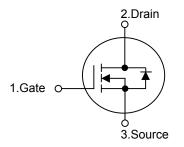


UNISONIC TECHNOLOGIES CO., LTD

4N70

Power MOSFET

4 Amps, 700 Volts **N-CHANNEL POWER MOSFET**

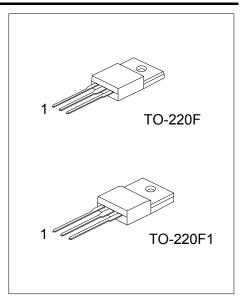

DESCRIPTION

The UTC 4N70 is a high voltage MOSFET and is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and high rugged avalanche. This high speed switching power MOSFET is usually used in power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.

FEATURES

- * $R_{DS(ON)}$ = 2.8 Ω @V_{GS} = 10 V
- * Ultra Low Gate Charge (Typical 15 nC)
- * Low Reverse Transfer Capacitance (C_{RSS} = Typical 8.0 pF)
- * Fast Switching Capability
- * Avalanche Energy Specified
- * Improved dv/dt Capability, High Ruggedness

SYMBOL



ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Deaking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
4N70L-TF1-T	4N70G-TF1-T	TO-220F1	G	D	S	Tube	
4N70L-TF3-T	4N70G-TF3-T	TO-220F	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

4N70L- <u>TF1-T</u>	(1) Packing Type (2) Package Type (3) Lead Free	(1) T: Tube (2) TF1: TO-220F1, TF3: TO-220F (3) G: Halogen Free, L: Lead Free
---------------------	---	---

■ **ABSOLUTE MAXIMUM RATINGS** (Ta = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	700	V
Gate-Source Voltage		V _{GSS}	±30	V
Avalanche Current (Note 2)		I _{AR}	4.4	А
Drain Current	Continuous	ID	4.0	А
	Pulsed (Note 2)	I _{DM}	16	А
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	260	mJ
	Repetitive (Note 2)	E _{AR}	10.6	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	4.5	V/ns
Power Dissipation		PD	36	W
Junction Temperature		ТJ	+150	°C
Operating Temperature		T _{OPR}	-55 ~ +150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Repetitive Rating : Pulse width limited by maximum junction temperature

3. L = 30mH, I_{AS} = 4A, V_{DD} = 50V, R_G = 25 $\Omega,$ Starting T_J = 25°C

4. I_{SD} \leq 4.4 A, di/dt \leq 200 A/\mu s, V_{DD} \leq BV_{DSS}, Starting T_J = 25°C

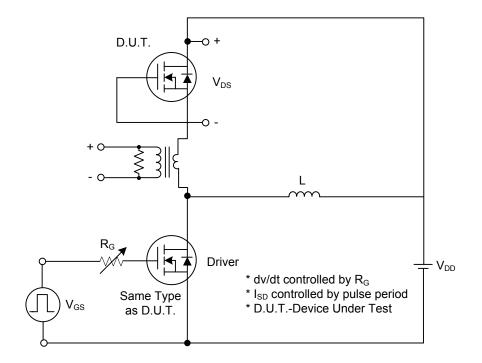
THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	62.5	°C/W	
Junction to Case	θ_{Jc}	3.47	°C/W	

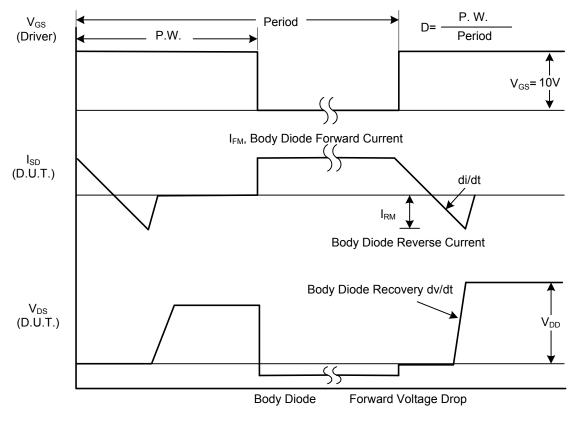
■ **ELECTRICAL CHARACTERISTICS** (Ta = 25°C, unless otherwise specified)

