TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

TA1360AFG

YCbCr/YPbPr Signal and Sync Processor for Digital TV, Progressive Scan TV and Double Scan TV

The TA1360AFG integrates an analog component signal ($\mathrm{YCbCr} / \mathrm{YPbPr}$) processor and sync processor in a $80-\mathrm{pin}$ QFP plastic package. The IC is ideal for digital TVs, progressive TVs, and double scan TVs

The luminance block and the color difference block incorporate the high performance signal processing circuits. The sync processor block supports $525 \mathrm{I} / 60$, $625 \mathrm{I} / 50,525 \mathrm{P} / 60$, $625 \mathrm{P} / 50$, 1125I/50, 1125I/60, 750P/60, (750P/50), PAL100 Hz, NTSC120 Hz, and SVGA/60(VESA).

The TA1360AFG incorporates the $\mathrm{I}^{2} \mathrm{C}$ bus. The device can control various functions via the bus line.

Weight: 1.6 g (typ.)

Features

Luminance Block

- Black stretch circuit and DC restoration rate correction circuit
- Dynamic y correction circuit (gray scale correction)
- SRT (LTI)
- Y group delay correction (shoot balance correction)
- High-bright color circuit
- Color detail enhancer (CDE)
- White pulse limiter (WPL)
- VSM output

Color difference Block

- Fresh color correction
- Dynamic Y/C correction circuit
- Color SRT (CTI)
- Color y circuit
- Green stretch
- Blue stretch

Text Block

- OSD blending SW
- ACB (only black level)
- Two analog RGB inputs

Synchronization Block

- Horizontal sync ($15.75 \mathrm{k}, 28.125 \mathrm{k}, 31.5 \mathrm{k}, 33.75 \mathrm{k}, 37.9 \mathrm{k}, 45 \mathrm{kHz}$)
- Vertical sync (525I/P, 625I/P, 750P, 1125I/P, PAL $100 \mathrm{~Hz} / \mathrm{NTSC} 120 \mathrm{~Hz}$
- 2- and 3 -level sync separator circuit
- HD/VD input (positive and negative polarities)
- Copy guard
- Vertical blanking

Block Diagram

Pin Assignment

Pin Functions

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Pin Name	Function		Interface Circuit	Input Signal/Output Signal
1 80	$Y \mathrm{~s} 2$ (analog OSD) Ys1 (analog OSD)	Switches inter input signals. The blend ratio and OSD sign according to a pins $Y_{S} 1$ and VSM output is $Y_{S} 2$ pin is set	RGB and OSD f internal RGB can be adjusted lying voltage to 2. uted when Ys1 or High.		0 to 0.5 V : Internal 1.1 V to 1.7 V : VSM Mute 2.9 V to 9 V : OSD, VSM Mute
2	$\begin{aligned} & \mathrm{Y} \mathrm{~S}^{3} \\ & \text { (analog RGB) } \end{aligned}$	Switches inter external analo VSM output is RGB is select	RGB and RGB input. uted when analog		0 to 0.5 V : Internal 1.5 V to 9 V : Analog RGB, VSM Mute
3	NC	This pin is not Connect to G		-	-
4 6 7	R S/H G S/H B S/H	S/H (sample-a In ACB Mode, capacitor. In connect 0.01-	-hold) pin. nnect $2.2-\mu \mathrm{F}$ T-OFF Mode, capacitor.		DC
5	NC	This pin is not Connect to G		-	-
8	$\mathrm{I}_{\mathrm{K}} \mathrm{IN}$	Inputs feedback (BLK level sho When ACB fun connect this p	signal from CRT. d be 0 to 3 V .) ion is not used, o RGB VCc pin.		or RGB VCc
9	NC	This pin is not Connect to G		-	-
10	RGB GND	GND pin for te	RGB block	-	-
11	NC	This pin is not Connect to G		-	-

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Pin Name	Function	Interface Circuit	Input Signal/Output Signal
12 13 14	R OUT G OUT B OUT	Outputs $\mathrm{R} / \mathrm{G} / \mathrm{B}$ signal. Recommended output amplitude: 100 IRE $=2.3 \mathrm{Vp}-\mathrm{p}$		100 IRE: $2.3 \mathrm{Vp-p}$ Conditions: UNI-COLOR = max SUB-CONT $=$ Cent $\mathrm{Y} \operatorname{IN}=0.7 \mathrm{Vp}-\mathrm{p}$
15	NC	This pin is not used. Connect to GND.	-	-
16	RGB V CC	V_{CC} pin for text/RGB block. See "Maximum Ratings" about the supply voltage.	-	-
17	NC	This pin is not used. Connect to GND.	-	-
18 19 21	ANALOG OSD R IN ANALOG OSD G IN ANALOG OSD B IN	Inputs analog OSD signal via clamp capacitor.		100 IRE: $0.7 \mathrm{Vp}-\mathrm{p}$ (not including sync)
$\begin{aligned} & 20 \\ & 22 \end{aligned}$	NC	This pin is not used. Connect to GND.	-	-
23	$\begin{aligned} & \text { DAC2 } \\ & \text { (ACB pulse) } \end{aligned}$	Outputs 1-bit DAC or pulse over ACB period. Open-collector output.		DC or ACB PULSE
24 25 26	ANALOG R IN ANALOG G IN ANALOG B IN	Inputs analog R/G/B signal via clamp capacitor.		100 IRE: $0.7 \mathrm{Vp}-\mathrm{p}$ (not including sync)
27	$I^{2} \mathrm{~L}$ GND	GND pin for I^{2} L block	-	-

Pin No.	Pin Name	Function	Interface Circuit	Input Signal/Output Signal
28	SDA	SDA pin for $I^{2} \mathrm{C}$ BUS		-
29	NC	This pin is not used. Connect to GND.	-	-
30	SCL	SCL pin for $I^{2} \mathrm{C}$ BUS		-
31	$I^{2} L V_{D D}$	$V_{D D}$ pin for $I^{2} L$ block. Connects 2 V (typ.). Supply power via zener diode through resistor from pin 45. (See "Application Circuit")	-	-
$\begin{aligned} & 32 \\ & 33 \end{aligned}$	NC	This pin is not used. Connect to GND.	-	-
34	DAC1 (SYNC OUT)	Outputs 1-bit DAC or separated SYNC. Open-collector output.		DC or SYNC OUT
35	VP OUT	Outputs vertical pulse. Applying current to this pin, performs external blanking by OR-ing with internal blanking. Note: Changing H-position varies VP output width. Use the start phase only for VP output.		VP output: Start phase V-BLK input current: $780 \mu \mathrm{~A}$ to 1 mA
36	NC	This pin is not used. Connect to GND.	-	-

Pin No.	Pin Name	Function	Interface Circuit	Input Signal/Output Signal
37	H-OUT	Horizontal output pin. Open-collector output.		
38	DEF/DAC GND	GND pin for DEF/DAC block	-	-
39	FBP IN	Inputs FBP for horizontal AFC. Sets H-BLK width.		
40	H CURVE CORRECTION	Adjusts screen curve at high voltage fluctuation. Input AC component of high voltage fluctuation. When not used, connect $0.01-\mu \mathrm{F}$ capacitor between this pin and GND.		DC
41	H-FREQ SW2	Switches horizontal frequency (Switch 2). Leave this pin open when horizontal frequency is switched by Bus controlling. Controlling this pin prevails over Bus control. (Refer to Table 1: Bus control function.) When this IC is used for CRT, frequency of horizontal output (pin 37) is controlled according to voltage of this pin. DC voltage that is generated by dividing resistor of DEF VCC (pin 45) should be used to control this pin.		At BUS control (horizontal frequency) : output voltage value At pin 22 control, horizontal frequency and input voltage value
42	HVCO	Connects ceramic oscillator for horizontal oscillation. Use Murata "CSBLA503KECZF30".		-
43	NC	This pin is not used. Connect to GND.	-	-

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Pin Name	Function	Interface Circuit	Input Signal/Output Signal
44	AFC FILTER	Connects filter for detecting AFC.	(44)	DC
45	DEF/DAC V_{CC}	$V_{C C}$ pin for DEF/DAC block. See "Maximum Ratings" about the supply voltage.	-	-
46	NC	This pin is not used. Connect to GND.	-	-
47	CP OUT	Outputs internal clamp pulse (CP).	(47)	
48	NC	This pin is not used. Connect to GND.	-	-
49	SCP IN	Inputs SCP from up converter. Input signals are clamp pulse (CP) and black peak detection stop pulse (BPP).	(45)	2.2 V to 2.8 V : BPP 4.2 V to 9 V : CP
50	HD IN	Inputs horizontal sync HD signal. Inputs positive- or negative-polarity signals.		
51	NC	This pin is not used. Connect to GND.	-	-
52	VD IN	Inputs vertical sync VD signal. Inputs positive- or negative-polarity signals.		

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Pin Name	Function	Interface Circuit	Input Signal/Output Signal
53	SYNC IN	Inputs Y signal with sync signal via clamp capacitor.		White 100% : $1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ or
54	NC	This pin is not used. Connect to GND.	-	-
55	H-FREQ SW1	Switches horizontal frequency (Switch 1). Leave this pin open when horizontal frequency is switched by Bus controlling. Controlling this pin prevails over Bus control. (Refer to Table 1: Bus control function.) When this IC is used for CRT, connect this pin to DEF VCC (pin 45) or DEF GND (pin 38). If it is not necessary to control this pin on CRT, connect this pin directly to DEF VCC or DEF GND on the PCB.		DEF $\mathrm{V}_{\text {CC }}$ or DEF GND
56	NC	This pin is not used. Connect to GND.	-	-
57	VSM FILTER	Connects VSM output filter. Please connect $0.01-\mu \mathrm{F}$ capacitor between this pin and GND.		DC
58	COLOR LIMITER	Connects filter for detecting color limit.		DC
59	NC	This pin is not used. Connect to GND.	-	-

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Pin Name	Function	Interface Circuit	Input Signal/Output Signal
60	$\mathrm{Cr}_{\mathrm{r}} / \mathrm{P}_{\mathrm{r} 2} \mathrm{IN}$	Inputs $\mathrm{C}_{\mathrm{r} 2} / \mathrm{P}_{\mathrm{r} 2}$ signal via clamp capacitor.		700 mVp -p700 mVp-p at 100% color bar for $\mathrm{C}_{\mathrm{r} 1} / \mathrm{P}_{\mathrm{r} 1}$
61	$\mathrm{C}_{\mathrm{b} 2} / \mathrm{P}_{\mathrm{b} 2} \mathrm{IN}$	Inputs $\mathrm{C}_{\mathrm{b} 2} / \mathrm{P}_{\mathrm{b} 2}$ signal via clamp capacitor.		$700 \mathrm{mVp}-\mathrm{p}$ at 100% color bar for $\mathrm{C}_{\mathrm{b} 1} / \mathrm{P}_{\mathrm{b} 1}$
63	Y2 IN	Inputs Y2 signal via clamp capacitor.		$1 \mathrm{Vp}-\mathrm{p}$ (including sync) at 100% color bar or
62	NC	This pin is not used. Connect to GND.	-	-
64	LIGHT AREA DET FILTER	Connects filter for detecting light area. Voltage of this pin controls dynamic γ circuit gain for light area.		DC
65	Y/C GND	GND pin for Y/C block	-	-
66	$\mathrm{C}_{\mathrm{r} 1} / \mathrm{P}_{\mathrm{r} 1} \mathrm{IN}$	Inputs $\mathrm{C}_{\mathrm{r} 1} / \mathrm{P}_{\mathrm{r} 1}$ signal via clamp capacitor.		700 mVp -p700 mVp-p at 100% color bar for $\mathrm{C}_{\mathrm{r} 1} / \mathrm{P}_{\mathrm{r} 1}$
67	$\mathrm{C}_{\mathrm{b} 1} / \mathrm{P}_{\mathrm{b} 1} \mathrm{IN}$	Inputs $\mathrm{C}_{\mathrm{b} 1} / \mathrm{P}_{\mathrm{b} 1}$ signal via clamp capacitor.		$700 \mathrm{mVp}-\mathrm{p}$ at 100\% color bar for $\mathrm{C}_{\mathrm{b} 1} / \mathrm{P}_{\mathrm{b} 1}$
68	Y1 IN	Inputs Y 1 signal via clamp capacitor.		$1 \mathrm{Vp-p}$ (including sync) at 100\% color bar or
69	NC	This pin is not used. Connect to GND.	-	-

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Pin Name	Function	Interface Circuit	Input Signal/Output Signal
70	BPH FILTER	Connects filter for detecting black peak. Voltage of this pin controls black stretch gain. Leaving Y open and setting the test circuit SW $2=\mathrm{C}$ enable to monitor H/V-BPP (black-stretch-stop pulse) width.		DC
71	DARK AREA DET FILTER	Connects filter for detecting dark area. Voltage of this pin controls dynamic γ circuit gain for dark area.		DC
$\begin{aligned} & 72 \\ & 73 \end{aligned}$	NC	This pin is not used. Connect to GND.	-	-
74	APL FILTER	Connects filter for correcting DC restoration rate. Leaving this pin open enables to monitor Y signal after black stretch and dynamic γ.		-
75	Y/C Vcc	$V_{C C}$ pin for Y / C block. See "Maximum Ratings" about the supply voltage.	-	-
76	NC	This pin is not used. Connect to GND.	-	-
77	VSM OUT	Outputs Y signal for VSM that passed through HPF circuit (first differential circuit). Output signals are muted according to pins 1,2 , and 80 .	See pin 57.	-
78	ABCL IN	Inputs $A B L$ and $A C L$ signals. Sets gain and start point of $A B L$ and dynamic $A B L$ signal according to bus controlling.		DC

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Pin Name	Function	Interface Circuit	Input Signal/Output Signal
79	YM/P-MUTE/BLK	High-speed halftone switch for internal RGB signal. Enables picture mute and blanking.		0 to 0.5 V : Internal 1.2 V to 1.8 V : Half Tone 2.7 V to 4.0 V : P-Mute 7 V to 9 V : Blanking

Bus Control Map

Write Data

Slave Address: 88H

Sub-Add	D7	D6	D5	D4	D3	D2	D1	D0	Pre	
00	H-FREQ1		H-DUTY	YUV-SW	DAC1	DAC2	SYNC-SW	H-FREQ2	1000 '	0000
01	HORIZONTAL POSITION							CLP-PHS	1000	0000
02	ACB-MODE		SCP-SW	HBP-PHS1	SYNC SEP-LEVEL		TEST		1000	0000
03	V-BLK PHASE					VERTICAL FREQUENCY			1000	0000
04	COMPRESSION-BLK PHASE-1				COMPRESSION-BLK PHASE-2				1000	0000
05	P-MODE1				UNI-COLOR				1000	0000
06	BRIGHTNESS								1000	0000
07	OSD-ACL	COLOR							1000	0000
08	TINT							HBP-PHS2	1000	0000
09	PICTURE SHARPNESS							BLS γ	1000	0000
OA	RGB BRIGHTNESS							DCRR-SW	1000	0000
0B	HI BRT	RGB CONTRAST							1000	0000
0C	SUB CONTRAST					WPS	YUV MODE	Y-OUT γ	1000	0000
OD	DRIVE GAIN1							DR-R	1000 :	0000
0E	DRIVE GAIN2							DR-B/G	1000	0000
OF	R CUT OFF								1000	0000
10	G CUT OFF								1000 '	0000
11	B CUT OFF								1000	0000
12	R-Y/B-Y GAIN				R-Y/B-Y PHASE				1000	0000
13	G-Y/B-Y GAIN				G-Y/B-Y PHASE				1000 '	0000
14	COLOR	TRAN	C FREQ	GREEN STRETCH		COLOR γ		CLT	1000 '	0000
15	C.D.E.		Y/C GAIN COMP		BL STRETCH GAIN		FLESH	H-SHIFT	1000	0000
16	VSM PHASE			VSM GAIN			APACON PEAK FREQ		1000	0000
17	DC REST POINT			DC REST RATE			DC REST LIMIT		1000 '	0000
18	BLACK STRETCH POINT			APL VS BSP		B.L.C.	B.D.L	BS-AREA	1000 !	0000
19	SRT-GAIN					WPL-LEVEL			1000	0000
1A	D-ABL		D-ABL GAIN		BL STRETCH POINT		P-MODE2		1000	0000
1B	ABL POINT			ABL GAIN			RGB OUT MODE		1000 '	0000
1 C	DYNC		BS-CHAR1	STATIC γ GAIN-1			STATIC γ GAIN-2		1000	0000
1D	OSD B		OSD CONTRAST		Y/C-DL1	DYNC γ AREA			1000	0000
1E	Y DETAIL CONTROL				BS-CHAR2	WP BLUE POINT			1000	0000
1F	Y GROUP DELAY CORRECTION				Y/C-DL2	WP BLUE GAIN			1000	0000

Read Data

Slave Address: 89H

	D7	D6	D5	D4	D3	D2	D1	D0
0	POR	IK-IN	RGB-OUT	YUV-IN	H-OUT	VP-OUT	RGB-IN	SYNC-IN

Bus Control Features

Write Mode

Resister Name	Description	Preset Value
H-FREQ1/2	Switches horizontal oscillation frequency. (See the appendix 1)	33.75 kHz
H-DUTY	Switches horizontal output duty. $0: 41 \% \quad 1: 47 \%$	41\%
YUV-SW	Switches YUV input. $\text { 0: INPUT-1 }\left(\mathrm{Y} 1 / \mathrm{C}_{\mathrm{b} 1} / \mathrm{C}_{\mathrm{r} 1}\right) \quad \text { 1: INPUT-2 }\left(\mathrm{Y} 2 / \mathrm{C}_{\mathrm{b} 2} / \mathrm{C}_{\mathrm{r} 2}\right)$	INPUT-1
DAC 1	Switches DAC controlling output. 0: OPEN (high) 1: ON (low) Controls 1-bit DAC of open-collector when TEST is 00. Outputs H/C-SYNC from pin 34 when TEST is 01.	OPEN
DAC 2	Switches DAC controlling output. $0: \text { ON (low), 1: OPEN (high) }$ Controls 1-bit DAC of open-collector when TEST is 00. Outputs ACB reference pulse from pin 23 when TEST is 01 .	ON
SYNC-SW	Switches sync input. 0: Selects HD/VD input. 1: Selects SYNC input.	HD/VD
HORIZONTAL POSITION	Adjusts horizontal picture position (phase). 0000000: -12.5\% 1111111: +12.5\% Note: VP output width (pin 35) varies with a change of horizontal position.	CENTER
CLP-PHS	Switches clamp pulse phase. $0: 0.7-\mu \mathrm{s}(2.5 \%)$ width, $1.1-\mu \mathrm{s}$ (3.8%) delay from HD stop phase. 1: $0.7-\mu \mathrm{s}(2.4 \%)$ width, $0.2-\mu \mathrm{s}$ (0.7%) delay from HD stop phase when no signal, $0.8-\mu \mathrm{s}(2.7 \%)$ width that is $1.2-\mu \mathrm{s}(4.2 \%)$ delay from FBP start phase. Also switches CP phase of CP-OUT (pin 47).	1.1- $\mu \mathrm{s}$ delay
ACB MODE	Sets ACB mode; Sets converged reference level. $\begin{aligned} & \text { 00: ACB OFF (cutoff BUS control), } 01: \text { ACB ON (5 IRE), } \\ & \text { 10: ACB ON (10 IRE) } 11: \text { ACB ON (} 20 \text { IRE) } \end{aligned}$	ACB ON (10 IRE)
SCP-SW	SCP (sand castle pulse) Switches modes. 0 : Internal Mode 1: External input Mode	Internal Mode
HBP-PHS1/2	Switches phase of black-stretch-detection stop pulse. $\begin{aligned} & \mathrm{HBP}-\mathrm{PHS} 1=0 \text { and } \mathrm{HBP}-\mathrm{PHS} 2=0: \mathrm{FBP} \pm 3 \% \\ & \mathrm{HBP}-\mathrm{PHS} 1=0 \text { and } \mathrm{HBP}-\mathrm{PHS} 2=1: \mathrm{FBP} \pm 8 \% \\ & \mathrm{HBP}-\mathrm{PHS} 1=1 \text { and } \mathrm{HBP}-\mathrm{PHS} 2=0: \mathrm{FBP} \pm 13 \% \\ & \mathrm{HBP}-\mathrm{PHS} 1=1 \text { and } \mathrm{HBP}-\mathrm{PHS} 2=1: \mathrm{FBP} \pm 18 \% \end{aligned}$ Leaving Y open and setting the test circuit SW2 to C enable to monitor H/V-BPP (black-stretch-detection stop pulse) width through pin 70.	$\pm 3 \%$
SYNC SEP-LEVEL	Switches Sync SEP-level. $00: 16 \% \quad 01: 24 \% \quad \text { 10: } 32 \% \quad \text { 11: } 40 \% \text { (At 1125I/60) }$	16\%
TEST	Test Mode: Controls 1-bit DAC of open-collector when TEST is 00. Outputs H/C-SYNC from pin 34, and ACB reference pulse from pin 23 when TEST is 01 . Do not set TEST to $10 / 11$ for that is shipment TEST Mode.	00

