16-bit Proprietary Microcontroller

CMOS

F2MC-16LX MB90480/485 Series

MB90F481/F482/487B/488B/483C MB90F488B/F489B/V480/V485B

■ DESCRIPTION

The MB90480/485 series is a 16-bit general-purpose FUJITSU microcontroller designed for process control in consumer devices and other applications requiring high-speed real-time processing.

The F²MC-16LX CPU core instruction set retains the AT architecture of the F²MC*¹ family, with additional instructions for high-level languages, expanded addressing mode, enhanced multiply-drive instructions, and complete bit processing. In addition, a 32-bit accumulator is provided to enable long-word processing.

The MB90480/485 series features embedded peripheral resources including 8/16-bit PPG, expanded I/O serial interface, UART, 10-bit A/D converter, 16-bit I/O timer, 8/16-bit up/down-counter, PWC timer, I²C*² interface, DTP/ external interrupt, chip select, and 16-bit reload timer.

- *1: F2MC is the abbreviation for FUJITSU Flexible Microcontroller.
- *2 : Purchase of Fujitsu I²C components conveys a license under the Philips I²C Patent Rights to use, these components in an I²C system provided that the system conforms to the I²C standard a Specification as defined by Philips.

■ FEATURES

Clock

Minimum instruction execution time: 40.0 ns/6.25 MHz base frequency multiplied $\times 4$ (25 MHz internal operating frequency/3.3 V \pm 0.3 V)

62.5 ns/4 MHz base frequency multiplied \times 4 (16 MHz internal operating frequency/3.0 V \pm 0.3 V) PLL clock multiplier

Maximum memory space: 16 Mbytes

(Continued)

Be sure to refer to the "Check Sheet" for the latest cautions on development.

"Check Sheet" is seen at the following support page

URL: http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

"Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

(Continued)

· Instruction set optimized for controller applications

Supported data types (bit, byte, word, or long word)

Typical addressing modes (23 types)

32-bit accumulator for enhanced high-precision calculation

Enhanced signed multiplication/division instruction and RETI instruction functions

• Instruction set designed for high-level programming language (C) and multi-task operations System stack pointer adopted

Instruction set symmetry and barrel shift instructions

- Non-multiplex bus/multiplex bus compatible
- · Enhanced execution speed
 - 4-byte instruction queue
- Enhanced interrupt functions

8 levels setting with programmable priority, 8 external interrupts

Data transfer function (μDMAC)

Up to 16 channels

Embedded ROM

Flash versions: 192 Kbytes, 256 Kbytes, 384 Kbytes, MASK versions: 192 Kbytes, 256 Kbytes

Embedded RAM

Flash versions: 4 Kbytes, 6 Kbytes, 10 Kbytes, 24 Kbytes, MASK versions: 10 Kbytes, 16 Kbytes

· General purpose ports

Up to 84 ports

(Includes 16 ports with input pull-up resistance settings, 16 ports with output open-drain settings)

A/D converter

8-channel RC sequential comparison type (10-bit resolution, 3.68 μs conversion time (at 25 MHz))

• I²C interface (MB90485 series only) : 1channel, P76/P77 N-ch open drain pin (without P-ch)

Do not apply high voltage in excess of recommended operating ranges to the N-ch open drain pin (with P-ch) in MB90V485B.

- μPG (MB90485 series only) : 1 channel
- UART: 1 channel
- Extended I/O serial interface (SIO): 2 channels
- 8/16-bit PPG: 3 channels (with 8-bit × 6 channel/16-bit × 3 channel mode switching function)
- 8/16-bit up/down counter/timer: 1 channel (with 8-bit × 2 channels/16-bit × 1-channel mode switching function)
- PWC (MB90485 series only) : 3 channels (Capable of compare the inputs to two of the three)
- 3 V/5 V I/F pin (MB90485 series only)

P20 to P27, P30 to P37, P40 to P47, P70 to P77

- 16-bit reload timer: 1 channel
- 16-bit I/O timer: 2 channels input capture, 6 channels output compare, 1 channel free run timer
- On chip dual clock generator system
- Low-power consumption mode

With stop mode, sleep mode, CPU intermittent operation mode, watch mode, timebase timer mode

- Packages : QFP 100/LQFP 100
- Process : CMOS technology
- Power supply voltage: 3 V, single power supply (some ports can be operated by 5 V power supply at MB90485 series)

■ PRODUCT LINEUP

• MB90480 series

Classification Flash memory product Evaluation product ROM size 192 Kbytes 256 Kbytes — RAM size 4 Kbytes 6 Kbytes 16 Kbytes 17 Kbytes 17 Kbytes 17 Kbytes 17 Kbytes 18 Kbytes 17 Kbytes 18 Kbytes 1	Item	Part number	MB90F481	MB90F482	MB90V480			
ROM size 192 Kbytes 256 Kbytes — RAM size 4 Kbytes 6 Kbytes 16 Kby		on	Flash memo	ory product	Evaluation product			
RAM size		<u> </u>	1					
Number of instructions : 351 Instruction bit length : 8-bit, 16-bit Instruction length : 1 byte to 7 bytes Data bit length : 1-bit, 8-bit, 16-bit Instruction length : 1-bit, 8-bit, 16-bit Minimum instruction execution time : 40 ns (25 MHz machine cloc General-purpose I/O ports: up to 84 General-purpose I/O ports (CMOS output) General-purpose I/O ports (With pull-up resistance) General-purpose I/O ports (N-ch open drain output) UART			·	<u> </u>	16 Khytes			
Instruction bit length : 8-bit, 16-bit Instruction length : 1 byte to 7 bytes Data bit length : 1-bit, 8-bit, 16-bit Minimum instruction execution time : 40 ns (25 MHz machine clock Minimum instruction execution time : 40 ns (25 MHz machine clock General-purpose I/O ports: up to 84 General-purpose I/O ports (with pull-up resistance) General-purpose I/O ports (With pull-up resista	10 10 0120		•		To Naytoo			
Ports General-purpose I/O ports (CMOS output) General-purpose I/O ports (with pull-up resistance) General-purpose I/O ports (N-ch open drain output) UART 1 channel, start-stop synchronized 8/16-bit PPG 8-bit × 6 channels/16-bit × 3 channels 8/16-bit up/down counter/timer 16-bit free run timer Output compare (ICU) DITUING capture (ICU) Principut qapture (ICU) Rewriting a register value upon a pin input (rising, falling, or both edges) DTP/external interrupt circuit Extended I/O serial interface Timebase timer 18-bit counter Interrupt cycles: 1.0 ms, 4.1 ms, 16.4 ms, 131.1 ms (at 4 MHz base oscillator) Conversion resolution: 8/10-bit, switchable One-shot conversion mode (converts selected channels) Continuous conversion mode (repeated conversion of selected channels) Stop conversion mode (conversion of selected channels) Reset generation interval: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (minimum value, at 4 MHz base oscillator) Low-power consumption (standby) modes Type Not included security function General-purpose I/O ports (with pull-up resistance) General-purpose I/O ports (N-ch open drain output) 1 channels, variation output) Seneral number of channels: 2 Rewriting a register value upon a pin input (rising, falling, or both edges) Process Conversion interrupt pin channels: 8 (edge or level detection) Embedded 2 channels 18-bit counter Interrupt cycles: 1.0 ms, 4.1 ms, 16.4 ms, 131.1 ms (at 4 MHz base oscillator) Conversion resolution: 8/10-bit, switchable One-shot conversion for multiple consecutive channels, programmable up to 8 channels) Continuous conversion mode (conversion of selected channels with repeated paus Reset generation interval: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (minimum value, at 4 MHz base oscillator) Low-power consumption (standby) modes Not included security function User pin*1, 3 V/5 V versions	CPU functi	on	Instruction bit I Instruction leng Data bit length Minimum instru	ength: 8-bit, 16-bit gth: 1 byte to 7 t : 1-bit, 8-bit, 3 uction execution time: 40	16-bit			
8-bit × 6 channels/16-bit × 3 channels 8/16-bit up/down 16-bit up/down 16-bit free run timer 18-bit cannels : 6 19-bit free run timer 18-bit cannels : 2 19-bit free run timer 19-bit free run timer 19-bit free run timer 18-bit frea run t	Ports		General-purpose I/O port General-purpose I/O port	ts (CMOS output) ts (with pull-up resistance				
Stop mode, Stop stores of CMOS Stop mode, Stop mode, Stop mode, Stop mode, Stop stores of CMOS Stop conversion mode (CMOS) Stop conversion stop mode (CMOS) Stop conversion mode (CMOS) Stop conversion mode, CMOS Stop conversion mode, Stop stores of CMOS Stop conversion mode (CMOS) Stop conversion mode, Stop stop mode, Stop stop mode, Stop stop mode, Stop stop stop mode, Stop	UART		1 channel, start-stop syn	chronized				
16-bit free run timer	8/16-bit PF	PG .	8-bit × 6 channels/16-bit	× 3 channels				
16-bit tele run timer 18-bit counter 18-writing a register value upon a pin input (rising, falling, or both edges) 18-bit counter 18-b								
Input capture		16-bit free run timer						
Input capture (ICU) Rewriting a register value upon a pin input (rising, falling, or both edges) DTP/external interrupt circuit Extended I/O serial interface Timebase timer Interrupt cycles: 1.0 ms, 4.1 ms, 16.4 ms, 131.1 ms (at 4 MHz base oscillator) Conversion resolution: 8/10-bit, switchable One-shot conversion mode (converts selected channel 1 time only) Scan conversion mode (conversion of multiple consecutive channels, programmable up to 8 channels) Continuous conversion mode (repeated conversion of selected channels with repeated paus Watchdog timer Reset generation interval: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (minimum value, at 4 MHz base oscillator) Low-power consumption (standby) modes Process Not included security function User pin*1, 3 V/5 V versions	16-bit	Output compare						
CICU Rewriting a register value upon a pin input (rising, falling, or both edges) DTP/external interrupt circuit Number of external interrupt pin channels : 8 (edge or level detection) Extended I/O serial interface Embedded 2 channels Timebase timer 18-bit counter Interrupt cycles: 1.0 ms, 4.1 ms, 16.4 ms, 131.1 ms (at 4 MHz base oscillator) Conversion resolution : 8/10-bit, switchable One-shot conversion mode (converts selected channel 1 time only) Scan conversion mode (conversion of multiple consecutive channels, programmable up to 8 channels) Continuous conversion mode (repeated conversion of selected channels with repeated paus Reset generation interval : 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (minimum value, at 4 MHz base oscillator) Stop mode, sleep mode, CPU intermittent operation mode, watch timer mod timebase timer mode CMOS User pin*1, 3 V/5 V versions	I/O timers	' '						
DTP/external interrupt circuit Extended I/O serial interface Embedded 2 channels 18-bit counter Interrupt cycles: 1.0 ms, 4.1 ms, 16.4 ms, 131.1 ms (at 4 MHz base oscillator Conversion resolution: 8/10-bit, switchable One-shot conversion mode (conversion of multiple consecutive channels, programmable up to 8 channels) Continuous conversion mode (repeated conversion of selected channels with repeated paus Watchdog timer Watchdog timer Reset generation interval: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (minimum value, at 4 MHz base oscillator) Stop mode, sleep mode, CPU intermittent operation mode, watch timer mod timebase timer mode Process Not included security function User pin*1, 3 V/5 V versions								
Extended I/O serial interface Timebase timer 18-bit counter Interrupt cycles: 1.0 ms, 4.1 ms, 16.4 ms, 131.1 ms (at 4 MHz base oscillated Conversion resolution: 8/10-bit, switchable One-shot conversion mode (converts selected channel 1 time only) Scan conversion mode (conversion of multiple consecutive channels, programmable up to 8 channels) Continuous conversion mode (repeated conversion of selected channels) Stop conversion mode (conversion of selected channels with repeated paus Watchdog timer Reset generation interval: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (minimum value, at 4 MHz base oscillator) Low-power consumption (standby) modes Process CMOS Type Not included security function User pin*1, 3 V/5 V versions		` '						
Timebase timer 18-bit counter Interrupt cycles: 1.0 ms, 4.1 ms, 16.4 ms, 131.1 ms (at 4 MHz base oscillator				upt pin channels : 8 (edg	ge or level detection)			
Interrupt cycles: 1.0 ms, 4.1 ms, 16.4 ms, 131.1 ms (at 4 MHz base oscillator Conversion resolution: 8/10-bit, switchable One-shot conversion mode (converts selected channel 1 time only) Scan conversion mode (conversion of multiple consecutive channels, programmable up to 8 channels) Continuous conversion mode (repeated conversion of selected channels with repeated paus Stop conversion mode (conversion of selected channels with repeated paus Reset generation interval: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (minimum value, at 4 MHz base oscillator) Low-power consumption (standby) modes Process Not included security function User pin*1, 3 V/5 V versions	Extended I	O serial interface	Embedded 2 channels					
A/D converter One-shot conversion mode (converts selected channel 1 time only) Scan conversion mode (conversion of multiple consecutive channels, programmable up to 8 channels) Continuous conversion mode (repeated conversion of selected channels) Stop conversion mode (conversion of selected channels with repeated paus description of selected channels with repeated paus mode) Reset generation interval: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (minimum value, at 4 MHz base oscillator) Low-power consumption (standby) modes Process CMOS Not included security function User pin*1, 3 V/5 V versions	Timebase	timer		4.1 ms, 16.4 ms, 131.1 n	ns (at 4 MHz base oscillator)			
(minimum value, at 4 MHz base oscillator) Low-power consumption (standby) modes Process Type (minimum value, at 4 MHz base oscillator) Stop mode, sleep mode, CPU intermittent operation mode, watch timer mode CMOS User pin*1, 3 V/5 V versions	A/D conve	rter	One-shot conversion mode (continuous conversion mode) Continuous conversion mode (conversion mode)	de (converts selected che conversion of multiple co programmable up to 8 che node (repeated conversion of selected che	nsecutive channels, nannels) on of selected channels) nannels with repeated pause)			
(standby) modes timebase timer mode Process CMOS Type Not included security function User pin*1, 3 V/5 V versions	Watchdog	timer	Reset generation interval					
Type Not included security function User pin*1, 3 V/5 V versions	•	-		CPU intermittent operati	on mode, watch timer mode,			
3 V/5 V versions	Process			CMOS				
Emulator power supply*2 — Included	Туре		Not included se	ecurity function				
	Emulator p	ower supply*2	_	_	Included			

^{*1:} User pin: P20 to P27, P30 to P37, P40 to P47, P70 to P77

Note : Ensure that you must write to Flash at Vcc = 3.13 V to 3.60 V (3.3 V + 10%, -5%) .

^{*2:} It is setting of Jumper switch (TOOL VCC) when emulator (MB2147-01) is used. Please refer to the MB2147-01 or MB2147-20 hardware manual (3.3 Emulator-dedicated Power Supply switching) about details.

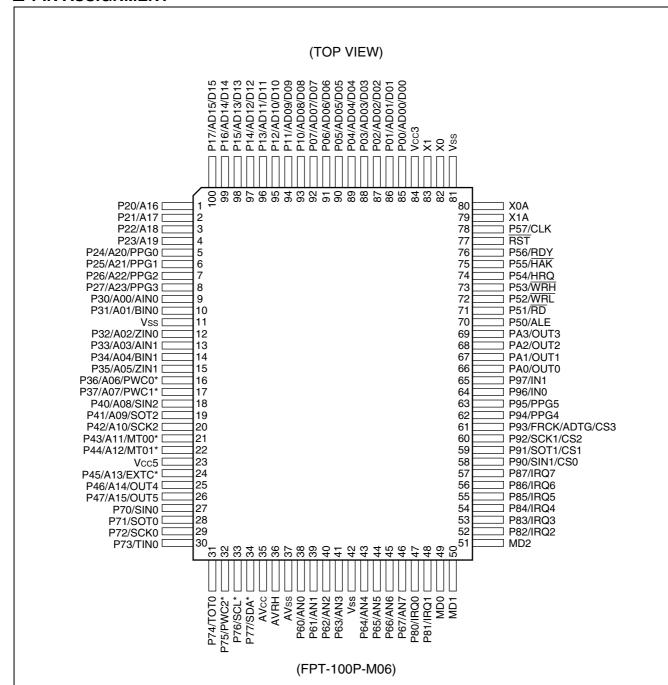
• MB90485 series

	Part number									
Item	Tarthambon	MB90487B	MB90488B	MB90F488B	MB90V485B	MB90F489B	MB90483C			
Classific	ation	MASK RO	M product	Flash memory product	Evaluation product	Flash memory product	MASK ROM product			
ROM siz	e	192 Kbytes	256 Kbytes	256 Kbytes	_	384 Kbytes	256 Kbytes			
RAM siz	е	10 Kbytes	10 Kbytes	10 Kbytes	16 Kbytes	24 Kbytes	16 Kbytes			
CPU fun	ction	Inst Inst Dat	nber of instruction bit lengruction bit length a bit length imum instruction	gth : 8-bit, : 1 byt	. 16-bit e to 7 bytes . 8-bit, 16-bit me : 40 ns (25	MHz machine	clock)			
Ports		General-purp General-purp	ose I/O ports (up to 84 CMOS output) with pull-up res N-ch open dra	sistance)					
UART		1 channel, sta	ırt-stop synchı	onized						
8/16-bit	PPG	8-bit \times 6 channels/16-bit \times 3 channels								
8/16-bit counter/		Event input pins : 6, 8-bit up/down counters : 2 8-bit reload/compare registers : 2								
	16-bit free run timer	Number of channels : 1 Overflow interrupt								
16-bit I/O timers	Output compare (OCU)	Number of ch Pin input factor		gnal of compare	e register					
	Input capture (ICU)	Number of channels : 2 Rewriting a register value upon a pin input (rising, falling, or both edges)								
DTP/exto	ernal interrupt	Number of external interrupt pin channels: 8 (edge or level detection)								
Extende interface	d I/O serial	Embedded 2 channels								
I ² C interf	ace*2	1 channel								
μPG		1 channel								
PWC		3 channels								
Timebas	e timer	18-bit counter Interrupt cycle		1 ms, 16.4 ms,	131.1 ms (at 4	MHz base ose	cillator)			
A/D con	verter	Interrupt cycles: 1.0 ms, 4.1 ms, 16.4 ms, 131.1 ms (at 4 MHz base oscillator) Conversion resolution: 8/10-bit, switchable One-shot conversion mode (converts selected channel 1 time only) Scan conversion mode (conversion of multiple consecutive channels, programmable up to 8 channels) Continuous conversion mode (repeated conversion of selected channels) Stop conversion mode (conversion of selected channels with repeated pause)								

(Continued)

(Continued)			T		T	
Part number Item	MB90487B	MB90488B	MB90F488B	MB90V485B	MB90F489B	MB90483C
Watchdog timer	Reset genera		.58 ms, 14.33 r (minimum value			
Low-power consumption (standby) modes	Stop mode, sl timer mode	eep mode, CP	U intermittent o	peration mode,	watch timer mo	ode, timebase
Process	CMOS					
Туре	3 V/5 V power supply*1	3 V/5 V power supply*1	3 V/5 V power supply*1 Included security function	3 V/5 V power supply*1	3 V/5 V power supply*1 Included security function	3 V/5 V power supply*1
Emulator power supply*3	_	_	_	Included	_	_

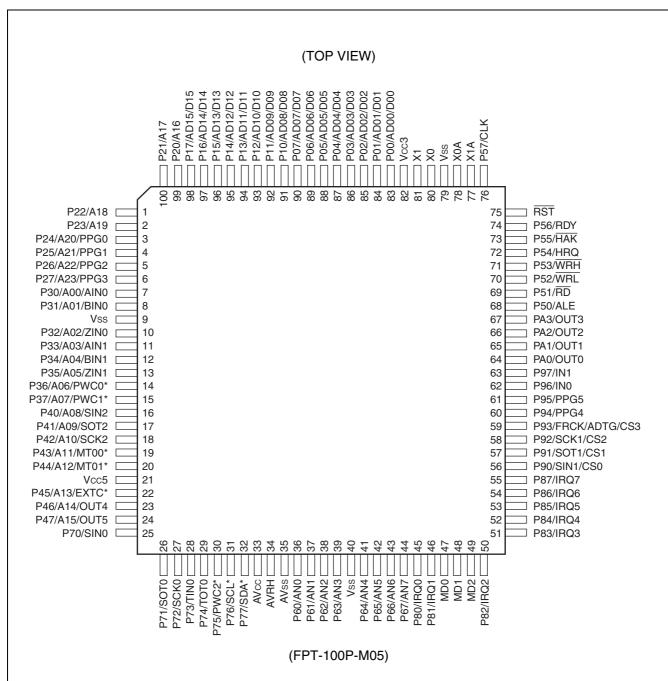
^{*1: 3} V/5 V I/F pin: All pins should be for 3 V power supply without P20 to P27, P30 to P37, P40 to P47, and P70 to P77.


Notes: • As for MB90V485B, input pins (PWC0, PWC1, PWC2/EXTC/SCL and SDA pins) for PWC/μPG/I²C become CMOS input.

 \bullet Ensure that you must write to Flash at Vcc = 3.13 V to 3.60 V (3.3 V + 10%, - 5%) .

 $^{^*2}$: P76/P77 pins are N-ch open drain pins (without P-ch) at built-in I²C. However, MB90V485B uses the N-ch open drain pin (with P-ch) .

^{*3:} It is setting of Jumper switch (TOOL VCC) when emulator (MB2147-01) is used. Please refer to the MB2147-01 or MB2147-20 hardware manual (3.3 Emulator-dedicated Power Supply Switching) about details.


■ PIN ASSIGNMENT

*: These are the pins for MB90485 series. The pins for MB90480 series are P36/A06, P37/A07, P43/A11, P44/A12, P45/A13, P75 to P77.

Note: MB90485 series only

- I²C pin P77 and P76 are N-ch open drain pin (without P-ch) . However, MB90V485B uses the N-ch open drain pin (with P-ch) .
- P20 to P27, P30 to P37, P40 to P47 and P70 to P77 are also used as 3 V/5 V I/F pin.
- As for MB90V485B, input pins (PWC0, PWC1, PWC2/EXTC/SCL and SDA pins) for PWC/μPG/I²C become CMOS input.

*: These are the pins for MB90485 series. The pins for MB90480 series are P36/A06, P37/A07, P43/A11, P44/A12, P45/A13, P75 to P77.

Note: MB90485 series only

- I²C pin P77 and P76 are N-ch open drain pin (without P-ch) . However, MB90V485B uses the N-ch open drain pin (with P-ch) .
- P20 to P27, P30 to P37, P40 to P47 and P70 to P77 are also used as 3 V/5 V I/F pin.
- As for MB90V485B, input pins (PWC0, PWC1, PWC2/EXTC/SCL and SDA pins) for PWC/ μPG/I²C become CMOS input.

■ PIN DESCRIPTIONS

Pin	No.		I/O	
QFP*1	LQFP*2	Pin name	circuit type*3	Function
82	80	X0	Α	Clock (oscillator) input pin
83	81	X1	Α	Clock (oscillator) output pin
80	78	X0A	Α	Clock (32 kHz oscillator) input pin
79	77	X1A	Α	Clock (32 kHz oscillator) output pin
77	75	RST	В	Reset input pin
		P00 to P07		This is a general purpose I/O port. A setting in the port 0 input resistance register (RDR0) can be used to apply pull-up resistance (RD00-RD07 = "1") . (Disabled when pin is set for output.)
85 to 92	83 to 90	AD00 to AD07	C (CMOS)	In multiplex mode, these pins function as the external address/data bus low I/O pins.
		D00 to D07		In non-multiplex mode, these pins function as the external data bus low output pins.
		P10 to P17		This is a general purpose I/O port. A setting in the port 1 input resistance register (RDR1) can be used to apply pull-up resistance (RD10-RD17 = "1") . (Disabled when pin is set for output.)
93 to 100	91 to 98	AD08 to AD15	C (CMOS)	In multiplex mode, these pins function as the external address/data bus high I/O pins.
		D08 to D15		In non-multiplex mode, these pins function as the external data bus high output pins.
		P20 to P23		This is a general purpose I/O port. When the bits of external address output control register (HACR) are set to "1" in external bus mode, these pins function as general purpose I/O ports.
1 to 4	99,100, 1,2	A16 to A19	E (CMOS/H)	When the bits of external address output control register (HACR) are set to "0" in multiplex mode, these pins function as address high output pins (A16-A19). When the bits of external address output control register (HACR) are set to "0" in non-multiplex mode, these pins function as address high output pins (A16-A19).
		P24 to P27		This is a general purpose I/O port. When the bits of external address output control register (HACR) are set to "1" in external bus mode, these pins function as general purpose I/O ports.
5 to 8	3 to 6	A20 to A23	E (CMOS/H)	When the bits of external address output control register (HACR) are set to "0" in multiplex mode, these pins function as address high output pins (A20-A23). When the bits of external address output control register (HACR) are set to "0" in non-multiplex mode, these pins function as address high output pins (A20-A23).
		PPG0 to PPG3		Output pins for PPG.
		P30		This is a general purpose I/O port.
9	7	A00	E (CMOS/H)	In non-multiplex mode, this pin functions as an external address pin.
		AIN0	\	8/16-bit up/down timer input pin (ch.0) .

Pin	No.	Pin	I/O		
QFP*1	LQFP*2	name	circuit type*3		Function
		P31	_	This is a	general purpose I/O port.
10	8	A01	E (CMOS/H)	In non-mı	ultiplex mode, this pin functions as an external address pin.
		BIN0	(01/100/11)	8/16-bit u	p/down timer input pin (ch.0) .
		P32	_	This is a	general purpose I/O port.
12	10	A02	E (CMOS/H)	In non-mi	ultiplex mode, this pin functions as an external address pin.
		ZIN0	(011100/11)	8/16-bit u	p/down timer input pin (ch.0)
		P33	_	This is a	general purpose I/O port.
13	11	A03	E (CMOS/H)	In non-mi	ultiplex mode, this pin functions as an external address pin.
		AIN1	(011100/11)	8/16-bit u	p/down timer input pin (ch.1) .
		P34	_	This is a	general purpose I/O port.
14	12	A04	E (CMOS/H)	In non-mi	ultiplex mode, this pin functions as an external address pin.
		BIN1	(0.11.00,11.)	8/16-bit u	p/down timer input pin (ch.1) .
		P35	_	This is a	general purpose I/O port.
15	13	A05	E (CMOS/H)	In non-mı	ultiplex mode, this pin functions as an external address pin.
		ZIN1	(0.11.00,11.)	8/16-bit u	p/down timer input pin (ch.1)
		P36, P37	D	MPOOAGO	This is a general purpose I/O port.
		A06, A07	(CMOS)	MB90480 series	In non-multiplex mode, this pin functions as an external address pin.
16, 17	14, 15	P36, P37			This is a general purpose I/O port.
10, 17	, .	A06, A07	E (CMOS/H)	MB90485 series	In non-multiplex mode, this pin functions as an external address pin.
		PWC0, PWC1*4	(000,1.1)		This is a PWC input pin.
		P40	_	This is a	general purpose I/O port.
18	16	A08	G (CMOS/H)	In non-mi	ultiplex mode, this pin functions as an external address pin.
		SIN2	(01/100/11)	Extended	I I/O serial interface input pin.
		P41		This is a	general purpose I/O port.
19	17	A09	F(CMOS)	In non-mı	ultiplex mode, this pin functions as an external address pin.
		SOT2		Extended	I I/O serial interface output pin.
		P42		This is a	general purpose I/O port.
20	18	A10	G (CMOS/H)	In non-mi	ultiplex mode, this pin functions as an external address pin.
		SCK2	(= 25.1.1)	Extended	I I/O serial interface clock input/output pin.

