure 26. V.35 Driver Output Offset Voltage

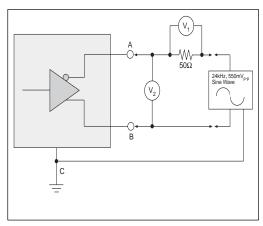


Figure 27. V.35 Driver Output Source Impedance

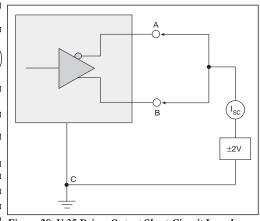


Figure 28. V.35 Driver Output Short-Circuit Impedance

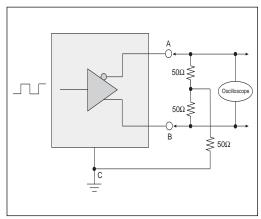
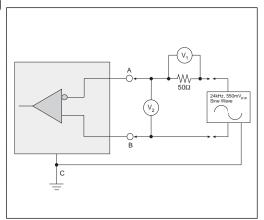



Figure 29. V.35 Driver Output Rise/Fall Time

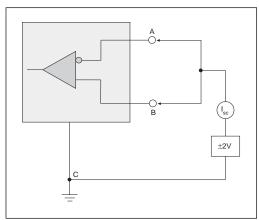


Figure 31. V.35 Receiver Input Short-Circuit Impedance

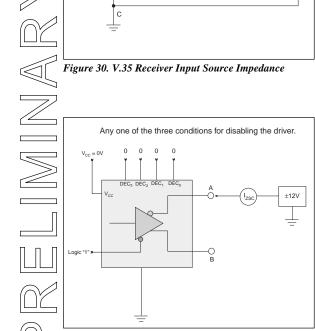


Figure 32. Driver Output Leakage Current Test

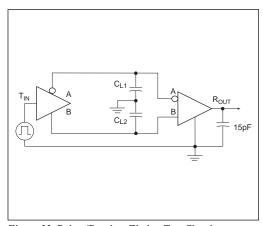
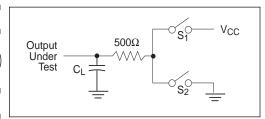



