

APPROVALS

- UL recognised, File No. E91231

DESCRIPTION

These diode-darlington optocouplers use a light emitting diode and an integrated high gain photon detector to provide 2500 Volts ${ }_{\text {RMS }}$ electrical isolation between input and output. Seperate connection for the photodiode bias and output darlington collector improve the speed up to a hundred times that of a conventional photo-darlington coupler by reducing the base-collector capacitance.

FEATURES

- High speed - DC to 300kBits/s operation
- High Common Mode Transient Immunity $10 \mathrm{kV} / \mu \mathrm{s}$ typical
- TTL Compatible - $0.1 \mathrm{~V}_{\mathrm{oL}}$ typical
- Base access allows Gain Bandwidth Adjustment
- Low Input Current Requirement -0.5 mA
- High Current Transfer Ratio - 2000\% typ.
- Open Collector Output
- $2500 \mathrm{~V}_{\text {rMs }}$ Withstand Test Voltage, 1 min
- 6N139 has improved noise shield which gives superior common mode rejection
- Options :-

10 mm lead spread - add G after part no. Surface mount - add SM after part no.
Tape\&reel - add SMT\&R after part no.

- All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS

- Line receivers
- Digital logic ground isolation
- Telephone ring detector
- Current loop receiver

ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$ unless otherwise specified)

```
Storage Temperature
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Operating Temperature
``` \(\qquad\)
``` \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) Lead Soldering Temperature
( \(1 / 16\) inch ( 1.6 mm ) from case for 10 secs ) \(260^{\circ} \mathrm{C}\)
```


INPUT DIODE

Average Forward Current $20 \mathrm{~mA}(1)$ Peak Forward Current 40 mA (50\% duty cycle, 1 ms pulse width)	1.0 A
Peak Transient Current (equal to or less than $1 \mu \mathrm{~s}$ P.W., 300 pps$)$	5 V
Reverse Voltage Power Dissipation	$35 \mathrm{~mW}(2)$

DETECTOR

Output Current	$60 \mathrm{~mA}(3)$
Emitter-base Reverse Voltage	5 V
Supply and Output Voltage	
6N138	-0.5 to +7 V
6N139	-0.5 to +18 V
Power Dissipation	$100 \mathrm{~mW}(4)$

ISOCOM COMPONENTS LTD

Unit 25B, Park View Road West,
Park View Industrial Estate, Brenda Road Hartlepool, Cleveland, TS25 1YD
Tel: (01429) 863609 Fax :(01429) 863581

ISOCOM INC

1024 S. Greenville Ave, Suite 240, Allen, TX 75002 USA
Tel:(214)495-0755 Fax:(214) 495-0901
e-mail info@isocom.com http://www.isocom.com

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Unless otherwise noted)

PARAMETER	SYM	DEVICE	MIN	TYP*	MAX	UNITS	TEST CONDITION
Current Transfer Ratio (note 5, 6)	CTR	6N139	400	2000		\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$
		6N139	500	2000		\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$
		6N138	300	2000		\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$
Logic Low Output Voltage (note 6)	$\mathrm{V}_{\text {oL }}$	6N139		0.1	0.4	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=6.4 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$
		6N139		0.1	0.4	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=15 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$
		6N139		0.1	0.4	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$
		6N138		0.1	0.4	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=4.8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$
Logic High Output Current (note 6)	I_{OH}	6N139		0.1	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V} \end{aligned}$
		6N138		0.001	250	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V} \end{aligned}$
Logic Low Supply Current (note 6)	$\mathrm{I}_{\text {CLL }}$			0.2		mA	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { open } \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$
Logic High Supply Current (note 6)	$\mathrm{I}_{\text {CCH }}$			10		$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=\text { open } \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$
Input Forward Voltage	V_{F}			1.45	1.7	V	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Temperature Coefficient of Forward Voltage	$\frac{\Delta \mathrm{V}_{\mathrm{F}}}{\Delta \mathrm{~T}_{\mathrm{A}}}$			-1.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$
Input Reverse Voltage	V_{R}		5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Input Capacitance	$\mathrm{C}_{\text {IN }}$			60		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0$
Input-output Isolation Voltage	$\mathrm{V}_{\text {ISO }}$		2500	5000		$\mathrm{V}_{\text {RMS }}$	R.H.equal to or less than $50 \%, \mathrm{t}=1 \mathrm{~min} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Resistance (Input to Output) (note 7)	$\mathrm{R}_{\mathrm{t} \text { - }}$			10^{12}		Ω	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{~V} \mathrm{dc}$
Capacitance (Input to Output) (note 7)	$\mathrm{C}_{\text {I-O }}$			0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$

* All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SWITCHING SPECIFICATIONS AT $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}\left(\mathrm{V}_{\mathrm{CC}}=\mathbf{5 V}\right.$ Unless otherwise noted $)$

PARAMETER	SYM	DEVICE	MIN	TYP	MAX	UNITS	TESTCONDITION
Propagation Delay Time to Logic Low at Output (fig 1)(note6, 8)	$\mathrm{t}_{\text {PHL }}$	6N139 6N139 6N138		$\begin{aligned} & 5.0 \\ & 0.2 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 25 \\ & 1 \\ & 10 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega \\ & \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=270 \Omega \\ & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega \end{aligned}$
Propagation Delay Time to Logic High at Output (fig 1)(note6,8)	$\mathrm{t}_{\text {PLH }}$	$\begin{array}{\|l} \text { 6N139 } \\ \text { 6N139 } \\ \text { 6N138 } \end{array}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 60 \\ & 7 \\ & 35 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega \\ & \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=270 \Omega \\ & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega \end{aligned}$
Common Mode Transient Immunity at Logic High Level Output (fig 2)(note9)	CM_{H}		1000	10000		V/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega \end{aligned}$
Common Mode Transient Immunity at Logic Low Level Output (fig 2)(note9)	CM_{L}		-1000	-10000		V/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega \end{aligned}$

NOTES:-

1. Derate linearly above $50^{\circ} \mathrm{C}$ free air temperature at a rate of $0.4 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $50^{\circ} \mathrm{C}$ free air temperature at a rate of $0.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $25^{\circ} \mathrm{C}$ free air temperature at a rate of $0.7 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $25^{\circ} \mathrm{C}$ free air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, I_{O}, to the forward LED input current, I_{F} times 100%.
6. Pin 7 open.
7. Device considered a two-terminal device: pins $1,2,3$, and 4 shorted together and pins $5,6,7$ and 8 shorted together.
8. Use of a resistor between pin 5 and 7 will decrease gain and delay time.
9. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dVcm} / \mathrm{dt}$ on the leading edge of the common mode pulse V_{CM} to assure that the output will remain in a Logic High state (i.e. $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dVcm} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM} to assure that the output will remain in Logic Low state (i.e. $\mathrm{V}_{\mathrm{o}}<0.8 \mathrm{~V}$).

FIG. 1 SWITCHING TEST CIRCUIT

FIG. 2 TEST CIRCUIT FOR TRANSIENT IMMUNITY AND TYPICAL WAVEFORMS

Output Current vs. Output Voltage

Supply Current vs.
Forward Current