Pin	No.		I/O			
QFP*1	LQFP*2	Pin name	circuit type* ³		Function	
		P43, P44		14000400	This is a general purpose I/O port.	
	·	A11, A12	F(CMOS)	MB90480 series	In non-multiplex mode, this pin functions as an external address pin.	
21, 22	19, 20	P43, P44			This is a general purpose I/O port.	
,	,	A11, A12	F(CMOS)	MB90485 series	In non-multiplex mode, this pin functions as an external address pin.	
		MT00, MT01			μPG output pin.	
		P45	F	MB90480	This is a general purpose I/O port.	
		A13	(CMOS)	series	In non-multiplex mode, this pin functions as an external address pin.	
24	22	P45			This is a general purpose I/O port.	
		A13	G (CMOS/H)	MB90485 series	In non-multiplex mode, this pin functions as an external address pin.	
	·	EXTC*4			μPG input pin.	
		P46, P47		This is a	general purpose I/O port.	
25, 26	23, 24	A14, A15	F	In non-mu	ultiplex mode, this pin functions as an external address pin.	
	,	OUT4/ OUT5	(CMOS)	Output co	ompare event output pins.	
70	68	P50	D	This is a general purpose I/O port. In external bus mode, this pin functions as the ALE pin.		
70	00	ALE	(CMOS)	In external bus mode, this pin functions as the address load enable (ALE) signal pin.		
71	69	P51	D		general purpose I/O port. In external bus mode, this pin as the RD pin.	
/ 1	69	RD	(CMOS)	In externa	al bus mode, this pin functions as the read strobe output $\overline{(\overline{RD})}$.	
		P52	Б	This is a g	general purpose I/O port. In external bus mode, when the WRE EPCR register is set to "1", this pin functions as the WRL pin.	
72	70	WRL	D (CMOS)	output (V	al bus mode, this pin functions as the lower data write strobe VRL) pin. When the WRE bit in the EPCR register is set to "0", inctions as a general purpose I/O port.	
		P53	D	width, wh	general purpose I/O port. In external bus mode with 16-bit bus en the <u>WRE</u> bit in the EPCR register is set to "1", this pin as the WRH pin.	
73	71	WRH	(CMOS)	upper dat	al bus mode with 16-bit bus width, this pin functions as the a write strobe output (WRH) pin. When the WRE bit in the gister is set to "0", this pin functions as a general purpose I/O	

Pin	No.		I/O	
QFP*1	LQFP*2	Pin name	circuit type*3	Function
74	72	P54	D	This is a general purpose I/O port. In external bus mode, when the HDE bit in the EPCR register is set to "1", this pin functions as the HRQ pin.
	72	HRQ	(CMOS)	In external bus mode, this pin functions as the hold request input (HRQ) pin. When the HDE bit in the EPCR register is set to "0", this pin functions as a general purpose I/O port.
75	73	P55		This is a general purpose I/O port. In external bus mode, when the HDE bit in the EPCR register is set to "1", this pin functions as the HAK pin.
75	HAK		(CMOS)	In external bus mode, this pin functions as the hold acknowledge output (HAK) pin. When the HDE bit in the EPCR register is set to "0", this pin functions as a general purpose I/O port.
76	74	P56	D	This is a general purpose I/O port. In external bus mode, when the RYE bit in the EPCR register is set to "1", this pin functions as the RDY pin.
70	74	RDY (CMOS)		In external bus mode, this pin functions as the external ready (RDY) input pin. When the RYE bit in the EPCR register is set to "0", this pin functions as a general purpose I/O port.
78	76	P57	D	This is a general purpose I/O port. In external bus mode, when the CKE bit in the EPCR register is set to "1", this pin functions as the CLK pin.
70	70	CLK	(CMOS)	In external bus mode, this pin functions as the machine cycle clock (CLK) output pin. When the CKE bit in the EPCR register is set to "0", this pin functions as a general purpose I/O port.
38 to	36 to 39	P60 to P63	Н	These are general purpose I/O ports.
41	36 10 39	AN0 to AN3	(CMOS)	These are the analog input pins for A/D converter.
43 to	41 to 44	P64 to P67	Н	These are general purpose I/O ports.
46	41 10 44	AN4 to AN7	(CMOS)	These are the analog input pins for A/D converter.
27	25	P70	G	This is a general purpose I/O port.
21	25	SIN0	(CMOS/H)	This is the UART serial data input pin.
28	26	P71	F	This is a general purpose I/O port.
20	20	SOT0	(CMOS)	This is the UART serial data output pin.
29	27	P72	G	This is a general purpose I/O port.
29	21	SCK0	(CMOS/H)	This is the UART serial communication clock I/O pin.
30	28	P73	G	This is a general purpose I/O port.
	20	TIN0	(CMOS/H)	This is the 16-bit reload timer event input pin.
31	29	P74	F	This is a general purpose I/O port.
	23	TOT0	(CMOS)	This is the 16-bit reload timer output pin.

Pin	No.		I/O		
QFP*1	LQFP*2	Pin name	circuit type*3		Function
		P75	F (CMOS)	MB90480 series	This is a general purpose I/O port.
32	30	P75	G	MB90485	This is a general purpose I/O port.
		PWC2*4	(CMOS/H)	series	This is a PWC input pin.
		P76	F (CMOS)	MB90480 series	This is a general purpose I/O port.
33	31	P76			This is a general purpose I/O port.
	01	SCL*4	(NMOS/H)	MB90485 series	Serves as the I ² C interface data I/O pin. During operation of the I ² C interface, leave the port output in a high impedance state.
		P77	F (CMOS)	MB90480 series	This is a general purpose I/O port.
34	32	P77			This is a general purpose I/O port.
04	OL.	SDA*4	(NMOS/H)	MB90485 series	Serves as the I ² C interface data I/O pin. During operation of the I ² C interface, leave the port output in a high impedance state.
47.40	4F 4G	P80, P81	E	These are	e general purpose I/O ports.
47, 48	45, 46	IRQ0, IRQ1	(CMOS/H)	External i	interrupt input pins.
52 to 57	50 to 55	P82 to P87	E	These are	e general purpose I/O ports.
32 10 37	30 10 33	IRQ2 to IRQ7	(CMOS/H)	External i	nterrupt input pins.
		P90		This is a	general purpose I/O port.
58	56	SIN1	E (CMOS/H)	Extended	I I/O serial interface data input pin.
		CS0	,	Chip sele	ct 0.
		P91	ſ	This is a	general purpose I/O port.
59	57	SOT1	D (CMOS)	Extended	I I/O serial interface data output pin.
		CS1	,	Chip sele	ct 1.
		P92	_	This is a	general purpose I/O port.
60	58	SCK1	E (CMOS/H)	Extended	I I/O serial interface clock input/output pin.
		CS2	,	Chip sele	ct 2.
		P93		This is a	general purpose I/O port.
61	59	FRCK	E	When the clock inpu	free run timer is in use, this pin functions as the external ut pin.
	33	ADTG	(CMOS/H)	When the trigger in	A/D converter is in use, this pin functions as the external out pin.
		CS3		Chip sele	
62	60	P94	D	This is a	general purpose I/O port.
02	00	PPG4	(CMOS)	PPG time	er output pin. (Continued)

(Continued)

Pin	No.		I/O		
QFP*1	LQFP*2	Pin name	circuit type*3		Function
63	61	P95	D	This is a	general purpose I/O port.
03	01	PPG5	(CMOS)	PPG time	r output pin.
64	62	P96	E	This is a	general purpose I/O port.
04	62	IN0	(CMOS/H)	Input cap	ture ch.0 trigger input pin.
65	63	P97	E	This is a	general purpose I/O port.
05	03	IN1	(CMOS/H)	Input cap	ture ch.1 trigger input pin.
66 to 69	64 to 67	PA0 to PA3	D	These are	e general purpose I/O ports.
00 10 09	04 10 67	OUT0 to OUT3	(CMOS)	Output co	mpare event output pins.
35	33	AVcc	_	A/D conv	erter analog power supply input pin.
36	34	AVRH	_	A/D conv	erter reference voltage input pin.
37	35	AVss	_	A/D conv	erter GND pin.
49 to 51	47 to 49	MD0 to MD2	J (CMOS/H)	Operating	g mode selection input pins.
84	82	Vcc3	_	$3.3 \text{ V} \pm 0.$	3 V power supply pins (Vcc3) .
				MB90480 series	3.3 V \pm 0.3 V power supply pin. Usually, use Vcc = Vcc3 = Vcc5 as a 3 V power supply.
23	21	Vcc5	_	MB90485 series	3 V/5 V power supply pin. 5 V power supply pin when P20 to P27, P30 to P37, P40 to P47, P70 to P77 are used as 5 V I/F pins. Usually, use $V_{CC} = V_{CC}3 = V_{CC}5$ as a 3 V power supply (when the 3 V power supply is used alone) .
11, 42, 81	9, 40, 79	Vss		GND pins).

*1 : QFP : FPT-100P-M06

*2: LQFP: FPT-100P-M05

*3 : For the I/O circuit type, refer to "■ I/O CIRCUIT TYPES".

*4 : As for MB90V485B, input pins become CMOS input.

■ I/O CIRCUIT TYPES

Туре	Circuit	Remarks
F	P-ch Open drain control signal N-ch W————————————————————————————————————	CMOS level input/output With open drain control
G	P-ch Open drain control signal N-ch Hysteresis input	 CMOS level output Hysteresis input With open drain control
Н	P-ch N-ch CMOS Analog input	CMOS level input/output Analog input
I	N-ch Digital output	Hysteresis input N-ch open drain output
J	(Flash memory product) Control signal Mode input Diffusion resistance	 (Flash memory product) CMOS level input With high voltage control for flash testing
	(MASK ROM product)	(MASK ROM product) Hysteresis input

■ HANDLING DEVICES

1. Be careful never to exceed maximum rated voltages (preventing latch-up)

In CMOS IC devices, a condition known as latch-up may occur if voltages higher than Vcc or lower than Vss are applied to input or output pins other than medium-or high-voltage pins, or if the voltage applied between Vcc and Vss pins exceeds the rated voltage level.

When latch-up occurs, the power supply current increases rapidly causing the possibility of thermal damage to circuit elements. Therefore it is necessary to ensure that maximum ratings are not exceeded in circuit operation. Similarly, when turning the analog power supply on or off, it is necessary to ensure that the analog power supply voltages (AV $_{\rm CC}$ and AVRH) and analog input voltages do not exceed the digital power supply (V $_{\rm CC}$).

2. Treatment of unused pins

Leaving unused input pins unconnected can cause abnormal operation or latch-up, leading to permanent damage. Unused input pins should always be pulled up or down through resistance of at least $2 \, k\Omega$. Any unused input/output pins may be set to output mode and left open, or set to input mode and treated the same as unused input pins.

3. Treatment of Power Supply Pins (Vcc/Vss)

When multiple V_{CC}/V_{SS} pins are present, device design considerations for prevention of latch-up and unwanted electromagnetic interference, abnormal strobe signal operation due to ground level rise, and conformity with total output current ratings require that all power supply pins must be externally connected to power supply or ground.

Consideration should be given to connecting power supply sources to the $V_{\text{CC}}/V_{\text{SS}}$ pins of this device with as low impedance as possible. It is also recommended that a bypass capacitor of approximately 0.1 μF be placed between the V_{CC} and V_{SS} lines as close to this device as possible.

4. Crystal Oscillator Circuits

Noise around the X0/X1, or X0A/X1A pins may cause this device to operate abnormally. In the interest of stable operation it is strongly recommended that printed circuit board artwork places ground bypass capacitors as close as possible to the X0/X1, X0A/X1A and crystal oscillator (or ceramic oscillator) and that oscillator lines do not cross the lines of other circuits.

5. Precautions when turning the power supply on

In order to prevent abnormal operation in the chip's internal step-down circuits, a voltage rise time during poweron of 50 μ s (0.2 V to 2.7 V) or greater should be assured.

6. Supply Voltage Stabilization

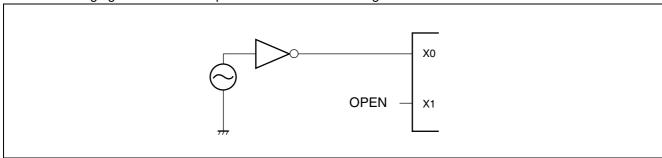
Even within the operating range of $V_{\rm CC}$ supply voltage, rapid voltage fluctuations may cause abnormal operation. As a standard for power supply voltage stability, it is recommended that the peak-to-peak $V_{\rm CC}$ ripple voltage at commercial supply frequency (50 MHz to 60 MHz) be 10 % or less of $V_{\rm CC}$, and that the transient voltage fluctuation be no more than 0.1 V/ms or less when the power supply is turned on or off.

7. Proper power-on/off sequence

The A/D converter power (AVcc, AVRH) and analog input (AN0 to AN7) must be turned on after the digital power supply (Vcc) is turned on. The A/D converter power (AVcc, AVRH) and analog input (AN0 to AN7) must be shut off before the digital power supply (Vcc) is shut off. Care should be taken that AVRH does not exceed AVcc. Even when pins used as analog input pins are doubled as input ports, be sure that the input voltage does not exceed AVcc.

8. Treatment of power supply pins on models with A/D converters

Even when the A/D converters are not in use, be sure to make the necessary connections $AV_{CC} = AVRH = V_{CC}$, and $AV_{SS} = V_{SS}$.


9. Notes on Using Power Supply

Only the MB90485 series usually uses a 3 V power supply. By setting Vcc3 = 3 V power supply and Vcc5 = 5 V power supply, P20 to P27, P30 to P37, P40 to P47 and P70 to P77 can be interfaced as 5 V power supplies separately from the main 3 V power supply. Note that the analog power supplies (such as AVcc and AVss) for the A/D converter can be used only as 3 V power supplies.

10. Notes on Using External Clock

Even when using an external clock signal, an oscillation stabilization delay is applied after a power-on reset or when recovering from sub-clock or stop mode. When using an external clock, 25 MHz should be the upper frequency limit.

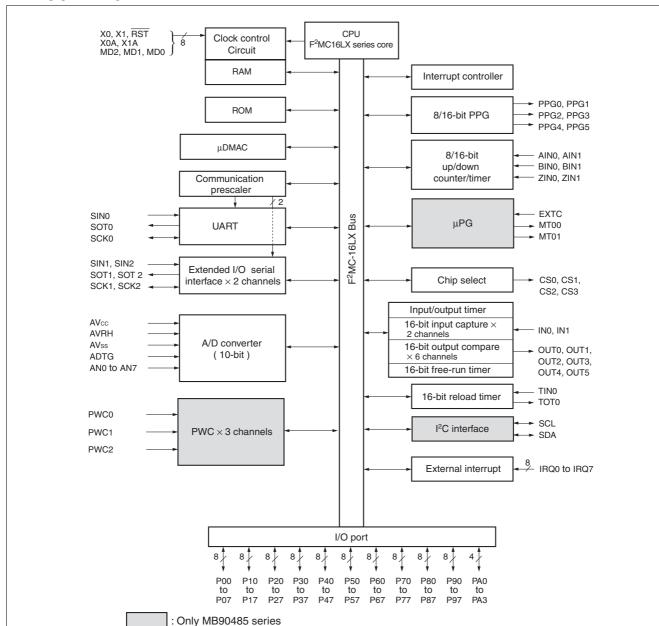
The following figure shows a sample use of external clock signals.

11. Treatment of NC pins

NC (internally connected) pins should always be left open.

12. Notes on during operation of PLL clock mode

On this microcontroller, if in case the crystal oscillator breaks off or an external reference clock input stops while the PLL clock mode is selected, a self-oscillator circuit contained in the PLL may continue its operation at its self-running frequency. However, Fujitsu will not guarantee results of operation if such failure occurs.


13. When the MB90480/485 series microcontroller is used as a single system

When the MB90480/485 series microcontroller is used as a single system, use connections so the X0A = Vss, and X1A = Open.

14. Writing to Flash memory

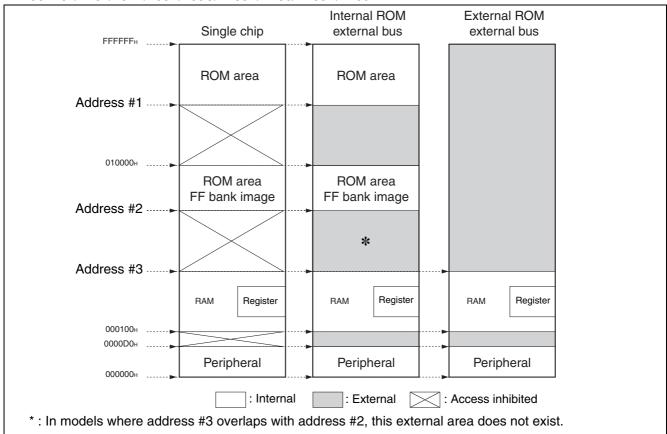
For writing to Flash memory, always ensure that the operating voltage Vcc is between 3.0 V and 3.6 V.

■ BLOCK DIAGRAM

P00 to P07 (8 pins): with an input pull-up resistance setting register. P10 to P17 (8 pins): with an input pull-up resistance setting register.

P40 to P47 (8 pins) : with an open drain setting register.

P70 to P77 (8 pins): with an open drain setting register.


MB90485 series only

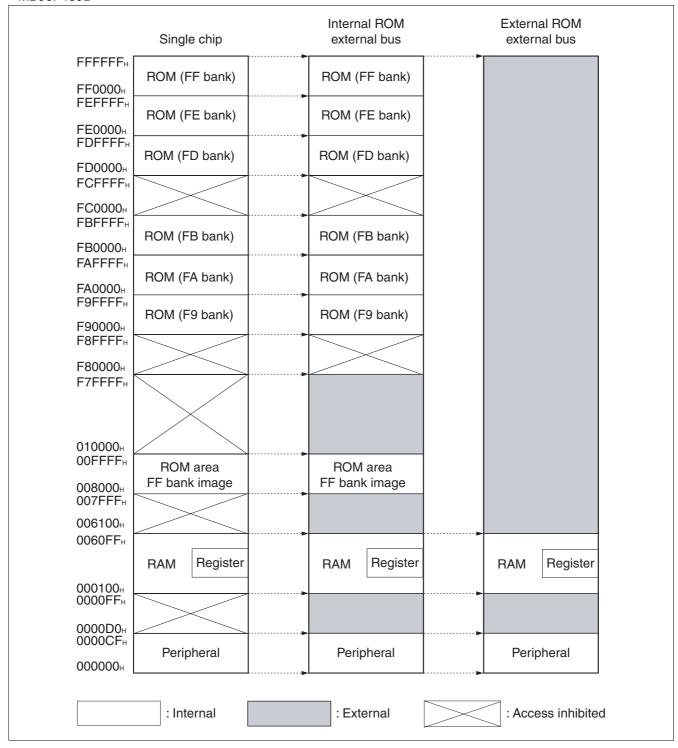
- I^2C pin P77 and P76 are N-ch open drain pin (without P-ch) . However, MB90V485B uses the N-ch open drain pin (with P-ch) .
- P20 to P27, P30 to P37, P40 to P47 and P70 to P77 are also used as 3 V/5 V I/F pin.
- As for MB90V485B, input pins (PWC0, PWC1, PWC2/EXTC/SCL and SDA pins) for PWC/ μPG/I²C become CMOS input.

Note: In the above diagram, I/O ports share internal function blocks and pins. However, when a set of pins is used with an internal module, it cannot also be used as an I/O port.

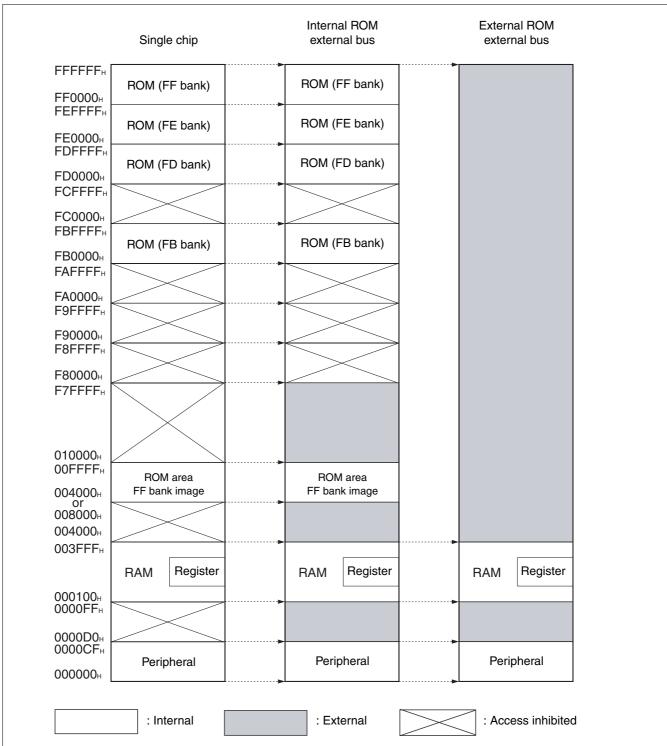
■ MEMORY MAP

• MB90F481/F482/487B/488B/483C/F488B/V480/V485B/F489B

Model	Address #1	Address #2	Address #3
MB90F481	FC0000 _H *1		001100н
MB90F482	FC0000н		001900н
MB90487B	FD0000н	004000	002900н
MB90488B	FC0000н	004000н or 008000н, selected by the MS bit in	002900н
MB90F488B	FC0000н	the ROMM register	002900н
MB90V480	(FC0000н)	and Hemminegiotes	004000н
MB90V485B	(FC0000н)		004000н
MB90483C	FB0000 _H *4		004000н
MB90F489B	F90000 _H *2	0080000 _H fixed	006100н*³

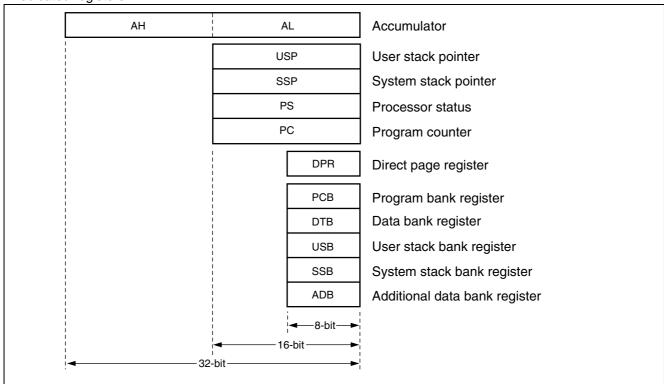

^{*1:} No memory cells from FC0000H to FC7FFFH and FE0000H to FE7FFFH.

The upper part of the 00 bank is set up to mirror the image of FF bank ROM, to enable efficient use of small model C compilers. Because the lower 16-bit address of the FF bank and the lower 16-bit address of the 00 bank are the same, enabling reference to tables in ROM without using the for specification in the pointer declaration.

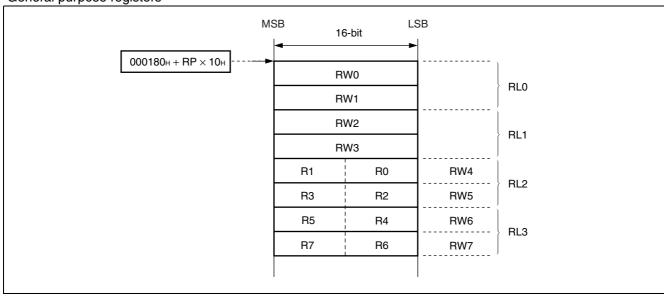

For example, in accessing address $00C000_{H}$ it is actually the contents of ROM at FFC000_H that are accessed. If the MS bit in the ROMM register is set to "0", the ROM area in the FF bank will exceed 48 Kbytes and it is not possible to reflect the entire area in the image in the 00 bank. Therefore the image from FF4000_H to FFFFFF_H is reflected in the 00 bank and the area from FF0000_H to FF3FFF_H can be seen in the FF bank only.

- *2 : In MB90F489B, there is no access to F8 bank and FC bank on the single-chip mode or the internal-ROM external-bus mode.
- *3 : Because installed-RAM area is larger than MB90V485B, MB90F489B should execute emulation in an area that is larger than 004000H by the emulation memory area setting on the tool side.
- *4 : In MB90483C, there is no access to F8 bank to FA bank and FC bank on the single-chip mode or the internal-ROM external-bus mode.

