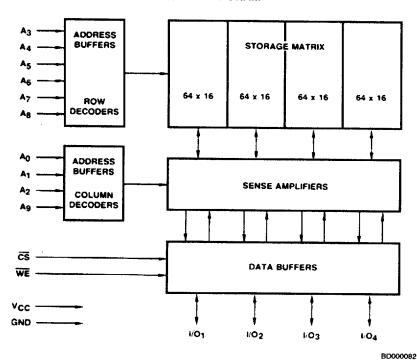
Am9114/Am91L14

1024x4 Static RAM

DISTINCTIVE CHARACTERISTICS


- Low operating and standby power
- Access times down to 200 ns
- Am9114 is a direct plug-in replacement for 2114
- High output drive: 3.2-mA sink current @ 0.4 V
- TTL-identical input/output levels

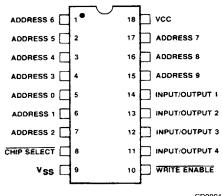
GENERAL DESCRIPTION

The Am9114/Am91L14 Series are high-performance, static, N-Channel, read/write, random-access memories organized as 1024 x 4. Operation is from a single 5-V supply, and all input/output levels are identical to standard TTL specifications. Low-power version is available with power savings of over 30%.

Data readout is not destructive and the same polarity as data input. CS provides for easy selection of an individual package when the outputs are OR-tied. The outputs of 3.2 mA for Am9114 provides increased short-circuit current for improved capacitive drive.

BLOCK DIAGRAM

8077984 0000018 321 📟

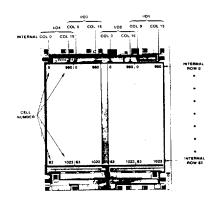

PRODUCT SELECTOR GUIDE

Part Number			Am911	Am9114/91L14		
Speed Indicator Maximum Access Time (ns)			В	С	Ε	
			450	300	200	
2 7000	ICC (mA)	Standard	70	70	70	
0 to +70°C		Low-Power	50	50	50	
		Standard	80	80	80	
-55 to +125°C	ICC (MA)	Low-Power	60	60	60	

CONNECTION DIAGRAM

Top View

DIPs



CD000132

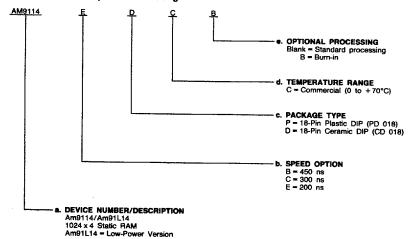
Note: Pin 1 is marked for orientation.

METALLIZATION AND PAD LAYOUT

Address Designators					
External	Internal				
A ₀	A ₉				
A ₁	A ₈				
A ₂	A ₇				
A3	Α0				
A ₄	A ₁				
A 5	A ₂				
A ₆	A ₃				
A ₇	A ₄				
A ₈	A ₅				
Ag	A ₆				

8077984 0000019 268 📟 ^

Am9114/Am91L14


4-27

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number

- b. Speed Option (if applicable)
 - c. Package Type
 - d. Temperature Range
- e. Optional Processing

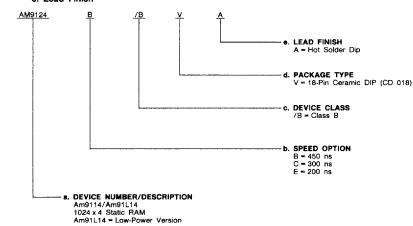
Valid	Combinations
AM9114B	
AM91L14B	
AM9114C	PC, PCB,
AM91L14C	DC, DCB
AM9114E	
AM91L14E	_

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult MSIS sales department to confirm availability of specific valid combinations, and to obtain additional data on MSIS's standard military grade products.

8077984 0000020 TAT **=**

4-28


Am9114/Am91L14

MILITARY ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) is formed by a combination of: a. Device Number

- b. Speed Option (if applicable)
- c. Device Class
- d. Package Type
- e. Lead Finish

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult MSIS sales department to confirm availability of specific valid combinations, and to obtain additional data on MSIS's standard military grade products.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

8077984 0000021 916

PIN DESCRIPTION

A₀ - A₉ Address Inputs

The address input lines select the memory location from which to read or write.

CS Chip Select (Input, Active LOW)

The CS line selects the memory device for active operation.

WE Write Enable (Input, Active LOW)
When both CS and WE are LOW, data on the input lines is written to the location presented on the address input lines.

I/O₁ - I/O₄ Data In/Out Bus (Bidirectional)
These lines provide the path for data to be written to or read from the selected memory location.

Vcc Power Supply

Ground

TABLE 1. SUPPLY CURRENT ADVANTAGE

		Worst Case Current (mA at 0°C)				
Configuration	Part	100%	50%			
	Number	Duty Cycle	Duty Cycle			
2K x 8	9114	280	280			
	91L14	200	200			
4K x 12	9114	840	840			
	91L14	600	600			
8K x 16	9114	2240	2240			
	91L14	1600	1600			

ABSOLUTE MAXIMUM RATINGS (Note 1) Storage Temperature-65 to +150°C Ambient Temperature with Power Applied -55 to +125°C Supply Voltage -0.5 V to +7.0 V Signal Voltages with Respect to Ground......-0.5 V to +7.0 V Power Dissipation1.0 W

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGES (Note 2)

Commercial (C) Devices Ambient Temperature (T _A)	;
Military (M) Devices* Case Temperature (T _C)55°C to +125°C Supply Voltage (V _{CC})+4.5 V to +5.5 V	;

Operating ranges define those limits between which the functionality of the device is guaranteed.

*Military products 100% tested at T_C = + 25°C, + 125°C and -55°C.