Resister Name	Description	Preset Value
V-BLK PHASE	Switches vertical BLK stop phase. 00000: $16 \mathrm{H} \sim$ 11110: 46 H ($1 \mathrm{H} /$ STEP) 11111: Internal H/V-BLK OFF Please set ACB Mode to OFF when internal H/V-BLK is OFF (11111).	32 H
V-FREQUENCY	Vertical free-run frequency: Sets V pull-in range. (See Appendix 2.)	1281 H
COMPRESSION-BLK PHASE-1/2	Compression BLK phase: Sets BLK for upper and lower parts of screen. (See Appendix 3.)	CENTER, OFF
P-MODE1/2	Picture Mode: Sets picture mute, halftone, blue background, and Y mute. (See Appendix 4.)	P-MUTE 1
UNI-COLOR	Unicolor adjustment: 0000000: -16dB~ 1111111: OdB	min
BRIGHTNESS	Brightness adjustment: 00000000: -40 IRE 11111111: +40 IRE	CENTER
OSD-ACL	$\begin{aligned} & \text { OSD-ACL; } \\ & 0: \text { OFF } \quad 1: \text { ON } \end{aligned}$	ON
COLOR	Color adjustment: 0000000: COLOR MUTE, 0000001: -20 dB or more 1111111: +4dB	C-MUTE
TINT	Tint adjustment: 0000000: -32 deg~ 1111111: +32 deg	± 0 deg
PICTURE-SHARPNESS	Sharpness adjustment: 0000000: -10dB or more 1000000: +10dB 1111111: +17.5dB (at peak FREQ)	CENTER
BLS γ	Blue stretch γ correction: B-axis correction 0: OFF 1: ON	OFF
RGB-BRIGHTNESS	RGB brightness: 0000000; - 20 IRE~ 1111111; +20 IRE	CENTER
DCRR-SW	Switches DC restoration rate. 0: 100\% or higher 1: 100\%or lower	100\% or higher
HI BRT	High-bright color: 0: OFF 1: ON	ON
RGB-CONTRAST	RGB contrast: 0000000: -16.5dB 1111111: 0dB	min
SUB-CONTRAST	Sub-contrast: 00000: -3.3dB 11111: +2.5dB	CENTER
WPS	WPS level: 0: 110 IRE 1: 130 IRE	110 IRE
YUV MODE	Y/color-difference input Mode: $0: \mathrm{Y} / \mathrm{Cb} / \mathrm{Cr}, \quad \text { 1: } \mathrm{Y} / \mathrm{Pb} / \mathrm{Pr}$ (Remarks) Y/Cb/Cr: ITU-R BT 601 Y/Pb/Pr: ITU-R BT 709 (1125/60/2:1)	Y/Cb/Cr
Y-out γ	Y -out gamma control: 0 : OFF 1: ON	OFF
DRIVE GAIN1/2	Drive gain $1 / 2$; 0000000: -5dB 1111111: +3dB	CENTER
$\begin{aligned} & \text { DR-R } \\ & \text { DR-B/G } \end{aligned}$	Switches RGB drive gain base. (See Appendix 5.)	R

Resister Name	Description	Preset Value
R/G/B CUT OFF	R/G/B cutoff: 1) At ACB-OFF RGB-OUT 00000000: 1.9 V 11111111: 2.9 V 2) At ACB-ON SENS-IN 00000000: 0.5 Vp-p 11111111: 1.5 Vp-p	CENTER
R-Y/B-Y GAIN	Switches R-Y/B-Y relative amplitude: $\text { 0000: } \min (0.45) \quad \text { 1111: } \max (0.9)$	CENTER
R-Y/B-Y PHASE	Switches R-Y/B-Y relative phase: 0000: min (90 deg) 1111: max (111.5 deg)	min
G-Y/B-Y GAIN	$\begin{aligned} & \text { Switches G-Y/B-Y relative amplitude: } \\ & \text { 0000: } \min (0.25) \\ & \text { 1111: } \max (0.48) \end{aligned}$	CENTER
G-Y/B-Y PHASE	Switches G-Y/B-Y relative phase: 0000: min (232 deg) 1111: max (254 deg)	min
COLOR SRT TRAN	Color SRT transient: Color-difference transient improvement 00: C-SRT OFF~ 11: max	CENTER
C FREQ	Color SRT peak frequency: 0: 4.5 MHz 1: 5.8 MHz	4.5 MHz
GREEN STRETCH	Green stretch: 00: OFF~ 11: $\max (+3 \mathrm{~dB})$	OFF
COLOR γ	Color γ correction point 00: OFF, 01: 0.23 Vp-p, 10: 0.40 Vp-p, 11: 0.58 Vp-p	OFF
CLT	Color limiter level: $0: 1.65 \mathrm{Vp}-\mathrm{p}, \quad 1: 2 \mathrm{Vp}-\mathrm{p}$	1.65 Vp-p
CDE	Color detail enhancer: 00: min 11: max	CENTER
Y/C GAIN COMP	Dynamic Y/C compensation: Operated when luminance level is made up according to dynamic $Y \gamma$. 00: OFF~ 11: max	OFF
BL STRETCH GAIN	Blue stretch gain: B-axis correction 00: OFF 11: max (+6.4dB)	OFF
FLESH	Flesh color: Skin tone color correction 0: OFF 1: ON (Lead-in angle: $\pm 33.7 \mathrm{deg}$)	OFF
H-SHIFT	Shifts a center of horizontal picture position (phase): 0: OFF 1: ON (FBP shifts 6.7\% against HD)	OFF
VSM-PHASE	VSM phase: 000: -37.5 ns 101: normal 111:+15 ns	CENTER
VSM GAIN	VSM gain: 000: OFF 001: $0 \mathrm{~dB} \sim 111:+16 \mathrm{~dB}$ (VSM gain is limitted $1.4 \mathrm{Vp-p}$)	OFF
APACON PEAK f_{0}	APACON peak frequency: 00: 13.5 MHz 01: 9.5 MHz 10: 7.2 MHz 11: 4.5 MHz	13.5 MHz
DC REST POINT	DC restoration rate correction point: 000: 0\% 111: 49\%	CENTER
DC REST RATE	DC restoration correction rate: 000: 100\% 111: 135\% (70\%)	min
DC REST LIMIT	DC restoration rate correction limit point: $00: 67 \% \quad 01: 77 \% \quad 10: 80 \% \quad 11: 80 \%$	min

Resister Name	Description	Preset Value
BLACK STRETCH POINT	Black stretch start point 1: 000: OFF 001: 25 IRE~ 111:55 IRE	CENTER
APL VS BSP	Black stretch start point 2: 00: 0 IRE 11: 46 IRE up (at APL 100\%)	0 IRE
B.L.C	Black level automatic correction: Up to 6.5 IRE. (Black stretch takes priority.) $0: \text { OFF } \quad 1: \text { ON }$	OFF
B.D.L.	Switches black detection level: 0: 3 IRE 1: 0 IRE	3 IRE
BS-AREA	Black stretch area reinforcement: $0: \text { ON 1: OFF }$	ON
SRT-GAIN	SRT gain; Y transient improvement (LTI) 00000: min 11111: max	CENTER
WPL-LEVEL	White letters improvement amplitude; $\text { 000: } \min (21 \text { IRE }) \sim \text { 110: } \max (102 \text { IRE }) \quad \text { 111: OFF }$	min
D-ABL POINT	Dynamic ABL detection voltage 00: min 11: max	CENTER
D-ABL GAIN	Dynamic ABL sensitivity 00: min 11: max	min
BL STRETCH POINT	Blue stretch point; B-axis correction 00: $\min (28$ IRE) 11: $\max (60$ IRE $)$	min
ABL POINT	ABL detection voltage 000: min 111: max	CENTER
ABL GAIN	ABL sensitivity 000: min 111: max	min
RGB-OUT MODE	RGB output mode; RGB output mode SW for test and adjustment 00: Normal 01: R only 10: G only 11: B only	Normal
DYNC γ GAIN	Dynamic $\mathrm{Y} \gamma$ gain vs dark area; dynamic γ-correction according to dark area. 00:min~ 11: max (Maximum gain is +6 dB included Static $Y \gamma$ gain for dark area.)	CENTER
BS-CHAR1/2	Black stretch characteristic swich BS-CHAR1 $=0$ and BS-CHAR2 $=0$: OFF BS-CHAR1 $=0$ and BS-CHAR2 $=1:$ min BS-CHAR1 $=1$ and BS-CHAR2 $=0:$ mid BS-CHAR1 = 1 and BS-CHAR2 = 1: max	OFF
STATIC γ GAIN-1	Static $\mathrm{Y} \gamma$ dark area gain; γ correction for dark area $\text { 000: OFF 001: } \min (-5 d B) \sim \quad 11: \max (+2.4 d B)$ Note: When STATIC γ GAIN-1 is 000(OFF), set DYNC γ GAIN to min (00), STATIC γ GAIN-2 to OFF (11), and DYNC γ AREA to min (000).	OFF
STATIC γ GAIN-2	Static $Y \gamma$ light area gain; γ correction for light area $\text { 00: } \max (-8.8 \mathrm{~dB}) \sim \quad 11: \text { OFF }$ When 00~10 is set, light area static $Y \gamma$ and light dynamic $Y \gamma$ according to light area is operated.	max
OSD BRIGHT	OSD brightness: 00: 5 IRE 01: 0 IRE 10: -5 IRE 11: - 10 IRE	-5 IRE
OSD-CONTRAST	OSD contrast: 00: $\min (-9.5 d B) \quad 11: \max (0 d B)$	min

Resister Name	Description	Preset Value
Y/C DL1/2	Adjusts Y / C phase; adjusts the phase Y before passing through matrix circuit. Y/C DL2 $=0$ and Y/C DL1 $=0:-10 \mathrm{~ns}, \mathrm{Y} / \mathrm{C} D L 2=0$ and $\mathrm{Y} / \mathrm{C} D L 1=1:-5 \mathrm{~ns}$ Y/C DL2 $=1$ and Y/C DL1 $=0: 0 \mathrm{~ns}, \mathrm{Y} / \mathrm{C}$ DL2 $=1$ and Y/C DL1 $=1:+5 \mathrm{~ns}$	-10 ns
DYNC γ AREA	Dynamic γ dark area detection sensitivity; switches detection sensitivity of dynamic Y γ of dark area. $\text { 000: } \min \sim \text { 111: } \max$	min
Y DETAIL CONTROL	Controls Y detail; corrects sharpness of $5.0-\mathrm{MHz}$ peak frequency. 0000:min (trap) 1111: $\max (+6 d B)$	CENTER
WP BLUE POINT	White peak blue point; $\text { 000: OFF 001: } \min (42 \text { IRE) ~ 111: } \max (106 \text { IRE) }$	OFF
Y-GROUP DELAY CORRECTION	Y group delay correction; shoot balance correction. 0000: Pre-shoot gain is lowered. (Overshoot gain is raised.) 1111: Overshoot gain is lowered. (Pre-shoot gain is raised.)	CENTER
WP BLUE GAIN	White peak blue gain. $000: \min (+3 \mathrm{~dB}) \quad \text { 111: } \max (+10 \mathrm{~dB})$	min

Appendix 1: Horizontal Frequency

Pin Voltages (V)		Bus Data			H-Frequency (kHz)
Pin 55	Pin 41	00-D0	00-D7	00-D6	
$\begin{aligned} & \text { DEF GND } \\ & (0 \sim 1.0) \end{aligned}$	$\begin{aligned} & \text { DEF VCC } \\ & (8.0 \sim 9.0) \end{aligned}$	0	0	0	28.125
	6.0 (5.0~7.0)	0	0	1	31.5
	3.0 (2.0~4.0)	0	1	0	33.75
	$\begin{aligned} & \text { DEF GND } \\ & (0 \sim 1.0) \end{aligned}$	0	1	1	37.9
$\begin{aligned} & \text { DEF VCC } \\ & (8.0 \sim 9.0) \end{aligned}$	$\begin{aligned} & \text { DEF VCC } \\ & (8.0 \sim 9.0) \end{aligned}$	1	0	0	15.75
	6.0 (5.0~7.0)	1	0	1	31.5
	3.0 (2.0~4.0)	1	1	0	33.75
	$\begin{aligned} & \text { DEF GND } \\ & (0 \sim 1.0) \end{aligned}$	1	1	1	45

Note 1: Controlling pins prevails over BUS control. When the TA1360F is used for CRT, control horizontal oscillation frequency by pins 41 and 55 . (See the pin descriptions for details.)

Note 2: Horizontal output frequency may not be switched at once but may takes two steps if switching pins 41 and 55 is controlled at the same time. Switching horizontal output frequency may cause deterioration of the horizontal transistor. Thus, be sure to take account of applications, included software.

Appendix 2; Vertical Frequency

Data	V Pull-in Range	V-BPP		Example of Format/V (H)-Frequency
		Start Phase	Stop Phase	
000	48~1281 H	1100 H	$\begin{gathered} \text { V-BLK P. } \\ \text { (C.BLK P.) } \\ +20 \mathrm{H} \end{gathered}$	$1125 \mathrm{P} / 30 \mathrm{~Hz}(33.75 \mathrm{kHz})$
001	48~849 H	730 H		$\begin{gathered} 750 \mathrm{P} / 60 \mathrm{~Hz}(45 \mathrm{kHz}) \\ (750 \mathrm{P} / 50 \mathrm{~Hz}(37.5 \mathrm{kHz})) \end{gathered}$
010	48~725 H	600 H		$625 \mathrm{P} / 50 \mathrm{~Hz}(31.5 \mathrm{kHz})$ SVGA/60 Hz(37.9 kHz)
011	48~660 H	545 H		$\begin{gathered} 1125 \mathrm{I} / 50 \mathrm{~Hz}(28.125 \mathrm{kHz}) \\ 1125 \mathrm{I} / 60 \mathrm{~Hz}(33.75 \mathrm{kHz}) \end{gathered}$
100	48~613 H	500 H		$525 \mathrm{P} / 60 \mathrm{~Hz}(31.5 \mathrm{kHz})$
101	48~363 H	290 H		$\begin{gathered} \text { PAL/SECAM/50 Hz (15.625 kHz), } \\ 100 \mathrm{~Hz}(31.5 \mathrm{kHz}) \end{gathered}$
110	48~307 H	240 H		$\begin{gathered} \text { NTSC/60 Hz (15.734 kHz), } \\ 120 \mathrm{~Hz}(31.5 \mathrm{kHz}) \end{gathered}$
111	VP-OUT HI	-	-	-

Appendix 3; Compression-BLK Phase

V-Frequency	Phase-1 (start phase) *	Phase-2 (stop phase)
000	$1088 \mathrm{H} \sim 1116 \mathrm{H}$	$\begin{gathered} 50 ~ 78 \mathrm{H} \\ \text { (0000: C-BLK2 OFF) } \end{gathered}$
001	$720 \mathrm{H} \sim 748 \mathrm{H}$	
010	$592 \mathrm{H} \sim 620 \mathrm{H}$	
011	$528 \mathrm{H} \sim 556 \mathrm{H}$	
100	$488 \mathrm{H} \sim 516 \mathrm{H}$	
101	$280 \mathrm{H} \sim 308 \mathrm{H}$	
110	$224 \mathrm{H} \sim 252 \mathrm{H}$	
111	C-BLK OFF	

*: C-BLK1 = 1111: C-BLK1 OFF

Appendix 4; P-Mode

05-D7	1A-D1	1A-D0	MODE			
0	0	0	NORMAL 1	Pescription		
0	0	1	Insert analog RGB-IN by Ys3, and OSD-IN by Ys1/Ys2.			
Analog RGB-IN $>$ P-Mute					,	Full-screen-mute process is executed on Y of main signal by BUS.
:---						
Insert analog RGB-IN by Ys3, and OSD-IN by Ys1/Ys2.						
Analog RGB-IN > P-Mute	,	Full-screen-halftone process is executed on main signal by BUS.				
:---						
0						

Output priority; (000)~(100): Main signal < BB < P-MUTE < RGB-IN < OSD-IN
(101)~(111): Main signal $<\mathrm{BB}<$ RGB-IN $<$ P-MUTE $<$ OSD-IN

Appendix 5; DR-R, DR-B/G

DR-R	DR-B/G	Reference Axis	Drive Gain1	Drive Gain2
0	0	R	G	B
0	1	R	G	B
1	0	G	R	B
1	1	B	G	R

Read Function

Signal	Function
POR	Power-on reset: 0: RESISTER PRESET 1: Normal After power on, 0 is returned at first read; 1 , at second and subsequent reads.
IK-IN	Detects IK input; detects input through pin 8. 0 : NG (no signal) 1: OK (signal detected)
RGB-OUT	Detects RGB-OUT self-check; detects output of pins 12, 13, 14. 0 : NG (no signal) 1: OK (signal detected) Detects signal when all three outputs hsve signals. Small signals are not detected.
YUV-IN	Detects YUV-IN self-check; detects input of pins 60, 6163 or pins 66, 67, 68. 0 : NG (no signal) 1: OK (signal detected) Detects signal when all three inputs are AC signals. Small signals or signals like DC voltage are not detected.
H-OUT	Detects H-OUT self-check; detects output of pin 37. 0 : NG (no signal) 1: OK (signal detected)
VP-OUT	Detects VP-OUT self-check; detects output of pin 35. 0 : NG (no signal) 1: OK (signal detected)
RGB-IN	Detects RGB-IN self-check; detects input of pins 24, 25, 26. 0 : NG (no signal) 1: OK (signal detected) Detects signal when all three inputs are AC signals. Small signals or signals like DC voltage are not detected.
SYNC-IN	Detects SYNC-IN self-check; detects input of pin 53. 0: NG (no signal), 1: OK (signal detected)

How to Transmit/Receive Via I ${ }^{2} \mathrm{C}$ Bus

Slave Address: $\mathbf{8 8 H}$

A6	A5	A4	A3	A2	A1	A0	W/R
1	0	0	0	1	0	0	$0 / 1$

Start and Stop Conditions

Bit Transfer

Acknowledgement

Data Transmit Format 1

Data Transmit Format 2

$\int\left(\begin{array}{l|l|l|l|l|}\cdots \cdots & \text { Sub address } & A & \text { Transmit data } n & A \mid P \\ \hline\end{array}\right.$

Data Receive Format

To receive data, the master transmitter changes to the receiver immediately after the first acknowledgement. The slave receiver changes to the transmitter.

The stop condition is always created by the master.
Details are provided in the Philips $1^{2} \mathrm{C}$ specifications.

Optional Data Transmit Format

In this way, sub addresses are automatically incremented from the specified sub address and data are set.
Purchase of TOSHIBA $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use these components in an $I^{2} \mathrm{C}$ system, provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specification as defined by Philips.

Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristics	Symbol	Rating		Unit
Supply voltage	$V_{\text {CCmax }}$	12		V
Input pin signal voltage	$\mathrm{e}_{\text {inmax }}$	9		Vp-p
Power dissipation	P_{D} (Note 3)	2604		mW
Power dissipation reduction rate depending on temperature	1/өja	20.8		$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating temperature	$\mathrm{T}_{\text {opr }}$	-20 to 65	-20 to 70	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Supply voltage (pins 16, 45 and 75)	min	8.7	8.5	V
	typ.	9.0	8.8	
	max	9.3	9.1	

Note 3: See the following Figure A. (With device mounted on a PCB whose dimensions are $114.3 \mathrm{~mm} \times 76.2 \mathrm{~mm} \times$ 1.6 mm and whose surface is 20% copper. Mount the device on a PCB of at least these dimensions and whose surface is at least 20% copper.)
When using in -25 to $70^{\circ} \mathrm{C}$ of operating temperature, set the IC's power supply voltage (pins $16,45,75$) to 8.8 V ($\pm 0.3 \mathrm{~V}$).

When designing a set, make sure that the IC can radiate heat because the TA1360AFG has low thermal capacity. Note that the power dissipation varies greatly according to conditions of a board.

Figure A Power Dissipation Reduction Curve

Note 4: Power supply sequence

At power-on, power should be supplied to the power supply pins according to the following sequence:

1. Pin 31 (${ }^{2} L$ VDD)
2. Pin 45 (DEF/DAC $V_{C C}$)
3. Pins 16 and 75 (YC $\left.V_{C C} / R G B V_{C C}\right)$

Supply power to pin 37 via zener diode through resistor from pin 45 . (See "Application Circuit".)
BUS preset value is become undefined and caused malfunction of the IC unless supplying power to all supply pins or follow the power supply sequence described above. When the frequency of horizontal output (pin 37) became undefined, horizontal transistor may be damaged. When the TA1360F is used for CRT, control horizontal oscillation frequency by pins 41 and 55.