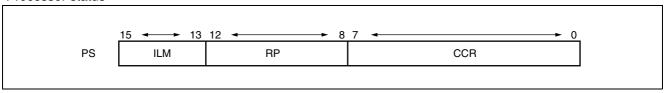
• MB90F489B



• MB90483C



■ F²MC-16L CPU PROGRAMMING MODEL


Dedicated registers

•General purpose registers

Processor status

■ I/O MAP

01н Port 02н Port 03н Port 04н Port 05н Port 06н Port 07н Port 08н Port 09н Port 0Aн Port 0H Inter 0Eн Req 0Fн Req 10н Port 11н Port 12н Port 13н Port 15н Port	t 0 data register t 1 data register t 2 data register t 3 data register t 4 data register t 5 data register t 6 data register t 7 data register t 7 data register t 8 data register t 9 data register t A data register t cown timer input enable register errupt/DTP enable register errupt/DTP source register quest level setting register quest level setting register t 0 direction register t 1 direction register	PDR0 PDR1 PDR2 PDR3 PDR4 PDR5 PDR6 PDR7 PDR8 PDR9 PDRA UDRE ENIR EIRR ELVR DDR0	R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W	Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 Port 8 Port 9 Port A Up/down timer input control DTP/external interrupts	XXXXXXXB XXXXXXXB XXXXXXXB XXXXXXXB XXXXXX
02н Port 03н Port 04н Port 05н Port 06н Port 07н Port 09н Port 0Aн Port 0Bн Up/с 0Cн Intel 0Dн Intel 0Eн Req 0Fн Req 10н Port 11н Port 12н Port 13н Port 15н Port	t 2 data register t 3 data register t 4 data register t 5 data register t 6 data register t 7 data register t 8 data register t 9 data register t A data register down timer input enable register errupt/DTP enable register errupt/DTP source register quest level setting register t 0 direction register	PDR2 PDR3 PDR4 PDR5 PDR6 PDR7 PDR8 PDR9 PDRA UDRE ENIR EIRR ELVR	R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W	Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 Port 8 Port 9 Port A Up/down timer input control	XXXXXXXB XXXXXXXB XXXXXXXB XXXXXXXB XXXXXX
03н Port 04н Port 05н Port 06н Port 07н Port 08н Port 09н Port 08н Up/с 0Сн Intel 0Сн Req 0Гн Req 10н Port 11н Port 12н Port 13н Port 15н Port	t 3 data register t 4 data register t 5 data register t 6 data register t 7 data register t 8 data register t 9 data register t A data register down timer input enable register errupt/DTP enable register errupt/DTP source register quest level setting register quest level setting register t 0 direction register	PDR3 PDR4 PDR5 PDR6 PDR7 PDR8 PDR9 PDRA UDRE ENIR EIRR EIRR	R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W	Port 3 Port 4 Port 5 Port 6 Port 7 Port 8 Port 9 Port A Up/down timer input control	XXXXXXXB XXXXXXXB XXXXXXXB XXXXXXXB XXXXXX
04н Рогт 05н Рогт 06н Рогт 07н Рогт 08н Рогт 09н Рогт 0Ан Рогт 0Вн Up/с 0Сн Inter 0Ен Req 0Fн Req 10н Рогт 12н Рогт 13н Рогт 15н Рогт	t 4 data register t 5 data register t 6 data register t 7 data register t 8 data register t 9 data register t A data register down timer input enable register errupt/DTP enable register errupt/DTP source register quest level setting register quest level setting register t 0 direction register	PDR4 PDR5 PDR6 PDR7 PDR8 PDR9 PDRA UDRE ENIR EIRR EIRR	R/W R/W R/W R/W R/W R/W R/W R/W R/W	Port 4 Port 5 Port 6 Port 7 Port 8 Port 9 Port A Up/down timer input control	XXXXXXXB XXXXXXXB XXXXXXXB XXXXXXXB XXXXXX
05н Рогт 06н Рогт 07н Рогт 08н Рогт 09н Рогт 08н Рогт 08н Рогт 09н Рогт 08н Ир/о 0Сн Іптен 0Ен Вер 0Гн Вер 10н Рогт 12н Рогт 13н Рогт 15н Рогт	t 5 data register t 6 data register t 7 data register t 8 data register t 9 data register t A data register down timer input enable register errupt/DTP enable register errupt/DTP source register quest level setting register quest level setting register t 0 direction register	PDR5 PDR6 PDR7 PDR8 PDR9 PDRA UDRE ENIR EIRR EIRR	R/W R/W R/W R/W R/W R/W R/W R/W	Port 5 Port 6 Port 7 Port 8 Port 9 Port A Up/down timer input control	XXXXXXXB XXXXXXXB XXXXXXXB (MB90480 series) 11XXXXXXB (MB90485 series) XXXXXXXXB XXXXXXXB XXXXXXXB XXXXXXXB XXXXXX
06н Рого 07н Рого 08н Рого 09н Рого 08н Рого 09н Рого 0Вн Ир/о 0Сн Іптен 0Ен Веррон 10н Рого 11н Рого 12н Рого 13н Рого 14н Рого 15н Рого	t 6 data register t 7 data register t 8 data register t 9 data register t A data register down timer input enable register errupt/DTP enable register errupt/DTP source register quest level setting register quest level setting register t 0 direction register	PDR6 PDR7 PDR8 PDR9 PDRA UDRE ENIR EIRR EIRR	R/W R/W R/W R/W R/W R/W R/W R/W R/W	Port 6 Port 7 Port 8 Port 9 Port A Up/down timer input control	XXXXXXXB XXXXXXB (MB90480 series) 11XXXXXB (MB90485 series) XXXXXXXB XXXXXXXB XXXXXXXB XXXXXXXB XXXXXX
07н Port 08н Port 09н Port 0Ан Port 0Вн Up/с 0Сн Inter 0Ен Req 0Fн Req 10н Port 11н Port 12н Port 13н Port 15н Port	t 7 data register t 8 data register t 9 data register t A data register down timer input enable register errupt/DTP enable register errupt/DTP source register quest level setting register quest level setting register t 0 direction register	PDR7 PDR8 PDR9 PDRA UDRE ENIR EIRR	R/W R/W R/W R/W R/W R/W R/W	Port 7 Port 8 Port 9 Port A Up/down timer input control	XXXXXXXB (MB90480 series) 11XXXXXB (MB90485 series) XXXXXXXB XXXXXXXB XXXXXXXBXXXXB XX00000B XXXXXXXXB 0000000B
08H Port 09H Port 0AH Port 0AH Port 0BH Up/o 0CH Inter 0DH Inter 0EH Req 0FH Req 10H Port 11H Port 12H Port 13H Port 14H Port	t 8 data register t 9 data register t A data register down timer input enable register errupt/DTP enable register errupt/DTP source register quest level setting register quest level setting register t 0 direction register	PDR8 PDR9 PDRA UDRE ENIR EIRR	R/W R/W R/W R/W R/W R/W R/W	Port 8 Port 9 Port A Up/down timer input control	(MB90480 series) 11XXXXXB (MB90485 series) XXXXXXXB XXXXXXXB XXXXB XX000000B XXXXXXXXB 00000000B
09н Port 0Ан Port 0Вн Up/0 0Сн Intel 0Dн Intel 0Ен Req 0Fн Req 10н Port 11н Port 12н Port 13н Port 14н Port	t 9 data register t A data register down timer input enable register errupt/DTP enable register errupt/DTP source register quest level setting register quest level setting register t 0 direction register	PDR9 PDRA UDRE ENIR EIRR ELVR	R/W R/W R/W R/W R/W R/W	Port 9 Port A Up/down timer input control	XXXXXXXB XXXXXXBXXXXB XX000000B XXXXXXXXB 00000000B
09H Port 0AH Port 0BH Up/0 0CH Intel 0DH Intel 0EH Req 0FH Req 10H Port 11H Port 12H Port 13H Port 14H Port	t 9 data register t A data register down timer input enable register errupt/DTP enable register errupt/DTP source register quest level setting register quest level setting register t 0 direction register	PDR9 PDRA UDRE ENIR EIRR ELVR	R/W R/W R/W R/W R/W R/W	Port 9 Port A Up/down timer input control	XXXXXXXBXXXXB XX000000B 00000000B XXXXXXXXB 00000000
OAH Port OBH Up/o OCH Inter ODH Inter OEH Req OFH Req 10H Port 11H Port 12H Port 13H Port 14H Port	t A data register down timer input enable register errupt/DTP enable register errupt/DTP source register quest level setting register quest level setting register t 0 direction register	PDRA UDRE ENIR EIRR ELVR	R/W R/W R/W R/W R/W	Port A Up/down timer input control	XXXXB XX000000B 00000000B XXXXXXXXXB 00000000
0BH Up/o 0CH Inter 0DH Inter 0EH Req 0FH Req 10H Port 11H Port 12H Port 13H Port 14H Port	down timer input enable register errupt/DTP enable register errupt/DTP source register quest level setting register quest level setting register t 0 direction register	UDRE ENIR EIRR ELVR	R/W R/W R/W R/W	Up/down timer input control	XX000000в 00000000в XXXXXXXXB 00000000в
0Сн Intel 0Dн Intel 0Eн Req 0Fн Req 10н Port 11н Port 12н Port 13н Port 14н Port	errupt/DTP enable register errupt/DTP source register quest level setting register quest level setting register t 0 direction register	ENIR EIRR ELVR	R/W R/W R/W	input control	00000000в XXXXXXXXB 00000000в
0Dн Inter 0Eн Req 0Fн Req 10н Port 11н Port 12н Port 13н Port 14н Port	errupt/DTP source register quest level setting register quest level setting register t 0 direction register	EIRR ELVR	R/W R/W R/W	DTP/external interrupts	XXXXXXXXB 00000000в
0Ен Req 0Fн Req 10н Port 11н Port 12н Port 13н Port 14н Port 15н Port	quest level setting register quest level setting register t 0 direction register	ELVR	R/W R/W	DTP/external interrupts	0000000В
0Fн Req 10н Port 11н Port 12н Port 13н Port 14н Port	quest level setting register t 0 direction register		R/W	DTI /external interrupts	
10н Port 11н Port 12н Port 13н Port 14н Port 15н Port	t 0 direction register				0000000в
11н Port 12н Port 13н Port 14н Port 15н Port	<u> </u>	DDR0		i	ī
12н Port 13н Port 14н Port 15н Port	t 1 direction register		R/W	Port 0	0000000В
13н Port 14н Port 15н Port	_	DDR1	R/W	Port 1	0000000В
14н Port 15н Port	t 2 direction register	DDR2	R/W	Port 2	0000000В
15н Port	t 3 direction register	DDR3	R/W	Port 3	0000000В
	t 4 direction register	DDR4	R/W	Port 4	0000000В
40	t 5 direction register	DDR5	R/W	Port 5	0000000В
16⊩ Port	t 6 direction register	DDR6	R/W	Port 6	0000000В
17н Port	t 7 direction register	DDR7	R/W	Port 7	00000000в (MB90480 series) XX000000в
40 5		222	5.44	5	(MB90485 series)
	t 8 direction register	DDR8	R/W	Port 8	0000000в
	t 9 direction register	DDR9	R/W	Port 9	0000000в
1A _H Port	t A direction register	DDRA	R/W	Port A	0000в
1B _H Port	t 4 output pin register	ODR4	R/W	Port 4 (Open-drain control)	0000000в
1Сн Port	t 0 input resistance register	RDR0	R/W	Port 0 (resistance control)	0000000в
1D _H Port	t 1 input resistance register	RDR1	R/W	Port 1 (resistance control)	0000000В
1Ен Port	t 7 output pin register	ODR7	R/W	Port 7 (Open-drain control)	00000008 (MB90480 series) XX000008 (MB90485 series)
1F⊩ Ana	Į.		Ì		(141000-000 301163)

Address	Register name	Abbreviated register name	Read/ Write	Resource name	Initial value
20н	Serial mode register	SMR	R/W		00000Х00в
21н	Serial control register	SCR	W, R/W	UART	00000100в
22н	Serial input/output register	SIDR/SODR	R/W	UANT	XXXXXXXXB
23н	Serial status register	SSR	R, R/W		00001000в
24н		(Reserved a	area)		
25н	Communication prescaler control register	CDCR	R/W	Communication prescaler (UART)	000000в
26н	Social mode control status register 0	SMCS0	R/W		0000в
27н	Serial mode control status register 0	SIVICSU	h/vv	SIO1 (ch.0)	0000010в
28н	Serial data register 0	SDR0	R/W		XXXXXXXX
29н	Communication prescaler control register 0	SDCR0	R/W	Communication prescaler SIO1 (ch.0)	00000в
2Ан	Social mode control status register 1	SMCS1	R/W		0000в
2Вн	Serial mode control status register 1	SIVICST	h/vv	SIO2 (ch.1)	0000010в
2Сн	Serial data register 1	SDR1	R/W		XXXXXXXX
2Dн	Communication prescaler control register 1	SDCR1	R/W	Communication prescaler SIO2 (ch.1)	00000в
2Ен	Reload register L (ch.0)	PPLL0	R/W		XXXXXXXX
2Fн	Reload register H (ch.0)	PPLH0	R/W		XXXXXXXX
30н	Reload register L (ch.1)	PPLL1	R/W]	XXXXXXXXB
31н	Reload resister H (ch.1)	PPLH1	R/W		XXXXXXXXB
32н	Reload register L (ch.2)	PPLL2	R/W		XXXXXXXXB
33н	Reload register H (ch.2)	PPLH2	R/W		XXXXXXXXB
34н	Reload register L (ch.3)	PPLL3	R/W		XXXXXXXX
35н	Reload register H (ch.3)	PPLH3	R/W		XXXXXXXX
36н	Reload register L (ch.4)	PPLL4	R/W	8/16-bit PPG	XXXXXXXX
37н	Reload register H (ch.4)	PPLH4	R/W	(ch.0 to ch.5)	XXXXXXXX
38н	Reload register L (ch.5)	PPLL5	R/W		XXXXXXXX
39н	Reload register H (ch.5)	PPLH5	R/W		XXXXXXXX
3Ан	PPG0 operating mode control register	PPGC0	R/W		0Х000ХХ1в
3Вн	PPG1 operating mode control register	PPGC1	R/W		0Х00001в
3Сн	PPG2 operating mode control register	PPGC2	R/W		0Х000ХХ1в
3Dн	PPG3 operating mode control register	PPGC3	R/W		0Х000001в
3Ен	PPG4 operating mode control register	PPGC4	R/W		0Х000ХХ1в
3Fн	PPG5 operating mode control register	PPGC5	R/W		0Х000001в
40н	PPG0, PPG1 output control register	PPG01	R/W	8/16-bit PPG	0000000в
41н		(Reserved a	area)	<u> </u>	<u> </u>
42н	PPG2, PPG3 output control register	PPG23	R/W	8/16-bit PPG	0000000в
43н		(Reserved a	area)	l	1

Address	Register name	Abbre- viated register name	Read/ Write	Resource name	Initial value			
44н	PPG4, PPG5 output control register	PPG45	R/W	8/16-bit PPG	0000000В			
45н	(F	eserved a	served area)					
46н	Control status register	ADCS1	R/W		0000000В			
47н	Control status register	ADCS2	W, R/W	A/D converter	0000000В			
48н	Data register	ADCR1	R	A/D Conventer	XXXXXXXXB			
49н	Data register	ADCR2	W, R		00000XXXв			
4Ан	Output compare register (ch.0) lower digits	OCCP0	R/W		0000000В			
4Вн	Output compare register (ch.0) upper digits	00010	I 1/ V V		0000000В			
4Сн	Output compare register (ch.1) lower digits	OCCP1	R/W		0000000В			
4Dн	Output compare register (ch.1) upper digits	00011	I 1/ V V		0000000В			
4 Ен	Output compare register (ch.2) lower digits	OCCP2	R/W		0000000В			
4 Fн	Output compare register (ch.2) upper digits	00012	1 1/ V V		0000000В			
50н	Output compare register (ch.3) lower digits	OCCP3	R/W		0000000В			
51н	Output compare register (ch.3) upper digits	00013	1 1/ V V	16-bit	0000000В			
52н	Output compare register (ch.4) lower digits	OCCP4	R/W	input/output timer output	0000000В			
53н	Output compare register (ch.4) upper digits	0001 4	1 1/ V V	compare	0000000В			
54н	Output compare register (ch.5) lower digits	OCCP5	R/W	(ch.0 to ch.5)	0000000В			
55н	Output compare register (ch.5) upper digits				0000000В			
56н	Output control register (ch.0)	OCS0	R/W		000000в			
57н	Output control register (ch.1)	OCS1	R/W		00000в			
58н	Output control register (ch.2)	OCS2	R/W		000000в			
59н	Output control register (ch.3)	OCS3	R/W		00000в			
5А н	Output control register (ch.4)	OCS4	R/W		000000в			
5Вн	Output control register (ch.5)	OCS5	R/W		00000в			
5Сн	Input capture data register (ch.0) lower digits	IPCP0	R		XXXXXXXX			
5Dн	Input capture data register (ch.0) upper digits		R	16-bit input/output	XXXXXXXX			
5Ен	Input capture data register (ch.1) lower digits	IPCP1	R	timer input capture	XXXXXXXX			
5Fн	Input capture data register (ch.1) upper digits	IFOFT	R	(ch.0, ch.1)	XXXXXXXX			
60н	Input capture control status register	ICS01	R/W		0000000в			
61н	(F	eserved a	irea)					

Address	Register name	Abbreviated register name	Read/ Write	Resource name	Initial value
62н	Timer counter data register lower digits	TCDT	R/W		0000000В
63н	Timer counter data register upper digits	TCDT	R/W		0000000В
64н	Timer control status register	TCCS	R/W	16-bit input/output	0000000В
65н	Timer control status register	TCCS	R/W	timer free run timer	000000в
66н	Compare clear register lower digits	CPCLR	R/W		XXXXXXXX
67н	Compare clear register upper digits	CPCLN	□/VV		XXXXXXXX
68н	Up/down count register (ch.0)	UDCR0	R		0000000В
69н	Up/down count register (ch.1)	UDCR1	R		0000000В
6Ан	Reload/compare register (ch.0)	RCR0	W		0000000В
6Вн	Reload/compare register (ch.1)	RCR1	W	8/16-bit up/down	0000000В
6Сн	Counter control register (ch.0) lower digits	CCRL0	W, R/W	. O/ TO DIE ap/down	0Х00Х000в
6Dн	Counter control register (ch.0) upper digits	CCRH0	R/W		0000000в
6Ен		(Reserved	area)		
6Гн	ROM mirror function select register	ROMM	R/W	ROM mirroring function	+1в
70н	Counter control register (ch.1) lower digits	CCRL1	W, R/W		0Х00Х000в
71н	Counter control register (ch.1) upper digits	CCRH1	R/W	8/16-bit up/down	-0000000в
72н	Counter status register (ch.0)	CSR0	R, R/W		0000000В
73н		(Reserved	area)		
74н	Counter status register (ch.1)	CSR1	R, R/W	8/16-bit UDC	0000000В
75н		(Reserved	area)		
76н*	PWC control/status register	PWCSR0	R, R/W		0000000В
77н*	1 We define we dated register	1 1100110	11, 11/44	PWC (ch.0)	000000Хв
78н*	PWC data buffer register	PWCR0	R/W	1 770 (011.0)	0000000В
79н*	1 We data saller register		1 1/ 11		0000000В
7 А н*	PWC control/status register	PWCSR1	R, R/W		0000000В
7Вн*	Tro define your de l'ogister	1 1100111	11, 10, 10	PWC (ch.1)	000000Хв
7Сн*	PWC data buffer register	PWCR1	R/W	(011.1)	0000000В
7Dн*	Tro data sanor regioner		,		0000000В
7Eн*	PWC control/status register	PWCSR2	R, R/W		0000000В
7Fн*			,,	PWC (ch.2)	000000Хв
80н*	PWC data buffer register	PWCR2	R/W	(011.2)	0000000В
81н*					0000000В
82н*	Dividing ratio control register	DIVR0	R/W	PWC (ch.0)	00в
83н		(Reserved	<u> </u>		
84н*	Dividing ratio control register	DIVR1	R/W	PWC (ch.1)	00в
85н		(Reserved	-		
86н*	Dividing ratio control register	DIVR2	R/W	PWC (ch.2)	00в
87н		(Reserved	area)		

Address	Register name	Abbreviated register name	Read/ Write	Resource name	Initial value
88н*	Bus status register	IBSR	R		0000000В
89н*	Bus control register	IBCR	R/W		0000000В
8Ан*	Clock control register	ICCR	R/W	I ² C	0XXXXX _B
8Вн*	Address register	IADR	R/W		-XXXXXXXB
8Сн*	Data register	IDAR	R/W		XXXXXXXX
8Dн		(Reserved	area)		
8Ен*	μPG control status register	PGCSR	R/W	μPG	00000в
8Fн to 9Bн		(Disable	d)		
9Сн	μDMAC status register lower digits	DSRL	R/W	μDMAC	0000000В
9Dн	μDMAC status register upper digits	DSRH	R/W	μDMAC	0000000в
9Ен	Program address detection control status resister	PACSR	R/W	Address match detection function	0000000В
9Гн	Delayed interrupt source general/cancel register	DIRR	R/W	Delayed interrupt generator module	Ов
А0н	Low-power consumption mode control register	LPMCR	W, R/W	Low-power consumption	00011000в
А1н	Clock select register	CKSCR	R, R/W	Low-power consumption	11111100в
А2н, А3н		(Reserved	area)		
А4н	μDMAC stop status register	DSSR	R/W	μDMAC	0000000в
А 5н	Automatic ready function select register	ARSR	W	External pins	001100в
А6н	External address output control register	HACR	W	External pins	*******B
А7н	Bus control signal select register	EPCR	W	External pins	1000*10 -в
А8н	Watchdog timer control register	WDTC	R, W	Watchdog timer	XXXXX111 _B
А9н	Timebase timer control register	TBTC	W, R/W	Timebase timer	1ХХ00100в
ААн	Watch timer control register	WTC	R, R/W	Watch timer	10001000в
АВн		(Reserved	area)		
АСн	μDMAC enable register lower digits	DERL	R/W	μDMAC	0000000В
ADн	μDMAC enable register upper digits	DERH	R/W	μDMAC	0000000В
АЕн	Flash memory control status register	FMCS	W, R/W	Flash memory interface	000Х0000в
AFн		(Disable	d)		
В0н	Interrupt control register 00	ICR00	W, R/W		XXXX0111в
В1н	Interrupt control register 01	ICR01	W, R/W		ХХХХ0111в
В2н	Interrupt control register 02	ICR02	W, R/W		ХХХХ0111в
ВЗн	Interrupt control register 03	ICR03	W, R/W		ХХХХ0111в
В4н	Interrupt control register 04	ICR04	W, R/W	Interrupt controller	XXXX0111 _B
В5н	Interrupt control register 05	ICR05	W, R/W		XXXX0111 _B
В6н	Interrupt control register 06	ICR06	W, R/W		XXXX0111в
В7н	Interrupt control register 07	ICR07	W, R/W		ХХХХ0111в
В8н	Interrupt control register 08	ICR08	W, R/W		ХХХХ0111в

(Continued)

Address	Register name	Abbreviated register name	Read/ Write	Resource name	Initial value
В9н	Interrupt control register 09	ICR09	W, R/W		XXXX0111в
ВАн	Interrupt control register 10	ICR10	W, R/W		XXXX0111 _B
ВВн	Interrupt control register 11	ICR11	W, R/W		XXXX0111в
ВСн	Interrupt control register 12	rol register 12 ICR12 W, R/W		Interrupt controller	XXXX0111в
ВОн	Interrupt control register 13	ICR13	W, R/W		XXXX0111 _B
ВЕн	Interrupt control register 14	ICR14	W, R/W		XXXX0111 _B
ВГн	Interrupt control register 15	ICR15	W, R/W		XXXX0111 _B
С0н	Chip select area mask register 0	CMR0	R/W		00001111в
С1н	Chip select area register 0	CAR0	R/W		11111111В
С2н	Chip select area mask register 1	CMR1	R/W		00001111в
СЗн	Chip select area register 1	CAR1	R/W		11111111В
С4н	Chip select area mask register 2	CMR2	R/W	Chip select	00001111в
С5н	Chip select area register 2	CAR2	R/W	function	11111111В
С6н	Chip select area mask register 3	CMR3	R/W		00001111в
С7н	Chip select area register 3	CAR3	R/W		111111111
С8н	Chip select control register	CSCR	R/W		000*в
С9н	Chip select active level register	CALR	R/W		0000в
САн	Timer central status register	TMCSR	R/W		0000000В
СВн	Timer control status register	TWOSH	Γ 1 / V V	16-bit reload timer	0000в
ССн СDн	16-bit timer register/ 16-bit reload register	TMR/TMRLR	R/W	TO-DILTEIDAU IIITIEI	XXXXXXXX
СЕн	To an increase regions:	(Reserved	Larea)		
СГн	PLL output control register	PLLOS	W	Low-power consumption	ХОв
D0н to FFн		(External	area)		
100н to #н		(RAM a	rea)		
1FF0н	Program address detection register 0 (Low order address)				
1FF1н	Program address detection register 0 (Middle order address)	PADR0	R/W	Address match detection function	XXXXXXX
1FF2н	Program address detection register 0 (High order address)				
1FF3н	Program address detection register 1 (Low order address)				
1FF4н	Program address detection register 1 (Middle order address)	PADR1	R/W	Address match detection function	XXXXXXX
1FF5н	Program address detection register 1 (High order address)				

^{*:} These registers are only for MB90485 series.

They are used as the reserved area on MB90480 series.

(Continued)

Descriptions for read/write R/W: Readable and writable

R : Read only W : Write only

Descriptions for initial value

The initial value of this bit is "0".The initial value of this bit is "1".

X : The initial value of this bit is undefined.

- : This bit is not used.

* : The initial value of this bit is "1" or "0".

The value depends on the mode pin (MD2, MD1 and MD0) .

+ : The initial value of this bit is "1" or "0".

The value depends on the RAM area of device.

■ INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS

	Clear of	μ DMAC	Interru	pt vector	Interrupt control register		
Interrupt source	El ² OS	channel number	Number	Address	Number	Address	
Reset	×	_	#08	FFFFDCH	_	_	
INT9 instruction	×	_	#09	FFFFD8 _H	_	_	
Exception	×	_	#10	FFFFD4 _H	_	_	
INT0 (IRQ0)	0	0	#11	FFFFD0 _H	ICR00	0000В0н	
INT1 (IRQ1)	0	×	#12	FFFFCCH	ICHUU	ООООВОН	
INT2 (IRQ2)	0	×	#13	FFFFC8 _H	ICR01	0000В1н	
INT3 (IRQ3)	0	×	#14	FFFFC4 _H	ICHUI	0000БТН	
INT4 (IRQ4)	0	×	#15	FFFFC0 _H	ICR02	0000В2н	
INT5 (IRQ5)	0	×	#16	FFFFBC _H	ICHU2	0000BZH	
INT6 (IRQ6)	0	×	#17	FFFFB8 _H	ICR03	0000ВЗн	
INT7 (IRQ7)	0	×	#18	FFFFB4 _H	ICHUS	0000БЗН	
PWC1 (MB90485 series only)	0	×	#19	FFFFB0н	ICD04	0000P4	
PWC2 (MB90485 series only)	0	×	#20	FFFFAC⊢	ICR04	0000В4н	
PWC0 (MB90485 series only)	0	1	#21	FFFFA8 _H	ICR05	0000В5н	
PPG0/PPG1 counter borrow	×	×	#22	FFFFA4 _H	ICHUS	0000В5н	
PPG2/PPG3 counter borrow	×	×	#23	FFFFA0 _H	IODOC	000000	
PPG4/PPG5 counter borrow	×	×	#24	FFFF9C _H	ICR06	0000В6н	
8/16-bit up/down counter/ timer (ch.0, ch.1) compare/ underflow/overflow/up/down inversion	0	×	#25	FFFF98⊦	ICR07	0000В7н	
Input capture (ch.0) load	0	5	#26	FFFF94 _H			
Input capture (ch.1) load	0	6	#27	FFFF90⊦	ICR08	0000В8н	
Output compare (ch.0) match	0	8	#28	FFFF8C _H	ICHUO	ООООВОН	
Output compare (ch.1) match	0	9	#29	FFFF88 _H	ICR09	0000В9н	
Output compare (ch.2) match	0	10	#30	FFFF84 _H	ICHUS	ООООБЭН	
Output compare (ch.3) match	0	×	#31	FFFF80 _H	ICR10	0000ВАн	
Output compare (ch.4) match	0	×	#32	FFFF7C _H	ICHIU	0000BAH	
Output compare (ch.5) match	0	×	#33	FFFF78 _H	ICD11	0000PP	
UART sending completed	0	11	#34	FFFF74 _H	ICR11	0000ВВн	
16-bit free run timer overflow, 16-bit reload timer underflow*2	0	12	#35	FFFF70 _H	ICR12	0000ВСн	
UART receiving completed	0	7	#36	FFFF6C _H			
SIO1 (ch.0)	0	13	#37	FFFF68⊦	ICR13	0000ВДн	
SIO2 (ch.1)	0	14	#38	FFFF64 _H	ionis	UUUUDDH	

(Continued)

	Clear of	μ DMAC	Interru	pt vector	Interrupt co	ntrol register	
Interrupt source	El ² OS	channel number	Number	Address	Number	Address	
I ² C interface (MB90485 series only)	×	×	#39	FFFF60 _H	ICR14	0000ВЕн	
A/D conversion	0	15	#40	FFFF5C _H			
Flash write/erase, timebase timer, watch timer *1	×	×	#41	FFFF58 _H	ICR15	0000ВFн	
Delay interrupt generator module	×	×	#42	FFFF54 _H	IONIS		

- $\times\,\,$: Interrupt request flag is not cleared by the interrupt clear signal.
- : Interrupt request flag is cleared by the interrupt clear signal.
- ⊚: Interrupt request flag is cleared by the interrupt clear signal (stop request present).
- *1: The Flash write/erase, timebase timer, and watch timer cannot be used at the same time.
- *2: When the 16-bit reload timer underflow interrupt is changed from enable (TMCSR: INTE = 1) to disable (TMCSR: INTE = 0), disable the interrupt in the interrupt control register (ICR12: IL2 to 0: 111_B), then set the INTE bit to 0.

Note: If there are two interrupt sources for the same interrupt number, the resource will clear both interrupt request flags at the El 2 OS/ μ DMAC interrupt clear signal. Therefore if either of the two sources uses the El 2 OS/ μ DMAC function, the other interrupt function cannot be used. The interrupt request enable bit for the corresponding resource should be set to "0" and interrupt requests from that resource should be handled by software polling.

■ PERIPHERAL RESOURCES

1. I/O Ports

The I/O ports perform the functions of either sending data from the CPU to the I/O pins, or loading information from the I/O into the CPU, according to the setting of the corresponding port data register (PDR). The input/output direction of each I/O pin can be set in individual bit units by the port direction register (DDR) for each I/O port.

The MB90480/485 series has 84 input/output pins. The I/O ports are port 0 through port A.