Figure 33. Driver/Receiver Timing Test Circuit

Receiver Output C_{RL} $C_{$

Figure 34. Driver Timing Test Load Circuit

Figure 35. Receiver Timing Test Load Circuit

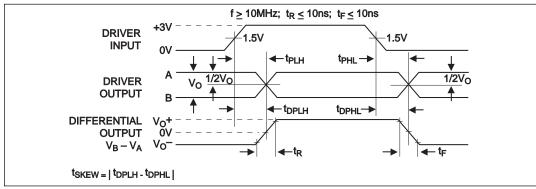


Figure 36. Driver Propagation Delays

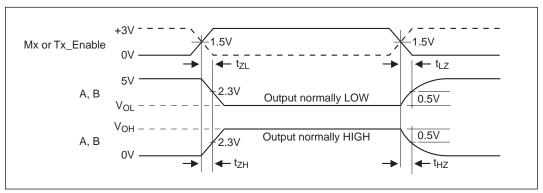


Figure 37. Driver Enable and Disable Times

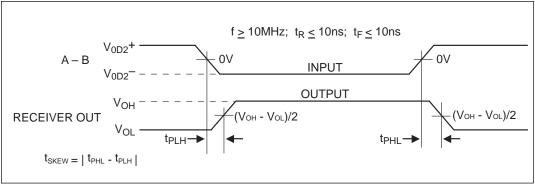


Figure 38. Receiver Propagation Delays



Figure 39. Receiver Enable and Disable Times

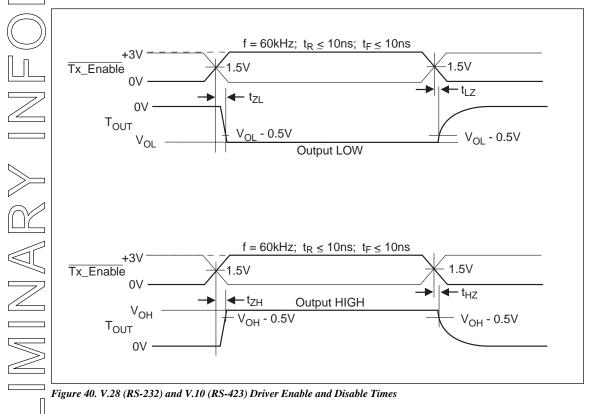


Figure 40. V.28 (RS-232) and V.10 (RS-423) Driver Enable and Disable Times

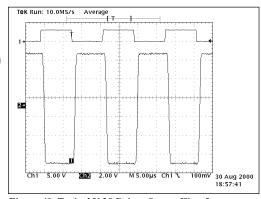


Figure 41. Typical V.28 Driver Output Waveform

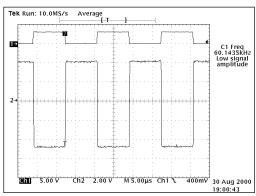


Figure 42. Typical V.10 Driver Output Waveform

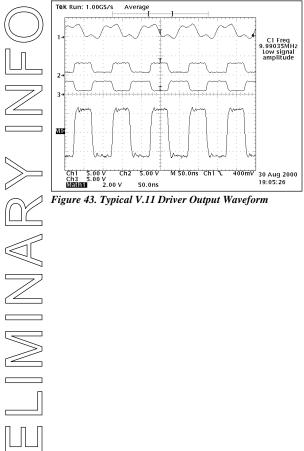


Figure 43. Typical V.11 Driver Output Waveform

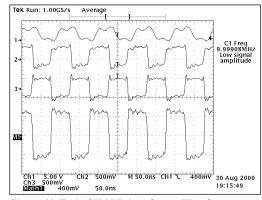
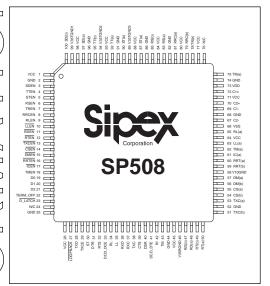



Figure 44. Typical V.35 Driver Output Waveform

PINOUT

PIN ASSIGNMENTS

Pin 1 — V_{CC} — +5V Power Supply Input.

Pin 2 — GND — Signal Ground.

Pin 3 — SDEN — T_xD Driver Enable Input.

Pin 4 — TTEN — TXCE Driver Enable Input.

Pin 5 — STEN — ST Driver Enable Input.

Pin 6 — RSEN — RTS Driver Enable Input.

Pin 7 — TREN — DTR Driver Enable Input.

Pin 8 — RRCEN — DCD_{DCE} Driver Enable Input.

Pin 9 — RLEN — RL Driver Enable Input.

Pin 10 — <u>LLEN</u> — LL Driver Enable Input.

Pin 11 — RDEN — R_XD Receiver Enable Input.

Pin 12 — RTEN — R_xT Receiver Enable Input.

Pin 13 — $\overline{T_xCEN}$ — T_xC Receiver Enable Input.

Pin 14 — $\overline{\text{CSEN}}$ — CTS Receiver Enable Input.

Pin 15 — DMEN — DSR Receiver Enable Input.

Pin16 — RRTEN — DCD_{DTE} Receiver Enable Input.

Pin 17 — ICEN — RI Receiver Enable Input.

Pin 18 — TMEN — TM Receiver Enable Input.

Pin 19 — D0 — Mode Select Input.

Pin 20 — D1 — Mode Select Input.

Pin 21 — D2 — Mode Select Input.

Pin 22 — TERM_OFF — Termination Disable Input.

Pin 23 — D_LATCH — Decoder Latch Input.

Pin 24 — N/C — No Connection.

Pin 25 — GND — Signal Ground.

Pin 26 — V_{CC} — +5V Power Supply Input.

Pin 27—LOOPBACK—Loopback Mode Enable Input.

Pin 28 — TXD — TXD Driver TTL Input.

Pin 29 — TXCE — TXCE Driver TTL Input.

Pin 30 — ST — ST Driver TTL Input.

Pin 31 —RTS — RTS Driver TTL Input.

Pin 32 — DTR — DTR Driver TTL Input.

 $\begin{array}{c} \text{Pin 33} \longrightarrow \text{DCD_DCE} \longrightarrow \text{DCD}_{\text{DCE}} \text{ Driver} \\ \text{TTL Input.} \end{array}$

Pin 34 — RL — RL Driver TTL Input.

Pin 35 — LL — LL Driver TTL Input.

Pin 36 — RXD — RXD Receiver TTL Output.

Pin 37 — RXC — RXC Receiver TTL Output.