		· ·	, , , , , , , , , , , , , , , , , , , ,				
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	V _{GS} = 0 V, I _D = 250 μA	700			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} = 700 V, V _{GS} = 0 V			10	μA
Gate-Source Leakage Current	Forward	I _{GSS}	V _{GS} = 30 V, V _{DS} = 0 V			100	
	Reverse		V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
Breakdown Voltage Temperature		ΔBVDSS	L = 250 uA Deferenced to 25°C		0.6		V/°C
Coefficient		TJ	I_D = 250 µA, Referenced to 25°C		0.6		V/ C
ON CHARACTERISTICS							
Gate Threshold Voltage		V _{GS(TH)}	V _{DS} = V _{GS} , I _D = 250 μA	2.0		4.0	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} = 10 V, I _D = 2.2 A			2.8	Ω
DYNAMIC CHARACTERISTICS							
Input Capacitance		C _{ISS}	V _{DS} = 25 V, V _{GS} = 0 V, f = 1MHz		520	670	рF
Output Capacitance		Coss			70	90	рF
Reverse Transfer Capacitance		C _{RSS}			8	11	pF
SWITCHING CHARACTERISTIC	S						
Turn-On Delay Time		t _{D(ON)}			13	35	ns
Turn-On Rise Time		t _R	V_{DD} = 350V, I_D = 4.0A, R_G = 25 Ω		45	100	ns
Turn-Off Delay Time		t _{D(OFF)}	(Note 1, 2)		25	60	ns
Turn-Off Fall Time		t⊧			35	80	ns
Total Gate Charge		Q_{G}			15	20	nC
Gate-Source Charge		Q_{GS}	V_{DS} = 560V, I_{D} = 4.0A, V_{GS} = 10 V		3.4		nC
Gate-Drain Charge		Q_{GD}	(Note 1, 2)		7.1		nC

■ ELECTRICAL CHARACTERISTICS(Cont.)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS								
Drain-Source Diode Forward Voltage	V _{SD}	$V_{GS} = 0 V, I_{S} = 4.4 A$			1.4	V		
Maximum Continuous Drain-Source Diode Forward Current	Is				4.4	А		
Maximum Pulsed Drain-Source Diode Forward Current	I _{SM}				17.6	А		
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 V, I_S = 4.4 A,$		250		ns		
Reverse Recovery Charge	Q _{RR}	dl/dt = 100 A/µs (Note 1)		1.5		μC		

Notes: 1. Pulse Test: Pulse width≤300µs, Duty cycle≤2%


2. Essentially independent of operating temperature

TEST CIRCUITS AND WAVEFORMS

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

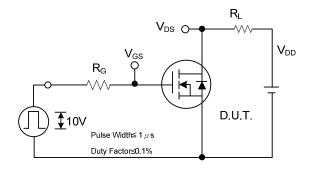


Fig. 2A Switching Test Circuit

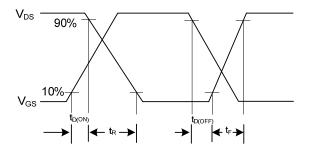


Fig. 2B Switching Waveforms

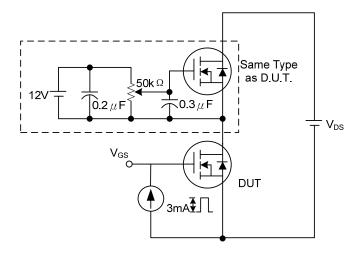


Fig. 3A Gate Charge Test Circuit

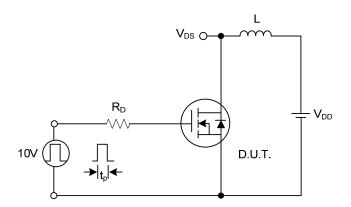
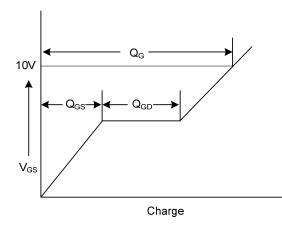



Fig. 4A Unclamped Inductive Switching Test Circuit

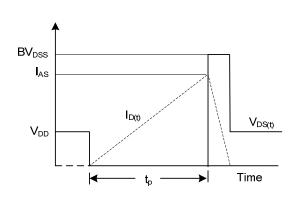
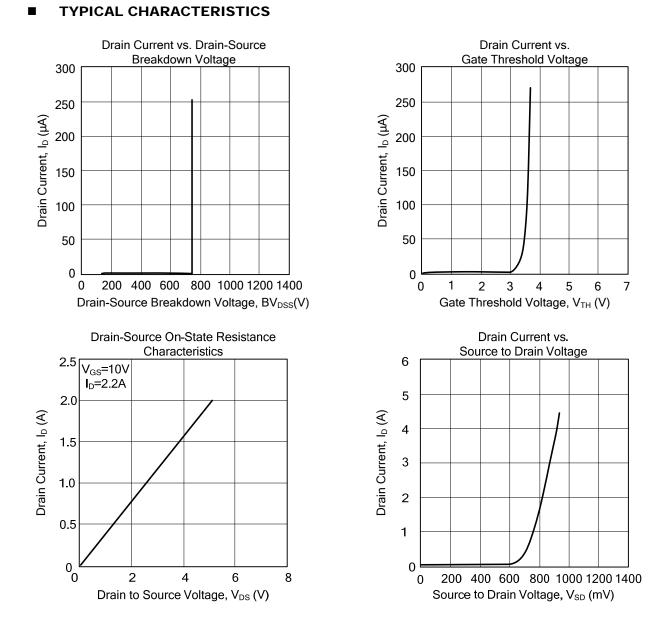



Fig. 4B Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