(1) Port Data Registers

PDR0	7	6	5	4	3	2	1	0	Initial value	Access
Address: 000000н	P07	P06	P05	P04	P03	P02	P01	P00	Undefined	R/W*1
PDR1			1				I			
Address : 000001 _H	7	6	5	4	3	2	1	0	Undefined	R/W*1
Address . 00000 TH	P17	P16	P15	P14	P13	P12	P11	P10	Ondenned	□/ VV
PDR2	7	6	5	4	3	2	1	0		
Address : 000002н	P27	P26	P25	P24	P23	P22	P21	P20	Undefined	R/W*1
PDR3										
Address : 000003 _H	7 P37	6 P36	5 P35	4 P34	3 P33	2	1 P31	0 P30	Undefined	R/W*1
Address . 000000H	P37	P36	P35	P34	P33	P32	P31	P30	Ondenned	1 1/ V V
PDR4	7	6	5	4	3	2	1	0		
Address: 000004н	P47	P46	P45	P44	P43	P42	P41	P40	Undefined	R/W*1
PDR5			-		0					
Address : 000005н	7 P57	6 P56	5 P55	4 P54	3 P53	2 P52	1 P51	0 P50	Undefined	R/W*1
	1 07	1 00	1 00	1 0 4	1 00	1 02	101	1 00		
PDR6	7	6	5	4	3	2	1	0		
Address : 000006н	P67	P66	P65	P64	P63	P62	P61	P60	Undefined	R/W*1
PDR7	7	6	5	4	3	2	1	0		
Address : 000007 _H	P77	P76	P75	P74	P73	P72	P71	P70	Undefined*2	R/W*1
DDD0										
PDR8	7	6	5	4	3	2	1	0		D // *1
Address: 000008н	P87	P86	P85	P84	P83	P82	P81	P80	Undefined	R/W*1
PDR9	7	6	5	4	3	2	1	0		
Address : 000009н	P97	P96	P95	P94	P93	P92	P91	P90	Undefined	R/W*1
PDRA		<u> </u>	<u> </u>	<u> </u>		l	l			
	7	6	5	4	3	2	1	0	Undefined	R/W*1
Address: 00000AH	_	_	_	_	PA3	PA2	PA1	PA0	Undefined	□/VV ·

^{*1:} The R/W indication for I/O ports is somewhat different than R/W access to memory, and involves the following operations.

• Input mode

Read: Reads the corresponding signal pin level.

Write: Writes to the output latch.

Output mode

Read: Reads the value from the data register latch.

Write: Outputs the value to the corresponding signal pin.

^{*2:} The initial value of this bit is "11XXXXXXB" on MB90485 series.

(2) Port Direction Registers

DDR0	7	6	5	4	3	2	1	0	Initial value	Access
Address : 000010н	D07	D06	D05	D04	D03	D02	D01	D00	0000000В	R/W
DDR1										
Address : 000011 _H	7	6	5	4	3	2	1	0	0000000	R/W
Address . 000011H	D17	D16	D15	D14	D13	D12	D11	D10	ОООООООВ	□/ VV
DDR2	7	6	5	4	3	2	1	0		
Address: 000012H	D27	D26	D25	D24	D23	D22	D21	D20	0000000В	R/W
DDR3	7	6	5	4	3	2	1	0		
Address : 000013н	D37	D36	D35	D34	D33	D32	D31	D30	0000000В	R/W
DDR4		_	_					_		
Address : 000014 _H	7	6	5	4	3	2	1	0	0000000	R/W
Address : 000014h	D47	D46	D45	D44	D43	D42	D41	D40	ОООООООВ	1 1/ V V
DDR5	7	6	5	4	3	2	1	0		
Address: 000015 _H	D57	D56	D55	D54	D53	D52	D51	D50	0000000В	R/W
DDR6	7	6	5	4	3	2	1	0		
Address : 000016н	D67	D66	D65	D64	D63	D62	D61	D60	0000000В	R/W
DDR7										
Address : 000017 _H	7	6	5	4	3	2	1	0	00000000B*2	R/W
Address : 000017#	D77*1	D76*1	D75	D74	D73	D72	D71	D70	00000000	1 1/ V V
DDR8	7	6	5	4	3	2	1	0		
Address: 000018 _H	D87	D86	D85	D84	D83	D82	D81	D80	0000000В	R/W
DDR9	7	6	5	4	3	2	1	0		
Address : 000019н	D97	D96	D95	D94	D93	D92	D91	D90	0000000	R/W
DDRA										
	7	6	5	4	3	2	1	0	0000-	R/W
Address : 00001A _H		_	_	_	DA3	DA2	DA1	DA0	0000в	rī/ VV

^{*1 :} The value is set to "—" on MB90485 series only.

- When a set of pins is functioning as a port, the corresponding signal pins are controlled as follows.
 - 0 : Input mode.
 - 1: Output mode. Reset to "0".

Notes: • When any of these registers are accessed using a read-modify-write type instruction (such as a bit set instruction), the bit specified in the instruction will be set to the indicated value. However, the contents of output registers corresponding to any other bits having input settings will be rewritten to the input values of those pins at that time.

For this reason, when changing any pin that has been used for input to output, first write the desired value to the PDR register before setting the DDR register for output.

• P76, P77 (MB90485 series only)

This port has no DDR. To use P77 and P76 as I^2C pins, set the PDR value to "1" so that port data remains enabled (to use P77 and P76 for general purposes, disable I^2C). The port is an open drain output (with no P-ch).

To use it as an input port, therefore, set the PDR to "1" to turn off the output transistor and add a pull-up resistor to the external output.

^{*2:} The initial value of this bit is "XX000000B" on MB90485 series only.

(3) Port Input Resistance Registers

RDR0	7	6	5	4	3	2	1	0	Initial value	Access
Address: 00001CH	RD07	RD06	RD05	RD04	RD03	RD02	RD01	RD00	0000000В	R/W
RDR1	7	6	5	4	3	2	1	0		
Address: 00001DH	RD17	RD16	RD15	RD14	RD13	RD12	RD11	RD10	0000000В	R/W

These registers control the use of pull-up resistance in input mode.

- 0 : No pull-up resistance in input mode.
- 1 : With pull-up resistance in input mode.

In output mode, these registers have no function (no pull-up resistance) . Input/output mode settings are controlled by the setting of port direction (DDR) registers.

In case of a stop (SPL=1), no pull-up resistance is applied (high impedance). Using of this function is prohibited when an external bus is used. Do not write to these registers.

(4) Port Output Pin Registers

(1) Fort Gatpat Fin										
ODR7	7	6	5	4	3	2	1	0	Initial value	Access
Address: 00001EH	OD77*1	OD76*1	OD75	OD74	OD73	OD72	OD71	OD70	0000000 _B *2	R/W
ODR4	7	6	5	4	3	2	1	0		
Address: 00001BH	OD47	OD46	OD45	OD44	OD43	OD42	OD41	OD40	0000000в	R/W

^{*1 :} The value is set to "—" on MB90485 series only.

These registers control open drain settings in output mode.

- 0 : Standard output port functions in output mode.
- 1 : Open drain output port in output mode.

In input mode, these registers have no function (Hi-Z output). Input/output mode settings are controlled by the setting of port direction (DDR) registers. Using of this function is prohibited when an external bus is used. Do not write to these registers.

(5) Analog Input Enable Register

ADER	7	6	5	4	3	2	1	0	Initial value	Access
Address : 00001F _H	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0	11111111В	R/W

This register controls the port 6 pins as follows.

- 0 : Port input/output mode.
- 1 : Analog input mode. The default value at reset is all "1".

(6) Up/down Timer Input Enable Register

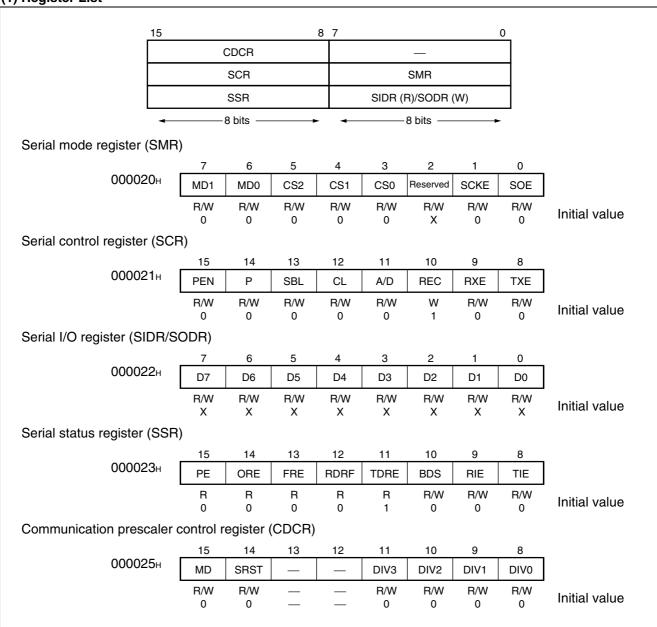
UDER	7	6	5	4	3	2	1	0	Initial value	Access
Address : 00000Вн	_	_	UDE5	UDE4	UDE3	UDE2	UDE1	UDE0	ХХ000000в	R/W

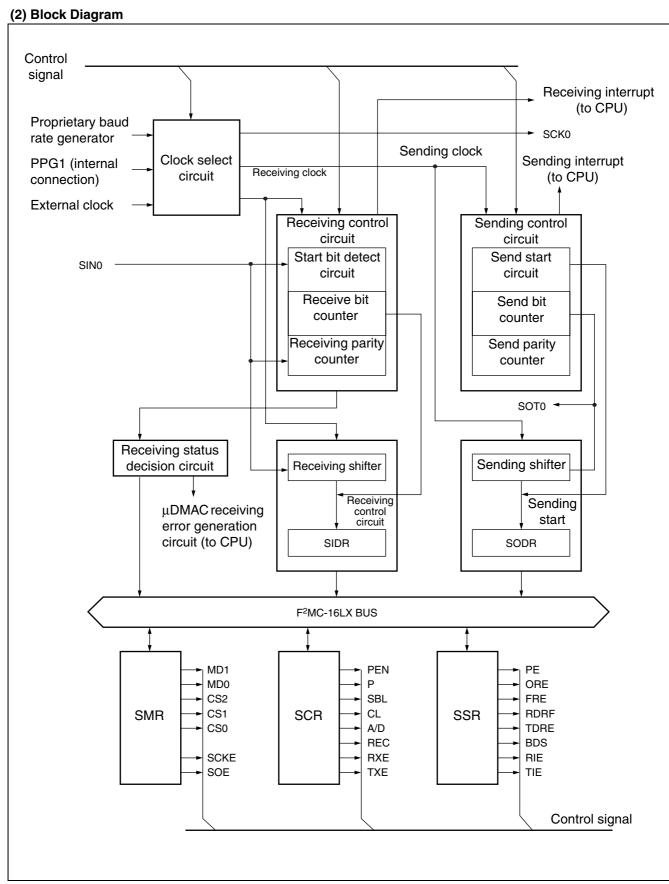
This register controls the port 3 pins as follows.

- 0 : Port input mode.
- 1: Up/down timer input mode. The default value at reset is "0".

^{*2 :} The initial value of this bit is "XX0000008" on MB90485 series only.

2. UART

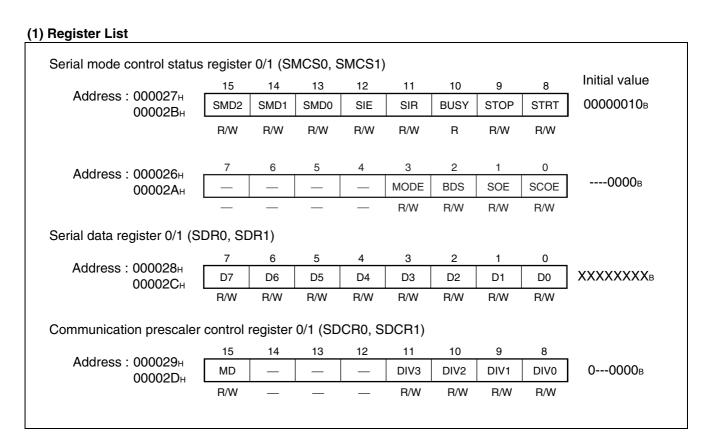

The UART is a serial I/O port for asynchronous (start-stop synchronized) communication as well as CLK synchronized communication.

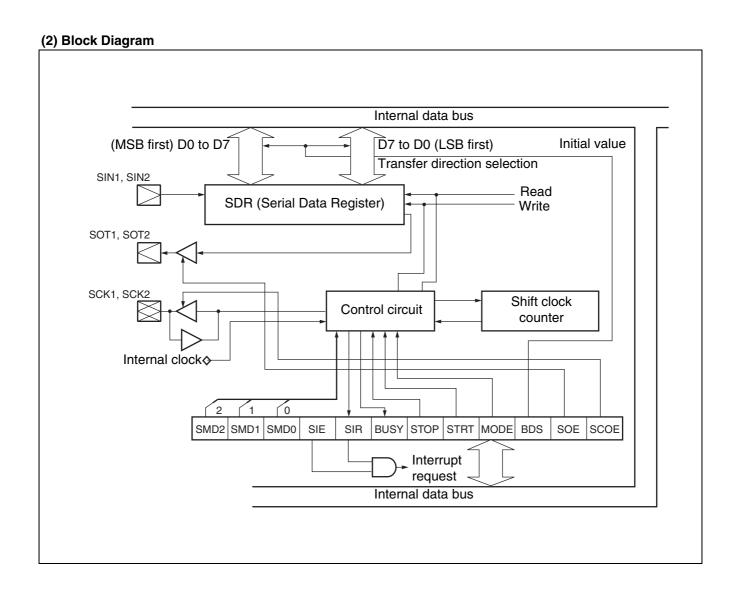

- Full duplex double buffer
- Transfer modes: asynchronous (start-stop synchronized), or CLK synchronized (no start bit or stop bit).
- Multi-processor mode supported.
- Embedded proprietary baud rate generator

Asynchronous : 76923/38461/19230/9615/500 k/250 kbps

CLK synchronized: 16 M/8 M/4 M/2 M/1 M/500 kbps

- External clock setting available, allows use of any desired baud rate.
- Can use internal clock feed from PPG1.
- Data length: 7-bit (asynchronous normal mode only) or 8-bit.
- Master/slave type communication functions (in multi-processor mode) .
- Error detection functions (parity, framing, overrun)
- Transfer signals are NRZ encoded.
- μDMAC supported (for receiving/sending)




3. Expanded I/O Serial Interface

The expanded I/O serial interface is an 8-bit \times 1-channel serial I/O interface for clock synchronized data transfer. A selection of LSB-first or MSB-first data transfer is provided.

There are two serial I/O operation modes.

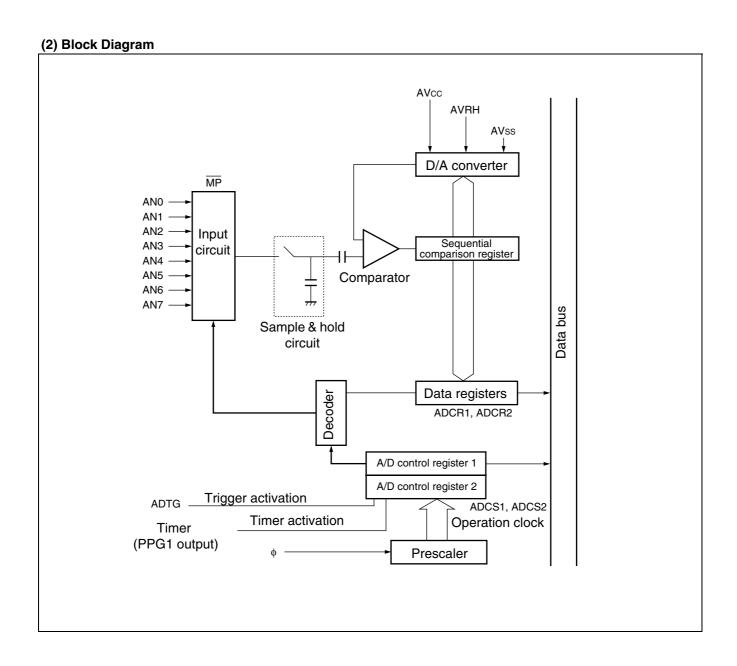
- Internal shift clock mode : Data transfer is synchronized with the internal clock signal.
- External shift clock mode : Data transfer is synchronized with a clock signal input from the external clock signal pin (SCK). In this mode the general-purpose port that shares the external clock signal pin (SCK) can be used for transfer according to CPU instructions.

4. 8/10-bit A/D Converter

The A/D converter converts analog input voltage to digital values, and provides the following features.

- \bullet Conversion time : minimum 3.68 μs per channel
 - (92 machine cycles at 25 MHz machine clock, including sampling time)
- Sampling time : minimum 1.92 μs per channel (48 machine cycles at 25 MHz machine clock)
- RC sequential comparison conversion method, with sample & hold circuit.
- 8-bit or 10-bit resolution
- · Analog input selection of 8 channels

Single conversion mode: Conversion from one selected channel.


Scan conversion mode: Conversion from multiple consecutive channels, programmable selection of up to 8 channels.

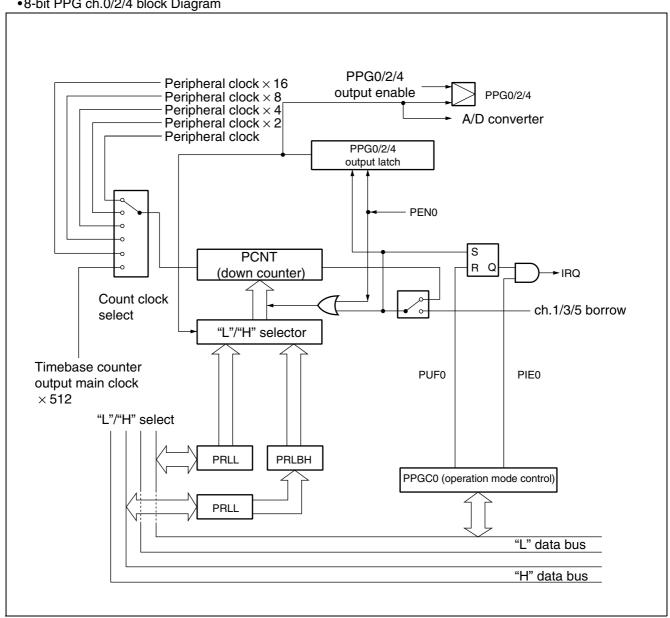
Continuous conversion mode: Repeated conversion of specified channels.

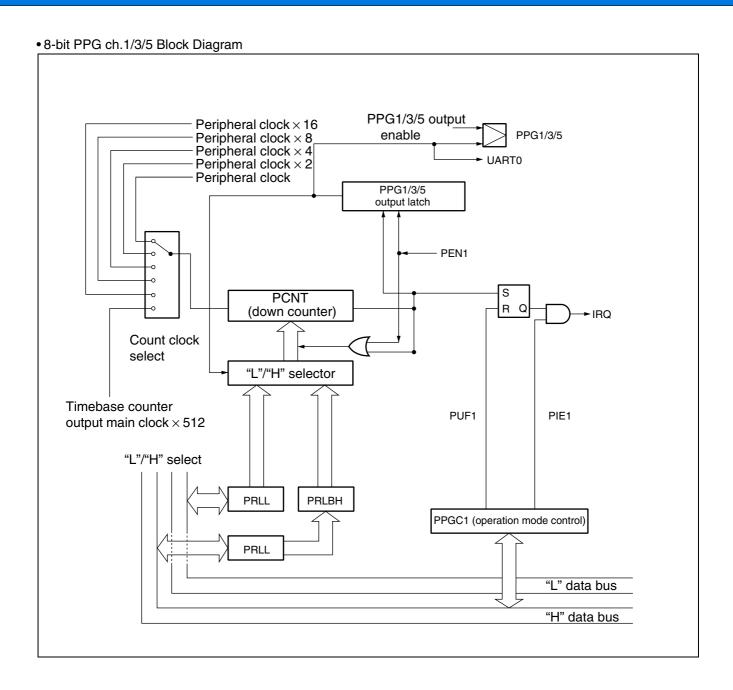
Stop conversion mode: Conversion from one channel followed by a pause until the next activation allows to synchronize with conversion start.

- At the end of A/D conversion, an A/D conversion completed interrupt request can be generated to the CPU.
 The interrupt can be used activate the μDMAC in order to transfer the results of A/D conversion to memory for efficient continuous processing.
- The starting factor conversion may be selected from software, external trigger (falling edge), or timer (rising edge).

ADCS1	7	6	5	4	3	2	1	0		
Address : 000046H	MD1	MD0	ANS2	ANS1	ANS0	ANE2	ANE1	ANE0	1.20.1	
	0 R/W	←Initial value ←Bit attributes								
ADCS2 Address: 000047H	15	14	13	12	11	10	9	8		
	BUSY	INT	INTE	PAUS	STS1	STS0	STRT	Reserved	La State and a	
	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 W	0 R/W	←Initial value ←Bit attributes	
ADCR2, ADCR1 (Data										
ADCR1	7	6	5	4	3	2	1	0		
Address: 000048H	D7	D6	D5	D4	D3	D2	D1	D0	ledition and a	
	X R	←Initial value ←Bit attributes								
ADCR2 Address : 000049н	15	14	13	12	11	10	9	8		
	S10	ST1	ST0	CT1	CT0	_	D9	D8		
	0 W	0 W	0 W	0 W	0 W	X R	X R	X R	←Initial value ←Bit attributes	

5. 8/16-bit PPG

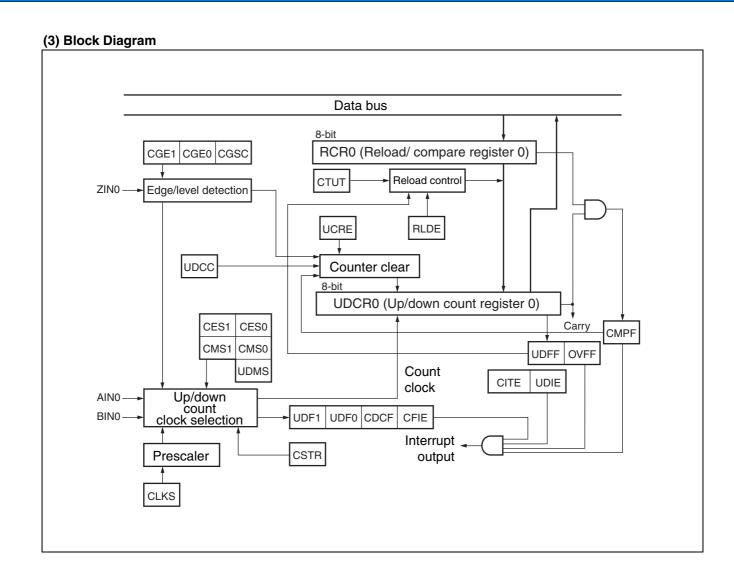

The 8/16-bit PPG is an 8-bit reload timer module that produces a PPG output using a pulse from the timer operation. Hardware resources include 6×8 -bit down counters, 12×8 -bit reload timers, 3×16 -bit control registers, $6 \times$ external pulse output pins, and $6 \times$ interrupt outputs. Note that MB90480/485 series has six channels for 8-bit PPG use, which can also be combined as PPG0 + PPG1, PPG2 + PPG3, and PPG4 + PPG5 to operate as a three-channel 16-bit PPG. The following is a summary of functions.


- 8-bit PPG output 6-channel independent mode: Provides PPG output operation on six independent channels.
- 16-bit PPG output operation mode: Provides 16-bit PPG output on three channels. The six original channels are used in combination as PPG0 + PPG1, PPG2 + PPG3, and PPG4 + PPG5.
- 8 + 8-bit PPG output operation mode: Output from PPG0 (PPG2/PPG4) is used as clock input to PPG1 (PPG3/PPG5) to provide to 8-bit PPG output at any desired period length.
- PPG output operation: Produces pulse waves at any desired period and duty ratio. The PPG module can also be used with external circuits as a D/A converter.

	7	6	5	4	3	2	1	0	
00003 А н	PEN0	_	PE00	PIE0	PUF0		_	Reserved	
00003Сн 00003Ен	R/W 0	X	R/W 0	R/W 0	R/W 0	X		<u> </u>	Read/write Initial value
PPGC1/PPGC	3/PPGC	5 (PPG	i1/PPG3	3/PPG5	operatio	on mode	control	register)	
00003Вн	15	14	13	12	11	10	9	8	
00003Dн	PEN1	_	PE10	PIE1	PUF1	MD1	MD0	Reserved	
00003Fн	R/W 0	<u></u>	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	1	Read/write Initial value
PPG01/PPG23	3/PPG45	(PPGC	to PPG	35 outpu	ıt contro	l registe	er)		
000040н	7	6	5	4	3	2	1	0	
000040н	PCS2	PCS1	PCS0	PCM2	PCM1	PCM0	Reserved	Reserved	
000044н	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	Read/write Initial value
PPLL0 to PPLI	_5 (Relo	ad regi	ster L)						
00002Ен	7	6	5	4	3	2	1	0	
000030н 000032н	D07	D06	D05	D04	D03	D02	D01	D00	
000034н 000036н 000038н	R/W X	R/W X	R/W X	R/W X	R/W X	R/W X	R/W X	R/W X	Read/write Initial value
PPLH0 to PPL	H5 (Rel	oad reg	ister H)						
00002Fн	15	14	13	12	11	10	9	8	
000031н 000033н	D15	D14	D13	D12	D11	D10	D09	D08	
000035н 000035н 000037н 000039н	R/W X	R/W X	R/W X	R/W X	R/W X	R/W X	R/W X	R/W X	Read/write Initial value

(2) Block Diagram

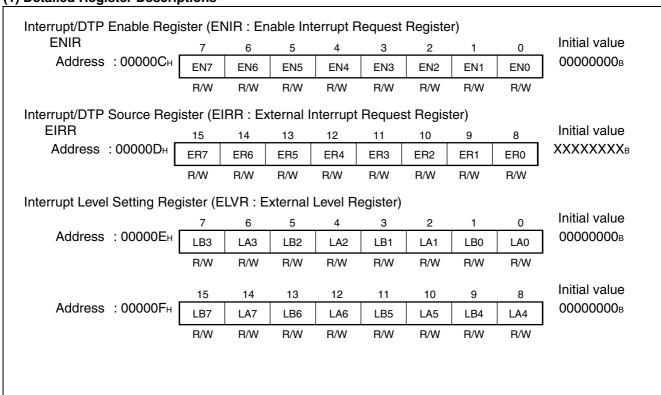
•8-bit PPG ch.0/2/4 block Diagram

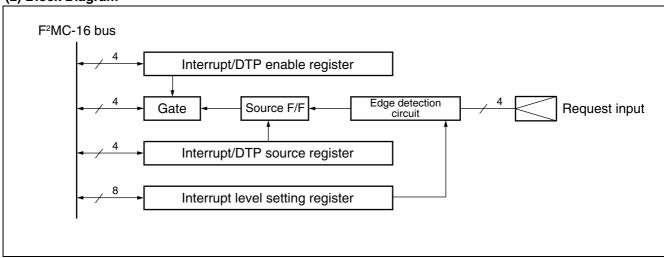

6. 8/16-bit up/down Counter/Timer

8/16-bit up/down counter/timer consists of up/down counter/timer circuits including six event input pins, two 8-bit up/down counters, two 8-bit reload/compare registers, as well as the related control circuits.

