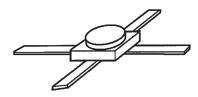


Cascadable Silicon Bipolar MMIC Amplifier

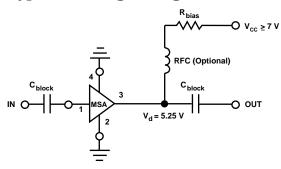
Technical Data

MSA-0470

Features


- Cascadable 50 Ω Gain Block
- **3 dB Bandwidth:** DC to 4.0 GHz
- 12.5 dBm Typical P_{1 dB} at 1.0 GHz
- 8.5 dB Typical Gain at 1.0 GHz
- Unconditionally Stable (k>1)
- Hermetic Gold-ceramic Microstrip Package

Description


The MSA-0470 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a hermetic, high reliability package. This MMIC is designed for use as a general purpose 50 Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.

The MSA-series is fabricated using Agilent's 10 GHz f_T , 25 GHz f_{MAX} , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

70 mil Package

Typical Biasing Configuration

MSA-0470 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]				
Device Current	100 mA				
Power Dissipation ^[2,3]	650 mW				
RF Input Power	+13 dBm				
Junction Temperature	200°C				
Storage Temperature	-65 to 200°C				

Thermal Resistance^[2,4]:

 $\theta_{jc} = 115^{\circ}C/W$

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25^{\circ}C.$
- 3. Derate at 8.7 mW/°C for $T_C > 125^{\circ}C$.
- 4. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASURE-MENTS section "Thermal Resistance" for more information.

Parameters and Test Conditions: I_{d} = 50 mA, Z_{0} = 50 Ω Symbol Units Min. Typ. Max. Gp Power Gain $(|S_{21}|^2)$ f = 0.1 GHzdB 7.5 8.5 9.5 ΔG_P **Gain Flatness** f = 0.1 to 2.5 GHz dB ± 0.6 ± 1.0 3 dB Bandwidth GHz 4.0 f3 dB Input VSWR f = 0.1 to 2.5 GHz 1.7:1 VSWR Output VSWR f = 0.1 to 2.5 GHz 2.0:1 NF 50 Ω Noise Figure f = 1.0 GHzdB 6.5 $P_{1 \, dB}$ Output Power at 1 dB Gain Compression f = 1.0 GHzdBm 12.5 Third Order Intercept Point f = 1.0 GHz25.5 IP₃ dBm **Group Delay** f = 1.0 GHz125 tD psec V_{d} **Device Voltage** V 4.75 5.25 5.75 dV/dT **Device Voltage Temperature Coefficient** mV/°C -8.0

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Note:

1. The recommended operating current range for this device is 30 to 70 mA. Typical performance as a function of current is on the following page.

Freq. GHz	S ₁₁		S ₂₁		S ₁₂			S ₂₂		
	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	.18	179	8.5	2.67	176	-16.4	.151	1	.10	-14
0.2	.18	179	8.5	2.67	172	-16.4	.151	2	.10	-30
0.4	.18	179	8.5	2.67	163	-16.4	.152	3	.13	-50
0.6	.17	-179	8.5	2.65	155	-16.2	.155	5	.16	-67
0.8	.16	-176	8.4	2.64	147	-16.1	.158	8	.19	-79
1.0	.16	-174	8.3	2.61	138	-15.9	.161	6	.22	-90
1.5	.16	-166	8.2	2.56	117	-15.5	.169	9	.29	-111
2.0	.21	-163	7.8	2.46	97	-14.6	.186	9	.33	-131
2.5	.26	-162	7.3	2.33	83	-13.8	.204	12	.36	-142
3.0	.32	-170	6.5	2.12	65	-13.5	.212	10	.40	-156
3.5	.37	-177	5.7	1.93	38	-13.2	.220	7	.40	-164
4.0	.40	175	4.7	1.73	33	-12.6	.234	3	.40	-170
4.5	.41	166	3.9	1.57	20	-12.4	.239	-1	.39	-173
5.0	.42	155	3.1	1.44	7	-11.9	.255	-6	.37	-176

MSA-0470 Typical Scattering Parameters (Z₀ = 50 Ω , T_A = 25°C, I_d = 50 mA)

A model for this device is available in the DEVICE MODELS section.

Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

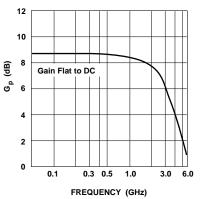
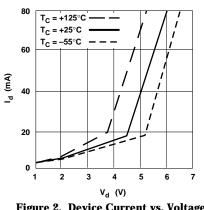



Figure 1. Typical Power Gain vs. Frequency, T_A = 25°C, I_d = 50 mA.

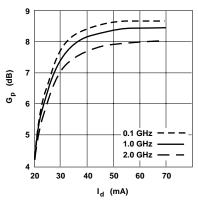


Figure 2. Device Current vs. Voltage.

7.5

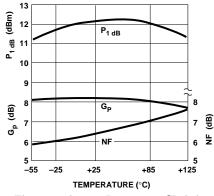


Figure 4. Output Power at 1 dB Gain **Compression, NF and Power Gain vs.** Case Temperature, f = 1.0 GHz, $I_{d} = 50 \text{ mÅ}.$

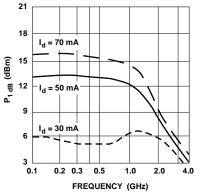


Figure 5. Output Power at 1 dB Gain **Compression vs. Frequency.**

7.0 NF (dB) 6.5 6.0 I_d = 30 mA

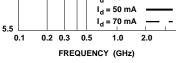
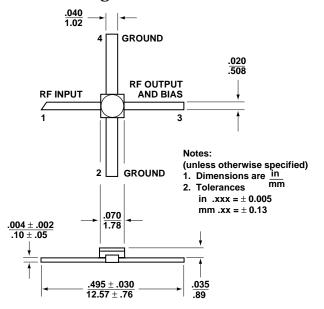



Figure 6. Noise Figure vs. Frequency.

70 mil Package Dimensions

www.semiconductor.agilent.com Data subject to change. Copyright © 1999 Agilent Technologies Obsoletes 5965-9576E 5966-4952E (11/99)