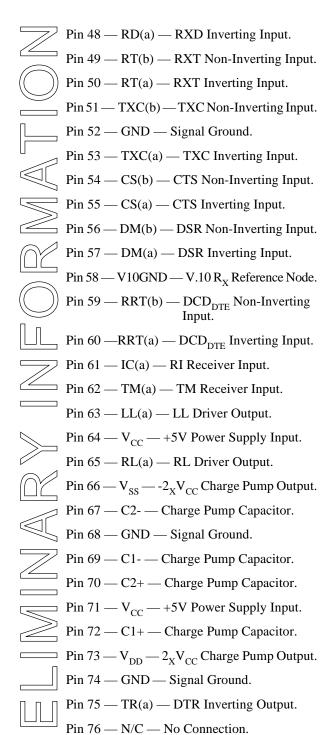
Pin 38 — TXC — TXC Receiver TTL Output.

Pin 39 — CTS — CTS Receiver TTL Output.

Pin 40 — DTR — DSR Receiver TTL Output.

 $\begin{array}{c} \text{Pin 41} \longrightarrow \text{DCD_DTE} \longrightarrow \text{DCD}_{\text{DTE}} \text{ Receiver} \\ \text{TTL Output.} \end{array}$

Pin 42 — RI — RI Receiver TTL Output.


Pin 43 — TM — TM Receiver TTL Output.

Pin 44 — GND — Signal Ground.

Pin 45 — V_{CC} — +5V Power Supply Input.

Pin 46 — V35RGND — Receiver Termination Reference.

Pin 47 — RD(b) — RXD Non-Inverting Input.

Pin 77 — V_{CC} — +5V Power Supply Input. Pin 78 — TR(b) — DTR Non-Inverting Output. Pin 79 — RRC(b) — DCD_{DCE} Non-Inverting Output. Pin 80 — V_{CC} — +5V Power Supply Input. Pin 81 — RRC(a) — DCD_{DCE} Inverting Output. Pin 82 — GND — Signal Ground. Pin 83 — RS(a) — RTS Inverting Output. Pin 84 — V_{CC} — +5V Power Supply Input. Pin 85 — RS(b) — RTS Non-Inverting Output. Pin 86 — GND — Signal Ground. Pin 87 — ST(a) — ST Inverting Output. Pin 88 — V_{CC} — +5V Power Supply Input. Pin 89 — V35TGND3 — ST Termination Reference. Pin 90 — ST(b) — ST Non-Inverting Output. Pin 91 — GND — Signal Ground. Pin 92 — TT(a) — TXCE Inverting Output. Pin 93 — V_{CC} — +5V Power Supply Input. Pin 94 — V35TGND2 — TXCE Termination Reference. Pin 95 — TT(b) — TXCE Non-Inverting Output. Pin 96 — GND — Signal Ground. Pin 97 — SD(a) — TXD Inverting Output. Pin 98 — V_{CC}- — +5V Power Supply Input. Pin 99 — V35TGND1 — TXD Termination Reference. Pin 100 — SD(b) — TXD Non-Inverting Output.

SP508 Driver Table

Driver Output Pin	V.35 Mode	EIA-530 Mode	RS-232 Mode (V.28)	EIA-530A Mode	RS-449 Mode (V.36)	X.21 Mode (V.11)	Shutdown	Suggested Signal
MODE (D0, D1, D2)	001	010	011	100	101	110	111	
T₁OUT(a)	V.35	V.11	V.28	V.11	V.11	V.11	High-Z	TxD(a)
T₁OUT(b)	V.35	V.11	High-Z	V.11	V.11	V.11	High-Z	TxD(b)
T ₂ OUT(a)	V.35	V.11	V.28	V.11	V.11	V.11	High-Z	TxCE(a)
T ₂ OUT(b)	V.35	V.11	High-Z	V.11	V.11	V.11	High-Z	TxCE(b)
T ₃ OUT(a)	V.35	V.11	V.28	V.11	V.11	V.11	High-Z	TxC_DCE(a)
T ₃ OUT(b)	V.35	V.11	High-Z	V.11	V.11	V.11	High-Z	TxC_DCE(b)
T₄OUT(a)	V.28	V.11	V.28	V.11	V.11	V.11	High-Z	RTS(a)
T₄OUT(b)	High-Z	V.11	High-Z	V.11	V.11	V.11	High-Z	RTS(b)
T₅OUT(a)	V.28	V.11	V.28	V.10	V.11	V.11	High-Z	DTR(a)
T₅OUT(b)	High-Z	V.11	High-Z	High-Z	V.11	V.11	High-Z	DTR(b)
T ₆ OUT(a)	V.28	V.11	V.28	V.11	V.11	V.11	High-Z	DCD_DCE(a)
T ₆ OUT(b)	High-Z	V.11	High-Z	V.11	V.11	V.11	High-Z	DCD_DCE(b)
T ₇ OUT(a)	V.28	V.10	V.28	V.10	V.10	High-Z	High-Z	RL
T ₈ OUT(a)	V.28	V.10	V.28	V.10	V.10	High-Z	High-Z	LL