Figure B Timing chart that indicates the timing from power-on till horizontal output. (At $\mathbf{T a}=25 \mathrm{C}^{\circ}$)

Operating Conditions

Characteristics	Description		Min	Typ.	Max	Unit
Supply voltage (V_{CC})	Pin 16, 45, 75	$\mathrm{T}_{\mathrm{opr}}=-20$ to $65^{\circ} \mathrm{C} \quad$ (Note 5)	8.7	9.0	9.3	V
		$\mathrm{T}_{\mathrm{opr}}=-20$ to $70^{\circ} \mathrm{C} \quad$ (Note 5)	8.5	8.8	9.1	
	Pin 31		1.8	2.0	2.2	
Y input level	Pins 63, 68: 100\% color bar, including sync (Picture period amplitude, 0.7 Vp -p)		-	1.0	-	Vp-p
Color-difference input level	Pins 60, 61 66, 67: 100\% color bar, not including sync		-	0.7	-	
HD/VD input level	Pins 50, 52		2.0	5.0	V_{CC}	V
SYNC input level	Pin 53: 100\% color bar, including sync		0.9	1.0	1.1	Vp-p
SCP input level	Pin 49	CP	4.2	5.0	V_{CC}	V
		BPP	2.2	2.5	2.8	
Horizontal frequency switching voltage	Pin 55	At $28 \mathrm{k} / 31 \mathrm{k} / 33 \mathrm{k} / 37 \mathrm{kHz}$	0	0	1.0	
		At $15 \mathrm{k} / 31 \mathrm{k} / 33 \mathrm{k} / 45 \mathrm{kHz}$	8.0	V_{CC}	V_{CC}	
	Pin 41	28.125 kHz or 15.75 kHz	8.0	V_{CC}	V_{Cc}	
		31.5 kHz	5.0	6.0	7.0	
		33.75 kHz	2.0	3.0	4.0	
		37.9 kHz or 45 kHz	0	0	1.0	
FBP input level	Pin 39	H-AFC	6.5	7.0	V_{CC}	
		H-BLK	3.0	3.5	4.0	
FBP input width	Pin 39		0.16	-	0.3	H
H-OUT input current	Pin 37		-	9.0	15.0	A
DAC input current	Pins 23, 34		-	0.3	1.0	
SCL/SDA pull-up voltage	Pins 28, 30		3.3	5.0	V_{CC}	V
SDA input current	Pin 28		-	-	2	mA
Analog RGB input level	Pins 24, 25, 26: White 100\%		-	0.7	-	
Analog OSD input level	Pins 18, 19, 21: White 100\%		-	0.7	-	p-p
YS3 switching voltage	Pin 2		1.5	5.0	V_{Cc}	
$Y_{S} 1 / 2$ switching voltage	Pins 1, 80	OSD	2.9	5.0	V_{CC}	
		VSM MUTE	1.1	1.5	1.7	
Y_{M} switching voltage	Pin 79	BLK	7.0	V_{CC}	V_{CC}	
		P-MUTE	2.7	3.5	4.0	
		HALF TONE	1.2	1.5	1.8	
External V-BLK input current	Pin 35		0.78	-	1	mA

Note 5: See "Maximum Ratings" about $T_{\text {opr }}$.
Electrical Characteristics (unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{Ta}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Current Dissipation

Pin Name	Symbol	Test Circuit	Min	Typ.	Max	Unit
DEF/DAC $\mathrm{V}_{\text {Cc }}(9 \mathrm{~V})$	ICC1	-	19.2	24.0	28.2	mA
RGB V CC (9 V)	$\mathrm{I}_{\mathrm{CC} 2}$	-	48.8	61.0	67.8	
$\mathrm{I}^{2} \mathrm{~L} \mathrm{~V}_{\text {DD }}(2 \mathrm{~V})$	ICC3	-	21.3	25.0	29.4	
$\mathrm{Y} / \mathrm{C} \mathrm{V}_{\mathrm{CC}}(9 \mathrm{~V})$	ICC4	-	36.8	46.0	51.1	

Pin Voltage

Test Condition

(1) BUS = Preset
(2) SW71 = B, SW70 = B, SW68 = C, SW67 = B, SW66 = B, SW64 = B, SW63 = B, SW60 to 61 = B,

SW53 = B, SW44 = ON, SW40 = B, SW39 = A, SW37 = A, SW24 to 26 = A, SW21 = A, SW18~19 = A, SW77 = OFF, SW74 = ON

Pin No.	Pin Name	Symbol	Test Circuit	Min	Typ.	Max	Unit
1	YS2	V_{1}	-	-	0.1	0.2	
2	Ys 3	V_{2}	-	-	0.1	0.2	
4	R S/H	V_{4}	-	4.2	5.2	6.2	
6	G S/H	V_{6}	-	4.2	5.2	6.2	
7	B S/H	V_{7}	-	4.2	5.2	6.2	
18	ANALOG OSD R IN	V_{18}	-	3.65	3.95	4.25	
19	ANALOG OSD G IN	V_{19}	-	3.65	3.95	4.25	
21	ANALOG OSD B IN	V_{21}	-	3.65	3.95	4.25	
24	ANALOG R IN	V_{24}	-	3.65	3.95	4.25	
25	ANALOG G IN	V_{25}	-	3.65	3.95	4.25	
26	ANALOG B IN	V_{26}	-	3.65	3.95	4.25	
40	H CURVE CORRECTION	V_{40}	-	2.2	2.5	2.8	
42	HVCO	V_{42}	-	4.4	5.0	5.6	
44	AFC FILTER	V_{44}	-	5.4	6.2	7.0	
49	CP IN	V_{49}	-	-	0	0.3	
50	HD IN	V_{50}	-	-	0	0.3	
52	VD IN	V_{52}	-	-	0	0.3	v
53	SYNC IN	V_{53}	-	1.8	2.1	2.4	
57	VSM FILTER	V_{57}	-	7.5	7.7	7.9	
58	COLOR LIMITER	V_{58}	-	6.65	6.9	7.15	
60	Cr/Pr2 IN	V_{60}	-	4.7	5.0	5.3	
61	$\mathrm{Cb} / \mathrm{Pb} 2 \mathrm{IN}$	V_{61}	-	4.7	5.0	5.3	
63	Y2 IN	V_{63}	-	4.7	5.0	5.3	
64	LIGHT AREA DET FILTER	V_{64}	-	-	0.09	0.15	
66	Cr/Pr1 IN	V_{66}	-	4.7	5.0	5.3	
67	Cb/Pb1 IN	V_{67}	-	4.7	5.0	5.3	
68	Y1 IN	V_{68}	-	4.7	5.0	5.3	
70	BPH FILTER	V_{70}	-	5.5	5.8	6.1	
71	DARK AREA DET FILTER	V_{71}	-	-	0.09	0.15	
74	APL FILTER	V_{74}	-	4.8	5.0	5.2	
77	VSM OUT	V_{77}	-	4.1	4.3	4.5	
78	ABCL IN	V_{78}	-	6.1	6.35	6.6	
79	Y_{M}	V_{79}	-	-	0.1	0.2	
80	$\mathrm{Y}_{\mathrm{S}} 1$	V_{80}	-	-	0.1	0.2	

Picture Quality (Sharpness) Block

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Y input dynamic range	D_{RY}	-	-	0.7	1.0	1.5	Vp-p
Black detection level shift	V_{B}	-	(Note P01)	-15	10	15	mV
	$V_{B 3}$	-		35	45	55	
Black stretch amp maximum gain	G_{BS}	-	(Note P02)	2.4	2.8	3.2	dB
Black stretch start point 1	$\mathrm{P}_{\text {BST1 }}$	-	(Note P03)	20	25	35	IRE
	PBST2	-		50	55	60	
Black stretch start point 2	$\mathrm{P}_{\text {BS } 1}$	-	(Note P04)	0	5	10	IRE
	$\mathrm{P}_{\text {BS2 }}$	-		14	21	30	
Black stretch characteristic switch	PBSC1	-	(Note P05)	26	28	30	IRE
	$\mathrm{P}_{\text {BSC2 }}$	-		-8	-6	-4	
	PBSC3	-		26	28	30	
	PBSC4	-		-5.5	-3	-1	
	PBSC5	-		26	28	30	
	PBSC6	-		-3.5	-2	-0.5	
Black stretch area reinforcement current	IBSA	-	(Note P06)	13	18	23	$\mu \mathrm{A}$
D.ABL detection voltage	DV 01	-	(Note P07)	80	120	160	mV
	DV 10	-		240	280	320	
	DV 11	-		380	420	460	
D.ABL sensitivity	SDAMIN	-	(Note P08)	-	0.01	0.02	V/V
	SDAMAX	-		0.25	0.28	0.31	
Black level correction	BLC	-	(Note P09)	4.5	6.5	8.5	IRE
Dark area $\mathrm{Y} \gamma$ correction point	PDGP	-	(Note P10)	25	28	33	IRE
Dark area dynamic $Y \gamma$ gain	GDDGMAX	-	(Note P11)	5.5	6	6.5	dB
Dark area static $\mathrm{Y} \gamma$ gain	GDSGMIN	-	(Note P12)	-6.5	-5	-4	dB
	GDSGMAX	-		2	2.4	2.6	
Light area $\mathrm{Y} \gamma$ correction point	LPG	-	(Note P13)	64	74	80	IRE
Light area dynamic $\mathrm{Y} \gamma$ gain	GLDG	-	(Note P14)	1.1	1.7	2.3	dB
Light area static $\mathrm{Y} \gamma$ gain	GLSGMIN	-	(Note P15)	0.3	0.6	0.9	dB
	GLSGMAX	-		1.4	1.7	2.3	
Dark area detection sensitivity	DAMIN	-	(Note P16)	0.25	0.3	0.37	V
	DACEN	-		0.88	0.98	1.08	
	DAMAX	-		0.95	1.05	1.15	
DC restoration rate	ADT_{100}	-	(Note P17)	0.9	1.1	1.2	times
	ADT $_{135}$	-		1.2	1.35	1.5	
	ADT 65	-		0.55	0.70	0.85	
DC restoration point	$V_{\text {DT0 }}$	-	(Note P18)	-5	0	5	\%
	$\mathrm{V}_{\text {DT1 }}$	-		47	49	55	
DC restoration limit	PDTL60	-	(Note P19)	64	67	70	\%
	PDTL75	-		74	77	80	
	PDTL87	-		74	80	82	
	PDTL100	-		74	80	82	

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Sharpness control peak frequency	$\mathrm{F}_{\text {AP00 }}$	-	-	10.5	13.5	17	MHz
	$\mathrm{F}_{\text {AP01 }}$	-		7	9.5	12	
	$F_{\text {AP10 }}$	-		5	7.2	7.8	
	$\mathrm{F}_{\text {AP11 }}$	-		3.5	4.5	6.3	
DC fluctuation at switching sharpness control peak frequency	VRDC	-	(Note P20)	-	0.01	0.02	V
Sharpness control range	$G_{\text {max }}{ }^{0}$	-	(Note P21)	15	17.5	19	dB
	$\mathrm{G}_{\text {MIN00 }}$	-		-4	-0.6	2.5	
	$\mathrm{Gmax}_{\text {M }}$	-		15	17.5	19	
	$\mathrm{G}_{\mathrm{MIN01}}$	-		-5	-0.3	2.5	
	$\mathrm{G}_{\mathrm{MAX10}}$	-		15	17.5	19	
	$\mathrm{G}_{\text {MIN10 }}$	-		-7	-2.5	1.5	
	$\mathrm{G}_{\mathrm{MAX11}}$	-		15	17.5	19	
	$\mathrm{G}_{\text {MIN11 }}$	-		-12	-5	0	
Sharpness control center characteristic	Gcenoo	-	(Note P22)	7	10	13	dB
	Gcen01	-		7	10	13	
	$\mathrm{G}_{\text {CEN10 }}$	-		7	10	13	
	GCEN11	-		7	10	13	
2 T pulse response SRT control	TSRTOO	-	(Note P23)	0.9	1.6	2.7	dB
	TSRT01	-		3.5	4.8	7.1	
	TSRT10	-		6.7	8.5	11.3	
	TSRT11	-		11.5	12.5	15.5	
VSM peak frequency	FVSM	-	-	19	19.5	25.5	MHz
VSM gain	Gvooo	-	(Note P24)	-	-40	-35	dB
	Gvo01	-		-2	-1.2	-0.4	
	Gvo10	-		3.7	4.6	5.5	
	$\mathrm{G}_{\mathrm{v} 011}$	-		7.1	8.2	9.3	
	$\mathrm{G}_{\mathrm{V} 100}$	-		8.9	10.5	12.1	
	G_{1101}	-		11.4	12.6	13.8	
	$\mathrm{G}_{\mathrm{V} 110}$	-		13.5	14.4	15.3	
	GV111	-		14.8	15.7	16.6	
VSM mute threshold voltage	$\mathrm{V}_{\text {SR1 }}$	-	Pins 1, 2, 80	0.62	0.78	0.85	V
	$\mathrm{V}_{\text {SR2 }}$	-		0.62	0.78	0.85	
	$\mathrm{V}_{\text {SR580 }}$	-		0.62	0.78	0.85	
VSM limit	$\mathrm{V}_{\text {LU }}$	-	(Note P25)	0.55	0.66	0.75	Vp-p
	$\mathrm{V}_{\text {LD }}$	-		0.55	0.66	0.75	
Y input to R output delay time	TYR	-	-	110	125	140	ns
Y delay time switch	YDLA	-	(Note P26)	3	5	10	ns
	YDLB	-		7	10	15	
	YDLC	-		10	15	25	
Y group delay correction	GAMIN	-	(Note P27)	-4	-2.5	-1	dB
	$\mathrm{G}_{\text {BMIN }}$	-		2.5	3	3.5	
	$\mathrm{G}_{\text {AMAX }}$	-		1	1.7	2.4	
	Gbmax	-		-5	-4	-2	

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Color detail enhancer	$\mathrm{G}_{\text {CDE00 }}$	-	(Note P28)	9	10	11	dB
	Gcde01	-		9	10	11	
	GCDE10	-		9	10	11	
	GCDE11	-		9	10	11	
Y detail frequency	FYD	-	-	4	5	6	MHz
Y detail control range	Gydmax	-	(Note P29)	11	13	15	dB
	Gydcen	-		8	10	12	
	Gydmin	-		3	5	7	

Color Difference Block 1: YUV input and matrix

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Color difference input dynamic range	DRB	-	-	0.7	0.9	1.0	Vp-p
	DRR	-		0.7	0.9	1.0	
Color difference tint control characteristic	$\mathrm{T}_{\text {RMAX }}$	-	-	25	29	33	-
	$\mathrm{T}_{\text {RMIN }}$	-		-37	-33	-29	
	TBMAX	-		27	31	35	
	$\mathrm{T}_{\text {BMIN }}$	-		-36	-32	-28	
Color SRT peak frequency	$\mathrm{F}_{\mathrm{B} 00}$	-	-	3.6	4.5	5.4	MHz
	$\mathrm{F}_{\mathrm{B} 01}$	-		4.6	5.8	7.0	
	$\mathrm{F}_{\mathrm{ROO}}$	-		3.6	4.5	5.4	
	$\mathrm{F}_{\mathrm{R} 01}$	-		4.6	5.8	7.0	
Color SRT gain	GS Boocen	-	(Note S01)	1.5	2.8	4.1	dB
	GS ${ }_{\text {B00max }}$	-		2.9	4.2	5.5	
	$\mathrm{GS}_{\text {B01CEN }}$	-		2.0	3.3	4.6	
	$\mathrm{GS}_{\text {B01mAX }}$	-		3.5	4.8	6.1	
	GS Roocen	-		3.4	4.7	6.0	
	GS Roomax	-		5.4	6.7	7.0	
	$\mathrm{GS}_{\text {R01CEN }}$	-		3.1	4.4	5.7	
	$\mathrm{GS}_{\text {R01MAX }}$	-		5.2	6.5	7.8	
Cb1 input to B output delay time	T_{B}	-	-	130	155	185	ns
Cr1 input to R output delay time	T_{R}	-	-	130	155	185	ns
Dynamic Y/C compensation	$\mathrm{GC}_{\mathrm{BDY} 1}$	-	(Note S02)	1.8	2.25	2.7	dB
	GCBDY2	-		-1.65	-1.2	-0.75	
	$\mathrm{GC}_{\text {RDY } 1}$	-		1.8	2.25	2.7	
	$\mathrm{GC}_{\text {RDY2 }}$	-		-1.65	-1.2	-0.75	
YUV gain	Gyoo	-	(Note S03)	2.4	3.4	4.4	dB
	GY01	-		2.4	3.4	4.4	
	$\mathrm{G}_{\text {cbi }}$	-		9.5	11.0	12.5	
	GpbB	-		9.9	11.4	12.9	
	GPBR	-		-18.0	-16.0	-14.0	
	$G_{\text {CRR }}$	-		9.5	11.0	12.5	
	Gprb	-		-15.0	-13.5	-12.0	
	GpRR	-		10.0	11.5	13.0	

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Green stretch	GrA01	-	(Note S04)	0.98	1	1.02	times
	GrA10	-		0.95	1	1.05	
	GrA11	-		0.93	1	1.07	
	GrB01	-		1.01	1.05	1.10	
	GrB10	-		1.05	1.1	1.15	
	GrB11	-		1.12	1.19	1.26	
	GrC01	-		1.10	1.14	1.18	
	GrC10	-		1.23	1.27	1.31	
	GrC11	-		1.35	1.42	1.49	
	GrD01	-		1.09	1.13	1.17	
	GrD10	-		1.21	1.25	1.29	
	GrD11	-		1.32	1.39	1.46	
	GrE01	-		0.98	1	1.02	
	GrE10	-		0.95	1	1.05	
	GrE11	-		0.93	1	1.07	

Color Difference Block 2

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Color difference contrast adjustment characteristic	$\Delta \mathrm{V}_{\mathrm{uCY}}$	-	(Note A01)	14.5	16.0	17.5	dB
Color adjustment characteristic	$\Delta \mathrm{v}_{\mathrm{c}} \mathrm{CY}^{+}$	-	(Note A02)	3.0	4.0	5.0	dB
	$\Delta \mathrm{vcCY}-$	-		-35	-22	-17	
$\mathrm{R}-\mathrm{Y}$ relative phase and amplitude	$\theta_{\text {RMAX }}$	-	-	109	111.5	114	-
	$\theta_{\text {RCNT }}$	-		98.5	101	103.5	
	$\theta_{\text {RMIN }}$	-		88	90	92	
	$\mathrm{V}_{\mathrm{R}} / \mathrm{V}_{\text {BMAX }}$	-		0.86	0.90	0.94	times
	$\mathrm{V}_{\mathrm{R}} / \mathrm{V}_{\text {BCNT }}$	-		0.65	0.69	0.73	
	$\mathrm{V}_{\mathrm{R}} / \mathrm{V}_{\mathrm{BMIN}}$	-		0.42	0.45	0.49	
$\mathrm{G}-\mathrm{Y}$ relative phase and amplitude	$\theta_{\text {GMAX }}$	-	-	251	254	257	-
	$\theta_{\text {GCNT }}$	-		244	247	250	
	$\theta_{\text {GMIN }}$	-		229	232	235	
	$\mathrm{V}_{\mathrm{G}} / \mathrm{v}_{\text {BMAX }}$	-		0.43	0.48	0.53	times
	$\mathrm{V}_{\mathrm{G}} / \mathrm{v}_{\mathrm{BCNT}}$	-		0.33	0.37	0.41	
	$\mathrm{V}_{\mathrm{G}} / \mathrm{v}_{\mathrm{BMIN}}$	-		0.22	0.25	0.28	
Color difference halftone characteristic	$\mathrm{GHT}_{\text {RY }}$	-	(Note A03)	0.47	0.50	0.53	times
	$\mathrm{GHT}_{\mathrm{GY}}$	-		0.47	0.50	0.53	
	$\mathrm{GHT}_{B Y}$	-		0.47	0.50	0.53	
Color γ characteristic	$\mathrm{V}_{\gamma 1}$	-	(Note A04)	0.09	0.23	0.37	Vp-p
	$\mathrm{V}_{\gamma} 2$	-		0.26	0.40	0.54	
	$V_{\gamma 3}$	-		0.44	0.58	0.72	
	Δ_{γ}	-		0.60	0.70	0.80	-
Color limiter characteristic	CLT_{0}	-	(Note A05)	1.45	1.65	1.85	Vp-p
	CLT_{1}	-		1.80	2.00	2.20	
High-bright color gain	HBC_{1}	-	(Note A06)	0.02	0.04	0.06	times