DC CHARACTERISTICS over operating ranges unless otherwise specified (for APL Products, Group A, Subgroups 1. 2. 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description		Test Conditions			Max.	Unit
1он	Output HIGH Current	V _{CC} = +4.5V V _{OH} = 2.4V	91(L)14	_)14			
		1, 0,41/	T _A = 70°C	91(L)14	3.2		mA
_j Or	Output LOW Current	V _{OL} = 0.4V	$T_A = + 125$ °C	91(L)14	2.4		
V _{IH}	Input HIGH Voltage				2.0	Vcc	v
VIL	Input LOW Voltage			-0.5	0.8		
lix	Input Load Current	V _{SS} < V _{IN} < V _{CC}					
-1/2	-	V _{SS} ≤ V _O ≤ V _{CC}	T _A = 0 to +70°C		-10	10	μА
loz	Output Leakage Current	Output Disabled	TA = -55 to +	TA = -55 to +125°C		50	
			91(L)14C			75	mA.
los	Output Short Circuit Current	(Note 3)	91(L)14M			75	1
	Operating Supply Current	Vcc = Max.		Standard devices	Τ΄	70	
			T _A = 0°C	L devices		50	m.A
lcc		V _{CC} = Max. CS ≤ V _{IL}	T _A = -55°C	-55°C Standard devices L devices		80 60	
C _{IN}	Input Capacitance	(Note 7)	f = 1.0 MHz, T _A = 25°C, All pins at 0V			7	pF
CI/O	1/O Capacitance	(NOTE 7)				7	

Notes: 1. Absolute Maximum Ratings are intended for user guidelines and are not tested.

Australia meaning and interface on user guidelines and are not tested.
 For test and correlation purposes, ambient temperature is defined as the "Instant-ON" case temperature.
 For test purposes, not more than one output at a time should be shorted. Short-circuit test duration should not exceed 30 seconds. Actual

 For test purposes, not more than one output at a time should be shorted. Shot testing is performed for only 5 ms.
 Test conditions assume signal transition time of 10 ns or less, timing reference levels of 1.5 V, output loading of the specified loL/IOH plus 100 pF or plus 5 pF for Tox, Torp and Torw.
 The internal write time of the memory is defined by the overlap of CS LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal lates the data with the signal can be referenced to the rising edge of the signal lates the signal can be referenced to the rising edge of the signal lates the signal late that terminates the write.

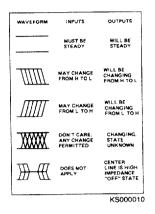
The specified address access time will be valid only when Chip Select is low soon enough for too to elapse.

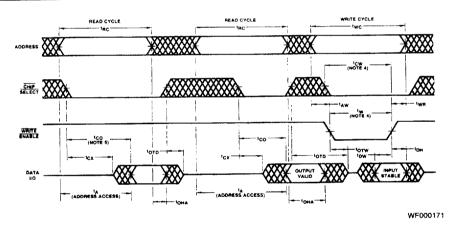
These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where these

parameters may be affected.

8. Transition is measured from 1.5 V on the input to (V_{OH} -500 mV) and (V_{OL} +500 mV) on the output.

🖪 8077984 0000023 799


SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted) (Notes 4-6)


				B Devices		C Devices		E Devices	
No.	Parameter Symbol	Parameter Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
R	EAD CYCLE			•	•	1			
1	^t RC	Address Valid to Address Do Not Care Time (Read Cycle Time)	450		300		200		ns
2	t _A	Address Valid to Data Out Valid Delay (Address Access Time)		450		300		200	ns
3	tco	Chip Select LOW to Data Out Valid (Note 6)		120		100		70	ns
4	tcx	Chip Select LOW to Data Out On (Notes 7, 8)	10		10		10		ns
5	tото	Chip Select HIGH to Data Out Off (Notes 7, 8)		100		80		60	ns
6	toha .	Output hold after address change	50		50		50		ns
W	RITE CYCLE								
7	twc	Address Valid to Address Do Not Care Time (Write Cycle Time)	450		300		200		ns
В	tw	Write Enable LOW to Write Enable HIGH Time (Note 5)	200		150		120		ns
9	twa	Write Enable HIGH to Address Do Not Care Time	0		0		0		ns
10	toTw	Write Enable LOW to Data Out Off Delay (Notes 7, 8)		100		80		60	ns
11	tow	Data In Valid to Write Enable HIGH Time	200		150		120		лs
12	tDH	Write Enable HIGH to Data In Do Not Care Time	0		0		0		ns
13	taw	Address Valid to Write Enable LOW Time	0		0		0		ns
14	tcw	Chip Select LOW to Write Enable HIGH Time (Note 5)	200		150		120		90

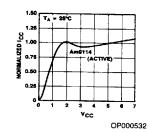
Notes: See notes following DC Characteristics table.

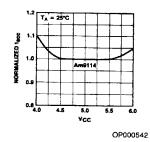
SWITCHING WAVEFORMS

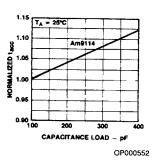
KEY TO SWITCHING WAVEFORMS

Notes: See notes following DC Characteristics table.

8077984 0000025 561 📟

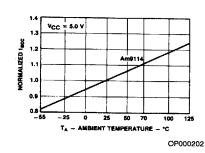

4-33

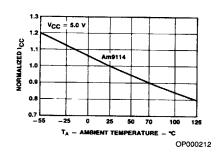

TYPICAL PERFORMANCE CURVES


Normalized Supply Current

Normalized Access Time Versus Supply Voltage Versus Supply Voltage

Normalized Access Time **Versus Output Loading**





Normalized Access Time Versus Ambient Temperature

Normalized Supply Current Versus Ambient Temperature