____ Table 1. Driver Mode Selection

SP508 Receiver Table

Receiver Input Pin	V.35 Mode	EIA-530 Mode	RS-232 Mode (V.28)	EIA-530A Mode	RS-449 Mode (V.36)	X.21 Mode (V.11)	Shutdown	Suggested Signal
MODE (D0, D1, D2)	001	010	011	100	101	110	111	
R,IN(a)	V.35	V.11	V.28	V.11	V.11	V.11	High-Z	RxD(a)
R,IN(b)	V.35	V.11	High-Z	V.11	V.11	V.11	High-Z	RxD(b)
R _z IN(a)	V.35	V.11	V.28	V.11	V.11	V.11	High-Z	RxC(a)
R _a IN(b)	V.35	V.11	High-Z	V.11	V.11	V.11	High-Z	RxC(b)
R ₃ IN(a)	V.35	V.11	V.28	V.11	V.11	V.11	High-Z	TxC_DTE(a
R _s IN(b)	V.35	V.11	High-Z	V.11	V.11	V.11	High-Z	TxC_DTE(b
R _a IN(a)	V.28	V.11	V.28	V.11	V.11	V.11	High-Z	CTS(a)
R _a IN(b)	High-Z	V.11	High-Z	V.11	V.11	V.11	High-Z	CTS(b)
R _s IN(a)	V.28	V.11	V.28	V.10	V.11	V.11	High-Z	DSR(a)
R _a IN(b)	High-Z	V.11	High-Z	High-Z	V.11	V:11	High-Z	DSR(b)
R _o IN(a)	V.28	V.11	V.28	V.11	V.11	V.11	High-Z	DCD_DTE(s
R _a IN(b)	High-Z	V.11	High-Z	V.11	V.11	V.11	High-Z	DCD_DTE(t
B,IN(a)	V.28	V.10	V.28	V.10	V.10	High-Z	High-Z	RI
R _s IN(a)	V.28	V.10	V.28	V.10	V.10	High-Z	High-Z	TM

Table 2. Receiver Mode Selection

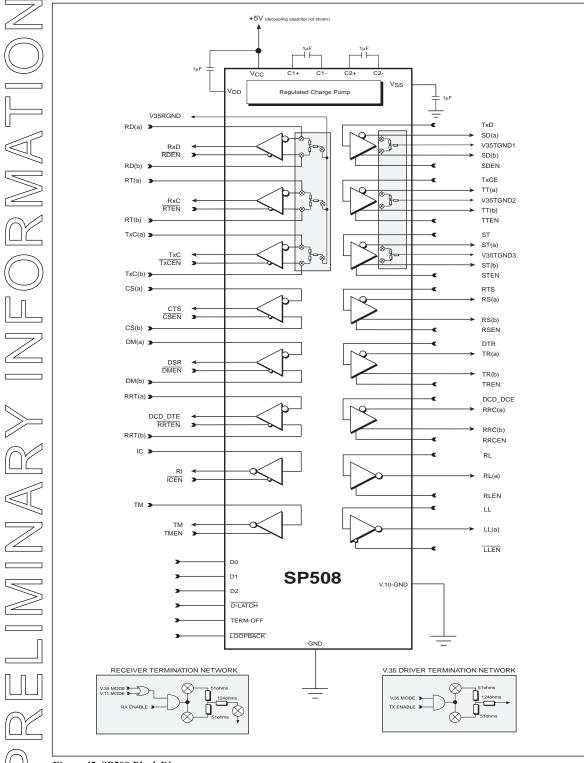


Figure 45. SP508 Block Diagram

FEATURES

The **SP508** contains highly integrated serial transceivers that offer programmability between interface modes through software control. The **SP508** offers the hardware interface modes for RS-232 (V.28), RS-449/V.36 (V.11 and V.10), EIA-530 (V.11 and V.10), EIA-530A (V.11 and V.10), V.35 (V.35 and V.28) and X.21(V.11). The interface mode selection is done via three control pins, which can be latched via microprocessor control.

The SP508 has eight drivers, eight receivers, and Sipex's patented on-board charge pump (5,306,954) that is ideally suited for wide area network connectivity and other multi-protocol applications. Other features include digital and line loopback modes, individual enable/disable control lines for each driver and receiver, fail-safe when inputs are either open or shorted, individual termination resistor ground paths, separate driver and receiver ground outputs, enhanced ESD protection on driver outputs and receiver inputs.