Text Block

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
AC gain (Y1in~R/G/B out)	G_{R}	-	(Note T01)	3.08	3.45	3.90	times
	G_{G}	-		3.08	3.45	3.90	
	G_{B}	-		3.08	3.45	3.90	
AC gain axis difference	$\mathrm{G}_{\mathrm{G} / \mathrm{R}}$	-	-	0.94	1.00	1.06	
	$G_{B / R}$	-		0.94	1.00	1.06	
Frequency characteristic (Y1in~R/G/B out)	G_{fR}	-	At -3dB, sharpness characteristic is flat	30	60	-	MHz
	G_{fG}	-		30	60	-	
	G_{fB}	-		30	60	-	
Frequency characteristic (Cb1/Cr1in~R/G/B out)	$\mathrm{G}_{\mathrm{fCb}}$	-	-	10	12.5	-	MHz
	GfCr	-		10	12.5	-	
Unicolor adjustment characteristic	$\Delta \mathrm{V}_{\mathrm{u}}$	-	(Note T02)	15.0	16.0	17.0	dB
Brightness adjustment characteristic	$\mathrm{V}_{\text {brMAX }}$	-	(Note T03)	4.10	4.45	4.80	V
	VbrCNT	-		3.05	3.40	3.75	
	$\mathrm{V}_{\text {brMIN }}$	-		1.95	2.30	2.65	
White peak slice level	$\mathrm{V}_{\text {wps1 }}$	-	(Note T04)	2.20	2.32	2.44	Vp-p
	$\mathrm{V}_{\text {wps2 }}$	-		2.59	2.74	2.89	
Black peak slice level	$\mathrm{V}_{\mathrm{bps}}$	-	(Note T05)	1.15	1.35	1.45	V
RGB output S/N	N_{12}	-	(Note T06)	-	-52	-46	dB
	N_{13}	-		-	-52	-46	
	N_{14}	-		-	-52	-46	
Halftone characteristic	$\mathrm{G}_{\mathrm{HT} 1}$	-	(Note T07)	0.45	0.50	0.55	times
	$\mathrm{GHT2}$	-		0.45	0.50	0.55	
Halftone on voltage	V_{HT}	-	Pin 79	0.65	0.85	1.05	V
V-BLK pulse output level	V_{VR}	-	-	0.30	0.80	1.30	V
	V_{VG}	-		0.30	0.80	1.30	
	V_{VB}	-		0.30	0.80	1.30	
H-BLK pulse output level	V_{HR}	-	-	0.30	0.80	1.30	V
	V_{HG}	-		0.30	0.80	1.30	
	V_{HB}	-		0.30	0.80	1.30	
BLK pulse delay time	tdon	-	(Note T08)	-	0.00	0.30	$\mu \mathrm{s}$
	tdoff	-		-	0.08	0.30	
Sub-contrast variable range	$\Delta \mathrm{v}_{\text {su+ }}$	-	-	1.95	2.45	2.95	dB
	$\Delta_{\text {vsu- }}$	-		-3.8	-3.3	-2.8	
Cut-off voltage variable range	CUT+	-	-	0.42	0.47	0.52	V
	CUT-	-		0.42	0.47	0.52	
RGB output voltage	$\Delta \mathrm{V}_{\# 12}$	-	-	2.05	2.30	2.55	V
	$\Delta \mathrm{V}_{\# 13}$	-		2.05	2.30	2.55	
	$\Delta \mathrm{V}_{\text {\#14 }}$	-		2.05	2.30	2.55	
RGB output voltage 3-axis difference	$\Delta \mathrm{V}_{\text {OUT }}$	-	-	-	0	150	mV

Characteristics	Symbol	Test Circuit		Test Condition	Min	Typ.	Max	Unit
Drive adjustment variable range	$\mathrm{DR}_{\mathrm{R} 1+}$	-	(Note T09)		2.5	3.0	3.5	dB
	$\mathrm{DR}_{\mathrm{R} 1-}$	-			-5.5	-5.0	-4.5	
	$\mathrm{DR}_{\mathrm{R} 2+}$	-			2.5	3.0	3.5	
	DRR2-	-			-5.5	-5.0	-4.5	
	$\mathrm{DR}_{\mathrm{G1} 1+}$	-			2.5	3.0	3.5	
	$\mathrm{DR}_{\mathrm{G1} 1-}$	-			-5.5	-5.0	-4.5	
	$\mathrm{DR}_{\mathrm{G} 2+}$	-			2.5	3.0	3.5	
	$\mathrm{DR}_{\mathrm{G} 2-}$	-			-5.5	-5.0	-4.5	
	$\mathrm{DR}_{\mathrm{G} 3+}$	-			2.5	3.0	3.5	
	$\mathrm{DR}_{\text {G3- }}$	-			-5.5	-5.0	-4.5	
	$\mathrm{DR}_{\mathrm{B} 1+}$	-			2.5	3.0	3.5	
	$\mathrm{DR}_{\mathrm{B} 1-}$	-			-5.5	-5.0	-4.5	
	$\mathrm{DR}_{\mathrm{B} 2+}$	-			2.5	3.0	3.5	
	$\mathrm{DR}_{\mathrm{B} 2-}$	-			-5.5	-5.0	-4.5	
	$\mathrm{DR}_{\mathrm{B} 3+}$	-			2.5	3.0	3.5	
	$\mathrm{DR}_{\mathrm{B} 3-}$	-			-5.5	-5.0	-4.5	
Output voltage at P-mute	MURD	-	-		1.7	1.85	2.0	V
	MUGD	-			1.7	1.85	2.0	
	MUBD	-			1.7	1.85	2.0	
P-mute ON voltage	$V_{\text {MUTE }}$	-	Pin 79		1.90	2.15	2.40	V
Output voltage at blue background	BB_{R}	-	-		1.0	1.2	1.4	V
	B_{B}	-			1.0	1.2	1.4	
	BB_{B}	-			1.1	1.25	1.4	Vp-p
Input impedance of \#78	Zin	-		(Note T10)	24	30	36	k Ω
ACL characteristic	ACL_{1}	-	(Note T11)		-6.5	-4.5	-2.5	dB
	ACL_{2}	-			-15.0	-13.5	-11.0	
ABL point	ABLP1	-	(Note T12)		-0.21	-0.16	-0.11	v
	ABLP2	-			-0.28	-0.23	-0.18	
	ABLP3	-			-0.37	-0.32	-0.27	
	ABLP4	-			-0.45	-0.40	-0.35	
	ABLP5	-			-0.54	-0.49	-0.44	
	ABLP6	-			-0.62	-0.57	-0.52	
	ABLP7	-			-0.70	-0.65	-0.60	
	ABLP8	-			-0.75	-0.70	-0.65	
ABL gain	ABLG1	-	(Note T13)		-0.06	-0.02	0.00	V
	$\mathrm{ABL}_{\mathrm{G} 2}$	-			-0.17	-0.12	-0.07	
	ABLG3	-			-0.34	-0.29	-0.24	
	ABLG4	-			-0.52	-0.47	-0.42	
	ABLG5	-			-0.68	-0.63	-0.59	
	ABLG6	-			-0.85	-0.80	-0.75	
	ABLG7	-			-1.01	-0.96	-0.91	
	ABLG8	-			-1.09	-1.04	-0.99	

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
RGB output mode	$\mathrm{V}_{12 \mathrm{R}}$	-	(Note T14)	2.15	2.40	2.65	V
	$\mathrm{V}_{13 \mathrm{R}}$	-		0.30	0.80	1.30	
	$V_{14 R}$	-		0.30	0.80	1.30	
	$V_{12 G}$	-		0.30	0.80	1.30	
	$V_{13 G}$	-		2.15	2.40	2.65	
	$V_{14 G}$	-		0.30	0.80	1.30	
	$V_{12 B}$	-		0.30	0.80	1.30	
	$V_{13 B}$	-		0.30	0.80	1.30	
	$\mathrm{V}_{14 \mathrm{~B}}$	-		2.15	2.40	2.65	
Y-OUT γ characteristic	γ_{1}	-	(Note T15)	56	66	76	IRE
	γ_{2}	-		72	82	92	
	Δ_{1}	-		0.49	1.24	1.99	dB
	Δ_{2}	-		-1.67	-0.92	-0.17	
	Δ_{3}	-		-4.59	-3.84	-3.09	
White-peak blue characteristic	$B S_{\text {Pmin }}$	-	(Note T16)	37	42	47	IRE
	BS Pcnt	-		72	77	82	
	BS ${ }_{\text {Pmax }}$	-		101	106	111	
	BSGmin	-		2.1	3.1	4.1	dB
	BS Gcnt	-		6.4	7.4	8.4	
	$\mathrm{BS}_{\text {Gmax }}$	-		9	10	11	
Forced BLK input threshold voltage	$V_{\text {blkin }}$	-	Pin 79	5.1	5.6	6.1	V
ACB insertion pulse phase and amplitude	$\theta_{\text {ACBR }}$	-	(Note T17)	-	1	-	H
	$\theta_{\text {Acbi }}$	-		-	2	-	
	$\theta_{\text {Acbi }}$	-		-	3	-	
	$\mathrm{V}_{\text {ACB1R }}$	-		0.15	0.20	0.25	Vp-p
	$\mathrm{V}_{\text {ACB1G }}$	-		0.15	0.20	0.25	
	$\mathrm{V}_{\text {ACB1B }}$	-		0.15	0.20	0.25	
	$\mathrm{V}_{\text {ACB2R }}$	-		0.27	0.32	0.37	
	$\mathrm{V}_{\text {ACB2G }}$	-		0.27	0.32	0.37	
	$\mathrm{V}_{\text {ACB2B }}$	-		0.27	0.32	0.37	
	$\mathrm{V}_{\text {ACB3R }}$	-		0.52	0.57	0.62	
	$\mathrm{V}_{\text {ACB3G }}$	-		0.52	0.57	0.62	
	$\mathrm{V}_{\text {AСв3B }}$	-		0.52	0.57	0.62	
IK input amplitude	IK_{R}	-	(Note T18)	0.73	0.93	1.13	Vp-p
	IK_{G}	-		0.73	0.93	1.13	
	IK_{B}	-		0.73	0.93	1.13	
IK input cover range	DIK ${ }_{\text {in }+}$	-	(Note T19)	3.00	3.30	3.60	V
	DIK ${ }_{\text {in- }}$	-		-0.50	-0.30	-0.10	

Characteristics	Symbol	Test Circuit		Test Condition	Min	Typ.	Max	Unit
Analog RGB gain	$\mathrm{G}_{\text {TXR }}$	-	(Note T20)		3.03	3.40	3.83	times
	$\mathrm{G}_{\text {TXG }}$	-			3.03	3.40	3.83	
	$\mathrm{G}_{\text {TXB }}$	-			3.03	3.40	3.83	
Analog RGB gain 3-axis difference	$\mathrm{G}_{\mathrm{TXG} / \mathrm{R}}$	-	-		0.94	1.00	1.06	-
	$\mathrm{G}_{\text {TXB/R }}$	-			0.94	1.00	1.06	
Analog RGB frequency characteristic	$\mathrm{Gf}_{\text {TXR }}$	-	At -3dB		30	35	-	MHz
	$\mathrm{Gf}_{\text {TXG }}$	-			30	35	-	
	GftXB	-			30	35	-	
Analog RGB input dynamic range	DR_{24}	-	-		0.80	1.20	1.50	Vp-p
	DR_{25}	-			0.80	1.20	1.50	
	DR_{26}	-			0.80	1.20	1.50	
Analog RGB white peak slice level	TXV ${ }_{\text {WPSR }}$	-	(Note T21)		2.45	2.70	2.95	Vp-p
	TXV ${ }_{\text {WPSSG }}$	-			2.45	2.70	2.95	
	TXV ${ }_{\text {WPPSB }}$	-			2.45	2.70	2.95	
Analog RGB black peak limit level	$V_{\text {BPSR }}$	-	(Note T22)		1.15	1.30	1.45	V
	$V_{\text {BPSG }}$	-			1.15	1.30	1.45	
	$V_{\text {BPSB }}$	-			1.15	1.30	1.45	
RGB contrast adjustment characteristic	$\Delta v_{u T X R}$	-	(Note T23)		15.5	16.5	18.5	dB
	$\Delta v_{u T X G}$	-			15.5	16.5	18.5	
	$\Delta \mathrm{v}_{\text {uTXB }}$	-			15.5	16.5	18.5	
Analog RGB bright adjustment characteristic	$\mathrm{V}_{\text {brTXmax }}$	-	(Note T24)		3.0	3.2	3.4	V
	$\mathrm{V}_{\text {br }}$ XXent	-			2.6	2.8	3.0	
	$\mathrm{V}_{\text {brTXmin }}$	-			2.1	2.3	2.5	
Analog RGB mode switching voltage	$\mathrm{V}_{\text {TXON }}$	-	Pin 2		0.65	0.85	1.05	V
Analog RGB mode switching transfer characteristic	$\tau_{\text {RYS }}$	-	(Note T25)		-	15	50	ns
	tP ${ }_{\text {RYS }}$	-			-	20	50	
	$\Delta \mathrm{t}_{\text {RYS }}$	-			-	0	10	
	$\tau_{\text {FYS }}$	-			-	10	50	
	$t^{\text {RYS }}$	-			-	30	50	
	$\Delta \mathrm{t}_{\text {RYS }}$	-			-	0	10	
Text ACL characteristic	TXACL ${ }_{1}$	-	(Note T26)		-6.7	-4.7	-2.7	dB
	TXACL2	-			-16.5	-14.5	-12.5	
Analog OSD gain	Gosdr	-	(Note T27)		2.95	3.30	3.70	times
	Gosdg	-			2.95	3.30	3.70	
	GosdB	-			2.95	3.30	3.70	
Analog OSD gain 3-axis difference	Gosdg/R	-	-		0.94	1.00	1.06	-
	Gosdi/R	-			0.94	1.00	1.06	
Analog OSD frequency characteristic	Gfosdr	-	At -3dB		35	40	-	MHz
	GfosDg	-			35	40	-	
	Gfosdb	-			35	40	-	
Analog OSD input dynamic range	DR_{18}	-	-		0.80	1.20	1.50	Vp-p
	DR_{19}	-			0.80	1.20	1.50	
	DR_{21}	-			0.80	1.20	1.50	

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Analog OSD input white peak slice level	OSDV ${ }_{\text {WPSR }}$	-	(Note T28)	2.45	2.70	2.95	Vp-p
	OSDVWPSG	-		2.45	2.70	2.95	
	OSDV ${ }_{\text {WPSB }}$	-		2.45	2.70	2.95	
Analog OSD black peak limit level	OSDV ${ }_{\text {BPSR }}$	-	(Note T29)	1.30	1.45	1.60	V
	OSDV ${ }_{\text {BPSG }}$	-		1.30	1.45	1.60	
	OSDV ${ }_{\text {BPSB }}$	-		1.30	1.45	1.60	
OSD contrast adjustment characteristic	Vuosdr11	-	(Note T30)	0.58	0.64	0.71	Vp-p
	VuosdG11	-		0.58	0.64	0.71	
	V ${ }_{\text {UoSDB11 }}$	-		0.58	0.64	0.71	
	VUOSDR10	-		0.47	0.53	0.59	
	V ${ }_{\text {UoSDG10 }}$	-		0.47	0.53	0.59	
	V UosdB10	-		0.47	0.53	0.59	
	V ${ }_{\text {UoSDR01 }}$	-		0.31	0.37	0.45	
	VUOSDG01	-		0.31	0.37	0.45	
	V ${ }_{\text {UoSDB01 }}$	-		0.31	0.37	0.45	
	V UosDR00	-		0.19	0.22	0.24	
	VUosdgoo	-		0.19	0.22	0.24	
	V	-		0.19	0.22	0.24	
Analog OSD bright adjustment characteristic	Vbrosdo	-	(Note T31)	2.20	2.40	2.60	V
	VbrosD1	-		2.05	2.25	2.45	
	$\mathrm{V}_{\text {brosD2 }}$	-		1.95	2.15	2.35	
	VbrosD3	-		1.80	2.00	2.20	
Analog OSD mode switching voltage	Vosbon1	-	Pin 80	2.05	2.30	2.55	V
	Vosbon2	-	Pin 1	2.05	2.30	2.55	
Analog OSD mode switching transfer characteristic	$\tau_{\text {RYS1 }}$	-	(Note T32)	-	15	50	ns
	$t_{\text {RYS } 1}$	-		-	20	50	
	$\Delta \mathrm{tP}_{\text {RYS } 1}$	-		-	0	10	
	$\tau_{\text {FYS } 1}$	-		-	10	50	
	$t_{\text {RYS } 1}$	-		-	30	50	
	$\Delta \mathrm{tP}_{\text {RYS } 1}$	-		-	0	10	
	$\tau_{\text {RYS2 }}$	-		-	15	50	
	$\mathrm{tP}_{\mathrm{RYS} 2}$	-		-	20	50	
	$\Delta \mathrm{tP}_{\text {RYS2 }}$	-		-	0	10	
	$\tau_{\text {FYS2 }}$	-		-	10	50	
	$\mathrm{tP}_{\mathrm{RYS} 2}$	-		-	30	50	
	$\Delta \mathrm{P}_{\mathrm{RYS} 2}$	-		-	0	10	
OSD ACL characteristic	OSDACL 1	-	(Note T33)	-	0.00	-	dB
	OSDACL2	-		-	0.00	-	
	OSDACL3	-		-6.7	-4.7	-2.7	
	OSDACL4	-		-16.5	-14.5	-12.5	

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
OSD blending characteristic		$\alpha 41 \mathrm{TV}_{1}$	-	(Note T34)	-7	-6	-5	dB
		$\alpha_{42 T V}^{1}$	-		-7	-6	-5	
		$\alpha 43 T V_{1}$	-		-7	-6	-5	
		$\alpha 41 \mathrm{TV}_{2}$	-		-4	-3	-2	
		$\alpha 42 T V_{2}$	-		-4	-3	-2	
		$\alpha 43 T V_{2}$	-		-4	-3	-2	
		$\alpha 41 \mathrm{TV}_{3}$	-		-	-55	-50	
		$\alpha 42 T V_{3}$	-		-	-55	-50	
		$\alpha 43 \mathrm{TV}_{3}$	-		-	-55	-50	
		$\alpha 410 \mathrm{SD}_{1}$	-		-6.5	-5.5	-4.5	
		$\alpha 420 \mathrm{SD}_{1}$	-		-6.5	-5.5	-4.5	
		$\alpha 430 \mathrm{SD}_{1}$	-		-6.5	-5.5	-4.5	
		$\alpha 41 \mathrm{OSD}_{2}$	-		-12.0	-10.5	-9.0	
		$\alpha 420 \mathrm{SD}_{2}$	-		-12.0	-10.5	-9.0	
		$\alpha 43 \mathrm{OSD}_{2}$	-		-12.0	-10.5	-9.0	
		$\alpha 41 \mathrm{OSD}_{3}$	-		-	-40	-30	
		$\alpha 42 \mathrm{OSD} 3$	-		-	-40	-30	
		$\alpha 43 \mathrm{OSD}_{3}$	-		-	-40	-30	
Input crosstalk	$Y \rightarrow$ RGB input	$\mathrm{V}_{\mathrm{V} \rightarrow \mathrm{A}}$	-	Input: Signal 1 ($\mathrm{f}_{\mathrm{O}}=4 \mathrm{MHz}$, Amplitude $0.7 \mathrm{Vp}-\mathrm{p}$)	-	-50	-45	dB
	$Y \rightarrow$ OSD input	$\mathrm{V}_{\mathrm{V} \rightarrow 0}$	-		-	-55	-45	
	RGB input \rightarrow Y	$\mathrm{V}_{\mathrm{A} \rightarrow \mathrm{V}}$	-		-	-50	-45	
	$\begin{aligned} & \text { RGB input } \rightarrow \\ & \text { OSD input } \end{aligned}$	$\mathrm{V}_{\mathrm{A}} \rightarrow \mathrm{O}$	-		-	-50	-45	
	OSD input \rightarrow Y	$\mathrm{V}_{\mathrm{O} \rightarrow \mathrm{V}}$	-		-	-45	-40	
	OSD input \rightarrow RGB input	$\mathrm{V}_{\mathrm{O} \rightarrow \mathrm{A}}$	-		-	-50	-45	
	RGB input in three axes	-	-	Input: Signal 1 ($\mathrm{f}_{\mathrm{o}}=1 \mathrm{MHz}$, Amplitude $0.7 \mathrm{Vp}-\mathrm{p}$)	-	-50	-40	
	OSD input in three axes	-	-		-	-50	-40	
Blue stretch point/gain		BLP ${ }_{\text {min }}$	-	(Note T35)	23	28	33	IRE
		BLP ${ }_{\text {max }}$	-		55	60	65	
		$B L G_{\text {min }}$	-		2.4	2.9	3.4	dB
		BLG \max	-		5.4	6.4	7.4	
Blue stretch γ correction		BL $\gamma 1$	-	(Note T36)	84	89	94	IRE
		BL $\gamma 2$	-		89	94	99	
		BL $\gamma 3$	-		93	98	103	
		BL $\gamma 4$	-		98	103	108	
White letters improvement		WPL1	-	(Note T37)	16	21	25	Vp-p
		WPL2	-		51	56	61	
		WPL3	-		97	102	107	

