15 182 P54/74PCT3374C/D 3.3 VOLT OCTAL D FLIP-FLOPS WITH 3-STATE OUTPUTS

FEATURES

- Function and Drive Compatible with the Fastest TTL Logic
- Inputs and Outputs Interface with TTL Logic Levels
- 3.3V ± 0.2V Power Supply and CMOS for Lowest **Power Dissipation**
- FCT3-D speed at 4.5ns max. (Com'l) FCT3-C speed at 5.2ns max. (Com'l)
- Edge-rate Control Circuitry for Significantly Improved Switching Characteristics
- 듔 DESCRIPTION

The 'FCT3374 are high-speed low power octal D-type flipflops featuring separate D-type inputs for each flip-flop. Both devices have 3-state outputs for bus oriented applications. A buffered clock (CP) and output enable (OE) are common to all flip-flops. The eight flip-flops contained in the 'FCT3374 will store the state of their individual D inputs that meet the setup and hold time requirements on the low-to-high clock (CP) transition. When OE is LOW, the contents of the eight flip-flops are available at the outputs. When OE is HIGH, the outputs will be in the high impedance state. The state of output enable does not affect the state of the flip-flops.

The 'FCT3374 is manufactured with PACE III Technology™ which is Performance Advanced CMOS Engineered with

- ESD protection exceeds 2000V
- 48 mA Sink Current (Com'l), 32 mA (Mil) 15mA Source Current (Com'I), 12 mA (MII)
- Multiple Center Power and Ground Pins
- Input Clamp Diodes to Limit Bus Reflections
- Edge Triggered D Type Inputs
- **Buffered Positive Edge Triggered Clock**
- Manufactured in 0.4 micron PACE Technology™

two-level metal and epitaxial substrates to use 0.4 micron effective channel lengths giving 250 picosecond loaded* internal gate delays. The nominal supply voltage is reduced from the conventional 5.0V to 3.3V, thus reducing output swings dramatically. This, together with the (lower inductance) center power and ground pins, and the extra power and extra ground pins, significantly improves switching noise characteristics that would otherwise occur in very high speed circuitry.

The 'FCT3374 are available in 24-pin 300 mil plastic as well as hermetic DIP and SOIC, providing excellent board level densities.

*For a fan-in/fan-out of 4 at 85°C junction temperature and 3.3V supply.

Å **PIN CONFIGURATION** LOGIC DIAGRAM 24 OE 0, 1 23 Do 01 2 02 3 22 D1 D, D7 21 D2 03 4 CP -GND 5 20 D₃ D D D D D D D D CP ČР СP CP GND 6 CP 19 Vcc CP CP ਰ ā ā ថ ō σ ā GND 7 18 Vcc 17 D4 GND 8 16 Ds 04 9 ÕĒ 15 D6 Os 10 ò, 02 03 0, 05 0. 0. 06 11 14 D7 13 CP 07 12 DIP (P4, D4), SOIC (S4) 1553 02 1553 01 PERFORMANCE Means Quality, Service and Speed SEMICONDUCTOR CORPORATION ©1992 Performance Semiconductor Corporation

2/27/92 - 5

ABSOLUTE MAXIMUM RATINGS^{1,2}

Symbol	Parameter	Value	Unit
T _{stg}	Storage Temperature	-65 to +150	°C
T _A	Ambient Temperature Under Bias	-65 to +135	°C
V _{cc}	V _{cc} Potential to Ground	-0.5 to +5.0	V
1 _{IN}	Input Current	-30 to +5.0	mA

1553 Tbi 01

 Notes: 1553 1601
1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military Commercial	–55°C 0°C	+125°C +70°C
		1552 TN 01

Symbol Parameter Value Unit 120 mA **Current Applied** OUTPUT to Output V_{IN} V -0.5 to V_{cc} + 0.5 Input Voltage V_{out} -0.5 to V_{cc} + 0.5 V Voltage Applied to Output

1553 Tbl 02

2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.