THEORY OF OPERATION

The **SP508** device is made up of 1) the drivers, 2) the receivers, 3) a charge pump, 4) DTE/DCE switching algorithm, and 5) control logic.

Drivers

The **SP508** has eight enhanced independent drivers.
Control for the mode selection is done via a three-bit control word into D0, D1, and D2. The drivers are prearranged such that for each mode of operation, the relative position and functionality of the drivers are set up to accommodate the selected interface mode. As the mode of the drivers is changed, the electrical characteristics will change to support the required signal levels. The mode of each driver in the different interface modes that can be selected is shown in *Table 1*.

There are four basic types of driver circuits – ITU-T-V.28 (RS-232), ITU-T-V.10 (RS-423), ITU-T-V.11 (RS-422), and CCITT-V.35.

The V.28 (RS-232) drivers output single-ended signals with a minimum of $\pm 5V$ (with $3k\Omega$ & 2500pF loading), and can operate over 120kbps. Since the **SP550** uses a charge pump to generate the RS-232 output rails, the driver outputs will never exceed $\pm 10V$. The V.28 driver architecture is similar to **Sipex's** standard line of RS-232 transceivers.

The RS-423 (V.10) drivers are also single-ended signals which produce open circuit $V_{\rm OL}$ and $V_{\rm OH}$ measurements of $\pm 4.0 \rm V$ to $\pm 6.0 \rm V$. When terminated with a 450Ω load to ground, the driver output will not deviate more than 10% of the open circuit value. This is in compliance of the ITU V.10 specification. The V.10 (RS-423) drivers are used in RS-449/V.36, EIA-530, and EIA-530A modes as Category II signals from each of their corresponding specifications. The V.10 driver can transmit over 1Mbps if necessary.

The third type of drivers are V.11 (RS-422) differential drivers. Due to the nature of differential signaling, the drivers are more immune to noise as opposed to single-ended transmission methods. The advantage is evident over high speeds and long transmission lines. The strength of the driver outputs can produce differential signals that can maintain +2V differential output levels with a load of 100Ω . The signal levels and drive capability of these drivers allow the drivers to also support RS-485 requirements of +1.5V differential output levels with a 54Ω load. The strength allows the **SP508** differential driver to drive over long cable lengths with minimal signal degradation. The V.11 drivers are used in RS-449, EIA-530, EIA-530A and V.36 modes as Category I signals which are used for clock and data. Sipex's new driver design over its predecessors allow the SP508 to operate over 40Mbps for differential transmission.

The fourth type of drivers are V.35 differential drivers. There are only three available on the SP550 for data and clock (TxD, TxCE, and TxC in DCE mode). These drivers are current sources that drive loop current through a differential pair resulting in a 550mV differential voltage at the receiver. These drivers also incorporate fixed termination networks for each driver in order to set the $V_{\rm OH}$ and $V_{\rm OL}$ depending on load conditions. This termination network is basically a "Y" configuration consisting of two 51Ω resistors connected in series and a 124Ω resistor connected between the two 50Ω resistors and a V35TGND output. Each of the three drivers and its associated termination will have its own V35TGND output for grounding convenience. Filtering can be done on these pins to reduce common mode noise transmitted over the transmission line by connecting a capacitor to ground.

The drivers also have separate enable pins which simplifies half-duplex configurations for some applications, especially programmable DTE/DCE. The enable pins will either enable or disable the output of the drivers according to the appropriate active logic illustrated on *Figure 45*. The enable pins have internal pull-up and pull-down devices, depending on the active polarity of the receiver, that enable the driver upon power if the enable lines are left floating. During disabled conditions, the driver outputs will be at a high impedance 3-state.

The driver inputs are both TTL or CMOS compatible. All driver inputs have an internal pull-up resistor so that the output will be at a defined state at logic LOW ("0"). Unused driver inputs can be left floating. The internal pull-up resistor value is approximately $500k\Omega$.

Receivers

The **SP508** has eight enhanced independent receivers. Control for the mode selection is done via a three-bit control word that is the same as the driver control word. Therefore, the modes for the drivers and receivers are identical in the application.

Like the drivers, the receivers are prearranged for the specific requirements of the synchronous serial interface. As the operating mode of the receivers is changed, the electrical characteristics will change to support the required serial interface protocols of the receivers. *Table 1* shows the mode of each receiver in the different interface modes that can be selected. There are two basic types of receiver circuits—ITU-T-V .28 (RS-232) and ITU-T-V.11, (RS-422).