Sync Block

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Sync input horizontal sync phase	SPH	-	(Note HA01)	0.55	0.65	0.75	$\mu \mathrm{s}$
HD input horizontal sync phase	HDPH	-	(Note HA02)	0.58	0.68	0.78	$\mu \mathrm{s}$
Polarity detecting rage	HDDUTY1	-	(Note HA03)	-	0.5	2.0	\%
	HDDUTY2	-		62	67	72	
	HD ${ }_{\text {DUTY3 }}$	-		-	99.5	98	
	HDDUTY4	-		47.5	52.5	57.5	
Sync input threshold amplitude	$\mathrm{V}_{\text {thS00 }}$	-	(Note HA04)	10	16	22	\%
	$\mathrm{V}_{\text {thS01 }}$	-		18	24	30	
	$\mathrm{V}_{\text {thS }}$ (0	-		26	32	38	
	$\mathrm{V}_{\text {thS11 }}$	-		34	40	46	
HD input threshold voltage	$\mathrm{V}_{\text {thHD }}$	-	(Note HA05)	0.65	0.75	0.85	Vp-p
Horizontal picture position (phase) adjustment variable range	$\Delta \mathrm{H}_{\text {SFT }}-$	-	(Note HA06)	11	12.5	14	\%
	$\Delta \mathrm{H}_{\text {SFT }}+$	-		11	12.5	14	
Horizontal picture position (phase) shift switching amount	$\mathrm{H}_{\text {SFT }}$	-	-	5.2	6.7	9.2	\%
Curve correction variable amount	$\Delta \mathrm{H}_{\# 40}$	-	(Note HA07)	2.9	3.4	3.9	\%
Clamp pulse phase/width/level	CP_{50}	-	(Note HA08)	3.1	3.8	4.5	\%
	CPwo	-		2.0	2.5	3.0	
	$\mathrm{CP}_{\mathrm{V} 0}$	-		4.7	5.0	5.3	V
	$\mathrm{CP}_{\text {S1 }}$	-		0	0.7	1.5	\%
	CPW1	-		1.9	2.4	2.9	
	$\mathrm{CP}_{\mathrm{V} 1}$	-		4.7	5.0	5.3	V
	$\mathrm{CP}_{\text {S2 }}$	-		3.2	4.2	5.2	\%
	CPW2	-		2.2	2.7	3.2	
	$\mathrm{CP}_{\mathrm{V} 2}$	-		4.7	5.0	5.3	V
Black peak detection pulse phase	$\mathrm{HBP}_{500 \mathrm{a}}$	-	(Note HA09)	1.2	3.0	5.9	\%
	HBPsoob	-		1.2	3.0	5.9	
	$\mathrm{HBP}_{\text {S01a }}$	-		6.0	8.0	11.0	
	$\mathrm{HBP}_{\text {S01b }}$	-		6.0	8.0	11.0	
	$\mathrm{HBP}_{\text {s10a }}$	-		10.0	13.0	15.0	
	$\mathrm{HBP}_{\text {s10b }}$	-		10.0	13.0	15.0	
	$\mathrm{HBP}_{\text {s11a }}$	-		16.0	18.0	21.0	
	$\mathrm{HBP}_{\text {s11b }}$	-		16.0	18.0	21.0	
FBP threshold	$\mathrm{V}_{\text {thFBP }}$	-	(Note HA10)	4.8	5.3	5.8	V
HVCO oscillation start voltage	$\mathrm{V}_{\mathrm{VCO}}$	-	Pin 42: Monitor, V_{CC} voltage	3.0	4.0	5.0	V
H-OUT start voltage	$\mathrm{V}_{\mathrm{HON}}$	-	Pin 37: Monitor, $\mathrm{V}_{\text {CC }}$ voltage	5.0	6.0	7.0	V
H-OUT stop voltage	V HOFF	-	Pin 37: Monitor, V_{CC} voltage	4.3	5.3	6.3	V
H-OUT pulse duty	$\mathrm{TH}_{\text {A }}$	-	(Note HB01)	38	41	43	\%
	THB	-		44	47	49	

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Horizontal free-run frequency		F15K	-	(Note HB02)	15.59	15.75	15.91	kHz
		F28K	-		27.90	28.125	28.35	
		F31K	-		31.19	31.5	31.82	
		F33K	-		33.41	33.75	34.09	
		F37K	-		37.60	37.9	38.40	
		F45K	-		44.52	45.0	45.48	
Horizontal oscillation frequency variable range		$\mathrm{F}^{15} \mathrm{~K}_{\mathrm{MIN}}$	-	(Note HB03)	14.78	15.08	15.38	kHz
		$\mathrm{F}^{15 K_{\text {MAX }}}$	-		16.37	16.70	17.03	
		${\mathrm{F} 28 \mathrm{~K}_{\mathrm{MIN}}}$	-		26.00	26.90	27.80	
		$\mathrm{F}^{28 \mathrm{~K}}$ MAX	-		28.90	29.70	30.60	
		${\mathrm{F} 31 \mathrm{~K}_{\mathrm{MIN}}}$	-		29.47	30.06	30.65	
		F31K ${ }_{\text {MAX }}$	-		32.72	33.39	34.06	
		$\mathrm{F}_{3} \mathrm{~K}_{\mathrm{MIN}}$	-		31.41	31.94	32.57	
		$\mathrm{F}_{3} \mathrm{~K}_{\text {MAX }}$	-		34.91	35.62	36.33	
		$\mathrm{F}^{3} \mathrm{~K}_{\mathrm{MIN}}$	-		36.50	37.30	38.20	
		F37K ${ }_{\text {MAX }}$	-		40.20	41.10	42.10	
		$\mathrm{F}^{\text {5 }} \mathrm{K}_{\text {MIN }}$	-		43.20	44.00	44.80	
		F45K ${ }_{\text {MAX }}$	-		47.85	48.65	49.45	
Horizontal oscillation control sensitivity		BH15K	-	Hz/0.1 V (Note HB04)	176	220	264	-
		BH28K	-		320	400	480	
		BH31K	-		352	440	528	
		BH33K	-		376	470	564	
		BH37K	-		390	480	570	
		BH45K	-		520	650	780	
H-OUT output voltage		$\mathrm{V}_{\mathrm{HOH}}$	-	(Note HB05)	4.8	5.1	5.2	V
		$\mathrm{V}_{\mathrm{HOL}}$	-		-	0.1	0.3	
Horizontal oscillation frequency control voltage threshold	Pin 55	$\mathrm{V}_{\text {fHSW1 }}$	-	-	1.7	2.0	2.3	V
	Pin 41	V fHSW2L	-		1.3	1.5	1.7	
		$\mathrm{V}_{\text {fHSW2M }}$	-		4.3	4.5	4.7	
		$\mathrm{V}_{\mathrm{fHSW} 2 \mathrm{H}}$	-		7.3	7.5	7.7	
DAC switch voltage	DAC1	$\mathrm{VDAC}_{1 \mathrm{H}}$	-	TEST $=(00)$, DAC1 $=(0)$	8.5	9.0	-	V
		$\mathrm{VDAC}_{1 \mathrm{~L}}$	-	TEST $=(00), \mathrm{DAC} 1=(1)$	-	0.3	0.7	
	DAC2	$\mathrm{VDAC}_{2} \mathrm{H}$	-	TEST $=(00)$, DAC2 $=(1)$	8.5	9.0	-	
		$\mathrm{VDAC}_{2 L}$	-	TEST $=(00)$, DAC2 $=(0)$	-	0.3	0.7	
VP output pulse width		VPw	-	(Note V01)	4	4.5	5	H
Vertical free-run (maximum pull-in range)	000	VPt0	-	-	1278	1281	1284	H
	001	VPt1	-		846	849	852	
	010	VPt2	-		722	725	728	
	011	VPt3	-		657	660	663	
	100	VPt4	-		610	613	616	
	101	VPt5	-		360	363	366	
	110	VPt6	-		304	307	310	
Vertical minimum pull-in range		TVPULL	-	(Note V02)	47	48	49	H

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Compression BLK 2 (end phase)	000	CBLK2 ${ }_{000 \mathrm{~min}}$	-	-	49	50	51	H
		CBLK2000max	-		77	78	79	
	001	CBLK2001min	-		49	50	51	
		CBLK2001max	-		77	78	79	
	010	CBLK2010min	-		49	50	51	
		CBLK2010 max	-		77	78	79	
	011	CBLK2011min	-		49	50	51	
		CBLK2011max	-		77	78	79	
	100	CBLK2 ${ }_{100 \mathrm{~min}}$	-		49	50	51	
		CBLK2 ${ }_{100 \text { max }}$	-		77	78	79	
	101	CBLK2 ${ }_{101 \text { min }}$	-		49	50	51	
		CBLK2 ${ }_{101 \text { max }}$	-		77	78	79	
	110	CBLK2 ${ }_{110 \mathrm{~min}}$	-		49	50	51	
		CBLK2 ${ }_{110}$ max	-		77	78	79	
External V-BLK input current		lextblk	-	Pin 35 input current	520	625	780	$\mu \mathrm{A}$

Test Condition for Picture Quality (Sharpness) Block

Common Test Condition for Picture Quality (Sharpness) Block

1. $S W 67=S W 66=B, S W 63=B, S W 60$ to $S W 61=B, S W 44=O N, S W 40=B, S W 18$ to $S W 26=A, S W 77=O P E N$
2. Send bus control data as preset values, turn ACB operation switching to ACB OFF (00), select Sync input (1), turn P-MODE to Normal 1(000), WPL-LEVEL to max (111), and change subaddress (1C) to (03).
3. Input sync signal, which is in sync with input signal for testing except "Sweep", to \#53 (Sync input). "H-Freq." should be the same frequency as the one of \#53.
4. Set $\mathrm{Y} /$ col or difference input mode to (0), sync separator level to 20% (01), and vertical freerunning frequency to 307H (110).

Note No.	Characteristics	Test Conditions					Test Method (Test condition: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)
		SW Mode					
		SW71	SW70	SW68	SW64	SW74	
P01	Black detection level shift	B	C	C	B	OPEN	1. Connect external power supply PS to \#68, and monitor \#70 and \#74. 2. Set black stretch point 1 to OFF (000), and black detection level to 0 IRE (1). 3. Increase PS voltage from 4.95 V in steps of 1 mV . At the moment when \#70 picture period (High) drops to Low level, monitor DC difference on \#74 V_{B}. 4. Set black detection level to 3 IRE (0). 5. Repeat the step 3 above and monitor DC difference, $\mathrm{V}_{\mathrm{B} 3}$ on \#74.
P02	Black stretch amp maximum gain	B	A	A	B	OPEN	1. Set SW70 to A (maximum gain), and input $500-\mathrm{kHz}$ sine wave to TPA. 2. Adjust signal amplitude to $0.1 \mathrm{Vp}-\mathrm{p}$ on \#68. 3. Set black stretch point 1 to OFF (000), and measure \#74 amplitude V_{A}. 4. Set black stretch point 1 to 001 (black stretch ON), and measure $\# 74$ amplitude V_{B}. 5. Calculate GBS using a following equation. $\begin{equation*} \mathrm{GBS}=20 \times \log \left(\mathrm{V}_{\mathrm{B}} \div \mathrm{V}_{\mathrm{A}}\right) \tag{dB} \end{equation*}$

Note No.	Characteristics	Test ConditionsSW Mode					Test Method (Test condition: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)
		SW71	SW70	SW68	SW64	SW74	
P03	Black stretch start point 1	A	A	C	B		1. Set SW70 to A (maximum gain), and black stretch point 1 to OFF (000). Apply 0 V to \#71. 2. Connect external power supply PS to \#68, increase voltage from V_{3}, and plot \#74 voltage change $S 1$. The \#74 voltage is set as V_{0} when V_{3} is applied, and as V_{100} when $V_{3}+0.7 \mathrm{~V}$ is applied. 3. Set black stretch point 1 to minimum (001), increase PS voltage from V_{3}, and then plot \#74 voltage change S2. 4. Set black stretch point to maximum (111), repeat 3 above, then plot \#74 voltage change S3. 5. Determine intersection points of $\mathrm{S} 1, \mathrm{~S} 2\left(\mathrm{~V}_{\mathrm{BST1}}\right)$, and $\mathrm{S} 3\left(\mathrm{~V}_{\mathrm{BST} 2}\right)$ as shown in the figure below. Also calculate $\mathrm{P}_{\mathrm{BST} 1}$ and $\mathrm{P}_{\mathrm{BST}}$ using following equations. $\begin{aligned} & \mathrm{V}_{\mathrm{Z}}[\mathrm{~V}]=\mathrm{V}_{100}[\mathrm{~V}]-\mathrm{V}_{0}[\mathrm{~V}] \\ & \mathrm{P}_{\mathrm{BST} 1}[(\mathrm{IRE})]=\left[\left(\mathrm{V}_{\mathrm{BST}}[\mathrm{~V}]-\mathrm{V}_{74}[\mathrm{~V}]\right) \div \mathrm{V}_{\mathrm{Z}}\right] \times 100(\text { IRE }) \\ & \mathrm{P}_{\mathrm{BST} 2}[(\mathrm{IRE})]=\left[\left(\mathrm{V}_{\mathrm{BST}}[\mathrm{~V}]-\mathrm{V}_{74}[\mathrm{~V}]\right) \div \mathrm{V}_{\mathrm{Z}}\right] \times 100(\text { IRE }) \end{aligned}$
							$\uparrow \# 74$
							$\mathrm{v}_{74} \downarrow \downarrow \downarrow / \swarrow \quad$

Note No.	Characteristics	Test Conditions					Test Method (Test condition: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)
		SW71	SW70	SW Mode	SW64	SW74	
P06	Black stretch area reinforcement current	B	-	C	B	ON	1. Connect external power supply PS1 to \#68. 2. Leave SW70 open, put an ammeter between SW70A and \#70, connect external power supply PS2 to SW70A, set PS1 to 5.7 V , and set PS2 to 5 V . 3. Measure current value IBSA0 and IBSA1 when bus data of black stretch area reinforcement [18] is set to ON [80] and OFF [81]. Calculate IBSA using the following equation. $\mathrm{IBSA}=\mathrm{IBSA} 0-\mathrm{IBSA} 1$
P07	D.ABL detection voltage	B	A	C	B	OPEN	1. Set D.ABL sensitivity to maximum (11), and black stretch point 1 to OFF (000). 2. Connect external power supply PS to \#78 and decrease voltage from 6.5 V . 3. Repeat 2 when D.ABL detection voltage is changed to $00,01,10$, and 11 . At the moment when $\# 74$ picture period changes to Low, measure respective PS voltages $\mathrm{V}_{00}, \mathrm{~V}_{01}, \mathrm{~V}_{10}$, and V_{11}. 4. Calculate voltage differences between V_{00} and $\mathrm{V}_{01}\left(\mathrm{DV} \mathrm{V}_{01}\right)$, between V_{00} and $\mathrm{V}_{10}\left(\mathrm{DV} \mathrm{V}_{10}\right)$, and between V_{00} and $\mathrm{V}_{11}\left(\mathrm{DV}_{11}\right)$ $D V_{* * *}=V_{00}-V_{01}\left(V_{10}, V_{11}\right)$ \#74 undetected \#74 detected \#70 waveform

Note No.	Characteristics	Test ConditionsSW Mode					Test Method (Test condition: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)
		SW71	SW70	SW68	SW64	SW74	
P09	Black level correction	B	A	A	B	OPEN	1. Set black stretch point 1[18] to OFF (00). 2. Input signal of $0.7-\mathrm{V}$ picture period amplitude to $\# 68$, and measure \#12 picture period amplitude VB [V]. 3. Set black level correction [18] to ON [04], determine DC change VBLC [V], and calculate BLC [V] using the following equation $\mathrm{BLC}=(\mathrm{VBLC} / \mathrm{VB})] \times 100 \text { [(IRE)] }$

Note No.	Characteristics	Test ConditionsSW Mode					Test Method (Test condition: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)
		SW71	SW70	SW68	SW64	SW74	
P10	Dynamic $\mathrm{Y} \gamma$ correction point	A	B	C	B	OPEN	1. Connect external power supply PS1 to \#68, PS2 to TP1, and set PS2 to 0 V . 2. Set dark area dynamic $\mathrm{Y} \gamma$ gain VS dark area to MIN (00), static $\mathrm{Y} \gamma$ gain1 to OFF (000). 3. Increase PS 1 from $\mathrm{V}_{68}[\mathrm{~V}]$ to $\mathrm{V}_{68}[\mathrm{~V}]+0.7 \mathrm{~V}$ and plot voltage change of \#12 picture period. Take 0 for V_{68} [V] when the change is plotted. (V_{68} is pin voltage of pin 68) 4. Set dark area dynamic $\mathrm{Y} \gamma$ gain VS dark area max (11), static $\mathrm{Y} \gamma$ gain1 to max (111) and PS2 to 1.2 V . 5. Increase PS 1 from $\mathrm{V}_{68}[\mathrm{~V}]$ to $\mathrm{V}_{68}[\mathrm{~V}]+0.7 \mathrm{~V}$ and plot voltage change of \#12 picture period. 6. Measure VDGP by the following figure, and $P_{D G P}$ using the following equation. $\text { DGP }=\left(\mathrm{VDGP}[\mathrm{~V}]-\mathrm{V}_{68}[\mathrm{~V}]\right) / 0.7[\mathrm{~V}] \times 100$

Note No.	Characteristics	Test Conditions					Test Method (Test condition: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)
		SW71	SW70	SW68	SW64	SW74	
P11	Dark area dynamic Y γ gain	A	B	C	B	OPEN	1. Connect external power supply PS1 to \#68, external power supply PS2 to TP1, and set PS2 to 0 V . 2. Set dark area dynamic $\mathrm{Y} \gamma$ gain [1C] to MIN [03], and dark area static $\mathrm{Y} \gamma$ gain [1C] to 0dB [17]. 3. Set PS1 to $\mathrm{V}_{68}[\mathrm{~V}]$, and measure \#12 picture period voltage $\mathrm{VDDGV}_{68}[\mathrm{~V}]$. Set PS1 VDGP [V], and measure \#12 picture period voltage VDDGMIN [V]. 4. Set dark area dynamic Y γ gain [1C] to MAX [D7], PS2 to 1.2 V , measure voltage VDDGMAX [V] of \#12 picture period when PS1 is VDGP [V], and calculate the following equations. $\begin{aligned} & \text { VDDGMAX }- \text { VDDGMIN }^{2}=\mathrm{A} \\ & \text { VDDGMIN }- \text { VDDGV }_{68}=\mathrm{B} \\ & \text { GDDGMAX }=20 \log [\mathrm{~B} /(\mathrm{B}-\mathrm{A})] \quad[\mathrm{dB}] \end{aligned}$ \#12 voltage [V]

Note No.	Characteristics	Test Conditions					Test Method (Test condition: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)
		SW Mode					
		SW71	SW70	SW68	SW64	SW74	
P12	Dark area static $\mathrm{Y} \gamma$ gain	A	B	C	B	OPEN	1. Connect external power supply PS1 to \#68, external power supply PS2 to TP1, and set PS2 to 0 V . 2. Set dark area dynamic $\mathrm{Y} \gamma$ gain [1C] to MIN [03], and dark area static $\mathrm{Y} \gamma$ gain [1C] to OFF [03]. 3. Set PS1 to V_{68} [V], and measure \#12 picture period voltage VSGOFF1 [V]. 4. Set PS1 to VDGP [V], and measure \#12 picture period voltage VSGOFF2 [V]. 5. Set dark area static $\mathrm{Y} \gamma$ gain [1C] to MAX [1F], PS1 to VDGP [V], measure \#12 picture period voltage VSGMAX, and calculate GDSGMAX using the following equations. $\begin{aligned} & \text { VSGMAX }- \text { VSGOFF2 }=A \\ & \text { VSGOFF2 }- \text { VSGOFF1 }=B \\ & \text { GDSGMAX }=20 \times \log [B /(B-A)] \quad[d B] \end{aligned}$ \#12 voltage [V] 6. Set dark area static Y γ gain [1C] to MIN [07], PS1 to VDGP [V], measure \#12 picture period voltage VSGMIN, and calculate GDSGMIN using the following equation. $\text { GDSGMIN }=20 \times \log [(V S G M I N-\text { VSGOFF1)/(VSGOFF2 }- \text { VSGOFF1 })]$ [dB]

Note No.	Characteristics	Test Conditions					Test Method (Test condition: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)
		SW Mode					
		SW71	SW70	SW68	SW64	SW74	
P13	Light area Y γ correction point	A	B	C	A	OPEN	1. Connect external power supply PS1 to \#68, external power supply PS2 to TP1, and set PS2 to 0 V. 2. Set dark area static $\mathrm{Y} \gamma$ gain [1C] to 0dB [17], and bright area static $\mathrm{Y} \gamma$ gain [1C] to 0dB [17]. 3. Increase PS1 from $\mathrm{V}_{68}[\mathrm{~V}]$ to $\mathrm{V}_{68}[\mathrm{~V}]+0.7$ [V], and plot the voltage change of \#12 picture period. Take 0 for V_{68} [V] when the change is plotted. (V_{68} is pin voltage of pin 68) 4. Set light area static $\mathrm{Y} \gamma$ gain [1C] to MAX [04]. 5. Increase PS 1 from $\mathrm{V}_{68}[\mathrm{~V}]$ to $\mathrm{V}_{68}[\mathrm{~V}]+0.7[\mathrm{~V}]$, and plot the voltage change of \#12 picture period. 6. Measure VLGP using the following figure, and PLGP using the following equation. $\text { LGP }=\left(\mathrm{VLGP}[\mathrm{~V}]-\mathrm{V}_{68}[\mathrm{~V}]\right) / 0.7[\mathrm{~V}] \times 100 \quad \text { (IRE) }$

Note No.	Characteristics	Test Conditions SW Mode					Test Method (Test condition: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)
		SW71	SW70	SW68	SW64	SW74	
P14	Light area dynamic Y $\mathrm{\gamma}$ gain	A	B	C	A	OPEN	1. Connect external power supply PS1 to \#68, external power supply PS2 to TP7, and set PS2 to 1.2 V . 2. Set dark area static $Y \gamma$ gain [1C] to OdB [17], and light area static $Y \gamma$ gain [1C] to OdB [17]. 3. Set PS1 to $\mathrm{V}_{68}[\mathrm{~V}]$, and measure \#12 picture period voltage VLDGOFF1. 4. Set PS1 to VLGP [V], and measure \#12 picture period voltage VLDGOFF2. 5. Set light area static $\mathrm{Y} \gamma$ gain [1C] to MAX [14], PS2 to 0 V, PS1 to VLGP [V], determine \#12 picture period voltage VLDGMAX [V] using the following equations. $\begin{aligned} & \text { VLDGMAX }- \text { VLDGOFF2 }=\mathrm{A} \\ & \text { VLDGOFF2 }- \text { VLDGOFF1 }=\mathrm{B} \\ & \text { GLDG }=20 \times \log [\mathrm{B} /(\mathrm{B}-\mathrm{A})] \end{aligned}$

Note No.	Characteristics	Test Conditions					Test Method (Test condition: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)
		SW71	SW70	SW Mod	SW64	SW74	
P15	Light area static $\mathrm{Y} \gamma$ gain	B	B	C	A	OPEN	1. Connect external power supply PS1 to \#68, external power supply PS2 to TP7, and set PS2 to 0 V . 2. Set dark area static $\mathrm{Y} \gamma$ gain [1C] to 0dB [17], and light area static $\mathrm{Y} \gamma$ gain [1C] to 0dB [17]. 3. Set PS1 to $\mathrm{V}_{68}[\mathrm{~V}]$, and measure \#12 picture period voltage VLSGOFF1 [V]. 4. Set PS1 to VLGP [V], and measure \#12 picture period voltage VLDGOFF2 [V]. 5. Set light area static $\mathrm{Y} \gamma$ gain [1C] to MAX [14], PS1 to VLGP [V], measure \#12 picture period voltage VISGMAX, and calculate GLASGMAX [dB] using the following equations. $\begin{align*} & \text { VLSGMAX }- \text { VLSGOFF2 }=\mathrm{A} \\ & \text { VLSGOFF2 }- \text { VLSGOFF1 }=\mathrm{B} \\ & \text { GLSGMAX }=20 \times \log [B /(\mathrm{B}-\mathrm{A})] \tag{dB} \end{align*}$ 6. Set light area static $\mathrm{Y} \gamma$ gain [1C] to MIN [16], PS1 to VLGP [V], measure \#12 picture period voltage VLSGMIN, and calculate GLASGMIN [dB] using the following equations.