+3.1V	+3.5V
	+3.1V

1553 Tbl 04

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol		Parameter	Min	Тур¹	Max	Units	V _{cc}	Conditions
V _{IH}	Input HIC	GH Voltage	2.0		V_{∞} + 0.5	V		
V _{IL}	Input LO	Input LOW Voltage			0.8	V		
V _H	Hysteresis			0.35		V		All inputs
V _{iK}	Input Cla	mp Diode Voltage		-0.7	-1.2	V	MIN	l _{in} = -18mA
V _{oH}	Output HIGH Voltage	Military/Commercial (CMOS) Military (TTL) Commercial (TTL)	V _{cc} - 0.2 2.4 2.4	V _{cc}		v v v	MIN MIN MIN	I _{он} = -300µА I _{он} = -12mA I _{он} = -15mA
V _{oL}	Output LOW Voltage	Military/Commercial (CMOS) Military (TTL) Commercial (TTL)		GND 0.3 0.3	0.2 0.5 0.5	v v v	MIN MIN MIN	
I _{IH}	Input HIC	GH Current			5	μA	MAX	$V_{iN} = V_{CC}$
l _{it}	Input LO	W Current			5	μA	MAX	V _{IN} = GND
l ₁₁₄	Input HIC	GH Current			5	μA	MAX	$V_{iN} = 2.7V$
<u>اير</u>	Input LO	W Current			5	μA	MAX	V _{IN} = 0.5V
I _{ozH}	Off State	Iour HIGH-Level Output Current			10	μA	MAX	V _{OUT} = V _{CC}
lozL	Off State	Iour LOW-Level Output Current			-10	μA	MAX	V _{out} = GND
l _{ozh}	Off State	Iour HIGH-Level Output Current			10	μA	MAX	V _{OUT} = 2.7V
lozL	Off State	Iour LOW-Level Output Current			-10	μΑ	MAX	V _{OUT} = 0.5V
los	Output S	hort Circuit Current ²	-60	-120	-225	mA	MAX	$V_{OUT} = 0.0V$
C _{IN}	Input Ca	pacitance ³		5	10	pF	MAX	All inputs
C _{OUT}	Output C	capacitance ³		9	12	pF	MAX	All outputs

Notes:

1. Typical limits are at V_{cc} = 3.3V, T_{A} = +25°C ambient.

2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect 1553 Tbi 05

operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{os} tests should be performed last.

3. This parameter is guaranteed but not tested.

2/27/92 - 5

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Тур¹	Max	Units	Conditions
I _{cc}	Quiescent Power Supply Current (CMOS inputs)	0.003	0.5	mA/	$\begin{array}{l} V_{cc} = MAX, \ f_1 = 0, \\ Outputs \ Open, \\ V_{iN} = \ \leq 0.2V \ or \ V_{iN} \geq V_{cc} - 0.2V \end{array}$
∆l _{cc}	Quiescent Power Supply Current (TTL inputs)	0.5	2.0	mA	$V_{cc} = MAX, V_{IN} = V_{cc} - 0.6V^2,$ f ₁ = 0, Outputs Open
Icco	Dynamic Power Supply Current ³	0.15	0.25	mA/ mHz	$V_{cc} = MAX$, One Bit Toggling, 50% Duty Cycle, $\overline{OE} = GND$, Outputs Open, $V_{IN} \le 0.2V$ or $V_{IN} \ge V_{CC} - 0.2V$
		1.7	4.0	mA	$V_{cc} = MAX, f_0 = 10MHz,$ 50% Duty Cycle, Outputs Open, One Bit Toggling at f_1 = 5MHz, $\overline{OE} = GND,$ $V_{IN} \le 0.2V \text{ or } V_{IN} \ge V_{CC} - 0.2V$
I _c	Total Power Supply Current⁵	2.2	6.0	mA	$V_{cc} = MAX, f_0 = 10MHz,$ 50% Duty Cycle, Outputs Open, One Bit Toggling at f_1 = 5MHz, $\overline{OE} = GND,$ $V_{IN} = V_{CC} - 0.6V, \text{ or } V_{IN} = GND$
		4.0	7.84	mA	$V_{cc} = MAX, f_0 = 10MHz,$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at f, = 2.5MHz, $\overline{OE} = GND,$ $V_{IN} \le 0.2V$ or $V_{IN} \ge V_{CC} - 0.2V$
		6.2	16.8 ⁴	mA	$V_{cc} = MAX, f_0 = 10MHz,$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at f_1 = 2.5MHz, $\overline{OE} = GND,$ $V_{IN} = V_{cc} - 0.6V, \text{ or } V_{IN} = GND$

