Solid State Sensors

4AV Series

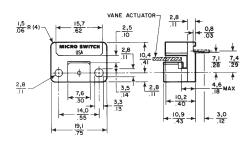
Hall Effect Vane Position Sensors

FEATURES

- Operated by vane interrupter
- -40 to +125°C temperature range
- Current sinking output
- Smaller size than 2AV
- Four pin in-line printed circuit board terminals or leadwires
- Closely controlled differential to predict pulse width
- 4.5 to 5.5 or 6 to 16 VDC power supply

4AV ORDER GUIDE

Catalog Listings	4AV11C	4AV12C	4AV11A	4AV12A
Supply Voltage (VDC)	4.5 to 5.5	4.5 to 5.5	6 to 16	6 to 16
Supply Current (mA max.)	7.0	7.0	13.0	13.0
Output Type	Sink	Sink	Sink	Sink
Output Voltage (V)	0.4	0.4	0.4	0.4
Current per Output (mA)	4	8	10	20
Termination	PC Board	Leadwire	PC Board	Leadwire


AV MECHANICAL CHARACTERISTICS

•	Series	Left Operate a	Mag. Release b	Slope Diff.	Right Operate d	Release c	Diff.	L-R Diff.
	4AV*	5,4/.213	6,0/.237	0,6/.024	8,6/.337	7,9/.313	0,6/.024	2,5/.100

* Operating characteristics of the 4AV are adjusted to produce a .100±.010 dimension between the operate point on one side of the switch, to the release point on the other side. The actuator can be designed to produce a specific pulse width for timing or sequencing operations.

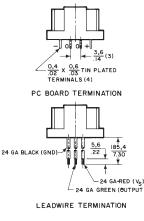
VANE DIMENSIONS (mm/in.)	Thickness	Min. Window	Min. Tooth	Min. Tooth Depth	
	1,0/.04	10,2/.40	10,2/.40	- 9.3/.37	
ן רו נייד	1,6/.06	10,2/.40	6,3/.25	- 9,3/.37	
VANE TOOTH	Vane material: Cold rolled steel, 1018 or low in carbon (annealed).				

MOUNTING DIMENSIONS (For reference only)

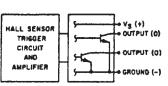
Vs (+)

OUTPUT (0)

CROUND (--)


BLOCK DIAGRAM

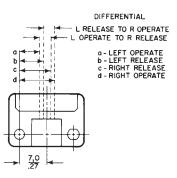
HALL SENSOR TRIGGER CIRCUIT


AND

AMPLIFIER

Leadwire

PC Board



GENERAL INFORMATION

AV vane operated integral magnet position sensors are operated by passing a ferrous vane through the gap between the Hall sensor and the magnet, shunting the magnetic flux away from the sensor. AVs can be used as limit switches by operating with a single large vane; as tachometer sensors by using toothed wheels; or as synchronizing elements by using cams or sectors. AV Series have many features in common such as:

- Operation by a low cost, easy to fabricate ferrous vane
- Magnet and sensor incorporated in ۰ same rugged package
- Sealed construction . . . unaffected by dust or dirt
- 0 to 100 kHz operating speed . . . no minimum speed of operation
- On and Off times programmable by vane dimensioning
- Precision mechanical operating characteristics

VANE OPERATION

- Integral Magnet
- 1. With no vane in the gap the output is conducting (Sinking is Low, Sourcing is High).
- 2. Vane movement from left to right. When leading edge reaches "b", the output stops conducting (Sinking goes High, Sourcing goes Low).
- 3. After leading edge reaches "b": A. If the vane moves on through the gap; when the trailing edge reaches "d", the output will be conducting.
 - B. If direction of vane travel reverses; "a", output will be conducting.
- 4. For vane movement from right to left, output is non-conducting when the leading edge reaches "c", and is conducting when the trailing edge reaches "a".