Note No.	Characteristics	Test Conditions					Test Method (Test condition: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)
		SW71	SW70	SW68	SW64	SW74	
P16	Dark area detection sensitivity	A	B	A	A	OPEN	1. Input the signal whose picture period amplitude is 0.18 V to $\# 68$ as shown in the figure below. 2. Measure \#71 pin voltage DAMIN, DACEN, and DAMAX [V] when dark area detection sensitivity [1D] is set to MIN [00], CEN [04] and MAX [07].

Note No.	Characteristics	Test Conditions					Test Method (Test condition: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)
		SW Mode					
		SW71	SW70	SW68	SW64	SW74	
P21	Sharpness control range	B	B	A	B	ON	1. Input sine wave to TPA. (The frequency is variable.)
							2. Set \#68 amplitude to 20 mVp -p.
							3. Set unicolor to maximum (1111111), SRT-GAIN to minimum (00000), APACON peak frequency to 13.5 M (00), and color detail enhancer (CDE) to center (10).
							4. Set picture mute to OFF (P-MODE: Normal 1, 000), and monitor \#12.
							5. Set picture sharpness to center (1000000). Set input frequency to 100 kHz , and measure the amplitude V_{100}.
							6. Set picture sharpness to maximum (1111111). Set input frequency to $\mathrm{F}_{\mathrm{APOO}}$, measure the amplitude $\mathrm{V}_{\text {MAX00 }}$, and calculate $\mathrm{G}_{\text {MAX }} 00$ using the following equations.
							7. Set picture sharpness to minimum (0000000). Set input frequency to $\mathrm{F}_{\text {APOO }}$, measure the amplitude $\mathrm{V}_{\mathrm{MINOO}}$, and calculate $\mathrm{G}_{\text {MINOO }}$ using the following equations.
							8. Set APACON peak frequency to 9.5 M (01). Set input frequency to $\mathrm{F}_{\text {AP01 }}$, measure $\mathrm{V}_{\text {MAX01 }} / \mathrm{V}_{\text {MIN01 }}$ and calculate $\mathrm{G}_{\mathrm{MAX01}} / \mathrm{G}_{\mathrm{MINO1}}$.
							9. Set APACON peak frequency to $6.4 \mathrm{M}(10)$. Set input frequency to $\mathrm{F}_{\mathrm{AP} 10}$, measure $\mathrm{V}_{\mathrm{MAX} 10} / \mathrm{V}_{\mathrm{MIN10}}$ and calculate $\mathrm{G}_{\mathrm{MAX10}} / \mathrm{G}_{\mathrm{MIN10}}$.
							10. Set APACON peak frequency to 4.5 M (11). Set input frequency to $\mathrm{F}_{\mathrm{AP} 11}$, measure $\mathrm{V}_{\mathrm{MAX} 11} / \mathrm{V}_{\mathrm{MIN11}}$ and calculate $\mathrm{G}_{\mathrm{MAX11}} / \mathrm{G}_{\mathrm{MIN} 11}$.
							$\mathrm{G}_{\text {MAX**** }}=20 \times \log \left(\mathrm{V}_{\text {MAX }} * * * \div \mathrm{V}_{100}\right) \quad[\mathrm{dB]}$
							$\mathrm{G}_{\text {MII } * * *}=20 \times \log \left(\mathrm{V}_{\text {MIN }}\right.$ *** $\left.\div \mathrm{V}_{100}\right) \quad[\mathrm{dB}]$
							Note: When a spectrum analyzer is used, measure gain for low frequency.

Note No.	Characteristics	Test ConditionsSW Mode					Test Method (Test condition: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)
		SW71	SW70	SW68	SW64	SW74	
P22	Sharpness control center characteristic	B	B	A	B	ON	1. Input sine wave to TPA. (The frequency is variable.) 2. Set the amplitude of \#68 to 20 mVp -p. 3. Set unicolor to maximum (1111111), SRT-GAIN to minimum (00000), APACON peak frequency to 13.5 M (00), and color detail enhancer (CDE) to center (10). 4. Set picture mute to OFF (P-MODE: Normal 1, 000), and monitor \#12. 5. Set picture sharpness to center (1000000). Set input frequency to 100 kHz , and measure the amplitude V_{100}. 6. Set picture sharpness to center (1000000). Set input frequency to $\mathrm{F}_{\mathrm{AP} 00}$, measure $\# 12$ amplitude $\mathrm{V}_{\mathrm{CEN} 00}$, and calculate GCENOO using the following equations. 7. Set APACON peak frequency to 9.5 M (01). Set input frequency to $\mathrm{F}_{\mathrm{AP} 01}$, measure $\mathrm{V}_{\mathrm{CEN01}}$ and calculate GCEN01. 8. Set APACON peak frequency to $6.4 \mathrm{M}(10)$. Set input frequency to $\mathrm{F}_{\mathrm{AP} 10}$, measure $\mathrm{V}_{\mathrm{CEN} 10}$ and calculate $G_{\text {CEN10. }}$ 9. Set APACON peak frequency to 4.5 M (11). Set input frequency to $\mathrm{F}_{\mathrm{AP} 11}$, measure $\mathrm{V}_{\mathrm{CEN} 11}$ and calculate GCEN11. $\begin{equation*} \mathrm{G}_{\mathrm{CEN} * * *}=20 \times \log \left(\mathrm{V}_{\mathrm{CEN} * * *} \div \mathrm{V}_{100}\right) \tag{dB} \end{equation*}$ Note: When a spectrum analyzer is used, measure gain for low frequency.

Note No.	Characteristics	Test ConditionsSW Mode					Test Method (Test condition: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)
		SW71	SW70	SW68	SW64	SW74	
P24	VSM gain	B	B	A	B	ON	1. Input sine wave of FVSM frequency to TPA. Set \#68 amplitude to 0.02 Vp -p. 2. Turn on SW77 and change VSM gain from minimum (001) to maximum (111). Measure \#77 amplitude, V_{001}, $\mathrm{V}_{011}, \mathrm{~V}_{100}, \mathrm{~V}_{101}, \mathrm{~V}_{110}$, and V_{111}. Set input amplitude to $0.7 \mathrm{Vp}-\mathrm{p}$, and VSM gain to OFF (000). Measure TP77 amplitude V_{000}. 3. Calculate the following equations. $\begin{array}{lll} \text { Gvo00 }=20 \times \log & \left(\mathrm{V}_{000} / 0.7\right) & {[\mathrm{dB}]} \\ \text { Gv001 }=20 \times \log & \left(\mathrm{V}_{001} / 0.02\right) & {[\mathrm{dB}]} \\ \text { Gv010 }=20 \times \log & \left(\mathrm{V}_{010} / 0.02\right) & {[\mathrm{dB}]} \\ \text { Gv011 }=20 \times \log & \left(\mathrm{V}_{011} / 0.02\right) & {[\mathrm{dB}]} \\ \mathrm{G}_{\mathrm{V} 100}=20 \times \log & \left(\mathrm{V}_{100} / 0.02\right) & {[\mathrm{dB}]} \\ \mathrm{G}_{\mathrm{V} 101}=20 \times \log & \left(\mathrm{V}_{101} / 0.02\right) & {[\mathrm{dB}]} \\ \text { GV110 }=20 \times \log & \left(\mathrm{V}_{110} / 0.02\right) & {[\mathrm{dB}]} \\ \text { GV111 }=20 \times \log & \left(\mathrm{V}_{111} / 0.02\right) & {[\mathrm{dB}]} \end{array}$
P25	VSM limit	B	B	B	A	ON	1. Input sine wave of frequency FVSM to TPA. 2. Set VSM gain to 111, and \#68 amplitude to $0.7 \mathrm{Vp}-\mathrm{p}$. 3. Turn on SW77 and measure TP77 amplitude V_{LU} and $\mathrm{V}_{\mathrm{LD}}[\mathrm{Vp}-\mathrm{p}]$ as shown in the figure below.

Note No.	Characteristics	$\begin{gathered} \hline \text { Test Conditions } \\ \text { SW Mode } \end{gathered}$					Test Method (Test condition: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)
		SW71	SW70	SW68	SW64	SW74	
P27	Y group delay correction	B	B	A	B	ON	1. Input Multi Burst signal (4.2-MHz frequency, $0.1 \mathrm{Vp}-\mathrm{p}$ at \#68) of A signal in TPA. Set unicolor to maximum (1111111), SRT-GAIN to minimum (00000), and Color detail enhancer (CDE) to minimum (00000). 2. Set sharpness to flat (DEC [30]), APACON peak frequency to 4.5 M (11), and monitor \#12. 3. Sine wave signal A input becomes like signal B on \#12 as shown in the figure on the right. Measure S_{A} and S_{B}. 4. When group delay correction is set to minimum (0000), signal A becomes like signal C on \#12. Measure $\mathrm{S}_{\mathrm{AMIN}}$ and $\mathrm{S}_{\mathrm{BMIN}}$. 5. When group delay correction is set to maximum (1111), signal A becomes like signal D on \#12. Measure $\mathrm{S}_{\mathrm{AMAX}}$ and S_{BM} AX. 6. Calculate the following equations. $\mathrm{G}_{\text {AMIN }}=20 \times \log \left(\mathrm{S}_{\mathrm{AMIN}} / \mathrm{S}_{\mathrm{A}}\right)$ [dB] $G_{B M I N}=20 \times \log \left(S_{B M I N} / S_{B}\right)$ [dB] $G_{\text {AMAX }}=20 \times \log \left(S_{\text {AMAX }} / S_{A}\right)$ [dB] $G_{B M A X}=20 \times \log \left(S_{B M A X} / S_{B}\right)$ [dB] Note: Sine wave input starts and ends within the picture period such as a burst signal. The wave is not continuous.

Test Conditions for Color Difference Block 1: YUV input and matrix
Common Test Condition for Color Difference Block 1: YUV input and matrix

1. $\operatorname{SW} 71=B, S W 70=B, S W 44=O N, S W 18$ to $S W 26=A, S W 77=O P E N, S W 74=O P E N$
2. Transfer BUS control data with preset values.
3. Turn ACB operation switching to ACB OFF (0), and turn high blight color OFF (0).
4. Input sync signal [must be sync with input signal for testing except Sweep.] to \#53 (sync input), and set SYNC-IN-SW to 1.

Note No.	Characteristics	Test Conditions				Test Method (Test condition: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)	
		SW Mode					
		SW68	SW67	SW66	SW64		
S01	Color SRT gain	C	A	A	B	1. Set Y mute ON (P-MODE: Y-MUTE, 001), brightness to center (10000000), color to center (1000000), unicolor to maximum (1111111). 2. Input 2T pulse signal to TP67 so that \#67 amplitude is $423 \mathrm{mVp}-\mathrm{p}$. 3. Monitor \#14 output waveform. When color SRT peak frequency is $4.5 \mathrm{MHz}(0)$, measure gradients of color SRT gain for minimum (00), center (10), and maximum (11) that are SB00MIN, SBOOCEN, and SBOOMAX as shown in the figure below. Set SBOOMIN to 0dB, calculate $G_{B 00 C E N}=20 \times 10 g$ (SB00CEN/SB00MIN) and $\mathrm{GS}_{\text {BOOMAX }}=20 \times \log (\mathrm{SBOOMAX} / \mathrm{SSB} 00 \mathrm{MIN})$. 4. When color SRT peak is 5.8 MHz (1), measure gradients of color SRT gain for minimum (00), center (10), and maximum (11). Calculate GSB01CEN and GSB01MAX. 5. Input 2 T pulse signal to TP66 so that \#66 amplitude is $300 \mathrm{mVp}-\mathrm{p}$. 6. Monitor \#12 output waveform. When color SRT peak frequency is $4.5 \mathrm{MHz}(0)$, measure gradients of color SRT gain for minimum (00), center (10), and maximum (11) that are SROOMIN, SROOCEN, and SROOMAX as shown in the figure below. Set SROOMIN to OdB, calculate GSB00CEN $=20 \times \log$ (SBOOCEN/SBOOMIN) and GSB00MAX $=20 \times \log ($ SB00MAX/SSB00MIN). 7. When color SRT peak is 5.8 MHz (1), measure gradients of color SRT gain for minimum (00), center (10), and maximum (11). Calculate GsR01CEN and GsR01MAX.	
		SW63	SW61	SW60	-		
		B	B	B	-		

Note No.	Characteristics	Test Conditions				Test Method (Test condition: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)
		SW Mode				
		SW68	SW67	SW66	SW64	
S02	Dynamic Y/C compensation	C	A	A	B	1. Input $100-\mathrm{kHz}$ sync signal to TP67, and set \#67 amplitude to $0.2 \mathrm{Vp}-\mathrm{p}$. 2. Set Y mute OFF (P-MODE: Normal 1, 000), brightness to center (1000000), color to center (1000000), unicolor to maximum (1111111), and Y/C Gain Comp to minimum (00). Set black stretch point 1 to OFF (000), dark area static $\mathrm{Y} \gamma$ gain to minimum (00), light area static $\mathrm{Y} \gamma$ gain to maximum (11), and SW1 to B. Apply 5.16 V to \#68 from external power supply PS1. 3. Monitor \#14 output waveform, and measure amplitude VBDYO. 4. Set Y/C Gain Comp to maximum (11). Set SW1 to B. Set black stretch point 1 to OFF (000), dark area static $\mathrm{Y} \gamma$ gain to maximum (11), light area static $\mathrm{Y} \gamma$ gain to maximum (00), and monitor \#14 amplitude VBDY1. 5. Set Y/C Gain Comp to maximum (11). Switch SW1 to A, and TPI to GND. Set black stretch point 1 to maximum (111), dark area static $Y \gamma$ gain to minimum (00), bright area static $\mathrm{Y} \gamma$ gain to maximum (11), and monitor \#14 amplitude VBDY2. 6. Calculate the following equations. $\mathrm{GC}_{\mathrm{BDY} 1}=20 \times \log (\mathrm{VBDY} 1 / \mathrm{VBDY} 0), \mathrm{GC}_{\mathrm{BDY} 2}=20 \times \log (\mathrm{VBDY} 2 / \mathrm{VBDY})$ 7. Input $100-\mathrm{kHz}$ sync signal to TP5, and repeat the procedure above. Calculate the following equations. $\mathrm{GC}_{\mathrm{RDY} 1}=20 \times \log (\mathrm{VRDY} 1 / \mathrm{VRDY} 0), \mathrm{GC}_{\mathrm{RDY} 2}=20 \times \log (\mathrm{VRDY} 2 / \mathrm{VBDY} 0)$
		SW63	SW61	SW60	SW74	
		B	B	B	OPEN	

Note No.	Characteristics	Test ConditionsSW Mode				Test Method (Test condition: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)
		SW68	SW67	SW66	SW64	
S03	YUV gain	A/C	A/B	A/B	B	1. Set picture mute to OFF (P-MODE: Normal 1, 000), brightness to maximum (11111111), color to center (1000000), and unicolor to maximum (1111111). 2. Set SW68 to A. Set SW67 and SW66 to B, and input $100-\mathrm{kHz}$ sine wave to TPA. Set \#68 amplitude to 0.2 Vp-p. 3. Set SW74 open. Measure \#74 amplitude VY00 and VY01 when Y/color difference input mode is set to $\mathrm{Y} / \mathrm{Cb} / \mathrm{Cr}(0)$ and $\mathrm{Y} / \mathrm{Pb} / \operatorname{Pr}(1)$. 4. Set SW68 to C, SW67 to A, and SW66 to B. Input $100-\mathrm{kHz}$ sine wave to TP67, and set \#67 amplitude to $0.2 \mathrm{Vp}-\mathrm{p}$. 5. Measure \#14 amplitude VB00 when $\mathrm{Y} /$ color difference input mode is set to $\mathrm{Y} / \mathrm{Cb} / \mathrm{Cr}(0)$. 6. Measure \#14 and \#12 amplitude VBB01 and VBR01 when $\mathrm{Y} /$ color difference input mode is set to $\mathrm{Y} / \mathrm{Pb} / \mathrm{Pr}(1)$. 7. Set SW68 to C, SW67 to B, and SW66 to A. Input $100-\mathrm{kHz}$ sine wave to TP66, and set \#66 amplitude to $0.2 \mathrm{Vp}-\mathrm{p}$. 8. Measure \#12 amplitude VR00 when $\mathrm{Y} /$ color difference input mode is set to $\mathrm{Y} / \mathrm{Cb} / \mathrm{Cr}(0)$. 9. Measure \#14 and \#12 amplitude VRB01 and VRR01 when $\mathrm{Y} /$ color difference input mode is set to $\mathrm{Y} / \mathrm{Pb} / \mathrm{Pr}(1)$. 10. Calculate the following equations. $\begin{aligned} & G_{Y 00}=20 \times \log \quad(V Y 00 / 0.2), G_{Y 01}=20 \times \log \quad(V Y 01 / 0.2) \\ & G_{C B B}=20 \times \log \quad(V B 00 / 0.2), G_{P B B}=20 \times \log \quad(V B B 01 / 0.2), \\ & G_{P B R}=20 \times \log \quad(V B R 01 / 0.2) \\ & G_{C R R}=20 \times \log \quad(V R 00 / 02), G_{P R B}=20 \times \log \quad(V R B 01 / 0.2), \\ & G_{P R R}=20 \times \log \quad(V R R 01 / 0.2) \end{aligned}$
		SW8	SW9	SW10	SW56	
		B	B	B	OPEN	

Note No.	Characteristics	Test Conditions				Test Method (Test condition: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)
			SW	Mode		
		SW68	SW67	SW66	SW64	
S04	Green stretch	C	A	A	-	1. Input signal B as shown in the figure below from TP67 (Cb/Pb1 input), and signal A from TP66 (Cr/Pr input). 2. Set brightness [06] to maximum (FF). 3. Measure amplitudes A, B, C, D, and E at \#13 (Gout) as shown in the figure below. (A00 to E00) 4. Set green stretch [14] data to (08), and repeat the step 3 above. (A01 to E01) 5. Set green stretch [14] data to (10), and repeat the step 3 above. (A10 to E10) 6. Set green stretch [14] data to (18), and repeat the step 3 above. (A11 to E11) 7. Green stretch gain is calculated by the following equations $\begin{array}{lll} \mathrm{GrA01}=\frac{\mathrm{A} 01}{\mathrm{~A} 00} & \mathrm{GrA10}=\frac{\mathrm{A} 10}{\mathrm{~A} 00} & \mathrm{GrA11}=\frac{\mathrm{A} 11}{\mathrm{~A} 00} \\ \mathrm{GrB01}=\frac{\mathrm{B} 01}{\mathrm{~B} 00} & \mathrm{GrB10}=\frac{\mathrm{B} 10}{\mathrm{~B} 00} & \mathrm{GrB} 11=\frac{\mathrm{B} 11}{\mathrm{~B} 00} \\ \mathrm{GrC01}=\frac{\mathrm{C} 01}{\mathrm{C} 00} & \mathrm{GrC10}=\frac{\mathrm{C} 10}{\mathrm{C} 00} & \mathrm{GrC11}=\frac{\mathrm{C} 11}{\mathrm{C} 00} \\ \mathrm{GrD01}=\frac{\mathrm{D} 01}{\mathrm{D} 00} & \mathrm{GrD10}=\frac{\mathrm{D} 10}{\mathrm{D} 00} & \mathrm{GrD} 11=\frac{\mathrm{D} 11}{\mathrm{D} 00} \\ \mathrm{GrE01}=\frac{\mathrm{E} 01}{\mathrm{E} 00} & \mathrm{GrE} 10=\frac{\mathrm{E} 10}{\mathrm{E} 00} & \mathrm{GrE} 11=\frac{\mathrm{E} 11}{\mathrm{E} 00} \end{array}$
		SW26	SW25	SW24	SW21	
		A	A	A	A	
		SW19	SW18	-	-	
		A	A	-	-	

Test Conditions for Color Difference Block 2

Common Test Conditions for Color Difference Block 2

1. $S W 71=B, S W 70=B, S W 61$ to $S W 63=B, S W 44=O N, S W 40=B$
2. Unless otherwise specified, measure each bus data with preset values.
3. Set the following data.