The RS-232 (V.28) receiver is single-ended and accepts RS-232 signals from the RS-232 driver. The RS-232 receiver has an operating voltage range of ± 15 V and can receive signals downs to ± 3 V. The input sensitivity complies with RS-232 and V.28 at ± 3 V. The input impedance is 3Ω to $7K\Omega$ in accordance to RS-232 and V.28. The receiver output produces a TTL/CMOS signal with a +2.4V minimum for a logic "1" and a +0.8V maximum for a logic "0". The RS-232 (V.28) protocol uses these receivers for all data, clock and control signals. They are also used in V.35 mode for control line signals: CTS, DSR, LL, and RL. The RS-232 receivers can operate over 120kbps.

The second type of receiver is a differential type that can be configured internally to support ITU-T-V.10 and CCITT-V.35 depending on its input conditions. This receiver has a typical input impedance of $10k\Omega$ and a differential threshold of less than ± 100 mV, which complies with the ITU-T-V.11 (RS-422) specifications. V.11 receivers are used in RS-449/V.36, EIA-530, EIA-530A and X.21 as Category I signals for receiving clock, data, and some control line signals not covered by Category II V.10 circuits. The differential V.11 transceiver has improved architecture that allows over 40Mbps transmission rates.

For receivers dedicated for data and clock (RxD, RxC, TxC) incorporate internal termination for V.11. The termination resistor is typically 120Ω connected between the A and B inputs. The termination is essential for minimizing crosstalk and signal reflection over the transmission line . The minimum value is guaranteed to exceed 100Ω , thus complying with the V.11 and RS-422 specifications. This resistor is invoked when the receiver is operating as a V.11 receiver, in modes EIA-530, EIA-530A, RS-449/V.36, and X.21.

The same receivers also incorporate a termination network internally for V.35 applications. For V.35, the receiver input termination is a "Y" termination consisting of two 51Ω resistors connected in series and a 124Ω resistor connected between the two 50Ω resistors and V35RGND output. The V35RGND is usually grounded. The receiver itself is identical to the V.11 receiver.

The differential receivers can be configured to be ITU-T-V.10 single-ended receivers by internally connecting the non-inverting input to ground. This is internally done by default from the decoder. The non-inverting input is rerouted to V10GND and can be grounded separately. The ITU-T-V.10 receivers can operate over 1Mbps and are used in RS-449/V.36, E1A-530, E1A-530A and X.21 modes as Category II signals as indicated by their corresponding specifications. All receivers include an enable/disable line for disabling the receiver output allowing convenient half-duplex configurations. The enable pins will either enable or disable the output of the receivers according to the appropriate active logic ☐ illustrated on *Figure 45*. The receiver's enable ☐ lines include an internal pull-up or pull-down device, depending on the active polarity of the receiver, that enables the receiver upon power up if the enable lines are left floating. During disabled conditions, the receiver outputs will be at a high impedance state. If the receiver is disabled any associated termination is also disconnected from the inputs.

All receivers include a fail-safe feature that outputs a logic high when the receiver inputs are open, terminated but open, or shorted together. For single-ended V.28 and V.10 receivers, there are internal $5k\Omega$ pull-down resistors on the inputs which produces a logic high ("1") at the receiver outputs. The differential receivers have a proprietary circuit that detect open or shorted inputs and if so, will produce a logic HIGH ("1") at the receiver output.

CHARGE PUMP

The charge pump is a **Sipex**-patented design (5,306,954) and uses a unique approach compared to older less-efficient designs. The charge pump still requires four external capacitors, but uses four-phase voltage shifting technique to attain symmetrical power supplies. The charge pump $V_{\rm DD}$ and $V_{\rm SS}$ outputs are regulated to +5.8V and -5.8V, respectively. There is a free-running oscillator that controls the four phases of the voltage shifting. A description of each phase follows.

Phase 1

 $_V_{ss}$ charge storage ——During this phase of the clock cycle, the positive side of capacitors C_1 and C_2 are initially charged to V_{cc} . C_1 is then switched to ground and the charge in C_1 - is transferred to C_2 -. Since C_2 + is connected to V_{cc} , the voltage potential across capacitor C_2 is now 2_xV_{cc} .

Phase 2

— V_{ss} transfer —Phase two of the clock connects the negative terminal of C_2 to the V_{ss} storage capacitor and the positive terminal of C_2 to ground, and transfers the negative generated voltage to C_3 . This generated voltage is regulated to -5.8V. Simultaneously, the positive side of the capacitor C_1 is switched to V_{CC} and the negative side is connected to ground.

