

LC²MOS Complete 14-Bit DAC

AD7840

1.1 Scope.

This specification covers the detail requirement for a monolithic CMOS 14-bit D/A converter, with output amplifier and operating off 5 V supplies. It has a fast parallel and serial microprocessor interface structure.

1.2 Part Number.

The complete part number is:

Device

Part Number¹

-1

AD7840S(X)/883B

NOTE

¹To complete the part number substitute the package identifier as shown in paragraph 1.2.3.

1.2.3 Case Outline.

See Appendix 1 of General Specification ADI-M-1000: package outline:

(X) Package

Description

Q Q-24 E E-28A 24-Pin Cerdip, 0.3" 28-Contact LCC

1.3 Absolute Maximum Ratings. (T_A = +25°C unless otherwise noted)

V _{DD} to AGND
V _{SS} to AGND +0.3 V to -7 V
AGND to DGND
AGIND to DOND
V _{OUT} to AGND
REF OUT to AGND
Digital Inputs to DGND
Operating Temperature Range55°C to +125°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering 10 sec)
Power Dissipation (Any Package)
Up to +75°C
Derates above +75°C

1.4 Recommended Operating Conditions.

Supply Voltage: $V_{\rm DD}=+5~V~\pm5\%,~V_{SS}=-5~V~\pm5\%,~AGND=DGND=0~V.$ Reference: REF IN = $+3~V,~R_{\rm L}=2~k\Omega,~C_{\rm L}=100~pF.$

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

DIGITAL-TO-ANALOG CONVERTERS 8-173

AD7840—SPECIFICATIONS

Table 1.

					T	Test Condition ¹	Т
Test	Symbol	Device	Lii Min	nits Max	Sub Groups	-55°C ≤ T _A ≤ +125°C unless otherwise specified	Unit
Resolution	RES	-1	14		1, 2, 3	Guaranteed Minimum Resolution	Bits
Signal-to-Noise Ratio ²	SNR	-1	76		4, 5, 6	$V_{OUT} = 1.0 \text{ kHz Sine Wave}$ $f_{SAMPLE} = 100 \text{ kHz}$ $V_{OUT} = \pm 3.0 \text{ V p-p}$	dB
Total Harmonic Distortion	THD	-1		-78	4, 5, 6		dB
Peak Harmonic or Spurious Noise	HP	-1		-78	4, 5, 6		₫B
Integral Nonlinearity	INL	-1		±2.0	1, 2, 3	Guaranteed Monotonic to 14 Bits	LSB
Differential Nonlinearity	DNL	-1		±0.9	1, 2, 3		LSB
Bipolar Zero Error	BZE	-1		±10	1, 2, 3		LSB
Positive Full-Scale Error ³	+FSE	-1		±10	1, 2, 3		LSB
Negative Full-Scale Error ³	-FSE	-1		±10	1, 2, 3		LSB
Reference Output Voltage ⁴	V _{REF}	-1	2.99	3.01	1	$T_A = +25^{\circ}C$	v
Reference Output Voltage Temperature Coefficient	ΔV _{OUT}	-1		±60	2, 3		ppm/°C
Reference Load Change	ΔV _{OUT} /ΔI _{OUT}	-1	3.3	-1.0	1, 2, 3	I _{OUT} = 0 μA to 500 μA	mV
Reference Input Voltage Range ⁵	V _{REF}	-1	2.85	3.15	1, 2, 3		v
Reference Input Current	I _{REF}	- I	Carrie	50	1, 2, 3	At 2.85 V to 3.15 V	μА
Input Logic High Voltage	V _{INH}	-1	2.4	*	7, 8		v
Input Logic Low Voltage	V _{INL}	-1		0.8	7, 8		v
Input Current	I _{IN}	-1		±10	1, 2, 3	$V_{IN} = 0 \text{ V to } V_{DD}$	μА
Input Currrent (CS) Input Only)	$I_{IN(\overline{CS})}$	-1		±10	1, 2, 3	$V_{IN} = V_{SS}$ to V_{DD}	μА
Input Capacitance	C _{IN}	-1		10	4	$T_A = +25^{\circ}C$	pF
Voltage Output Settling Time Positive Full-Scale Change ^{6, 7}	t _{S1}	-1		4.0	9	Settling Time to Within $\pm 1/2$ LSB LSB of Final Value, $T_A = +25^{\circ}C$	μs
Voltage Output Settling Time Negative Full-Scale Change ^{6, 7}	t _{S2}	-1		4.0	9	Settling Time to Within $\pm 1/2$ LSB LSB of Final Value, $T_A = +25^{\circ}C$	μs
Supply Current	I_{DD}	-1	-	15	1, 2, 3	Outputs Unloaded, SCLK = +5.0 V	mA
	I _{SS}	!		7.0			
CS to WR Setup Time ^{6, 7}	tı	-1	0		9, 10, 11	Input $tr = tf = 5.0 \text{ ns} (10\% \text{ to } 90\%)$	ns
CS to WR Hold Time ^{6, 7}	t ₂	-	0			of 5.0 V), Timing Voltage Reference Level = 1.6 V	
WR Pulse Width	t ₃		50			22.00	
Data Valid to WR Setup Time	t ₄		28				
Data Valid to WR Hold Time	t ₅	t	15				
LDAC Pule Width ^{6, 7}	t ₆	ŀ	40		1		
SYNC to SCLK Falling Edge ^{6, 7}	t ₇	ŀ	50				
SCLK Cycle Time ^{6, 7}	t ₈		200				
Data Valid to SCLK Setup Time ^{6, 7}	t ₉	İ	40				
Data Valid to SCLK Hold Time ^{6, 7}	t ₁₀	ŀ	100				
SYNC to SCLK Hold Time ^{6, 7}	t ₁₁	ŀ	100	-			

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

8-174 DIGITAL-TO-ANALOG CONVERTERS

REV. B

 $^{1}V_{\rm DD}$ = +4.75 V to +5.25 V, $V_{\rm SS}$ = -4.75 V to -5.25 V; AGND = DGND = 0 V, REF IN = +3.0 V, $R_{\rm L}$ = 2.0 k Ω , and $C_{\rm L}$ = 100 pF unless otherwise specified. 2 SNR calculation includes distortion and noise components.

³Measured with respect to REF IN and includes bipolar offset error.

- The maximum recommended capacitance on REF OUT for normal operation is 50 pF. If the reference is required for external use, it should be decoupled to AGND with a 200 Ω resistor in series with a parallel combination of a 10 μF tantalum capacitor and a 0.1 μF ceramic capacitor.
- ⁵This is the allowed range for REF IN. All tests are performed with REF IN = +3 V as described in Note 1.

6If not tested, shall be guaranteed to the limits specified in Table 1.

3.2.1 Functional Block Diagram and Terminal Assignments.

3.2.4 Microcircuit Technology Group.

This microcircuit is covered by technology group (80).

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

⁷Measured only for the initial die release and after process or design changes which might affect this parameter.

AD7840

4.2.1 Life Test/Burn-In Circuit.

Steady state life test is per MIL-STD-883 Method 1005. Burn-in is per MIL-STD-883 Method 1015 test condition (B).

NOTE: ONE DECOUPLING CAPACITOR REQUIRED PER ROW (0.1 $\mu F)$ FROM BOTH V_{DD} AND V_{88} to GND.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

8-176 DIGITAL-TO-ANALOG CONVERTERS

REV. B