Principal Functions	
_	enables counting in the range 0 to 256.
•	counting is enabled in the range 0 to 65535) on provides four count modes.
Count modes ———	•
	Up/down count mode
_	— Phase differential down count mode ($ imes$ 2)
	— Phase differential down count mode (\times 8)
• In timer mode, there	e is a choice of two internal count clock signals.
Count clock	125 ns (8 MHz : ×2)
(at 16 MHz operation)	0.5 μs (2 MHz : ×8)
• In up/down count me	ode, there is a choice of trigger edge detection for the input signal from external pins.
Edge detection	——Falling edge detection
	——Rising edge detection
	Both rising/falling edge detection
	——Edge detection disabled
Z-phase are each in	count mode, to handle encoder counting for motors, the encoder A-phase, B-phase, and put, enabling easy and highly accurate counting of angle of rotation, speed of rotation, etc s a selection of two functions.
ZIN pinC	
-	tate functions
-	and reload function are provided, each for use separately or in combination. Both functions jether for up/down counting in any desired bandwidth.
Compare/reload functi	ionCompare function (output interrupt at compare events)
	Compare function (output interrupt and clear counter at compare events)
	Reload function (output interrupt and reload at underflow events)
	Compare/reload function
	(output interrupt and clear counter at compare events, output interrupt and reload at underflow events)
	Compare/reload disabled

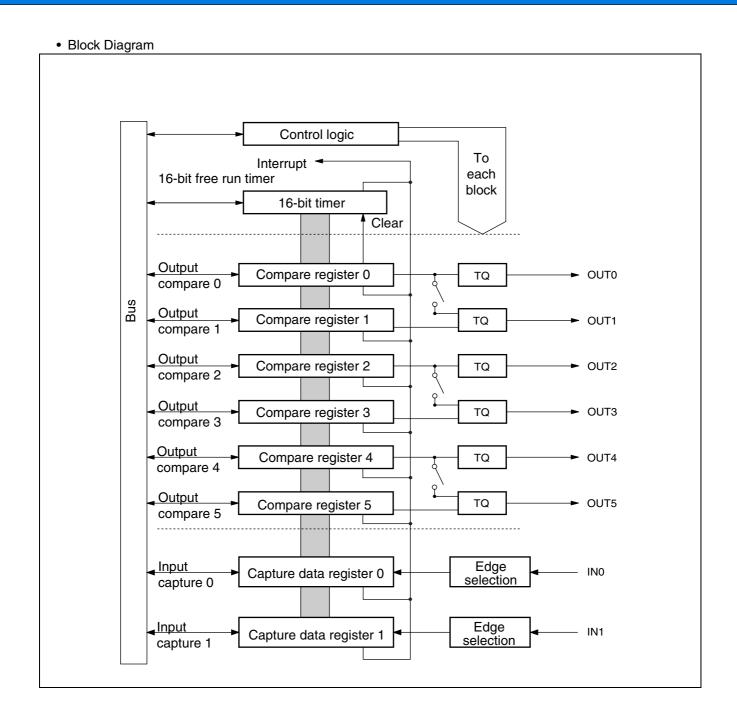
- Individual control over interrupts at compare, reload (underflow) and overflow events.
- Count direction flag enables identification of the last previous count direction.
- Interrupt generated when count direction changes.


<u>_1</u>	5			8 7				0	
	-	JDCR1			l	JDCR0			
Γ		RCR1				RCR0			
Γ	Rese	erved ar	ea			CSR0			
Γ		CCRH0				CCRL0			
	Rese	erved ar	ea			CSR1			
T		CCRH1				CCRL1			
-		- 8-bit —		•		- 8-bit —	→		
י CCRH0 (Counter Contı	ol Register	High ch	1.0)	1				•	
A daluara 00000	15	14	13	12	11	10	9	8	Initial value
Address: 00006	Dн M16E	CDCF	CFIE	CLKS	CMS1	CMS0	CES1	CES0	0000000E
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
CCRH1 (Counter Conti	ol Register	Ū	,						Initial value
Address: 00007	15 1 _H	14	13	12	11	10	9	8	-0000000 _B
71001000 . 00007		CDCF	CFIE	CLKS	CMS1	CMS0	CES1	CES0	0000000
CCDI 0/1 /Causatas Cas	trol Docieta	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
CCRL0/1 (Counter Cor	_			•	0	0	4	•	Initial value
Address: 00006	LIDIAC	6 CTUT	5 UCRE	4 DI DE	3 UDCC	2 CGSC	1 CGE1	0 CGE0	0X00X000i
Address: 00007	UH	W	R/W	RLDE				CGE0	
CSR0/1 (Counter Statu	R/W s Register (R/W	W	R/W	R/W	R/W	
,	7	6	1 <i>)</i> 5	4	3	2	1	0	Initial value
Address : 00007	2н ССТВ	CITE	UDIE	CMPF	OVFF	UDFF	UDF1	UDF0	0000000E
Address: 00007	4н <u>Гозтт</u> R/W	R/W	R/W	R/W	R/W	R/W	R	R	
UDCR0/1 (Up Down Co									
	15	14	13	12	11	10	9	8	Initial value
Address: 00006	9н 🛮 🖂	D16	D15	D14	D13	D12	D11	D10	0000000
	R	R	R	R	R	R	R	R	ı
	-	^	_	,			,		Initial value
Address: 00006	8H D07	6 D06	5 D05	4 D04	3 D03	2 D02	1 D01	0 D00	00000000
	R	R	R	R	 В	R	R	R	
RCR0/1 (Reload/Comp				n	n	n	n	n	
	15	14	13	12	11	10	9	8	Initial value
Address: 0000		D16	D15	D14	D13	D12	D11	D10	00000000
	W	W	W	W	W	W	W	W	1
									Initial value
Address: 0000	7 6 А н _{D07}	6 D06	5 D05	4 D04	3 D03	2 D02	D01	0 D00] 00000000B
	W	W	W	W	W	W	W	W	J
	VV	٧V	۷V	٧V	٧V	٧٧	٧V	۷V	


7. DTP/External Interrupt

The DTP (Data Transfer Peripheral) is a peripheral block that interfaces external peripherals to the F 2 MC-16LX CPU. The DTP receives DMA and interrupt processing requests from external peripherals and passes the requests to the F 2 MC-16LX CPU to activate the extended intelligent μ DMAC or interrupt processing.

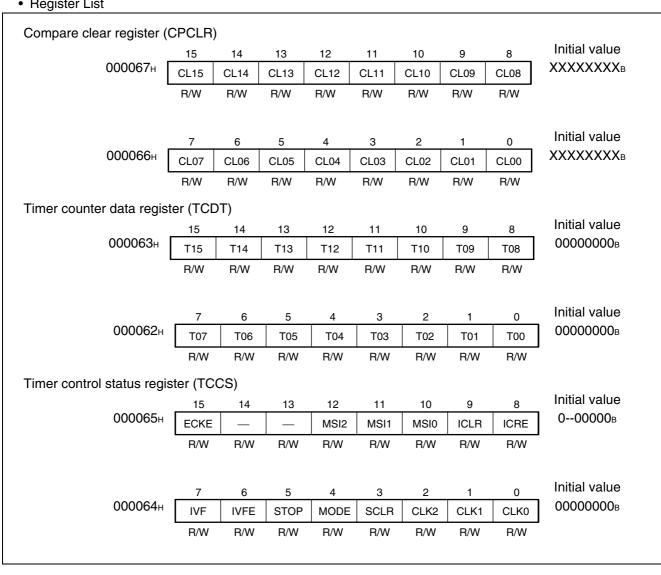
(1) Detailed Register Descriptions

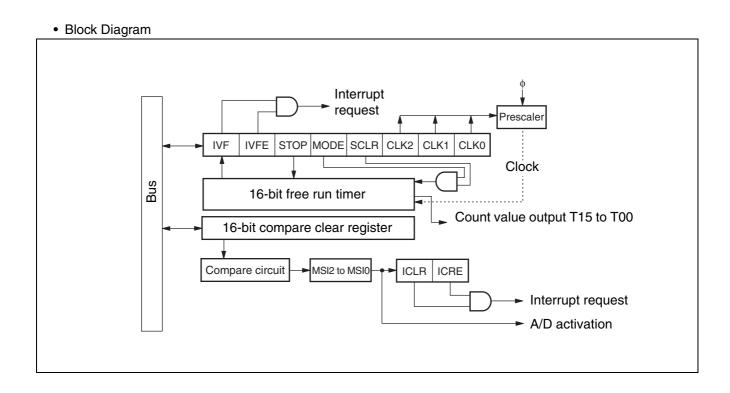

(2) Block Diagram

8. 16-bit Input/Output Timer

The 16-bit input/output timer module is composed of one 16-bit free run timer, six output compare and two input capture modules. These functions can be used to output six independent waveforms based on the 16-bit free run timer, enabling input pulse width measurement and external clock frequency measurement.

• Register List • 16-bit free run timer 000066/67н Compare-clear register **CPCLR** 000062/63н **TCDT** Timer counter data register Control status register 000064/65н **TCCS** • 16-bit output compare 00004A, 4C, 4E, 50, 52, 54H Output compare register OCCP0 to OCCP5 00004B, 4D, 4F, 51, 53, 55н 000056, 58, 5Ан Output compare OCS0/2/4 OCS1/3/5 000057, 59, 5Вн control registers • 16-bit input capture 00005С, 5Ен Input capture data register IPCP0, IPCP1 00005D, 5FH Input capture control 000060н ICS01 status register

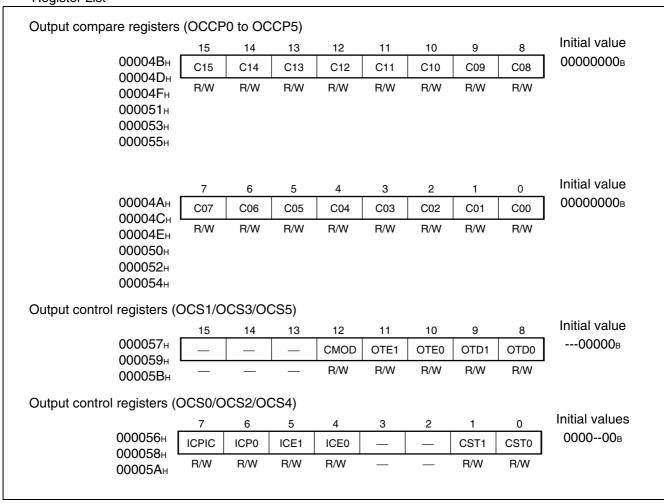

(1) 16-bit Free Run Timer

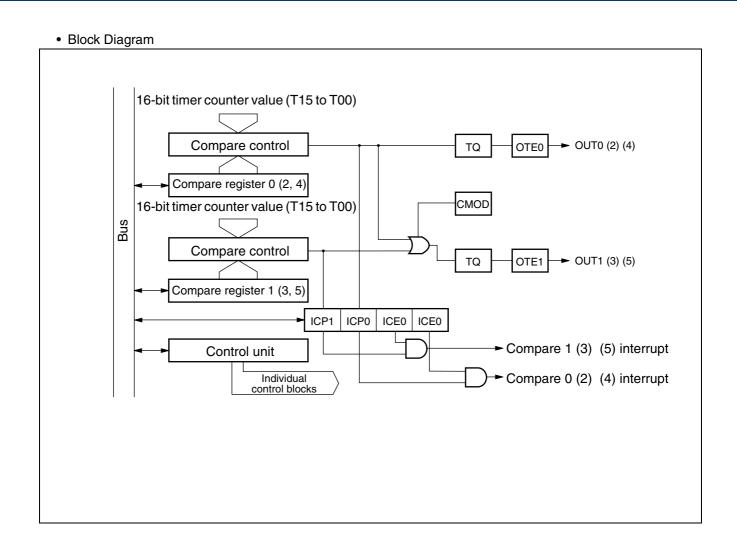

The 16-bit free run timer is composed of a 16-bit up-down counter and control status register.

The counter value of this timer is used as the base timer for the input capture and output compare.

- The counter operation provides a choice of eight clock types.
- A counter overflow interrupt can be produced.
- A mode setting is available to initialize the counter value whenever the output compare value matches the value in the compare clear register.

• Register List

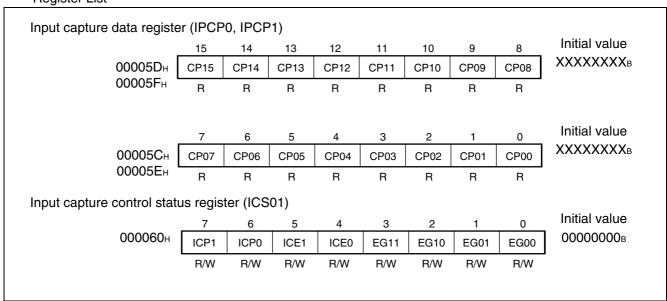



(2) Output Compare

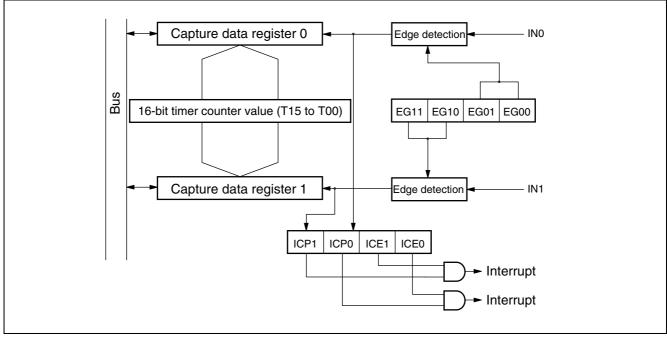
The output compare module is composed of a 16-bit compare register, compare output pin unit, and control register. When the value in the compare register in this module matches the 16-bit free run timer, the pin output levels can be inverted and an interrupt generated.

- There are six compare registers in all, each operating independently. A setting is available to allow two compare registers to be used to control output.
- Interrupts can be set in terms of compare match events.

• Register List

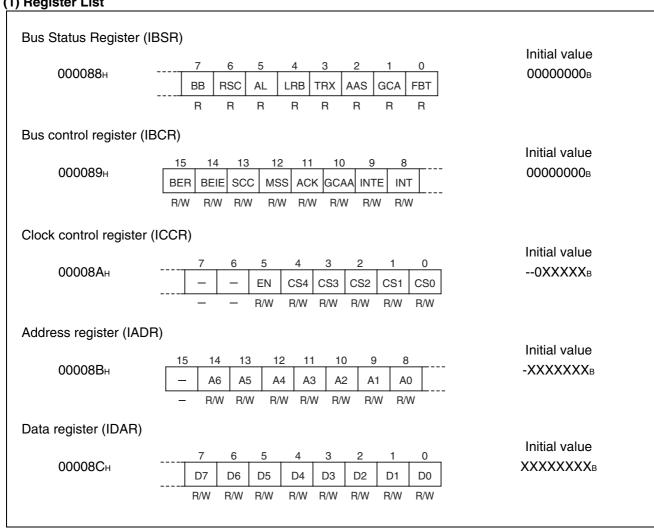

(3) Input Capture

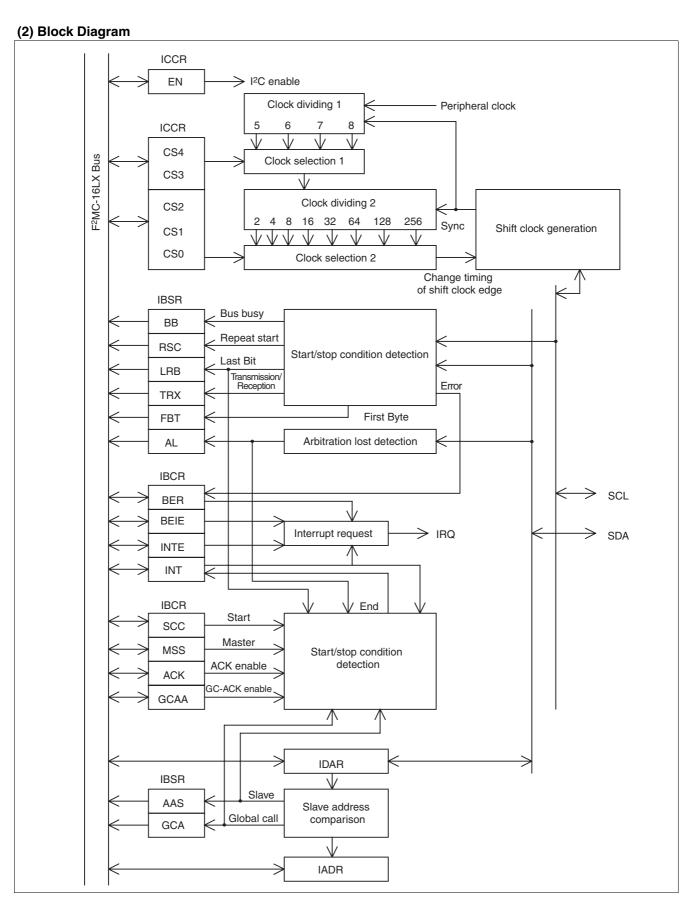
The input capture module performs the functions of detecting the rising edge, falling edge, or both edges of signal input from external circuits, and saving the 16-bit free run timer value at that moment to a register. An interrupt can also be generated at the instant of edge detection.


The input capture module consists of input capture registers and a control register. Each input capture module has its own external input pin.

- Selection of three types of valid edge for external input signals. Rising edge, falling edge, both edges.
- An interrupt can be generated when a valid edge is detected in the external input signal.

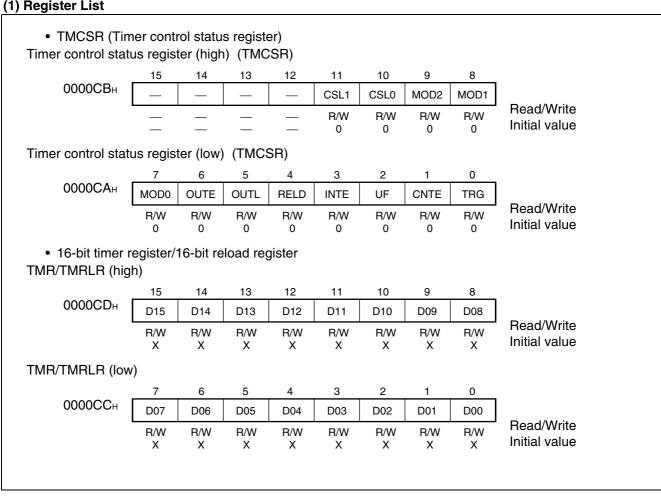
Register List

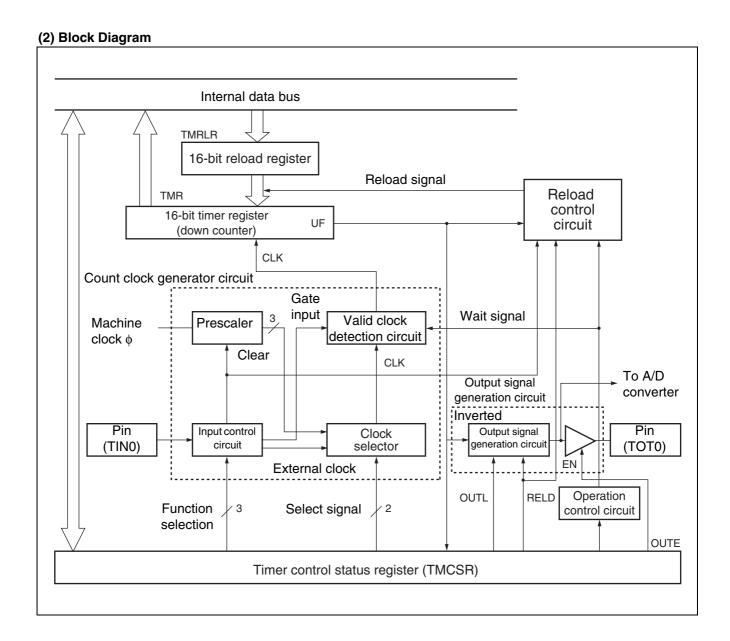




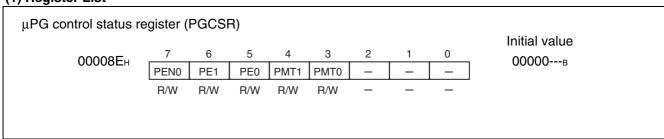
9. I²C Interface (MB90485 series only)

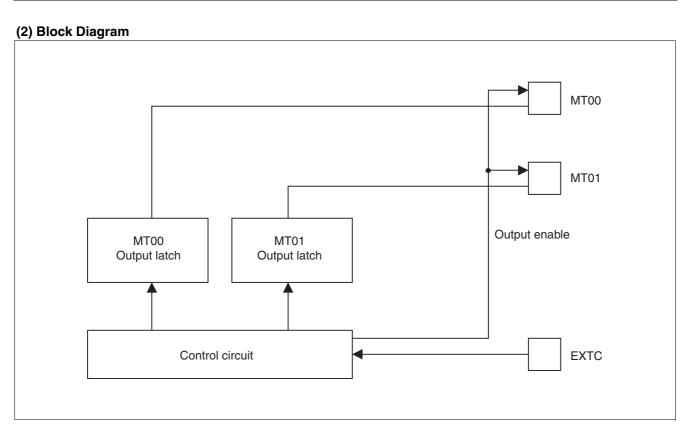
The I²C interface is a serial I/O port supporting the Inter IC BUS. Serves as a master/slave device on the I²C bus. The I²C interface has the following functions.


- Master/slave transmit/receive
- Arbitration function
- Clock synchronization
- Slave address/general call address detection function
- Forwarding direction detection function
- Start condition repeated generation and detection
- Bus error detection function



10. 16-bit Reload Timer


The 16-bit reload timer provides a choice of functions, including internal clock signals that count down in synchronization with three types of internal clock, as well as an event count mode that counts down at specified edge detection events in pulse signals input from external pins. This timer defines an underflow as a change in count value from 0000H to FFFFH. Thus an underflow will occur when counting from the value "reload register setting value + 1". The choice of counting operations includes reload mode, in which the count setting values is reloaded and counting continues following an underflow event, and one-shot mode, in which an underflow event causes counting to stop. An interrupt can be generated at counter underflow, and the timer is DTC compatible.



11. μ PG Timer (MB90485 series only)

The μPG timer performs pulse output in response to the external input.

12. PWC Timer (MB90485 series only)

The PWC timer is a 16-bit multifunction up-count timer capable of measuring the pulse width of the input signal. A total of three channels are provided, each consisting of a 16-bit up-count timer, an input pulse divider & divide ratio control register, a measurement input pin, and a 16-bit control register. These components provide the following functions.

Timer function: • Capable of generating an interrupt request at fixed intervals specified.

• The internal clock used as the reference clock can be selected from among three types.

- Pulse width measurement function: Measures the time between arbitrary events based on external pulse
 - The internal clock used as the reference clock can be selected from among three types.
 - · Measurement modes
 - "H" pulse width (\uparrow to \downarrow) /"L" pulse width (\uparrow to \downarrow)
 - Rising cycle (↑ to ↑) /Falling cycle (↓ to ↓)
 - Measurement between edges (\uparrow or \downarrow to \downarrow or \uparrow)
 - The 8-bit input divider can be used for division measurement by dividing the input pulse by $22 \times n$ (n = 1, 2, 3, 4).
 - An interrupt can be generated upon completion of measurement.
 - One-time measurement or fast measurement can be selected.

(1) Register list

PWC control/status register	(PWCSR0 to PWCSR2)
-----------------------------	--------------------

000077н 15 14 13 12 11 10 9 8 00007Вн **STRT** STOP **EDIR EDIE** OVIR OVIE ERR Reserved 00007Fн R/W R/W R/W R/W R/W

Initial value 000000XB

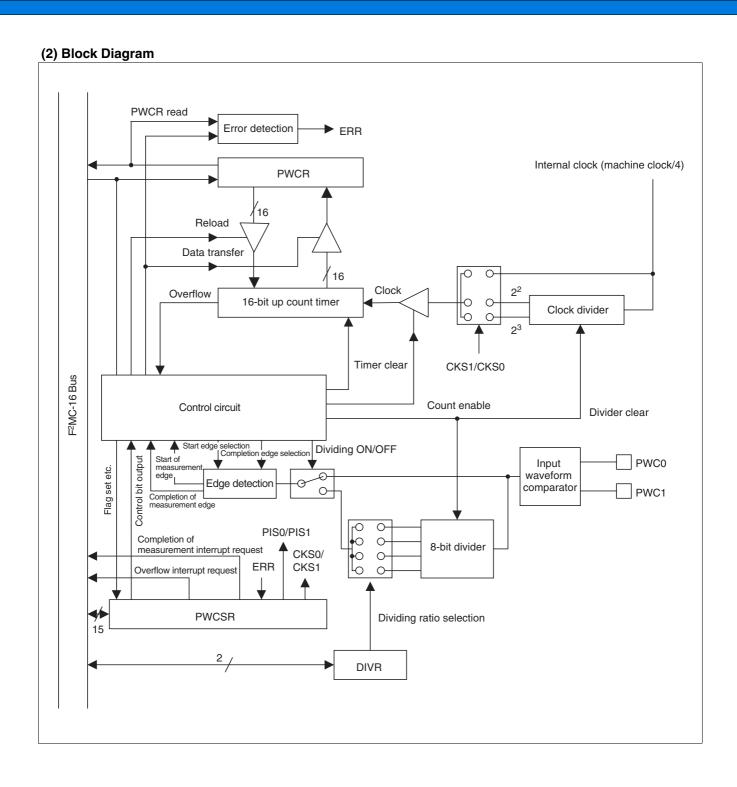
PWC control/status register (PWCSR0 to PWCSR2)

000076н 5 3 2 0 00007Ан CKS1 CKS0 PIS1 PIS0 S/C MOD2 MOD1 MOD0 00007Ен R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 00000000B

PWC data buffer register (PWCR0 to PWCR2)

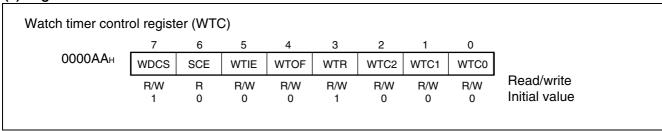
000079н 15 14 13 12 10 9 8 11 00007Dн D15 D14 D13 D12 D11 D10 D9 D8 000081н R/W R/W R/W R/W R/W R/W R/W R/W Initial value 00000000B

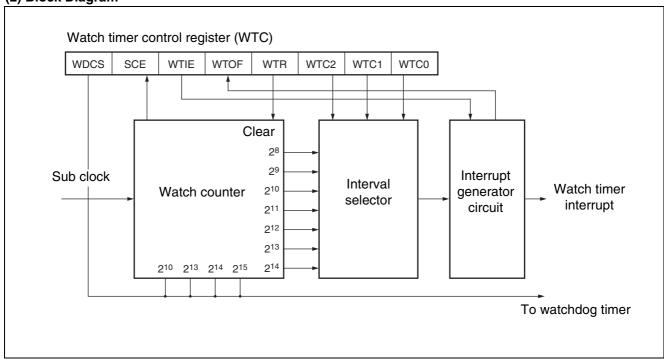

PWC data buffer register (PWCR0 to PWCR2)

000078н 00007Сн 000080н

7 6 5 4 3 2 0 D7 D6 D5 D4 D3 D2 D1 D0 R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0000000B

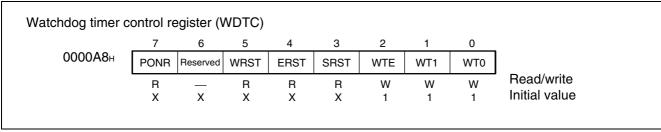
Dividing ratio control register (DIVR0 to DIVR2)

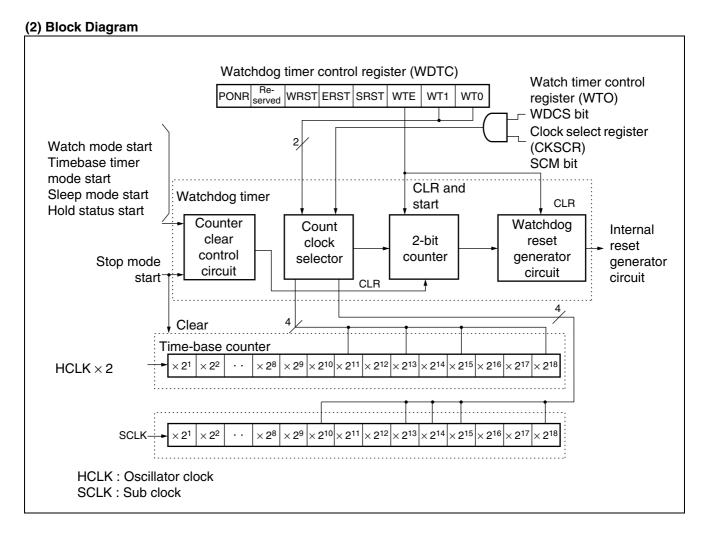

000082н 000084н 000086н 7 6 5 4 3 2 1 0 - - - - - - DIV1 DIV0 - - - - - - R/W R/W Initial value


13. Watch Timer

The watch timer is a 15-bit timer using the sub clock. This circuit can generate interrupts at predetermined intervals. Also a setting is available to enable it to be used as the clock source for the watchdog timer.