Subaddress (00) Data (02)
Subaddress (02) Data (0C)
Subaddress (05) Data (7F)
Subaddress (06) Data (6C)
Subaddress (07) Data (40)
Subaddress (0B) Data (7F)
Subaddress (0C) Data (84)
Subaddress (12) Data (F 0)
Subaddress (13) Data (F 0)
Subaddress (15) Data (00)
Subaddress (18) Data (00)
Subaddress (1A) Data (C0)
Subaddress (1B) Data (E0)
Subaddress (1C) Data (03)
Subaddress (1D) Data (78)

Note No.	Characteristics	Test Conditions									Test Method
		SW Mode									
		SW68	SW67	SW66	SW26	SW25	SW24	SW21	SW19	SW18	
A01	Color difference contrast adjustment characteristic	C	A or B	A or B	A	A	A	A	A	A	1. Set brightness to maximum, and subaddress (12) data to (FO). 2. Input signal $3\left(f_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.23 \mathrm{Vp}-\mathrm{p}\right)$ from pin 66. 3. Change unicolor data to maximum (7F), center (40), and minimum (00), and measure pin 12 picture period amplitude $\mathrm{V}_{\mathrm{uCYMAX}}, \mathrm{V}_{\mathrm{uCYCNT}}$, and $\mathrm{V}_{\mathrm{uCYMIN}}$ respectively. 4. Determine unicolor amplitude ratio between maximum and minimum in decibels. ($\Delta \mathrm{V}_{\mathrm{u} C} \mathrm{Y}$) 5. Repeat the steps 2 to 4 above with the following pins: Input (picture period amplitude $0.2 \mathrm{Vp}-\mathrm{p}$) from pin 67, and measure pin 14.

Note No.	Characteristics	Test Conditions									Test Method
		SW Mode SW68 SW67 SW66 SW26 SW25									
							SW24	SW21	SW19	SW18	
A02	Color adjustment characteristic	C	$\begin{gathered} \text { A } \\ \text { or } \\ \text { B } \end{gathered}$	A or B	A	A	A	A	A	A	1. Set brightness to maximum, and subaddress (12) data to (FO). 2. Input signal $3\left(\mathrm{f}_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.115 \mathrm{Vp}-\mathrm{p}\right)$ from pin 66 . 3. Change color data to maximum (7F), center (40), and minimum (01), and measure pin 12 picture period amplitudes $\mathrm{V}_{\text {CCYMAX }}$. $\mathrm{V}_{\text {CCYCNT }}$, and $\mathrm{V}_{\text {CCYMIN }}$ respectively. 4. Calculate amplitude ratios of maximum and minimum against color center in decibels. ($\Delta \mathrm{V}_{\mathrm{CC}}$) 5. Repeat the steps 2 to 4 above with the following pins: Input (picture period amplitude $0.1 \mathrm{Vp}-\mathrm{p}$) from pin 67 and measure pin 14.
A03	Color difference halftone characteristic	c	A	A	A	A	A	A	A	A	1. Input signal $3\left(f_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $0.2 \mathrm{Vp}-\mathrm{p}$) from pin 66. 2. Measure pin 12 output picture period amplitude vHTARY. 3. Apply 1.5 V to pin 79 from external power supply. 4. Measure pin 12 output picture period amplitude vHTBRY. 5. Calculate $\mathrm{GH}_{\mathrm{RY}}=\mathrm{vHTBRY} / \mathrm{vHTARY}$ 6. Repeat the steps 1 to 5 above and measure pin 13 . Calculate GHT $_{\mathrm{GY}}=\mathrm{vHTBGY} / \mathrm{vHTAGY}$ 7. Repeat the steps 1 to 5 above and measure pin 67 . Calculate $\mathrm{GH}_{\mathrm{BY}}=$ vHTBBY/vHTABY.

Note No.	Characteristics	Test Conditions									Test Method
		SW68	SW67	SW66	SW26	SW25	SW24	SW21	SW19	SW18	
A04	Color γ characteristic	C	B	A	A	A	A	A	A	A	1. Input signal 2 from pin 66. 2. Increase signal 2 amplitude A . Determine gamma correction point $\mathrm{V} \gamma 1, \mathrm{~V} \gamma 2$, and $\mathrm{V} \gamma 3$ of subaddress data (14). Set subaddress (14) data as follows: $\begin{aligned} & (01)-\gamma \mathrm{OFF} \\ & (03)-\gamma 1 \mathrm{ON} \\ & (05)-\gamma 2 \mathrm{ON} \\ & (07)-\gamma 3 \mathrm{ON} \end{aligned}$ Measure \#12 output signal amplitude levels and chart a characteristic diagram. 3. Determine $\mathrm{V} \gamma$ where γ starts applying and gradient Δ at $\gamma \mathrm{ON}$ when linearity at γ OFF is 1 .

Note No.	Characteristics	Test Conditions									Test Method	
		SW Mode										
		SW68	SW67	SW66	SW26	SW25	SW24	SW21	SW19	SW18		
A05	Color limiter characteristic	C	B	A	A	A	A	A	A	A		Input signal 2 (picture period amplitude $=0.56 \mathrm{Vp}-\mathrm{p}$) from pin 67. Set subaddress (14) to (00)/(01), and measure pin 12 output signal picture period amplitude, $\mathrm{CLT}_{0} / \mathrm{CLT}_{1}$.
A06	High-bright color gain	c	B	A	A	A	A	A	A	A		Input signal 2 (picture period amplitude $=0.28 \mathrm{Vp}-\mathrm{p}$) from pin 67 . Adjust color so that pin 14 output picture period amplitude is $1.2 \mathrm{Vp}-\mathrm{p}$. Set subaddress ($0 B$) data to (80) and measure pin 14 output signal picture period amplitude v_{14}. Calculate the following equation. $\quad \mathrm{HBC}_{1}=\left(1.2-\mathrm{v}_{14}\right) / 1.2$

Test Conditions for Text Block

Common Test Conditions for Text Block

1. $S W 71=B, S W 70=B, S W 60$ to $S W 64=B, S W 44=O N, S W 40=B$
2. Unless otherwise specified, measure each bus data with preset values.
3. Set the following data.

Subaddress (00) Data (02)
Subaddress (02) Data (0C)
Subaddress (05) Data (7F)
Subaddress (06) Data (6C)
Subaddress (07) Data (40)
Subaddress (0B) Data (7F)
Subaddress (0C) Data (84)
Subaddress (12) Data (F0)
Subaddress (13) Data (F0)
Subaddress (15) Data (00)
Subaddress (18) Data (00)
Subaddress (1A) Data (C0)
Subaddress (1B) Data (E0)
Subaddress (1C) Data (03)
Subaddress (1D) Data (78)

Note No.	Characteristics	Test Conditions									Test Method
		SW Mode									
		SW68	SW67	SW66	SW26	SW25	SW24	SW21	SW19	SW18	
T01	AC gain	A	B	B	A	A	A	A	A	A	1. Input signal $1\left(\mathrm{f}_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{Vp}-\mathrm{p}\right)$ from pin 68. 2. Measure pins 12,13 , and 14 picture period amplitude, $\mathrm{V}_{12}, \mathrm{~V}_{13}$, and V_{14}. 3. Calculate $A C$ gain using the following equations. $\mathrm{G}_{\mathrm{R}}=\mathrm{V}_{12} / 0.2 \quad \mathrm{G}_{\mathrm{G}}=\mathrm{V}_{13} / 0.2 \quad \mathrm{G}_{\mathrm{B}}=\mathrm{V}_{14} / 0.2$
T02	Unicolor adjustment characteristic	A	B	B	A	A	A	A	A	A	1. Input signal $1\left(f_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $=0.2 \mathrm{Vp}-\mathrm{p}$) from pin 68. 2. Change unicolor data to maximum (7F), center (40), and minimum (00) and measure pin 12 picture period amplitude, $\mathrm{V}_{\mathrm{uMAX}}, \mathrm{V}_{\mathrm{uCNT}}$, and $\mathrm{V}_{\mathrm{uMIN}}$ respectively. 3. Calculate amplitude ratio of $\mathrm{V}_{\mathrm{uMAX}}$ and $\mathrm{V}_{\mathrm{uMIN}}$ in decibels $\left(\Delta \mathrm{V}_{\mathrm{u}}\right)$
T03	Brightness adjustment characteristic	A	B	B	A	A	A	A	A	A	1. Input signal 2 from pin 68 and adjust pin 12 picture period output amplitude to $1 \mathrm{Vp}-\mathrm{p}$. 2. Change brightness data to maximum (7F), center (80), and minimum (00) and measure pin 12 voltages, $\mathrm{V}_{\mathrm{brMAX}}$, $\mathrm{V}_{\text {brCNT }}$, and $\mathrm{V}_{\text {brMIN }}$ respectively.

Note No.	Characteristics	Test Conditions									Test Method
		SW Mode									
		SW68	SW67	SW66	SW26	SW25	SW24	SW21	SW19	SW18	
T04	White peak slice level	C	B	B	A	A	A	A	A	A	1. Set subcontrast to maximum. 2. Apply external power supply to pin 68 and gradually increase voltage from 5.8 V . 3. When picture period of pin 12 is clipped, measure pin 12 picture period amplitude voltage, $V_{\text {wps } 1}$. 4. Change subaddress (0 C) data to (FC) and repeat the steps 1 to 3 above. ($\mathrm{V}_{\text {wps2 }}$)
T05	Black peak slice level	c	B	B	A	A	A	A	A	A	1. Apply external power supply to pin 68 and gradually decrease voltage from 5.8 V . 2. When picture periods are clipped, measure pins 14,13 , and 12 voltage, $\mathrm{V}_{\mathrm{bps}}$.
T06	$\begin{array}{\|l} \text { RGB output } \\ \text { S/N } \end{array}$	c	B	B	A	A	A	A	A	A	1. Adjust brightness data so that picture period voltage of pin 14 is 2.4 V . 2. Set color data to minimum. 3. Measure noise levels $n 14-$, $n 13-$, and $n 12-V p-p$ in picture period of pin 14,13 , and 12 with an oscilloscope. 4. Calculate S / N. $\begin{aligned} & N_{14}=-20 \times \log [2.3 /(0.2 \times n 14)] \\ & N_{13}=-20 \times \log [2.3 /(0.2 \times n 13)] \\ & N_{12}=-20 \times \log [2.3 /(0.2 \times n 12)] \end{aligned}$
T07	Halftone characteristic	A	B	B	A	A	A	A	A	A	1. Input signal 1 ($\mathrm{f}_{0}=100 \mathrm{kHz}$, picture period amplitude $0.2 \mathrm{Vp}-\mathrm{p}$) from pin 68. 2. Measure pin 14 picture period amplitude v14A. 3. Apply 1.5 V to pin 79 from external power supply. 4. Measure pin 14 picture period amplitude v14B 5. Calculate the following equation. $G_{H T 1}=v 14 B / v 14 A$ 6. Stop applying voltage to pin 79 . Set subaddress (1A) to data (E2) and measure pin 14-picture period amplitude, v14C. 7. Calculate the following equation. $\mathrm{G}_{\mathrm{HT} 2}=\mathrm{v} 414 \mathrm{C} / \mathrm{v} 14 \mathrm{~A}$

Note No.	Characteristics	Test Conditions									Test Method
		SW Mode									
		SW68	SW67	SW66	SW26	SW25	SW24	SW21	SW19	SW18	
T09	Drive adjustment variable range	A	B	B	A	A	A	A	A	A	1. Input signal 1 ($\mathrm{f}_{0}=100 \mathrm{kHz}$, picture period amplitude $0.2 \mathrm{Vp}-\mathrm{p}$) from pin 68. 2. Measure picture period amplitude of pin 13 when subaddress ($O D$) data is changed to maximum (FE), center (80), and minimum (00). 3. Use picture period amplitude at center as the base. Determine amplitude ratio $\mathrm{DR}_{\mathrm{G} 1+}$ and $\mathrm{DR}_{\mathrm{G} 1-}$ at maximum and minimum in decibels. 4. Repeat the steps 1 to 3 above to measure amplitude ratio of pin $14, \mathrm{DR}_{\mathrm{B} 1+}$ and $\mathrm{DR}_{\mathrm{B} 1-}$ in decibels when subaddress (0 E) data is changed. 5. Repeat the steps 1 to 3 above to measure amplitude ratio of pin $13, \mathrm{DR}_{\mathrm{G} 2+}$ and $\mathrm{DR}_{\mathrm{G} 2-}$ in decibels when subaddress (0 E) center data is set to (81) used as the base. 6. Repeat the steps 1 to 3 above to measure picture period amplitude ratio of pin 14 , $\mathrm{DR}_{\mathrm{B} 2+}$ and $D R_{B 2-}$ in decibels when subaddress ($0 E$) data is changed to maximum (FF), center (81), and minimum (01). 7. Repeat the steps 1 to 3 above to measure picture period amplitude ratio of pin 12 , $\mathrm{DR}_{\mathrm{R} 1+}$ and $D_{R 2-}$ in decibels when subaddress ($O D$) data is changed to maximum ($F F$), center (81), and minimum (01). 8. Repeat the steps 1 to 3 above to measure picture period amplitude ratio of pin $14, \mathrm{DR}_{\mathrm{B} 3+}$ and $D R_{B 3-}$ in decibels when subaddress (0 D) data is set to (81), and subaddress (0 E) data is changed. 9. Repeat the steps 1 to 3 above to measure picture period amplitude ratio of pin 13, DR G_{3+} and $D R_{G 3-}$ in decibels when subaddress (0 E) data is set to (81), and subaddress (OD) data is changed to maximum (FF), center (81), and minimum (01). 10. Repeat the steps 1 to 3 above to measure picture period amplitude ratio of pin 12, $\mathrm{DR}_{\mathrm{R} 2+}$ and $D_{R 2-}$ in decibels when subaddress (0 D) data is set to (81), and subaddress (0 E) data is changed to maximum (FF), center (81), and minimum (01).
T10	\#78 input impedance	C	B	B	A	A	A	A	A	A	1. Connect external power supply, an ammeter, and a voltmeter to pin 78. Adjust voltage so that current value is set to zero. 2. Measure the current when voltage of pin 78 is increased by 0.2 V . (lin) 3. Calculate the following equation. $\mathrm{Z}_{\text {in53 }}=0.2 \mathrm{~V} / \mathrm{I}_{\text {in }}(\Omega)$

Note No.	Characteristics	Test Conditions									Test Method
		SW Mode									
		SW68	SW67	SW66	SW26	SW25	SW24	SW21	SW19	SW18	
T11	ACL characteristic	A	B	B	A	A	A	A	A	A	1. Input signal $1\left(f_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $0.2 \mathrm{Vp}-\mathrm{p}$) from pin 68. 2. Measure pin 12 picture period amplitude, vACL1. 3. Apply "DC voltage of pin $78-0.8 \mathrm{~V}$ " to pin 78 from external power supply and measure pin 12-picture period amplitude, vACL2. 4. Apply "DC voltage of pin $78-1.3 \mathrm{~V}$ " to pin 78 from external power supply and measure pin 12-picture period amplitude, vACL3. 5. Calculate the following equations. $\begin{aligned} & \mathrm{ACL}_{1}=-20 \times \log \quad(\mathrm{vACL} 2 / \mathrm{vACL} 1) \\ & A C L_{2}=-20 \times \log (\text { vACL3/vACL1 }) \end{aligned}$
T12	ABL point	c	B	B	A	A	A	A	A	A	1. Measure DC voltage of pin 78, VABL1. 2. Set subaddress (1B) data to (1C). 3. Apply external voltage to pin 78 , and decrease voltage from 6.5 V . When voltage of pin 12 starts changing, measure pin 78 voltage, VABL2. 4. Change subaddress (1B) data to (3C), (5C), (7C), (9C), (BC), (DC), and (FC) under the status of the step 3 above. Measure pin 78 voltage: VABL3, VABL4, VABL5, VABL6, VABL7, VABL8, and VABL9. 5. $A B L_{P 1}=V A B L 2-V A B L 1 \quad A B L P 5=V A B L 6-V A B L 1$ $A B L P 2=V A B L 3-V A B L 1 \quad A B L P 6=V A B L 7-V A B L 1$ $A B L_{P 3}=V A B L 4-V A B L 1 \quad A B L P 7=V A B L 8-V A B L 1$ $A B L_{P 4}=V A B L 5-V A B L 1 \quad A B L P 8=V A B L 9-V A B L 1$

Note No.	Characteristics	Test Conditions									Test Method
		SW Mode									
		SW68	SW67	SW66	SW26	SW25	SW24	SW21	SW19	SW18	
T13	ABL gain	C	B	B	A	A	A	A	A	A	1. Apply $6.5-\mathrm{V}$ external voltage to pin 78. 2. Set subaddress (1B) data to (00). 3. Set brightness data to maximum. 4. Apply $4.5-\mathrm{V}$ external voltage to pin 78. 5. Change subaddress (1B) data to (00), (04), (08), (0C), (10), (14), (18), and (1C). Repeat the step 3 above, and measure VABL11, VABL12, VABL13, VABL14, VABL15, VABL16, VABL17, and VABL18. 6. $\quad \mathrm{ABL}_{\mathrm{G} 1}=\mathrm{VABL} 11-\mathrm{VABL} 10$ $A B L_{G 2}=V A B L 12-V A B L 10$ $A B L G 3=V A B L 13-$ VABL10 $A B L G 4=$ VABL14 - VABL10 $A B L G 5=$ VABL15 - VABL10 $A B L G 6=$ VABL16 - VABL10 $\mathrm{ABLG7}=\mathrm{VABL} 17-\mathrm{VABL} 10$ $\mathrm{ABL} \mathrm{G}_{8}=\mathrm{VABL} 18-\mathrm{VABL} 10$
T14	RGB output mode	C	B	B	A	A	A	A	A	A	1. Adjust brightness data so that picture period voltage of pin 12 is 2.4 V . 2. Set subaddress (1B) data to (01). 3. Measure pins 12,13 , and 14 picture period voltage, $\mathrm{V}_{12 \mathrm{R}}, \mathrm{V}_{13 \mathrm{R}}$, and $\mathrm{V}_{14 \mathrm{R}}$. 4. Set subaddress (1B) data to (02), and repeat the step 3 above. Measure pins 12, 13, and 14 picture period voltage, $\mathrm{V}_{12 \mathrm{G}}, \mathrm{V}_{13 \mathrm{G}}$, and $\mathrm{V}_{14 \mathrm{G}}$. 5. Set subaddress (1B) data to (03), and repeat the step 3 above. Measure pins 12, 13, and 14 picture period voltage, $\mathrm{V}_{12 \mathrm{~B}}, \mathrm{~V}_{13 \mathrm{~B}}$, and $\mathrm{V}_{14 \mathrm{~B}}$.

Note No.	Characteristics	Test Conditions									Test Method
		SW Mode									
		SW68	SW67	SW66	SW26	SW25	SW24	SW21	SW19	SW18	
T16	White-peak blue characteristic	A	B	B	A	A	A	A	A	A	1. Input $0.7-\mathrm{Vp}-\mathrm{p}$ RAMP signal from pin 68. 2. Set subcontrast data to maximum. 3. Set subaddress (1F) data to (04). 4. Set subaddress (1E) data to (01), and monitor pin 14. Determine blue stretch start point $B S_{\text {Pmin }}$ using the figure below. 5. Repeat the step 4 above by changing subaddress (1E) data to (04) and (07). Determine blue stretch start point $\mathrm{BS}_{\text {PCNT }}$ and $\mathrm{BS}_{\text {Pmax }}$. 6. Set subaddress (1E) data to (04). 7. Monitor pin 14 and calculate ratio of blue stretch ON gradient in relative to blue stretch OFF gradient in decibel ($\mathrm{BS} \mathrm{GCNT}^{\prime}$) using the figure below. 8. Repeat the step 7 above by changing subaddress (1 F) data to (00) and (07). Calculate gradient ratio in decibel ($\mathrm{BS}_{\mathrm{Gmin}}$ and $\mathrm{BS}_{\mathrm{Gmax}}$). Note: Calculate white-peak blue start point in IRE as setting positive amplitude at pedestal level of output signal to $2.3 \mathrm{Vp}-\mathrm{p}=100$ IRE.