Notes:

- 1. Typical values are at V_{cc} = 3.3V, +25°C ambient and maximum loading.
- Per TTL driven input (V_N = V_{cc} − 0.6V); all other inputs at V_{cc} or GND.
- 3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
- Values for these conditions are examples of the I_{cc} formula. These limits are guaranteed but not tested.

5.
$$I_{c} = I_{INPUTS} + I_{DYNAMIC}$$

 $I_{c} = \Delta I_{cc} D_{H} N_{T} + I_{ccb} (f_{\sigma}/2 + f_{s} N_{s})$

TRUTH TABLE

	Inputs	Outputs	
D	D _n CP OE		O _n
Н	Т	L	Н
L	Т	L	L
Х	X	н	Z
			1553 Tbi 07

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

_ = LOW-to-HIGH clock transition

3

Z = HIGH Impedance

- ΔI_{cc} = Power Supply Current for a TTL High Input
- $(V_{\rm N} = V_{\rm cc} 0.6V)$
- D_H = Duty Cycle for TTL Inputs High
- $N_{T} =$ Number of TTL inputs at D_{H}
- = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
- f = Clock Frequency for Register Devices (Zero for Non-Register Devices)
- f₁ = Input Frequency
- $N_1 =$ Number of Inputs at f_1
- All currents are in milliamps and all frequencies are in megahertz.

AC CHARACTERISTICS

Symbol			'FCT3	374C			'FCT3	374D			
	Parameter	M	IIL	со	M'L	M	IL	со	M'L	Units	Fig. No.
		Min. ¹	Max.	Min.1	Max.	Min.1	Max.	Min.'	Max.		
t _{PLH} t _{PHL}	Propagation Delay Clock to Output	2.0	6.2	2.0	5.2	1.5	5.2	1.5	4.5	ns	5
t _{PZH} t _{PZL}	Output Enable Time	1.5	6.2	1.5	5.5	1.5	5.5	1.5	4.7	ns	1
t _{PHZ} t _{PLZ}	Output Disable Time	1.5	5.7	1.5	5.0	1.5	5.0	1.5	4.3	ns	8

Note: AC Characteristics guaranteed with $C_L = 50 pF$ as shown in Figure 1.

1553 Tbi 08

AC OPERATING REQUIREMENTS

Symbol			'FCT3	374C			'FCT3	374D			
	Parameter	M	MIL		COM'L		IL.	COM'L		Units	Fig. No.
		Min. ¹	Max.	Min.1	Max.	Min.1	Max.	Min.1	Max.		
t _s (H) t _s (L)	Setup Time, High or Low D _n to CP	2.0	_	2.0		2.0		1.5	_	ns	4
t _n (H) t _n (L)	Hold Time, High or Low D _n to CP	1.5		1.5		1.5	_	1.0	-	ns	-
t _w (H) t _w (L)	Clock Pulse Width², High or Low	6.0	_	5.0	-	5.0		4.0	-	ns	5

Notes:

1. Minimum limits are guaranteed but not tested on Propagation Delays.

2. With one data channel toggling, $t_w(L) = t_w(H) = 2.0ns$ and $t_s = t_s = 1.0ns$.

ORDERING INFORMATION

2/27/92 - 5

032231 <u>R</u>