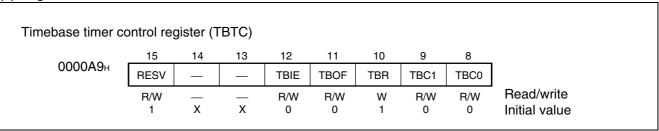
(1) Register List

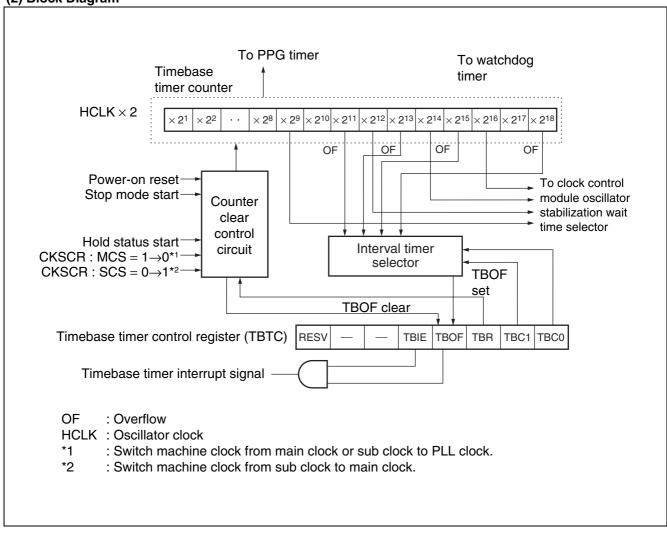



(2) Block Diagram

14. Watchdog timer

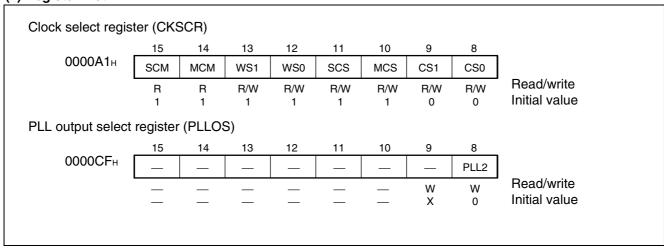
The watchdog timer is a 2-bit counter that uses the output from the timebase timer or watch timer as a count clock signal, and will reset the CPU if not cleared within a predetermined time interval after it is activated.

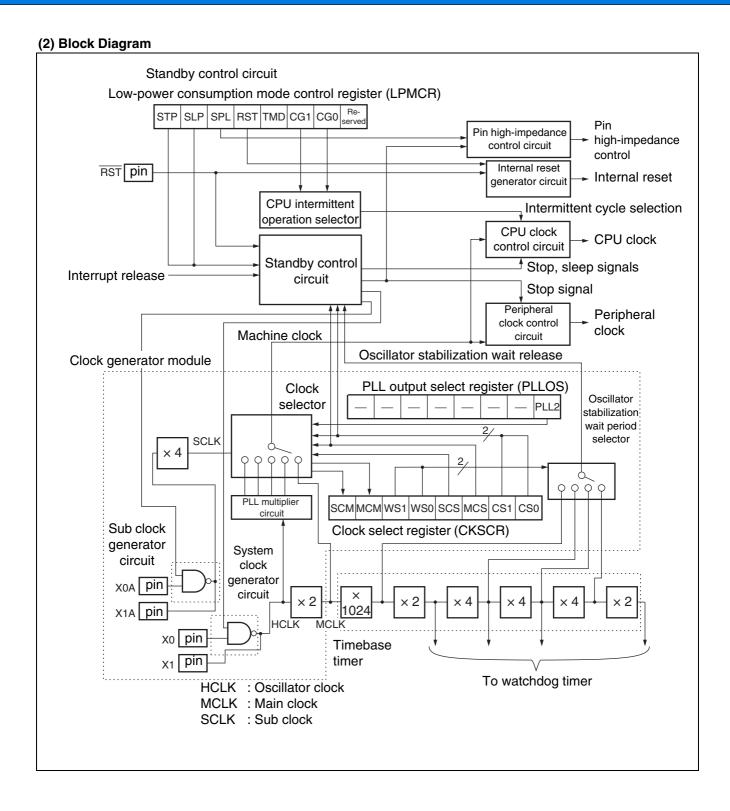


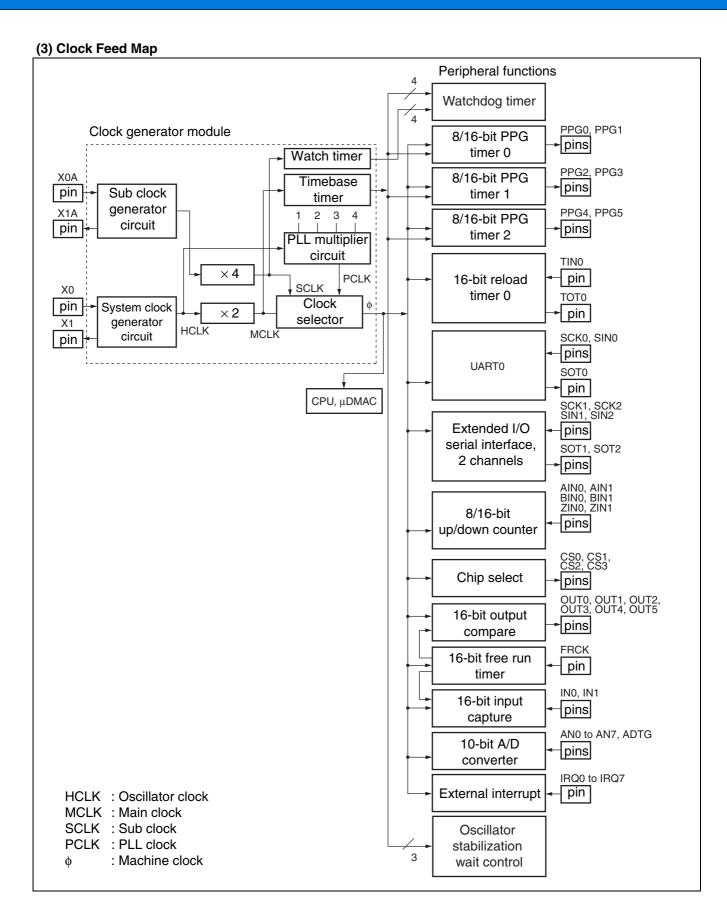

15. Timebase Timer

The timebase timer is an 18-bit free run counter (timebase counter) that counts up in synchronization with the internal count clock signal (base oscillator \times 2), and functions as an interval timer with a choice of four types of time intervals. Other functions provided by this module include timer output for the oscillator stabilization wait period, and operating clock signal feed for other timer circuits such as the watchdog timer.

(1) Register List

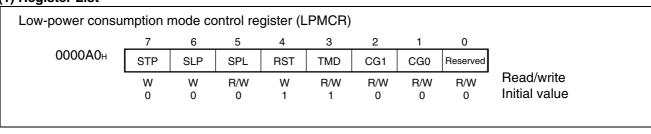


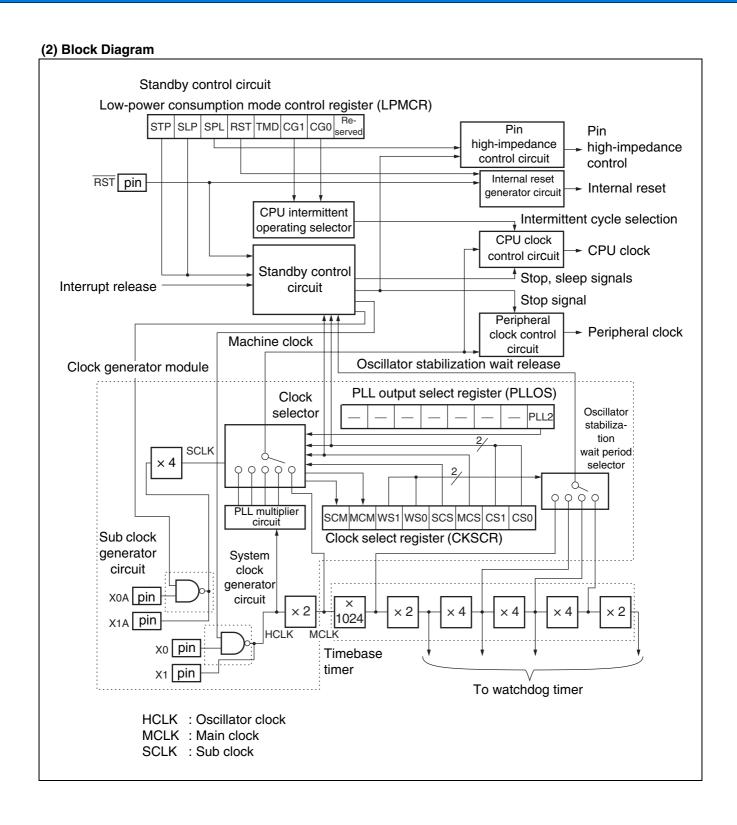

(2) Block Diagram



16. Clock

The clock generator module controls the operation of the internal clock circuits that serve as the operating clock for the CPU and peripheral devices. This internal clock is referred to as the machine clock, and one cycle is referred to as a machine cycle. Also, the clock signals from the base oscillator are called the oscillator clock, and those from the PLL oscillator are called the PLL clock.





17. Low-power Consumption Mode

The MB90480/485 series uses operating clock selection and clock operation controls to provide the following CPU operating modes :

- · Clock modes
 - (PLL clock mode, main clock mode, sub clock mode)
- CPU intermittent operating modes (PLL clock intermittent mode, main clock intermittent mode, sub clock intermittent mode)
- Standby modes (Sleep mode, timebase timer mode, stop mode, watch mode)

(3) Status Transition Chart External reset, watchdog timer reset, software reset Power-on Reset SCS = 0Power-on reset SCS = 1 MCS = 0SCS = 0Main clock Sub clock PLL clock Oscillator mode mode stabilization MCS = 1mode SCS = 1 wait ends SLP = 1 SLP = 1 SLP = Interrupt Interrupt Interrupt PLL sleep Main sleep Sub sleep mode mode mode Interrupt Interrupt TMD = 0Interrupt TMD = 0TMD = 0Main timebase PLL timebase Watch mode timer mode timer mode STP = 1 STP = 1 STP = 1 Main stop PLL stop Sub stop mode mode mode Oscillator Oscillator Oscillator stabilization Interrupt stabilization stabilization Interrupt Interrupt wait ends wait ends wait ends Main clock oscillator Sub clock oscillator Main clock oscillator stabilization wait stabilization wait stabilization wait

18. External Bus Pin Control Circuit

The external bus pin control circuit controls the external bus pins used to expand the CPU address/data bus connections to external circuits.

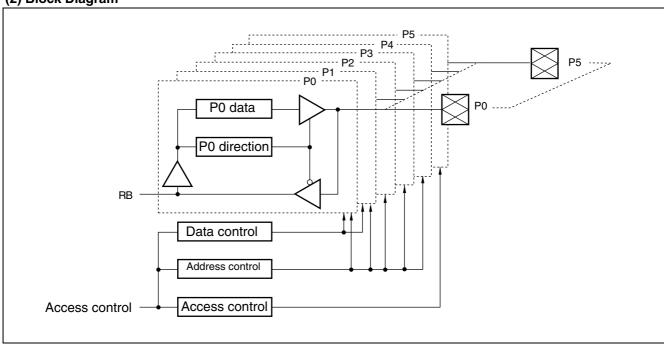
(1) Register List

• Auto ready function select register (ARSR)

Initial value 13 12 14 11 10 9 8 Address: 0000A5H 0011--00в IOR0 HMR1 IOR1 HMR0 LMR1 LMR0 W W W

• External address output control register (HACR)

Initial value 3 2 0 ******B Address: 0000A6H E22 E21 E20 E19 E18 E17 E16 E23 W W W W W W W W


• Bus control signal select register (EPCR)

Initial value 12 14 13 11 10 9 8 Address: 0000A7H 1000*10-B LMBS CKE RYE HDE **IOBS HMBS** WRE W

W: Write only
-: Not used

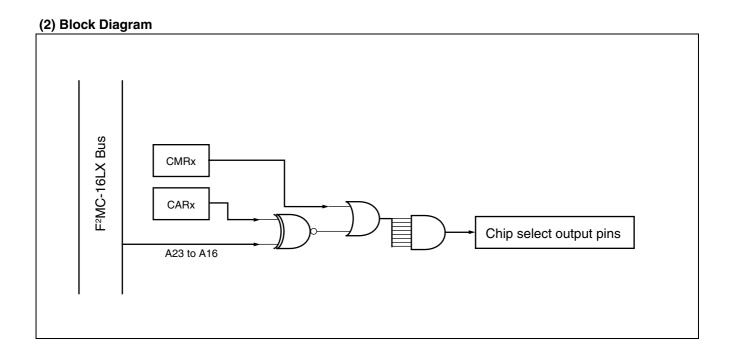
* : May be either "1" or "0"

(2) Block Diagram

19. Chip Select Function Description

The chip select module generates a chip select signals, which are used to facilitate connections to external memory devices. The MB90480/485 series has four chip select output pins, each having a chip select area register setting that specifies the corresponding hardware area and select signal that is output when access to the corresponding external address is detected.

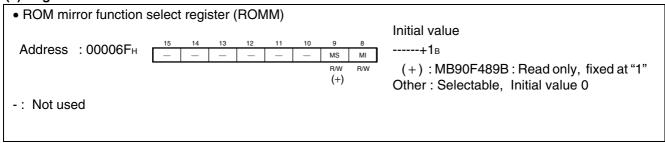
· Chip select function features

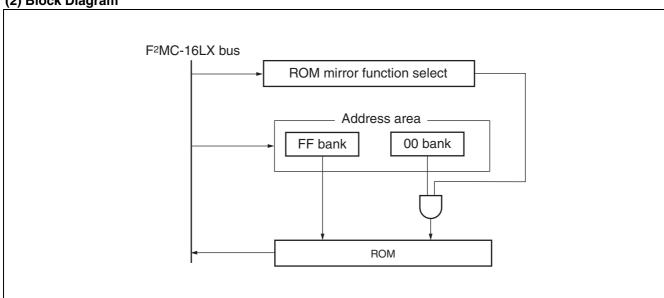

The chip select function uses two 8-bit registers for each output pin. One of these registers (CARx) is able to detect memory areas in 64 Kbytes units by specifying the upper 8-bit of the address for match detection. The other register (CMRx) can be used to expand the detection area beyond 64 Kbytes by masking bits for match detection.

Note that during external bus holds, the CS output is set to high impedance.

The value depends on the mode pin (MD2, MD1 and MD0).

(1) Register List

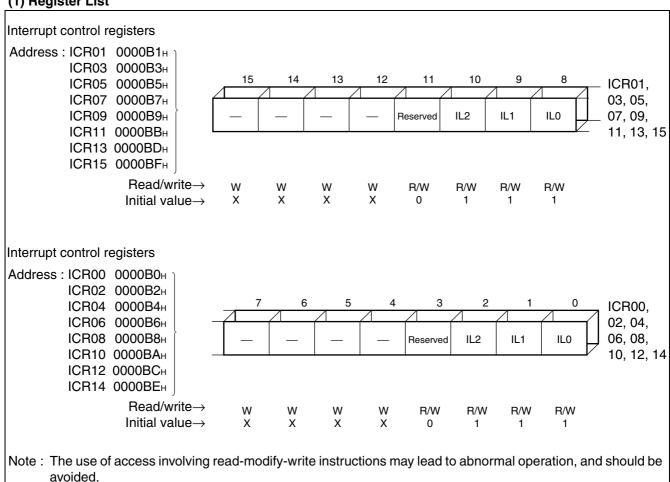

	15				8 7			0	_
		С	AR0			CI	R/W		
		CAR1				CI	MR1		R/W
		С	AR2			CI	MR2		R/W
		C	AR3			CI	MR3		R/W
		С	ALR			C	SCR		R/W
Chip select area r	nask reç	gister (C	MRx)						
0000С0н	7	6	5	4	3	2	1	0	
0000C2н	M7	M6	M5	M4	МЗ	M2	M1	MO	
0000С4н 0000С6н	R/W 0	R/W 0	R/W 0	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	Read/write Initial value
Chip select area r	egister ((CARx)							
0000С1н	15	14	13	12	11	10	9	8	
0000СЗн 0000С5н	A7	A6	A5	A4	A3	A2	A1	A0	
0000С7н	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	Read/write Initial value
Chip select contro	l registe	er (CSC	R)						
000000	7	6	5	4	3	2	1	0	
0000С8н		_	_	_	OPL3	OPL2	OPL1	OPL0	Read/write
	_	_	_	_	R/W 0	R/W 0	R/W 0	R/W *	Initial value
Chip select active	level re	gister (0	CALR)						
000000	15	14	13	12	11	10	9	8	
0000С9н	_		_	_	ACTL3	ACTL2	ACTL1	ACTL0	Dood/write
		_		_	R/W	R/W	R/W	R/W	Read/write Initial value

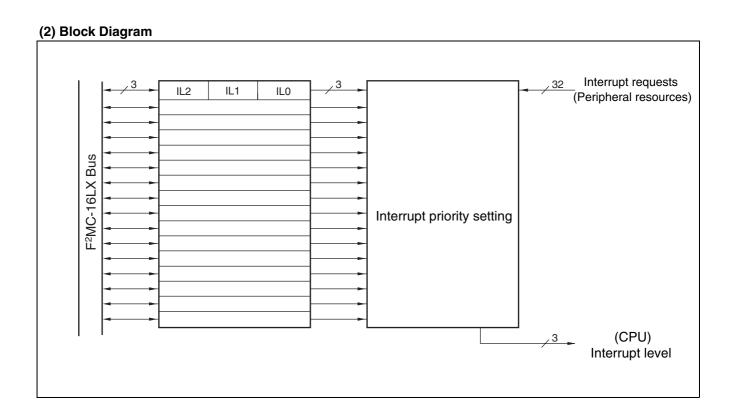

20. ROM Mirror Function Select Module

The ROM mirror function selection module sets the data in ROM assigned to FF bank so that the data is read by access to 00 bank.

(1) Register List

(2) Block Diagram

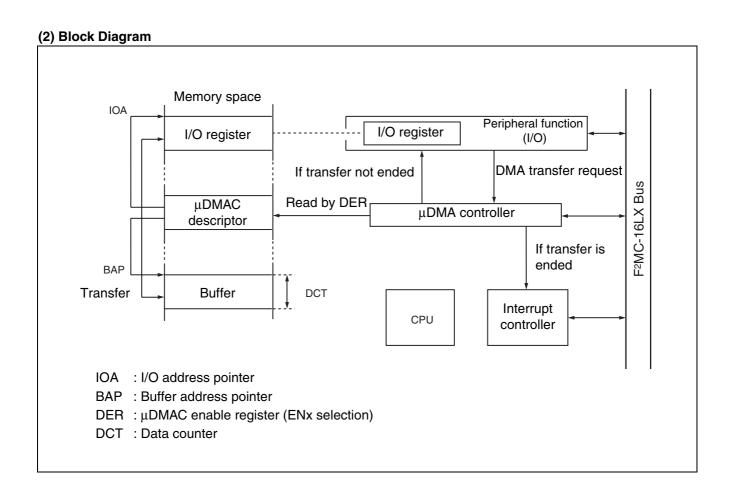



Note: Do not access ROM mirror function selection register (ROMM) on using the area of address 004000 to 00FFFFн (008000н to 00FFFFн).

21. Interrupt Controller

The interrupt control register is built in interrupt controller, and is supported for all I/O of interrupt function. This register sets corresponding peripheral interrupt level.

(1) Register List

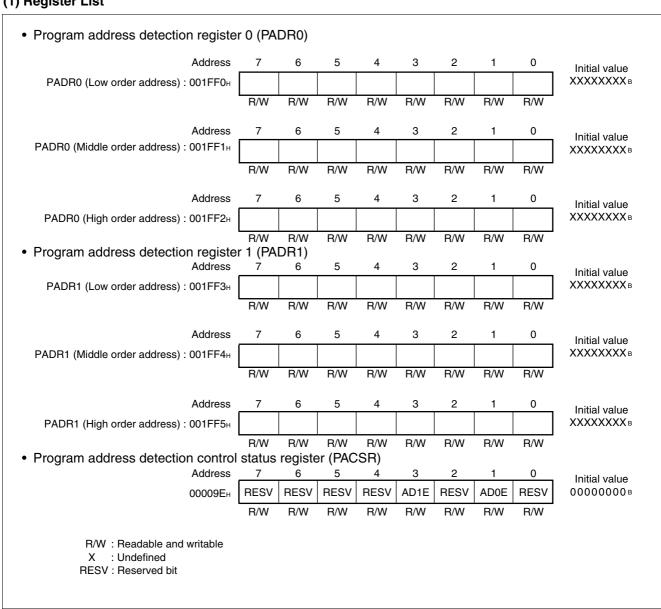


22. μ**DMAC**

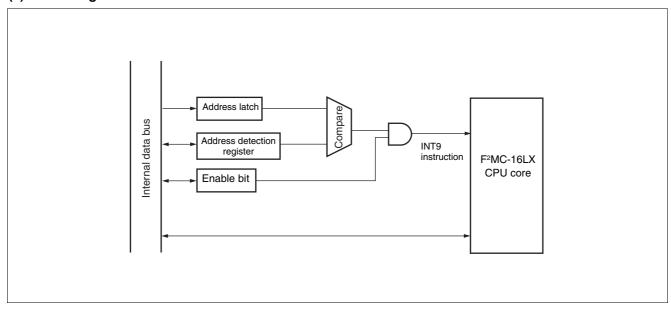
The μ DMAC is a simplified DMA module with functions equivalent to El²OS. The μ DMAC has 16 DMA data transfer channels, and provides the following functions.

- Automatic data transfer between peripheral resources (I/O) and memory.
- CPU program execution stops during DMA operation.
- Incremental addressing for transfer source and destination can be turned on/off.
- DMA transfer control from the μ DMAC enable register, μ DMAC stop status register, μ DMAC status register, and descriptor.
- Stop requests from resources can stop DMA transfer.
- When DMA transfer is completed, the µDMAC status register sets a flag in the bit for the corresponding channel on which transfer was completed, and outputs a completion interrupt to the interrupt controller.

(1) Register List μDMAC enable register Initial value 15 14 13 12 11 10 9 8 DERH: 0000ADH 0000000B EN14 EN13 EN12 EN11 EN15 EN₁₀ EN9 EN8 R/W R/W R/W R/W R/W R/W R/W R/W μDMAC enable register Initial value 7 6 5 4 3 2 1 0 DERL: 0000ACH 0000000B EN7 EN6 EN5 EN4 EN3 EN1 EN0 EN2 R/W R/W R/W R/W R/W R/W R/W R/W μDMAC stop status register Initial value 6 5 4 3 2 0 7 1 DSSR : 0000A4H 0000000B STP5 STP4 STP3 STP7 STP6 STP2 STP1 STP0 R/W R/W R/W R/W R/W R/W R/W R/W μDMAC status register Initial value 15 14 13 12 11 10 0000000B DSRH : 00009DH DE15 DE14 DE13 DE12 DE11 DE10 DE9 DE8 R/W R/W R/W R/W R/W R/W R/W R/W μDMAC status register Initial value 7 5 4 3 2 0 DSRL : 00009CH 0000000B DE7 DE6 DE5 DE4 DE3 DE2 DE1 DE0 R/W R/W R/W R/W R/W R/W R/W R/W



23. Address Match Detection Function


When the address is equal to a value set in the address detection register, the instruction code loaded into the CPU is replaced forcibly with the INT9 instruction code (01H). As a result, when the CPU executes a set instruction, the INT9 instruction is executed. Processing by the INT#9 interrupt routine allows the program patching function to be implemented.

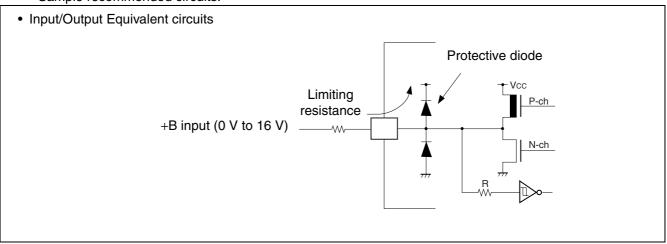
Two address detection registers are supported. An interrupt enable bit is prepared for each register. If the value set in the address detection register matches an address and if the interrupt enable bit is set at "1", the instruction code loaded into the CPU is replaced forcibly with the INT9 instruction code.

(1) Register List

(2) Block Diagram

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings


Parameter	Symbol	Rat	ting	Unit	Remarks
Parameter	Syllibol	Min	Max	Offic	nemarks
	Vcc3	Vss - 0.3	Vss + 4.0	V	
Power supply voltage*1	Vcc5	Vss - 0.3	Vss + 7.0	V	
Power supply voltage	AVcc	Vss - 0.3	Vss + 4.0	V	*2
	AVRH	Vss - 0.3	Vss + 4.0	V	*2
Input voltage*1	Vı	Vss - 0.3	Vss + 4.0	V	*3
input voitage	VI	Vss - 0.3	Vss + 7.0	V	*3, *8, *9
Output voltage*1	Vo	Vss - 0.3	Vss + 4.0	V	*3
Output voltage	VO	Vss - 0.3	Vss + 7.0	V	*3, *8, *9
Maximum clamp current	I CLAMP	-2.0	+2.0	mA	*7
Total maximum clamp current	Σ CLAMP	_	20	mA	*7
"L" level maximum output current	lol	_	10	mA	*4
"L" level average output current	lolav	_	3	mA	*5
"L" level maximum total output current	ΣΙοι	_	60	mA	
"L" level total average output current	Σ lolav		30	mA	*6
"H" level maximum output current	Іон	_	-10	mA	*4
"H" level average output current	lohav	_	-3	mA	*5
"H" level maximum total output current	ΣІон		-60	mA	
"H" level total average output current	Σ lohav	_	-30	mA	*6
Power consumption	P□		320	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	– 55	+150	°C	

- *1 : This parameter is based on $V_{\text{SS}} = AV_{\text{SS}} = 0.0 \text{ V}.$
- *2 : AVcc and AVRH must not exceed Vcc. Also, AVRH must not exceed AVcc.
- *3 : V_I and V₀ must not exceed V_{CC} + 0.3 V. However, if the maximum current to/from and input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating.
- *4 : Maximum output current is defined as the peak value for one of the corresponding pins.
- *5 : Average output current is defined as the average current flow in a 100 ms interval at one of the corresponding pins.
- *6 : Average total output current is defined as the average current flow in a 100 ms interval at all corresponding pins.
- *7 : Applicable to pins : P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, PA0 to PA3
 - Use within recommended operating conditions.
 - Use at DC voltage (current) .
 - The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.

(Continued)

(Continued)

- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits:

*8: MB90485 series only P20 to P27, P30 to P37, P40 to P47, P70 to P77 pins can be used as 5 V I/F pin on applied 5 V to Vcc5 pin. P76 and P77 is N-ch open drain pin.