Phase 3

— V_{DD} charge storage —The third phase of the clock is identical to the first phase—the charge transferred in C_1 produces – V_{CC} in the negative terminal of C_1 which is applied to the negative side of the capacitor C_2 . Since C_2 + is at V_{CC} , the voltage potential across C_2 is $2_X V_{CC}$.

Phase 4

— $V_{\rm DD}$ transfer —The fourth phase of the clock connects the negative terminal of C_2 to ground, and transfers the generated 5.8V across C_2 to C_4 , the $V_{\rm DD}$ storage capacitor. This voltage is regulated to +5.8V. At the regulated voltage, the internal oscillator is disabled and simultaneously with this, the positive side of capacitor C_1 is switched to $V_{\rm CC}$ and the negative side is connected to ground, and the cycle begins again. The charge pump cycle will continue as long as the operational conditions for the internal oscillator are present.

Since both V^+ and V^- are separately generated from V_{CC} ; in a no-load condition V^+ and V^- will be symmetrical. Older charge pump approaches that generate V^- from V^+ will show a decrease in the magnitude of V^- compared to V^+ due to the inherent inefficiencies in the design.

The clock rate for the charge pump typically operates at 250 kHz. The external capacitors can be as low as $1 \mu F$ with a 16 V breakdown voltage rating.

TERM OFF FUNCTION

The **SP508** contains a TERM_OFF pin that disables all three receiver input termination networks regardless of mode. This allows the device to be used in monitor mode applications typically found in networking test equipment. The TERM_OFF pin internally contains a pull-down device with an impedance of over $500k\Omega$, which will default in a "ON" condition during power-up if V.35 receivers are used. The individual receiver enable line and the SHUTDOWN mode from the decoder will disable the termination regardless of TERM OFF.

LOOPBACK FUNCTION

The **SP508** contains a LOOPBACK pin that invokes a loopback path. This loopback path is illustrated in *Figure 50*. LOOPBACK has an internal pull-up resistor that defaults to normal mode during power up or if the pin is left floating. During loopback, the driver output and receiver input characteristics will still adhere to its appropriate specifications.

DECODER AND D LATCH FUNCTION

The SP508 contains a D_LATCH pin that latches the data into the D0, D1, and D2 decoder inputs. If tied to a logic LOW ("0"), the latch is transparent, allowing the data at the decoder inputs to propagate through and program the SP508 accordingly. If tied to a logic HIGH("1"), the latch locks out the data and prevents the mode from changing until this pin is brought to a logic LOW.

There are internal pull-up devices on D0, D1, and D2, which allow the device to be in SHUTDOWN mode ("111") upon power up. However, if the device is powered -up with the D_LATCH at a logic HIGH, the decoder state of the **SP508** will be undefined.

ESD TOLERANCE

The SP508 device incorporates ruggedized ESD cells on all driver output and receiver input pins. The ESD structure is improved over our previous family for more rugged applications and environments sensitive to electrostatic discharges and associated transients. Actual ESD figures will be disclosed in the final data sheet.

CTR1/CTR2 EUROPEAN COMPLIANCY

As with all of **Sipex's** previous multi-protocol serial transceiver IC's the drivers and receivers have been designed to meet all the requirements to NET1/NET2 and TBR2 in order to meet CTR1/CTR2 compliancy. The **SP508** is also tested in-house at **Sipex** and adheres to all the NET1/2 physical layer testing and the ITU Series V specifications before shipment. Please note that although the **SP508**, as with its predecessors, adhere to CTR1/CTR2 compliancy testing, any complex or unusual configuration should be double-checked to ensure CTR1/CTR2 compliance. Consult the factory for details.