*9: As for P76 and P77 (N-ch open drain pin), even if using at 3 V simplicity (Vcc3 = Vcc5), the ratings are applied.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(Vss = AVss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
Parameter	Symbol	Min	Max	Ullit	nemarks
	Vcc3	2.7	3.6	V	During normal operation
Bower aupply voltage	VCCS	1.8	3.6	V	To maintain RAM state in stop mode
Power supply voltage	Vcc5	2.7	5.5	V	During normal operation*
	VCCO	1.8	5.5	V	To maintain RAM state in stop mode*
	Vıн	0.7 Vcc	Vcc + 0.3	V	All pins other than V _{IH2} , V _{IHS} , V _{IHM} and V _{IHX}
"H" level input voltage	V _{IH2}	0.7 Vcc	Vss + 5.8	V	MB90485 series only P76, P77 pins (N-ch open drain pins)
	VIHS	0.8 Vcc	Vcc + 0.3	V	Hysteresis input pins
	V _{IHM}	Vcc - 0.3	Vcc + 0.3	V	MD pin input
	VIHX	0.8 Vcc	Vcc + 0.3	V	X0A pin, X1A pin
	VIL	Vss - 0.3	0.3 Vcc	V	All pins other than VILS, VILM and VILX
"L" level input voltage	VILS	Vss - 0.3	0.2 Vcc	V	Hysteresis input pins
L level iliput voltage	VILM	Vss - 0.3	Vss + 0.3	V	MD pin input
	VILX	Vss - 0.3	0.1	V	X0A pin, X1A pin
Operating temperature	Та	-40	+85	°C	

^{*:} MB90485 series only P20 to P27, P30 to P37, P40 to P47, P70 to P77 pins can be used as 5 V I/F pin on applied 5 V to Vcc5 pin.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

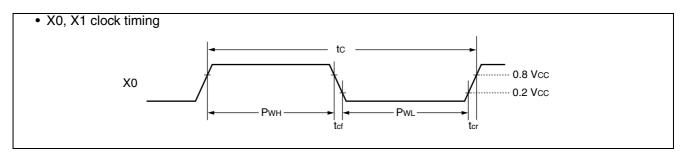
 $(Vcc = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40 \, ^{\circ}\text{C} \text{ to } +85 \, ^{\circ}\text{C})$

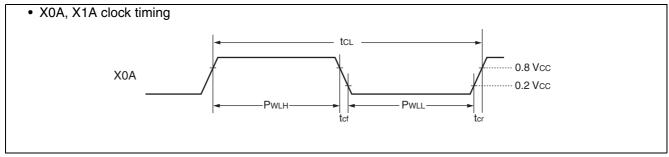
Parameter	Cymbal	Pin name	Condition	١	/alue		Unit	Remarks
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
"H" level	Vон	All output	Vcc = 2.7 V, Іон = -1.6 mA	Vcc3 - 0.3	_	_	V	
output voltage	VOH	pins	Vcc = 4.5 V, Іон = -4.0 mA	Vcc5 - 0.5	_	_	V	At using 5 V power supply
"L" level	l Vol I		Vcc = 2.7 V, lo _L = 2.0 mA	_	_	0.4	V	
output voltage	VOL	pins	Vcc = 4.5 V, Іон = 4.0 mA	_	_	0.4	V	At using 5 V power supply
Input leakage current	Iı∟	All input pins	Vcc = 3.3 V, Vss < V _I < Vcc	-10	_	+10	μΑ	
Pull-up resistance	Rpull	_	Vcc = 3.0 V, at T _A = +25 °C	20	53	200	kΩ	
Open drain output current	lleak	P40 to P47, P70 to P77	_	_	0.1	10	μΑ	
	Icc		At $Vcc = 3.3 \text{ V}$, internal 25 MHz operation, normal operation	_	45	60	mA	
	icc	_	At Vcc = 3.3 V, internal 25 MHz operation, Flash programming	_	55	70	mA	
	Iccs	_	At $Vcc = 3.3 \text{ V}$, internal 25 MHz operation, sleep mode	_	17	35	mA	
Power supply current	Iccl	_	At $V_{CC} = 3.3 \text{ V}$, external 32 kHz, internal 8 kHz operation, sub clock operation $(T_A = +25 \text{ °C})$		15	140	μА	
	Ісст	_	At $Vcc = 3.3 \text{ V}$, external 32 kHz, internal 8 kHz operation, watch mode ($T_A = +25 \text{ °C}$)	_	1.8	40	μА	
	Іссн	_	$T_A = +25$ °C, stop mode, At $V_{CC} = 3.3 \text{ V}$	_	0.8	40	μА	
Input capacitance	Cin	Other than AVcc, AVss, Vcc, Vss	_	_	5	15	pF	

Notes: • MB90485 series only

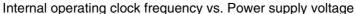
- P40 to P47 and P70 to P77 are N-ch open drain pins with control, which are usually used as CMOS.
- P76 and P77 are open drain pins without P-ch.
- For use as a single 3 V power supply products, set Vcc = Vcc3 = Vcc5.
- When the device is used with dual power supplies, P20 to P27, P30 to P37, P40 to P47 and P70 to P77 serve as 5 V pins while the other pins serve as 3 V I/O pins.

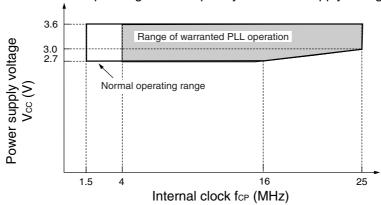
4. AC Characteristics

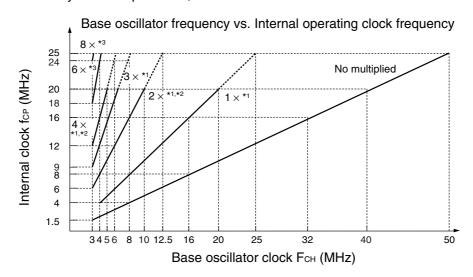

(1) Clock Timing


 $(V_{SS} = 0.0 \text{ V}, T_A = -40 \, ^{\circ}\text{C to } +85 \, ^{\circ}\text{C})$

Parameter	Sym-	Pin name	Condi-		Value		Unit	Remarks
Parameter	bol	Pili liaille	tion	Min	Тур	Max	Offic	nemarks
			_	3	_	25		External crystal oscillator
			_	3	_	50		External clock input
				4	_	25		1 multiplied PLL
Observation and	Fсн	X0, X1	_	3	_	12.5	MHz	2 multiplied PLL
Clock frequency				3	_	6.66		3 multiplied PLL
				3	_	6.25		4 multiplied PLL
					3	_	4.16	
				3	—	3.12		8 multiplied PLL
	FcL	X0A, X1A			32.768		kHz	
Clock cycle time	t c	X0, X1		20	_	333	ns	*1
Clock cycle time	t cL	X0A, X1A		_	30.5		μs	
Input clock pulse width	Pwh PwL	X0		5	_	_	ns	
input clock pulse width	Pwlh Pwll	X0A			15.2	_	μs	*2
Input clock rise, fall time	t _{cr} t _{cf}	X0				5	ns	With external clock
Internal operating clock	f CP		_	1.5	—	25	MHz	*1
frequency	fcpl	_	_		8.192	_	kHz	
Internal operating clock	t cp		_	40.0		666	ns	*1
cycle time	t CPL				122.1	_	μs	


^{*1 :} Be careful of the operating voltage.


^{*2 :} Duty ratio should be 50 $\% \pm 3~\%.$


Range of warranted PLL operation

Notes: • For A/D operating frequency, refer to "5. A/D Converter Electrical Characteristics"

• Only at 1 multiplied PLL, use with more than fcp = 4 MHz.

*1 : In setting as 1, 2, 3 and 4 multiplied PLL, when the internal clock is used at 20 MHz < $f_{CP} \le 25$ MHz, set the PLLOS register to "DIV2 bit = 1" and "PLL2 bit = 1".

[Example] When using the base oscillator frequency of 24 MHz at 1 multiplied PLL:

CKSCR register : CS1 bit = "0", CS0 bit = "0" PLLOS register : PLL2 bit = "1"

[Example] When using the base oscillator frequency of 6 MHz at 3 multiplied PLL:

CKSCR register : CS1 bit = "1", CS0 bit = "0" PLLOS register : PLL2 bit = "1"

*2 : In setting as 2 and 4 multiplied PLL, when the internal clock is used at 20 MHz < fcP ≤ 25 MHz, the following setting is also enabled.

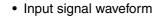
2 multiplied PLL: CKSCR register: CS1 bit = "0", CS0 bit = "0"

PLLOS register : PLL2 bit = "1"

4 multiplied PLL: CKSCR register: CS1 bit = "0", CS0 bit = "1"

PLLOS register : PLL2 bit = "1"

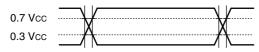
*3: When using in setting as 6 and 8 multiplied PLL, set the PLLOS register to "DIV2 bit = 0" and "PLL2 bit = 1".


[Example] When using the base oscillator frequency of 4 MHz at 6 multiplied PLL:

CKSCR register : CS1 bit = "1", CS0 bit = "0" PLLOS register : PLL2 bit = "1"

[Example] When using the base oscillator frequency of 3 MHz at 8 multiplied PLL:

CKSCR register : CS1 bit = "1", CS0 bit = "1" PLLOS register : PLL2 bit = "1"

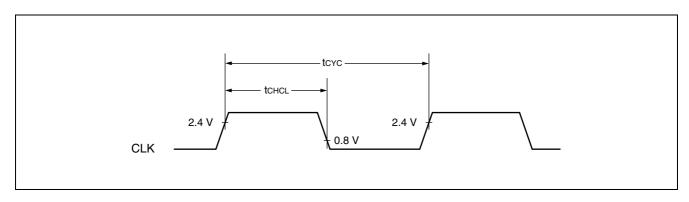

AC standards are set at the following measurement voltage values.

Hysteresis input pins

• Pins other than hysteresis input/MD input

• Output signal waveform

Output pins

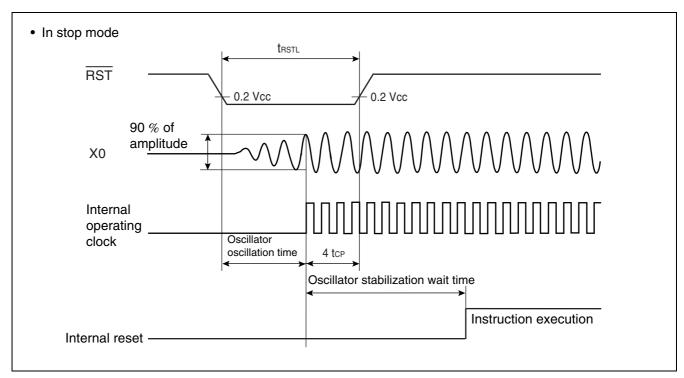


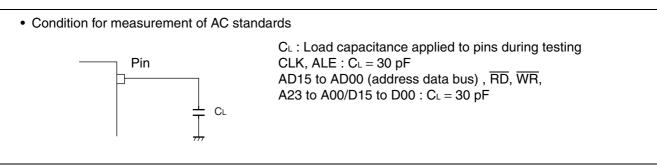
(2) Clock Output Timing

(Vss = 0.0 V, T_A =
$$-40$$
 °C to $+85$ °C)

Parameter	Symbol Pin nan		Pin name Conditions		lue	Unit	Remarks	
Parameter	Symbol	Fill Hallie	Conditions	Min	Max	Ollit	nemarks	
Cycle time	t cyc	CLK	_	tcp*	_	ns		
			Vcc = 3.0 V to 3.6 V	tcp* / 2 - 15	tcp* / 2 + 15	ns	at fcp = 25 MHz	
CLK↑→CLK↓ tcн		CLK	Vcc = 2.7 V to 3.3 V	tcp* / 2 - 20	tcp* / 2 + 20	ns	at fcp = 16 MHz	
			Vcc = 2.7 V to 3.3 V	tcp* / 2 - 64	tcp* / 2 + 64	ns	at fcp = 5 MHz	

^{*:} tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".



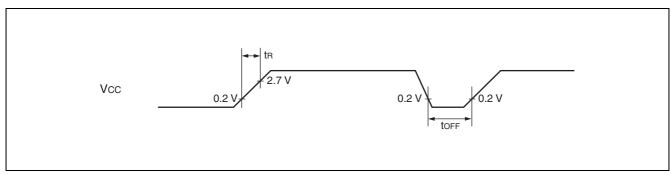

(3) Reset Input Standards

 $(V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, V_{SS} = 0.0 \text{ V}, T_{A} = -40 \, ^{\circ}\text{C to } +85 \, ^{\circ}\text{C})$

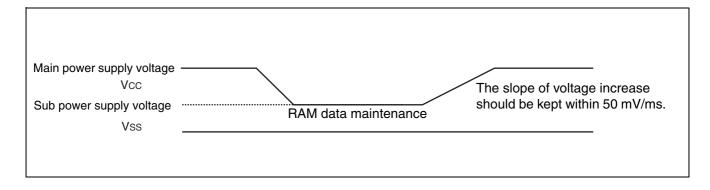
Parameter	Symbol	Pin	Condi-	di- Value		Unit	Remarks
Parameter	Syllibol	name	tions	Min	Max	Ollit	nemarks
				16 tcp*1	_	ns	Normal operation
Reset input time	t RSTL	RST		Oscillator oscillation time*2 + 4 tcp*1		ms	Stop mode

- *1: tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".
- *2: Oscillator oscillation time is the time to 90 % of amplitude. For a crystal oscillator this is on the order of several milliseconds to tens of milliseconds. For a ceramic oscillator, this is several hundred microseconds to several milliseconds. For an external clock signal the value is 0 ms.

(4) Power-on Reset Standards


$$(Vcc = 2.7 \text{ V to } 3.6 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$$

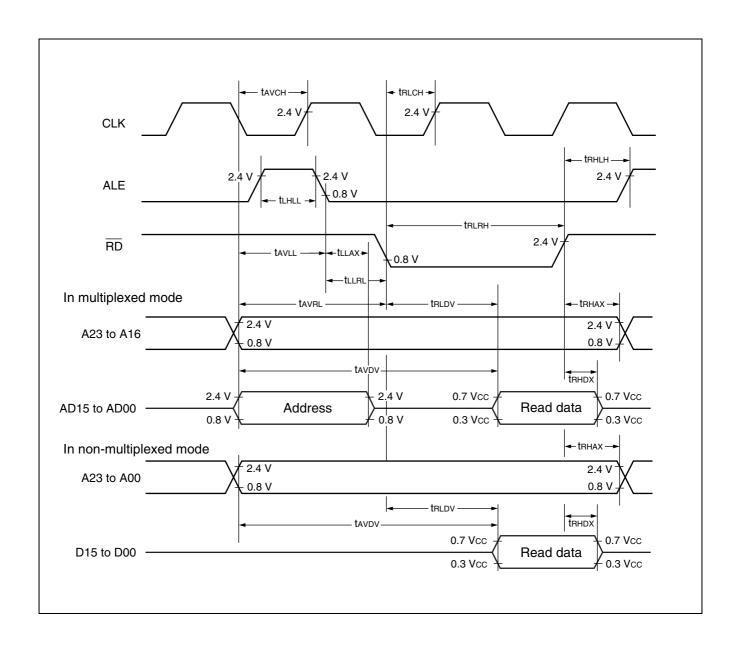
Parameter	Symbol	Symbol	Symbol	Symbol	Pin name	Conditions	Va	lue	Unit	Remarks
		Fili lialile	Conditions	Min	Max	Oilit	nemarks			
Power rise time	t⊓	Vcc		0.05	30	ms	*			
Power down time	toff	Vcc		1	_	ms	In repeated operation			


 $^{^{\}star}$: Power rise time requires Vcc < 0.2 V.

Notes: • The above standards are for the application of a power-on reset.

• Within the device, the power-on reset should be applied by switching the power supply off and on again.

Note: Rapid fluctuations in power supply voltage may trigger a power-on reset in some cases. As shown below, when changing supply voltage during operation, it is recommended that voltage changes be suppressed and a smooth restart be applied.

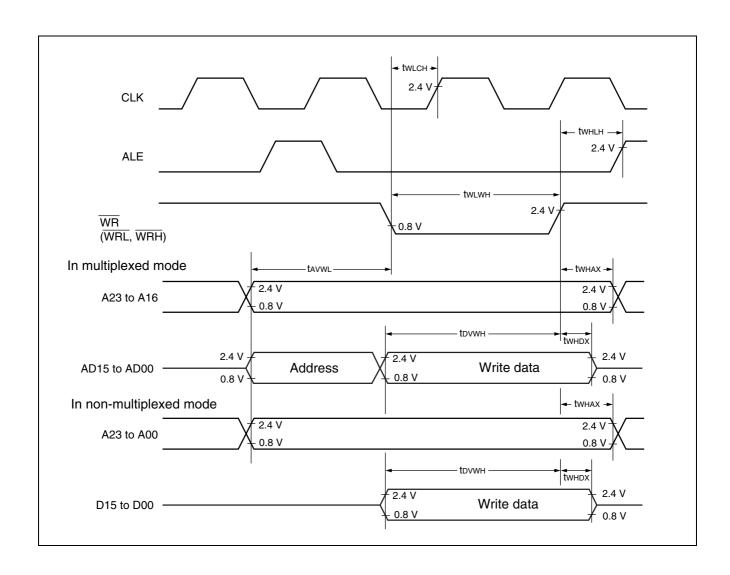


(5) Bus Read Timing

(Vcc = 2.7 V to 3.6 V, Vss = 0.0 V, TA = 0 °C to +70 °C)

Dovometer	Cymbal	Din nama	Conditions	Va	lue	Unit	Domouleo
Parameter	Symbol	Pin name	Conditions	Min	Max	Unit	Remarks
				tcp* / 2 – 15	_	ns	16 MHz < fcp ≤ 25 MHz
ALE pulse width	tunu	ALE	_	tcp* / 2 – 20	_	ns	8 MHz < fcp ≤ 16 MHz
				tcp* / 2 - 35		ns	fcp ≤ 8 MHz
Valid address→	tavll	Address,		tcp* / 2 - 17	_	ns	
ALE↓time	L AVLL	ALE		tcp* / 2 - 40		ns	fcp ≤ 8 MHz
ALE↓→ address valid time	tllax	ALE, Address	_	tcp* / 2 – 15	_	ns	
Valid address→ RD↓time	tavrl	RD, address	_	tcp* - 25	_	ns	
Valid address→	tavdv	Address,		_	5 tcp* / 2 - 55	ns	
valid data input	LAVDV	Data	_	_	5 tcp* / 2 - 80	ns	fcp ≤ 8 MHz
RD pulse width	trlrh	RD		3 tcp* / 2 – 25	_	ns	16 MHz < fcp ≤ 25 MHz
The pulse width	IRLHH	TID		3 tcp* / 2 – 20	_	ns	8 MHz < fcp ≤ 16 MHz
$\overline{RD}{\downarrow}{ ightarrow}$	trlov	\overline{RD} ,			3 tcp* / 2 - 55	ns	
valid data input	tHLDV	Data			3 tcp* / 2 - 80	ns	fcp ≤ 8 MHz
RD↑→data hold time	trhox	RD, Data	_	0	_	ns	
RD↑→ALE↑time	trhlh	RD, ALE	_	tcp* / 2 - 15	_	ns	
RD↑→ address valid time	trhax	Address, RD	_	tcp* / 2 – 10	_	ns	
Valid address→ CLK [↑] time	tavch	Address, CLK	_	tcp* / 2 – 17	_	ns	
RD↓→CLK↑time	trlch	RD, CLK	_	tcp* / 2 - 17	_	ns	
ALE↓→RD↓time	tllrl	RD, ALE	_	tcp* / 2 - 15	_	ns	

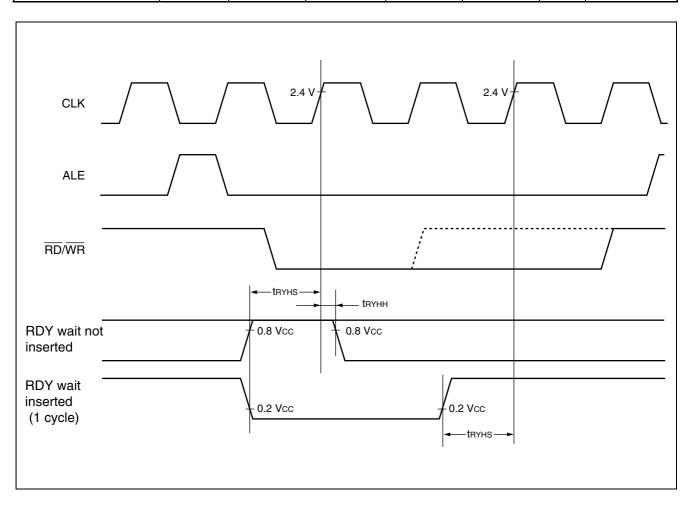
^{*:} tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".



(6) Bus Write Timing

(Vcc = 2.7 V to 3.6 V, Vss = 0.0 V, T_A = 0 $^{\circ}C$ to +70 $^{\circ}C)$

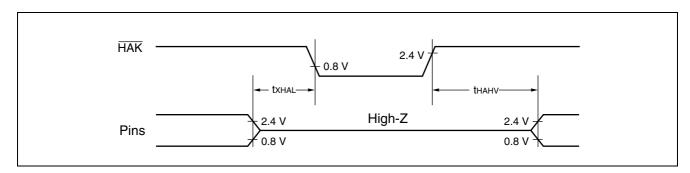
Parameter	Sym-	Pin name	Condi-	Val	ue	Unit	Remarks
Parameter	bol	Pili liaille	tion	Min	Max	Oilit	nemarks
Valid address→ WR ↓time	tavwl	Address, WR	_	tcp* - 15	_	ns	
WR pulse width	twlwh	WRL, WRH	_	3 tcp* / 2 – 25	_	ns	16 MHz < fcp ≤ 25 MHz
WH pulse wiath	twLwH	VVAL, VVAD		3 tcp* / 2 – 20	_	ns	8 MHz < fcP ≤ 16 MHz
Valid data output → WR time	tovwh	Data, WR		3 tcp* / 2 - 15		ns	
			_	10	_	ns	16 MHz < fcp ≤ 25 MHz
WR↑→data hold time	twhox	WR, Data	_	20	_	ns	8 MHz < fcp ≤ 16 MHz
			_	30		ns	fcp ≤ 8 MHz
WR↑→address valid time	twhax	WR, Address	_	tcp* / 2 - 10		ns	
WR↑→ALE↑time	twhlh	WR, ALE		tcp* / 2 - 15		ns	
WR↓→CLK↑time	twlch	WR, CLK		tcp* / 2 - 17	_	ns	


^{*:} tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".

(7) Ready Input Timing

(Vcc = 2.7 V to 3.6 V, Vss = 0.0 V, Ta = 0 °C to +70 °C)

Parameter	Symbol	Pin name	Conditions	Va	lue	Unit	Remarks
Parameter	Syllibol		Conditions	Min	Max	Oilit	neiliaiks
RDY setup time	tovaro		_	35	_	ns	
	t RYHS	RDY		70		ns	at fcp = 8 MHz
RDY hold time	tпунн		_	0		ns	


(8) Hold Timing

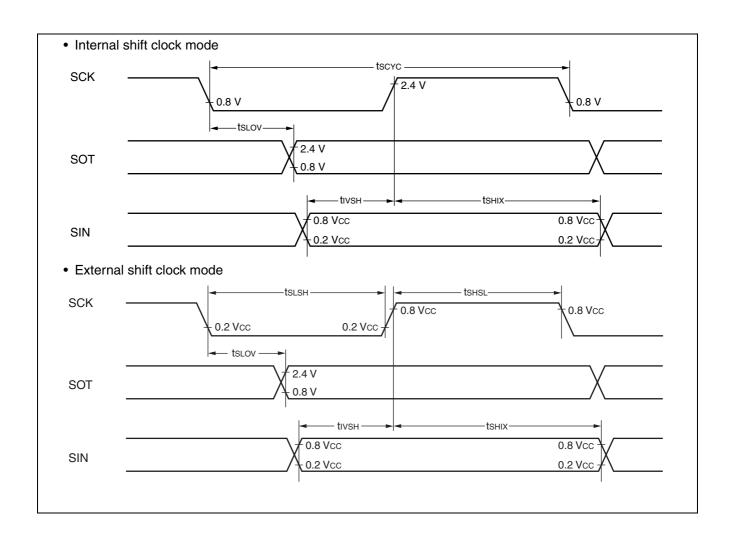
(Vcc = 2.7 V to 3.6 V, Vss = 0.0 V, Ta = -40 °C to +85 °C)

Parameter	Symbol	Pin name	Conditions	Va	lue	Unit	Remarks
	Symbol		Conditions	Min	Max	Onne	Hemarks
Pin floating→HAK↓time	txhal	HAK		30	tcp*	ns	
HAK↓→pin valid time	t hahv	HAK		tcp*	2 tcp*	ns	

^{*:} tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".

Note: One or more cycles are required from the time the HRQ pin is read until the HAK signal changes.

(9) UART Timing


 $(Vcc = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

Davamatav	Ob. a.l.	Pin	0	Value		11	Domostro
Parameter	Symbol	name	Conditions	Min	Max	Unit	Remarks
Serial clock cycle time	tscyc	_		8 tcp*2		ns	
SCK↓→SOT delay time	tslov			-80	+80	ns	
30K↓→30T delay liftle	islov		Internal shift clock mode output pins :	-120	+120	ns	fcp = 8 MHz
Valid SIN→SCK↑	tıvsн		$C_L^{*1} = 80 \text{ pF} + 1 \text{ TTL}$	100		ns	
Valid SIN-SOK	LIV5H	_	_	200		ns	fcp = 8 MHz
SCK↑→valid SIN hold time	tsнıx	_		t cp*2		ns	
Serial clock "H" pulse width	t shsl	_		4 tcp*2	_	ns	
Serial clock "L" pulse width	t slsh			4 tcp*2		ns	
SCK↓→SOT delay time	torov			_	150	ns	
30K↓→30T delay liftle	t sLOV	_	External shift clock mode output pins :	_	200	ns	fcp = 8 MHz
Valid SIN→SCK↑	tıvsı		$C_L^{*1} = 80 \text{ pF} + 1 \text{ TTL}$	60		ns	
Valid SIN-SCK	LIVSH		·	120		ns	fcp = 8 MHz
SCK↑ walid SIN hold time	tour			60	_	ns	
SCK↑→valid SIN hold time	t shix	_		120		ns	fcp = 8 MHz

^{*1 :} C_L is the load capacitance applied to pins for testing.

Note: The above rating is in CLK synchronous mode.

^{*2 :} tcp is internal operating clock cycle time. Refer to " (1) Clock Timing".

(10) Extended I/O Serial Interface Timing

(Vcc = 2.7 V to 3.6 V, Vss = 0.0 V, $T_A = -40 \, ^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$)

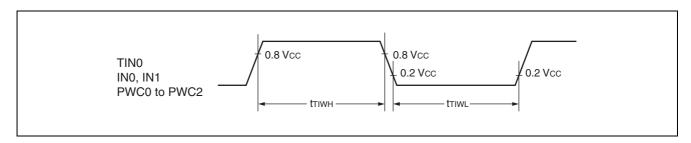
Parameter	Symbol	Pin	Conditions	Va	Value		Remarks	
Parameter	Syllibol	name	Conditions	Min	Max	Unit	Homarks	
Serial clock cycle time	tscyc	_		8 tcp*2		ns		
SCK↓→SOT delay time	tslov			-80	+ 80	ns		
30N↓→301 delay time	L SLOV		Internal shift clock mode output pins :	-120	+ 120	ns	fcp = 8 MHz	
Valid SIN→SCK↑	tıvsн		$C_L^{*1} = 80 \text{ pF} + 1 \text{ TTL}$	100		ns		
Valid SIN→SON	UVSH		·	200		ns	fcp = 8 MHz	
SCK [↑] →valid SIN hold time	tsнıx	_		t cp*2		ns		
Serial clock "H" pulse width	t shsl	_		4 tcp*2		ns		
Serial clock "L" pulse width	t slsh			4 tcp*2		ns		
SCK↓→SOT delay time	tsLov			_	150	ns		
		_	External shift clock	_	200	ns	fcp = 8 MHz	
Valid SIN→SCK↑	tıvsн		mode output pins : $C_L^{*1} = 80 \text{ pF} + 1 \text{ TTL}$	60		ns		
Valid SIN-SON		_	·	120		ns	fcp = 8 MHz	
SCK↑→valid SIN hold time				60	_	ns		
	t shix	_		120	_	ns	fcp = 8 MHz	

^{*1 :} C_L is the load capacitance applied to pins for testing.

Notes: • The above rating is in CLK synchronous mode.

• Values on this table are target values.

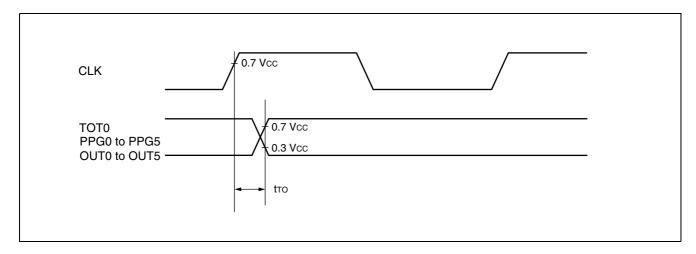
^{*2 :} tcp is internal operating clock cycle time. Refer to " (1) Clock Timing".



(11) Timer Input Timing

(Vcc = 2.7 V to 3.6 V, Vss = 0.0 V,
$$T_A = -40 \, ^{\circ}\text{C}$$
 to +85 $^{\circ}\text{C}$)

Parameter	Symbol	Pin name	Conditions	Val	Value		Remarks
Parameter Sym	Syllibol	Fill liame	Conditions	Min	Max	Unit	nemarks
Input pulse width	tтıwн tтıwL	TIN0, IN0, IN1, PWC0 to PWC2	_	4 tcp*	_	ns	


^{*:} tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".

(12) Timer Output Timing

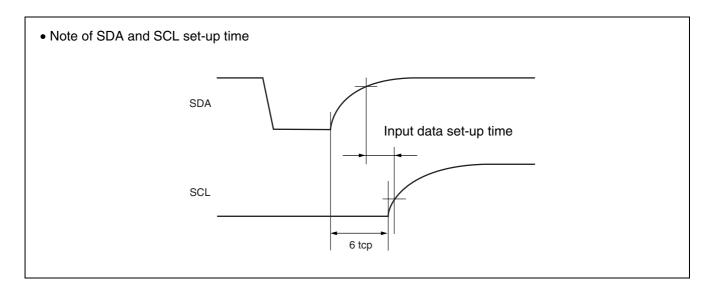
$$(Vcc = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$$

Parameter	Sym-	Pin name	Conditions	Value		Unit	Remarks
Farameter	bol	riii iiaiiie	Conditions	Min	Max	Oilit	nemarks
CLK↑→Change time PPG0 to PPG5 change time OUT0 to OUT5 change time		TOT0, PPG0 to PPG5, OUT0 to OUT5	Load conditions 80 pF	30	_	ns	

(13) I²C Timing

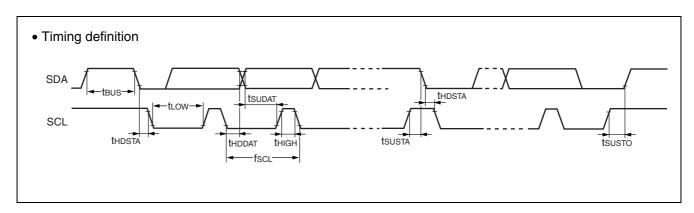
(Vcc = 2.7 V to 3.6 V, Vss = 0.0 V, $T_A = -40 \, ^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$)

Parameter	Cumbal	Condition	Standar	Unit	
Parameter	Symbol	Condition	Min	Max	Unit
SCL clock frequency	fscL		0	100	kHz
Hold time (repeated) START condition SDA $\downarrow \rightarrow$ SCL \downarrow	t hdsta	When power supply voltage of	4.0	_	μs
"L" width of the SCL clock	tLOW	external pull-up resistance is 5.5 V $R = 1.3 \text{ k}\Omega$, $C = 50 \text{ pF}^{*2}$		_	μs
"H" width of the SCL clock	tніgн	When power supply voltage of	4.0	_	μs
Set-up time (repeated) START condition SCL↑→SDA↓	t susta	external pull-up resistance is 3.6 V R = 1.6 k Ω , C = 50 pF* ²	4.7	_	μs
Data hold time SCL↓→SDA↓↑	thddat		0	3.45*3	μs
Data set-up time	t sudat	When power supply voltage of external pull-up resistance is 5.5 V fcp*1 \leq 20 MHz, R = 1.3 k Ω , C = 50 pF*2 When power supply voltage of external pull-up resistance is 3.6 V fcp*1 \leq 20 MHz, R = 1.6 k Ω , C = 50 pF*2	250*4		ns
SDA↓↑→SCL↑	LSUDAT	When power supply voltage of external pull-up resistance is 5.5 V fcp*1 > 20 MHz, R = 1.3 k Ω , C = 50 pF*2 When power supply voltage of external pull-up resistance is 3.6 V fcp*1 > 20 MHz, R = 1.6 k Ω , C = 50 pF*2	200*4	_	ns
Set-up time for STOP condition SCL↑→SDA↑	tsusто	When power supply voltage of external pull-up resistance is 5.5 V	4.0		μs
Bus free time between a STOP and START condition	t BUS	R = 1.3 k Ω , C = 50 pF*2 When power supply voltage of external pull-up resistance is 3.6 V R = 1.6 k Ω , C = 50 pF*2	4.7	_	μs


^{*1 :} fcp is internal operation clock frequency. Refer to " (1) Clock Timing".

Note : Vcc = Vcc3 = Vcc5

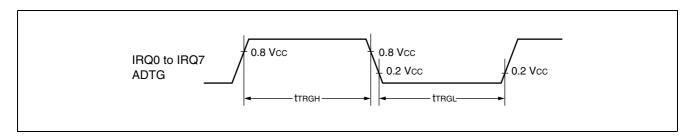
^{*2 :} R,C : Pull-up resistor and load capacitor of the SCL and SDA lines.


^{*3 :} The maximum thddat only has to be met if the device does not stretch the "L" width (tLow) of the SCL signal.

^{*4 :} Refer to ". Note of SDA and SCL set-up time".

Note: The rating of the input data set-up time in the device connected to the bus cannot be satisfied depending on the load capacitance or pull-up resistor.

Be sure to adjust the pull-up resistor of SDA and SCL if the rating of the input data set-up time cannot be satisfied.

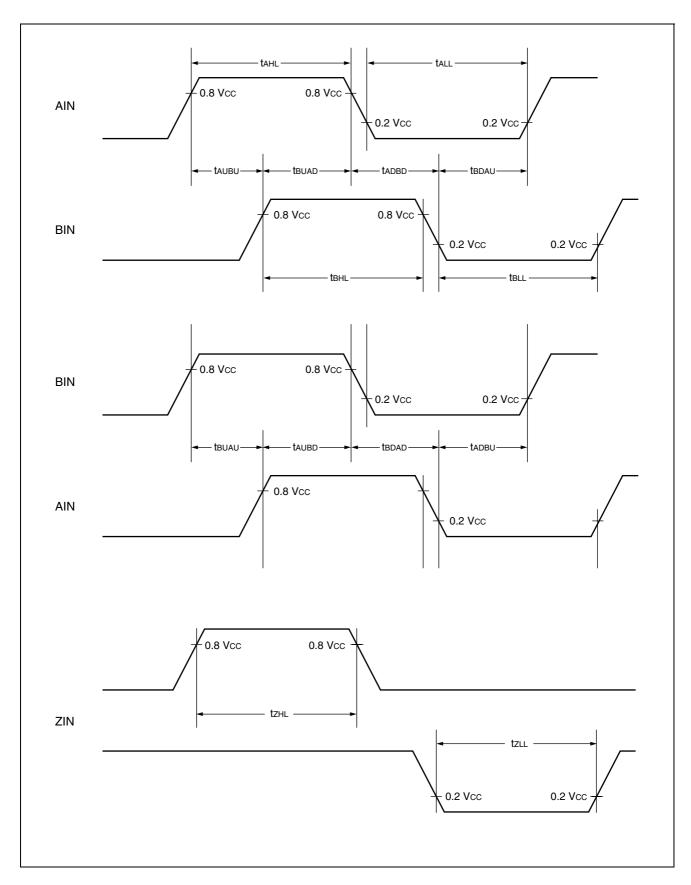


(14) Trigger Input Timing

(Vcc = 2.7 V to 3.6 V, Vss = 0.0 V, $T_A = -40 \, ^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$)

Parameter	Symbol	Pin name	Condi-	ondi- Value		Unit	Remarks
Parameter Symbol Pili half	Fill Hallie	tions	Min	Max	Oilit	nemarks	
Input pulse width		ADTG,		5 tcp*	_	ns	Normal operation
input puise width	trage IRQ0 to IRQ7			1		μs	Stop mode

 $^{^{\}star}$: tcp is internal operating clock cycle time. Refer to " (1) Clock Timing".

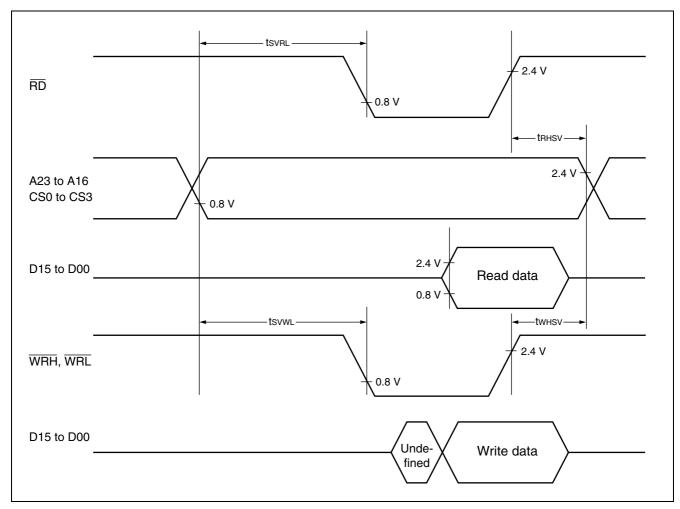


(15) Up-down Counter Timing

 $(V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40 \,^{\circ}\text{C to } +85 \,^{\circ}\text{C})$

Davamatav	Cumbal	Pin name	Conditions	Va	lue	Heit	Domorko
Parameter	Symbol	riii iiaiiie	Conditions	Min	Max	Unit	Remarks
AIN input "H" pulse width	tahl			8 tcp*	_	ns	
AIN input "L" pulse width	tall			8 tcp*	_	ns	
BIN input "H" pulse width	t BHL			8 tcp*	_	ns	
BIN input "L" pulse width	t BLL	AINO, AIN1,		8 tcp*	_	ns	
AIN↑→BIN↑ time	t aubu			4 tcp*	_	ns	
BIN↑→AIN↓ time	t BUAD			4 tcp*	_	ns	
AIN↓→BIN↑ time	t adbd	BIN0, BIN1	Load conditions	4 tcp*	_	ns	
BIN↓→AIN↑ time	t BDAU		80 pF	4 tcp*	_	ns	
BIN↑→AIN↑ time	t BUAU			4 tcp*	_	ns	
AIN↑→BIN↓ time	t AUBD			4 tcp*	_	ns	
BIN↓→AIN↑ time	t BDAD			4 tcp*	_	ns	
AIN↓→BIN↑ time	t adbu			4 tcp*	_	ns	
ZIN input "H" pulse width	tzhl	ZIN0, ZIN1		4 tcp*	_	ns	
ZIN input "L" pulse width	tzll			4 tcp*		ns	

^{*:} tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".



(16) Chip Select Output Timing

 $(V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40 \,^{\circ}\text{C to } +85 \,^{\circ}\text{C})$

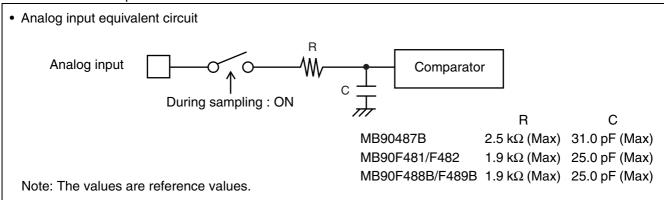
Parameter	Sym- bol	Pin name	Condi- tions	Value		Unit	Remarks
raiailletei				Min	Max	Oill	nemarks
Chip select output valid time $\rightarrow \overline{RD} \downarrow$	tsvrl	CS0 to CS3,	_	tcp* / 2 - 7	_	ns	
Chip select output valid time→WR↓	t svwL	CS0 to CS3, WRH, WRL	_	tcp* / 2 - 7	_	ns	
RD↑→chip select output valid time	t RHSV	RD, CS0 to CS3	_	tcp* / 2 – 17	_	ns	
WR↑→chip select output valid time	twnsv	WRH, WRL, CS0 to CS3	_	tcp* / 2 – 17	_	ns	

^{*:} tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".

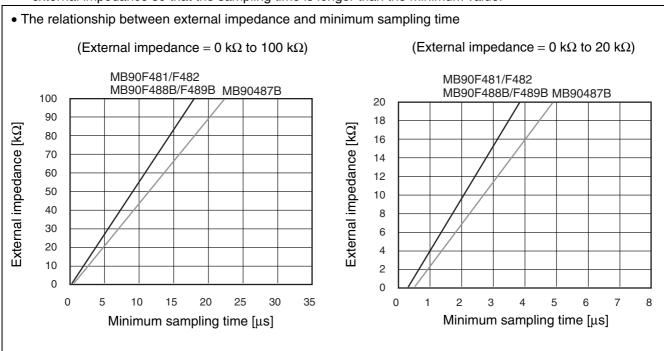
Note: Due to the configuration of the internal bus, the chip select output signals are changed simultaneously and therefore may cause the bus conflict conditions. AC cannot be warranted between the ALE output signal and the chip select output signal.

5. A/D Converter Electrical Characteristics

(Vcc = AVcc = 2.7 V to 3.6 V, Vss = AVss = 0.0 V, 2.7 V \leq AVRH, T_A = -40 $^{\circ}$ C to +85 $^{\circ}$ C)


D	Sym- bol	D'					
Parameter		Pin name	Min	Тур	Max	Unit	Remarks
Resolution		_	_	_	10	bit	
Total error	_	_	_	_	±3.0	LSB	
Linear error	_	_	_	_	±2.5	LSB	
Differential linearity error		_	_	_	±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	mV	
Full scale transition voltage	V _{FST}	AN0 to AN7	AVRH – 3.5 LSB	AVRH – 1.5 LSB	AVRH + 0.5 LSB	mV	
Conversion time			3.68 *1	_		μs	
Analog port input current	lain	AN0 to AN7		0.1	10	μΑ	
Analog input voltage	Vain	AN0 to AN7	AVss	_	AVRH	V	
Reference voltage	_	AVRH	AVss + 2.2	_	AVcc	V	
Power supply current	lΑ	AVcc	_	1.4	3.5	mA	
	Іан	AVcc	_	_	5 *²	μΑ	
Reference voltage	IR	AVRH		94	150	μΑ	
supply current	I _{RH}	AVRH			5 * ²	μΑ	
Offset between channels		AN0 to AN7	_	_	4	LSB	

^{*1 :} At machine clock frequency of 25 MHz.


^{*2 :} CPU stop mode current when A/D converter is not operating (at Vcc = AVcc = AVRH = 3.0 V).

. About the external impedance of the analog input and its sampling time

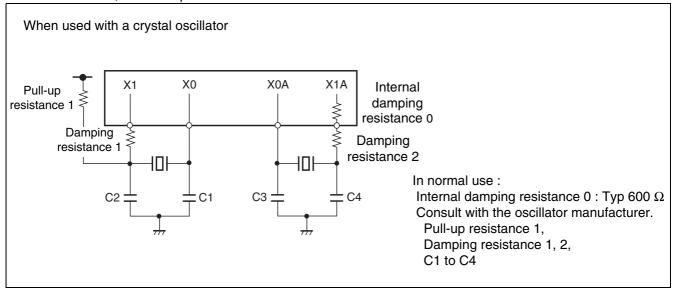
 A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision.

• To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.

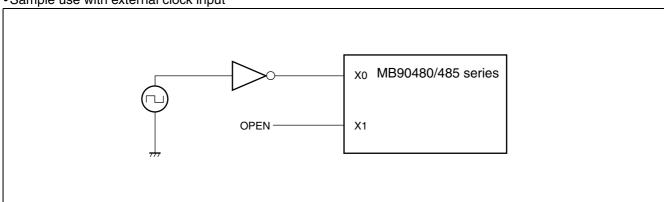
• If the sampling time cannot be sufficient, connect a capacitor of about 0.1 μF to the analog input pin.

About errors

As |AVRH – AVss| becomes smaller, values of relative errors grow larger.

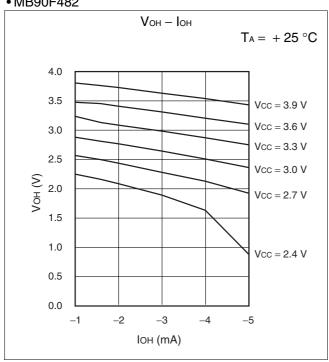

Note: Concerning sampling time, and compare time when 3.6 V \geq AVcc \geq 2.7 V, then Sampling time: 1.92 μ s, compare time: 1.1 μ s Settings should ensure that actual values do not go below these values due to operating frequency changes.

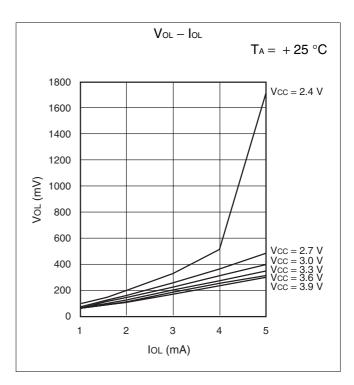
•Flash Memory Program/Erase Characteristics

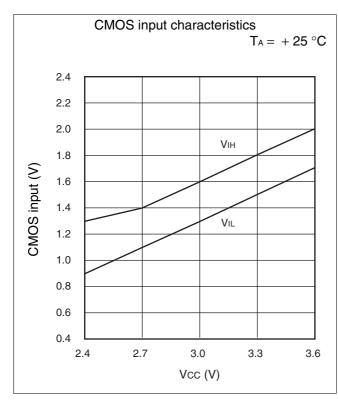

Parameter	Conditions		Value		Unit	Remarks	
Farameter	Conditions	Min	Тур	Max	Oilit		
Sector erase time		_	1	15	s	Excludes 00 _H programming prior erasure	
Chip erase time	$T_A = +25 ^{\circ}C,$ $V_{CC} = 3.0 V$	_	7	_	s	Excludes 00 _H programming prior erasure	
Word (16-bit) programming time		_	16	3600	μs	Excludes system-level overhead	
Program/Erase cycle	_	10000	_	_	cycle		
Flash Memory Data hold time	Average T _A = + 85 °C	10	_		year	*	

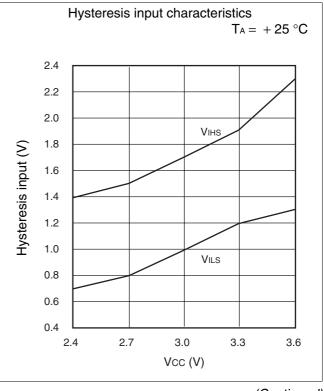
 $^{^*}$: The value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at +85 $^{\circ}$ C) .

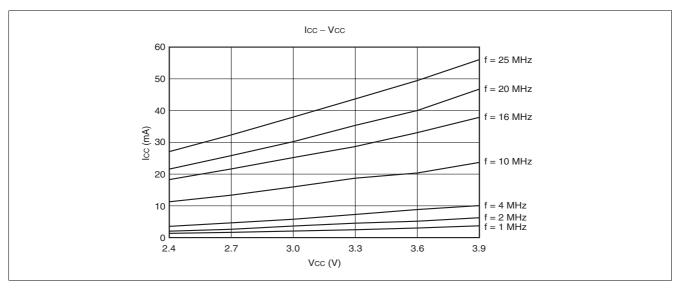
• Use of the X0/X1, X0A/X1A pins

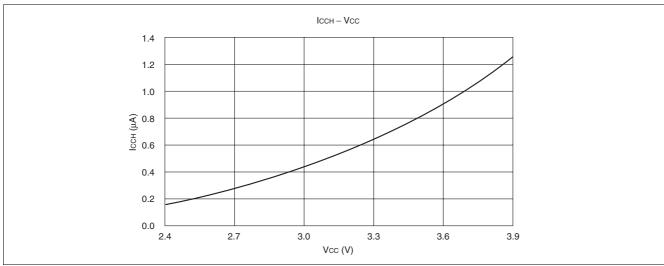


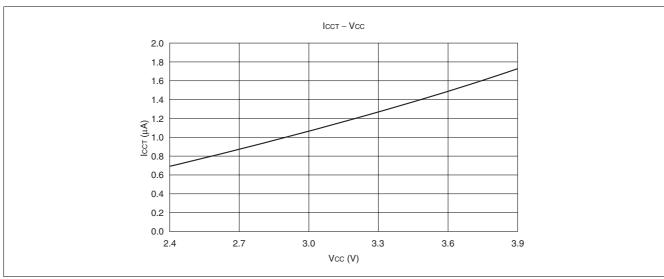

• Sample use with external clock input

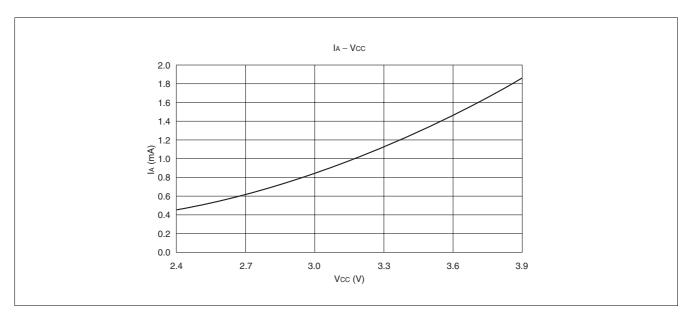


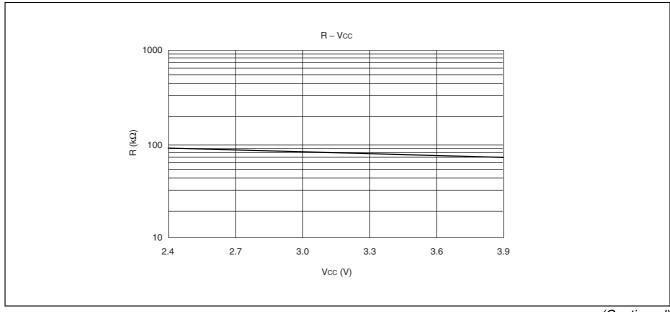

■ EXAMPLE CHARACTERISTICS

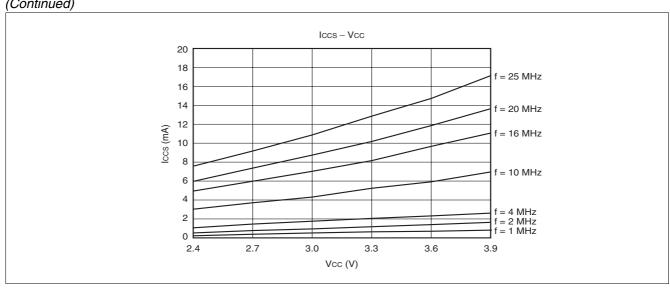

• MB90F482

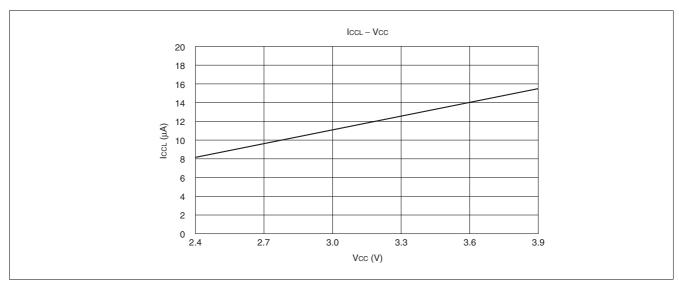


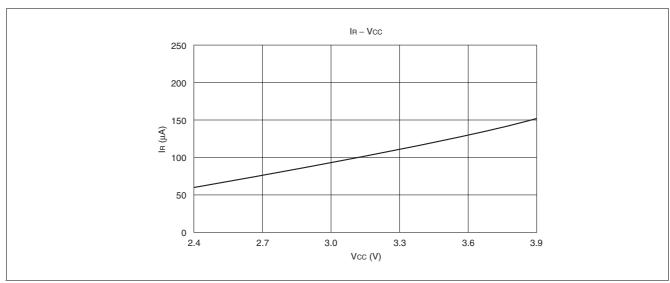


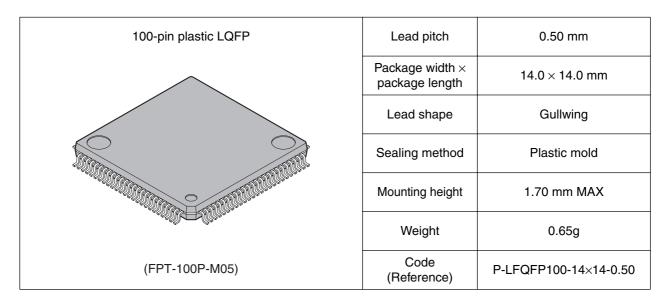


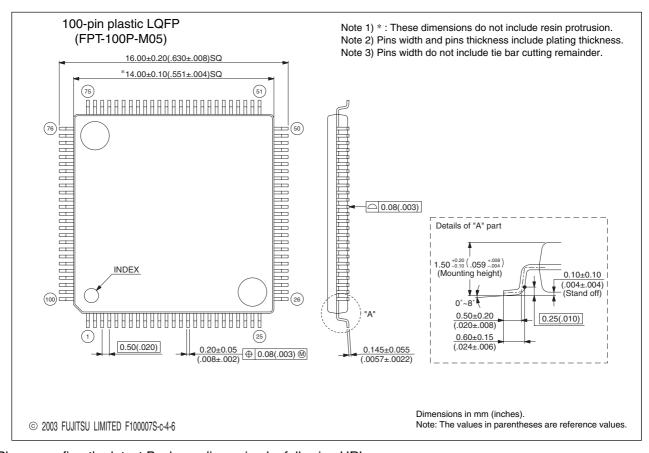






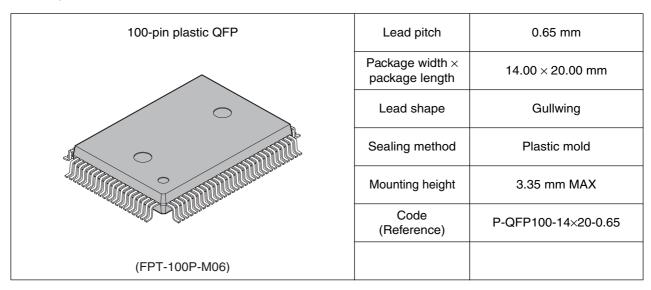


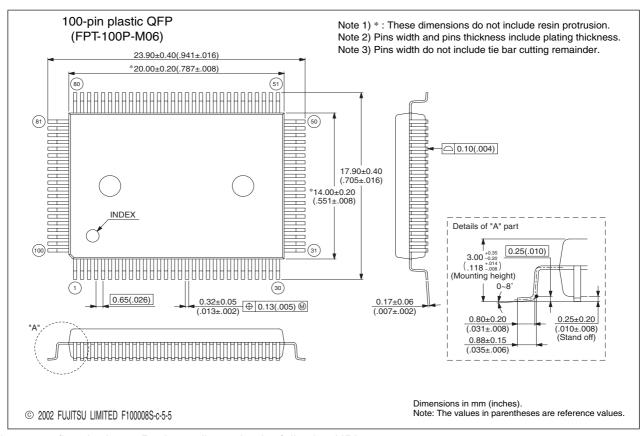




■ ORDERING INFORMATION

Part number	Package	Remarks
MB90F481PF MB90F482PF MB90487BPF MB90488BPF MB90F488BPF MB90483CPF MB90F489BPF	100-pin plastic QFP (FPT-100P-M06)	
MB90F481PFV MB90F482PFV MB90487BPFV MB90488BPFV MB90F488BPFV MB90F489BPFV	100-pin plastic LQFP (FPT-100P-M05)	


■ PACKAGE DIMENSIONS



Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html

(Continued)

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html

The information for microcontroller supports is shown in the following homepage. http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited Business Promotion Dept.