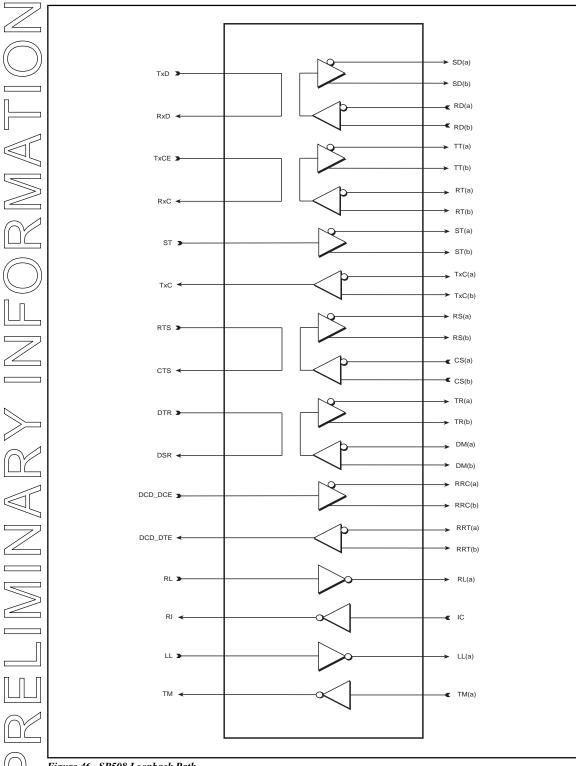


Figure 46. SP508 Loopback Path

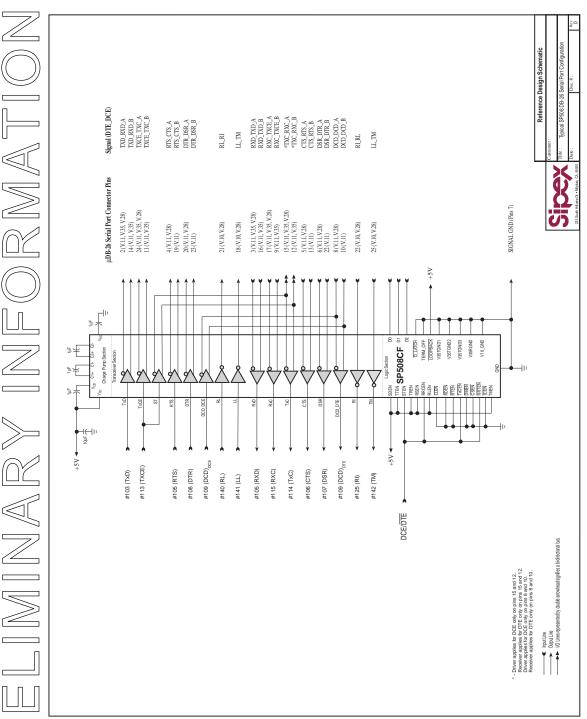
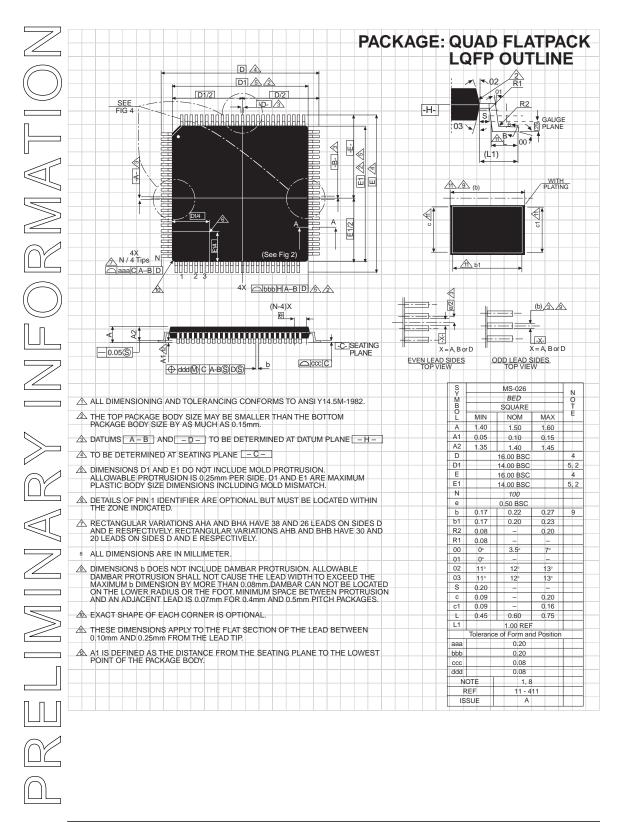



Figure 47. SP508 Typical Operating Configuration to Serial Port Connector with DCE/DTE programmability

	ORDERING INFORMATION						
Model	Temperature Range	Package Types					
SP508C	F	. 100-pin JEDEC LQFP					

SIGNAL PROCESSING EXCELLENCE

Sipex Corporation

Headquarters and Sales Office 22 Linnell Circle Billerica, MA 01821 TEL: (978) 667-8700 FAX: (978) 670-9001 e-mail: sales@sipex.com

Sales Office
233 South Hillview Drive
Milpitas, CA 95035
TEL: (408) 934-7500
FAX: (408) 935-7600

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.