Note No.	Characteristics	Test Conditions									Test Method
		SW Mode									
		SW68	SW67	SW66	SW26	SW25	SW24	SW21	SW19	SW18	
T18	IK input amplitude	$\begin{aligned} & \text { A } \\ & \text { or } \\ & \text { C } \end{aligned}$	B	B	A	A	A	A	A	A	1. Input signal $1\left(\mathrm{f}_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{Vp}-\mathrm{p}\right)$ from pin 68 . Control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. Set subaddress (02) data to (40). 3. Measure voltage amplitude of pin-8 input signal in ACB insertion period. $1 \mathrm{H}=\mathrm{IK}_{\mathrm{R}} \quad 2 \mathrm{H}=\mathrm{IK}_{\mathrm{G}} \quad 3 \mathrm{H}=\mathrm{IK}_{\mathrm{B}}$
T19	IK input cover range	C	B	B	A	A	A	A	A	A	1. Input signal $1\left(f_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{Vp}-\mathrm{p}\right)$ from pin 68 . Control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. Set subaddress (02) data to (40). 3. Measure pin 8 DC voltage in V•BLK period. (\#8VBLK) 4. Apply the current externally to pin 8 . 5. Measure DC voltage of pin 8 in $V \cdot B L K$ period when pin-12 picture period voltage begins to be decreased. (\#8VBLK +) 6. Apply current outward from pin 8. 7. Measure $D C$ voltage of pin 8 in $V \cdot B L K$ period when pin-12 picture period voltage begins to be increased. (\#8VBLK-) 8. $\mathrm{DIK}_{\mathrm{in}+}=(\# 8 \mathrm{VBLK}+)-(\# 8 \mathrm{VBLK})$ DIK $_{\text {in- }}=(\# 8$ VBLK -$)+(\# 8$ VBLK $)$
T20	Analog RGB gain	A	B	B	$\begin{aligned} & \text { A } \\ & \text { or } \\ & \text { B } \end{aligned}$	$\begin{gathered} \text { A } \\ \text { or } \\ \text { B } \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { or } \\ & \text { B } \end{aligned}$	A	A	A	1. Input signal $1\left(f_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{Vp}-\mathrm{p}\right)$ from pin 68 . Control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. Apply 5-V external voltage to pin 2. 3. Input signal $1\left(f_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{Vp}-\mathrm{p}\right)$ from pin 24. 4. Measure pin 12 picture period amplitude, v12R. 5. Repeat the steps 3 and 4 above with the following pins: Input from pin 25, and measure output from pin 13 (v13G). Input from pin 26, and measure output from pin 14 (v14B). 6 Calculate the following equations. $G T X R=v 12 R / 0.2 \quad G T X G=v 13 G / 0.2 \quad G T X B=v 14 B / 0.2$
T21	Analog RGB white peak slice level	A	B	B	A	A	A	A	A	A	1. Input signal $1\left(\mathrm{f}_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{Vp}-\mathrm{p}\right)$ from pin 68 . Control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. Apply $5-\mathrm{V}$ external voltage to pin 2. 3. Set RGB contrast data to maximum (7F). 4. Input signal 2 to pin 24. Gradually increase picture amplitude, and measure picture period amplitude voltage when output from pin 12 is clipped. 5. Repeat the steps 3 and 4 above with following pins: Input from pin 25 and measure output from pin 13. Input from pin 26 and measure output pin 14.

Note No.	Characteristics	Test Conditions									Test Method
		SW Mode									
		SW68	SW67	SW66	SW26	SW25	SW24	SW21	SW19	SW18	
T22	Analog RGB black peak limit level	A	B	B	A	A	A	A	A	A	1. Input signal $1\left(\mathrm{f}_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{Vp}-\mathrm{p}\right)$ from pin 68 . Control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. Apply $5-\mathrm{V}$ external voltage to pin 2. 3. Set RGB contrast data to maximum (7F). 4. Input signal 2 to pin 24 . Gradually decrease picture amplitude, and measure picture period amplitude voltage when output from pin 12 is clipped. 5. Repeat the step 4 above with the following pins: Input from pin 25 and measure output from pin 13. Input from pin 26 and measure output pin 14.
T23	RGB contrast adjustment characteristic	A	B	B	A or B	A or B	A or B	A	A	A	1. Input signal $1\left(f_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{Vp}-\mathrm{p}\right)$ from pin 68 . Control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. Apply $5-\mathrm{V}$ external voltage to pin 2. 3. Input signal $1\left(f_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{Vp}-\mathrm{p}\right)$ from pin 24. 4. RGB contrast data to maximum (7F), center (40), and minimum (00). Measure pin 12 picture period amplitudes $\mathrm{V}_{\mathrm{u} T X R}$ (maximum, center, and minimum) respectively. 5. Calculate amplitude ratio of maximum and minimum in decibels. 6. Repeat the steps 4 and 5 above with the following pins: Input from pin 25 and measure pin 13. Input from pin 26 and measure pin 14.
T24	Analog RGB brightness adjustment characteristic	A	B	B	A or B	A or B	A or B	A	A	A	1. Input signal $1\left(f_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{Vp}-\mathrm{p}\right)$ from pin 68 . Control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. Input signal 2 from pins 26,25 , and 24. 3. Apply $5-\mathrm{V}$ external voltage to pin 2. 4. Adjust amplitude A of signal 2 so that picture period amplitude of pin 12 is $0.5 \mathrm{Vp}-\mathrm{p}$. 5. Change RGB brightness data to maximum (FE), center (80), and minimum (00). Measure pins 12,13 , and 14 picture period voltage $\mathrm{V}_{\text {brTX }}$ (maximum, center, and minimum) respectively.
T25	Analog RGB mode switching transfer characteristic	C	B	B	A	A	A	A	A	A	1. Set RGB brightness data to maximum (FE). 2. Input signal 4 (signal amplitude $=1.5 \mathrm{Vp}-\mathrm{p}$) from pin 2. 3. Measure input/output transfer characteristics using pin 12 according to the figure T-2. 4. Repeat the steps 2 and 3 above with the following pins: Input from pin 25 and measure pin 13. Input from pin 24 and measure pin 14. 5. Calculate maximum inter-axial rise/fall transfer delay time, using the data measured above.

$\begin{aligned} & \text { Note } \\ & \text { No. } \end{aligned}$	Characteristics	Test Conditions									Test Method
		SW Mode									
		SW68	SW67	SW66	SW26	SW25	SW24	SW21	SW19	SW18	
T26	Text ACL characteristic	A	B	B	A	A	B	A	A	A	1. Input signal $1\left(\mathrm{f}_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{Vp}-\mathrm{p}\right)$ from pin 68 . Control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. Apply $5-\mathrm{V}$ external voltage to pin 2. 3. Input signal $1\left(f_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{Vp}-\mathrm{p}\right)$ from pin 24. 4. Measure pin 12 picture period amplitude, vTXACL1. 5. Apply "pin 78 DC voltage -0.8 V " to pin 78 from external power supply, and measure pin 12-picture period amplitude, vTXACL2. 6. Apply "pin 78 DC voltage -1.3 V " to pin 78 from external power supply, and measure pin 12-picture period amplitude, vTXACL3. 7. TXACL $_{1}=-20 \times \log (v T X A C L 2 / v T X A C L 1)$ TXACL $_{2}=-20 \times \log \quad(v T X A C L 3 / v T X A C L 1)$
T27	$\begin{aligned} & \text { Analog OSD } \\ & \text { gain } \end{aligned}$	A	B	B	A	A	A	$\begin{aligned} & \text { A } \\ & \text { or } \\ & \text { B } \end{aligned}$	$\begin{gathered} \text { A } \\ \text { or } \\ \text { B } \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { or } \\ & \text { B } \end{aligned}$	1. Input signal $1\left(f_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{Vp}-\mathrm{p}\right)$ from pin 68 . Control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. Apply $5-\mathrm{V}$ external voltage to pins 1 and 80. 3. Input signal $1\left(f_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{Vp}-\mathrm{p}\right)$ from pin 18. 4. Measure pin 12 picture period amplitude, v12R. 5. Repeat the steps 3 and 4 above with the following pins: Input from pin 19, and measure pin 13. Input from pin 21 and measure pin 14. (v13G and v14B) 6. Calculate the following equations. GOSDR $=v 12 R / 0.2 \quad G$ GOSDG $=v 13 G / 0.2 \quad G$ OSDB $=v 14 B / 0.2$
T28	Analog OSD input white peak slice level	A	B	B	A	A	A	A	A	A	1. Input signal $1\left(f_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{Vp}-\mathrm{p}\right)$ from pin 68 . Control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. Apply 5 -V external voltage to pins 1 and 80 . 3. Input signal 2 from pin 18. Gradually increase picture amplitude, and measure picture period amplitude voltage when output from pin 12 is clipped. 4. Repeat the step 3 above with the following pins: Input from pin 19, and measure pin 13. Input from pin 21, and measure pin 14.
T29	Analog OSD black peak limit level	A	B	B	A	A	A	A	A	A	1. Input signal $1\left(f_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{Vp}-\mathrm{p}\right)$ from pin 68 . Control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. Apply $5-\mathrm{V}$ external voltage to pins 1 and 80 . 3. Input signal 2 from pin 18. Gradually decrease picture amplitude, and measure picture period amplitude voltage when output from pin 12 is clipped. 4. Repeat the step 3 above with the following pins: Input from pin 19, and measure pin 13. Input from pin 21, and measure pin 14.

Note No.	Characteristics	Test Conditions									Test Method
		SW Mode									
		SW68	SW67	SW66	SW26	SW25	SW24	SW21	SW19	SW18	
T30	OSD contrast adjustment characteristic	A	B	B	A	A	A	A	A	A or B	1. Input signal $1\left(f_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{Vp}-\mathrm{p}\right)$ from pin 68 . Control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. Apply $5-\mathrm{V}$ external voltage to pins 1 and 80 . 3. Input signal $1\left(f_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{Vp}-\mathrm{p}\right)$ from pin 18. 4. Change OSD contrast data to (11), (10), (01), and (00). Measure pin 12 picture period amplitude $\mathrm{V}_{\mathrm{uOSDR}}$ (11), (10), (01), and (00) respectively. 5. Repeat the steps 3 and 4 above with the following pins: Input from pin 19, and measure pin 13 , V uOSDG (11), (10), (01), and (00). Input from pin 21, and measure pin 14, VuOSDB (11), (10), (01), and (00).
T31	Analog OSD brightness adjustment characteristic	c	B	B	A	A	A	A	A	A	1. Input signal $1\left(f_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{Vp}-\mathrm{p}\right)$ from pin 68 . Control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. Apply $5-\mathrm{V}$ external voltage to pins 1 and 80. 3. Change OSD brightness data (subaddress 1D) to (38), (78), (B8), and (F8), and measure picture period voltage of pins 12, 13, and 14 respectively. $\begin{aligned} & \text { Data }(38)=V_{\text {brOSD0 }} \\ & \text { Data }(78)=V_{\text {brOSD1 }} \\ & \text { Data }(\mathrm{B} 8)=\mathrm{V}_{\text {brOSD2 }} \\ & \text { Data }(\mathrm{F} 8)=\mathrm{V}_{\text {brOSD3 }} \end{aligned}$
T32	Analog OSD mode switching transfer characteristic	c	B	B	A	A	A	A	A	A	1. Set OSD brightness data to maximum (11). 2. Input signal 4 (signal amplitude $=4.5 \mathrm{Vp}-\mathrm{p}$) from pin 1 . 3. Measure input/output transfer characteristics using pin 12 according to the figure T-2. 4. Repeat the steps 2 and 3 above, and measure pins 13 and 14. 5. Calculate maximum inter-axial rise/fall transfer delay time, using the data measured above. 6. Repeat the steps 1 to 5 above with the following pin. Input signal 4 (signal amplitude 4.5 $V p-p$) from pin 80.

Note No.	Characteristics	Test Conditions									Test Method
		SW Mode									
		SW68	SW67	SW66	SW26	SW25	SW24	SW21	SW19	SW18	
T34	OSD blending characteristic	$\begin{aligned} & \mathrm{A} \\ & \downarrow \\ & \mathrm{C} \end{aligned}$	B	B	A	A	A	$\begin{aligned} & \mathrm{A} \\ & \downarrow \\ & \mathrm{~B} \end{aligned}$	A\downarrowB	B \downarrow B	1. Input signal $1\left(f_{0}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{Vp}-\mathrm{p}\right)$ from pin 68.
											2. Measure pins 14, 13, and 12 picture period amplitude, v14a, v13a, and v12a.
											3. Apply 5 -V external voltage to pin 80 .
											4. Measure pins 14, 13, and 12 picture period amplitude, v14b, v13b, and v12b.
											5. Calculate v14b amplitude in relation to v14a, v13b amplitude in relation to v13a, and v12b amplitude in relation to v12a in decibel: $\alpha 14$ TV1, $\alpha 13$ TV1, and $\alpha 12$ TV1.
											6. Apply $5-\mathrm{V}$ external voltage to pin 1, and repeat the steps 3 to 5 above: $\alpha 14 \mathrm{TV} 2, \alpha 13 \mathrm{TV} 2$, and $\alpha 12 \mathrm{TV} 2$.
											7. Apply 5 -V external voltage to pins 1 and 80 , and repeat the steps 3 to 5 above: $\alpha 14 \mathrm{TV} 3$, $\alpha 13$ TV3, and $\alpha 12$ TV3.
											8. Set SW68 to C. Set SW21, 19, and 18 to B.
											9. Input signal 1 ($f_{0}=100 \mathrm{kHz}$, picture period amplitude $=0.2 \mathrm{Vp}-\mathrm{p}$) from pins 21,19 , and 18. 10. Apply 5-V external voltage to pins 1 and 80.
											11. Measure pins 14,13 , and 12 picture period amplitude, $\mathrm{v} 14 \mathrm{c}, \mathrm{v} 13 \mathrm{c}$, and v 12 c .
											12. Apply 5 -V external voltage to pin 1.
											13. Measure pins 14, 13, and 12 picture period amplitude, v14d, v13d, and v12d.
											14. Calculate v 14 d amplitude in relation to v 14 c , v 13 d amplitude in relation to v 13 c , and v 12 d amplitude in relation to v12c in decibel: α 14OSD1, $\alpha 130$ SD1, and $\alpha 12$ OSD1.
											15. Apply 5 -V external voltage to pin 80 , and repeat the steps 12 to 14 above: $\alpha 14$ OSD2, $\alpha 130 S D 2$, and $\alpha 120$ SD2.
											16. Apply 5 -V external voltage to pins 1 and 80 , and repeat the steps 12 to 14 above: $\alpha 14$ OSD3, $\alpha 130$ SD3, and $\alpha 120$ SD3.

Note No.	Characteristics	Test Conditions									Test Method
		SW Mode									
		SW68	SW67	SW66	SW26	SW25	SW24	SW21	SW19	SW18	
T35	Blue stretch point/gain	A	B	B	A	A	A	A	A	A	1. Input RAMP signal $0.7 \mathrm{Vp}-\mathrm{p}$ from pin 68. 2. Set subcontrast data to maximum. 3. Set subaddress (15) data to (0 C). 4. Set subaddress (1A) data to (C0), monitor pin 14, and measure blue stretch start point using the figure below ($\mathrm{BLP}_{\text {min }}$). 5. Set subaddress (1 A) data to (CC), and repeat the step 4 above. ($B L P_{\max }$) 6. Set subaddress (1A) data to (C4). 7. Monitor pin 14 and measure gradient at blue stretch ON in decibel in relation to the one at blue stretch OFF according to the figure below. (BLG \max) 8. Set subaddress (15) data to (04), and repeat the step 7 above. (BLGmin) Note: Calculate blue stretch start point in IRE as setting positive amplitude at pedestal level of output signal to $2.3 \mathrm{Vp}-\mathrm{p}=100 \mathrm{IRE}$.

Test Condition for Synchronization Block

Common Test Conditions for Synchronization Block: unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, bus data; preset value, $\mathrm{SW} 68=\mathrm{A}, \mathrm{SW} 53=\mathrm{A}, \mathrm{SW}$ INPUT $=\mathrm{B}$, SW44 = ON, SW41 = OPEN, SW40 = B, SW39a = B, SW39b = OPEN, SW37 = B

Note	Characteristics	Test Conditions
HA01	Sync input horizontal sync phase	1. Input signal A (as shown in the figure below) to TPA. Set subaddress (00) data to 82 H . 2. Monitor \# 53 (Sync input) and \#44 (AFC filter) waveforms. Measure phase difference (SPH).
HA02	HD input horizontal sync phase	1. Set subaddress (00) data to 40 H . 2. Input signal B (as shown in the figure below) to TP50. 3. Monitor \#50 (Sync input) and \#44 (AFC filter) waveforms. Measure phase difference (HDPH).

Note	Characteristics	Test Conditions
HA03	Polarity detection range	1. Set subaddress (00) data to 40 H . 2. Input signal B (as shown in the figure below) to TP50 pin. 3. Decrease signal B duty from 10% (to shorter negative polarity period) and measure signal B duty (HDDUTY1) when \#50 input signal phase no longer locks with that of \#37 (H-OUT). 4. Increase signal B duty from 10\% (to longer negative polarity period) and measure signal B duty (HDDUTY2) when \#39 (FBP input) phase changes in relation to signal B. 5. Further increase signal B duty (to longer negative polarity period) and measure signal B duty (HDDUTY3) when \#50 input signal phase no longer locks with that of \#37 (H-OUT). 6. Decrease signal B duty from 90% (to shorter negative polarity period) and measure signal B duty (HDDUTY4) when \#39 (FBP input) phase changes in relation to signal B.
HA04	Sync input threshold amplitude	1. Set subaddress (00) data to 82 H , and TEST mode to 01 . 2. Connect variable power supply to \#53 via 20-k Ω resistor. 3. Set variable power supply voltage to 0 V , and measure \#53 voltage. (SYNC_TIP_00) Also check that \#34 voltage is set to Low (GND level). 4. Increase variable power supply voltage so that \#34 voltage becomes High (VCC level). Measure \#53 voltage. (SYNC_OFF_00) 5. Calculate the following equation to determine SYNC input separation level at SYNC separation level is $00 . \mathrm{V}_{\text {thS }} 00=($ SYNC_OFF_00 - SYNC_TIP_00 $) / 0.286 \times 100$ 6. Change SYNC separation level to 01, 10, and 11. Calculate following equations to determine VthS01, VthS10, and VthS11. $\begin{aligned} & V_{\text {thS01 }}=(\text { SYNC_OFF_01 }- \text { SYNC_TIP_01 }) / 0.286 \times 100 \\ & V_{\text {thS10 }}=(\text { SYNC_OFF_10 }- \text { SYNC_TIP_10 }) / 0.286 \times 100 \\ & V_{\text {thS11 }}=(\text { SYNC_OFF_11 }- \text { SYNC_TIP_11 }) / 0.286 \times 100 \end{aligned}$ \# 53 \# 34 (SYNC output mode)

Note	Characteristics	Test Conditions
HA05	HD input threshold amplitude	1. Set subaddress (00) data to 40 H . 2. Input signal B (as shown in the figure below) to TP50. 3. Increase signal B amplitude from $0 \mathrm{Vp}-\mathrm{p}$. When \#37 (H-OUT) phase locks with that of signal B, measure signal B amplitude $V_{\text {thHD }}$.
HA06	Horizontal picture phase adjustment variable range	1. Set subaddress (00) data to 40 H . 2. Input signal B (the figure is shown below) to TP50. 3. Change subaddress (01) data from 80 H to 00 H , and measure phase change amount $\Delta \mathrm{H}_{\text {SFT- }}$ of \#39 (H-OUT) waveform. 4. Change slave address (01) data from 80 H to FEH , and measure phase change amount $\Delta \mathrm{H}_{\mathrm{SFT}}$ of \#39 (H-OUT) waveform.

Note	Characteristics	Test Conditions
HA07	Curve correction amount	1. Set subaddress (00) data to 40 H . 2. Input signal B (as shown in the figure below) to TP50. 3. Connect external voltage to \#40 (curve correction), and measure phase change amount $(\Delta \mathrm{H} \# 40)$ of $\# 37$ (H-OUT) output waveform at 1.5 V and 3.5 V .
HA08	Clamp pulse phase, width and level	1. Set subaddress (00) data to 40 H . 2. Input signal B (as shown in the figure below) to TP50. 3. Measure \#47 (SCP output) clamp pulse phase (CPso), width (CPPWo), and output level (CP_{v}) in relation to signal B . 4. Set subaddress (01) data to 81H, and repeat the step 3 above to measure (CPs1), (CPW1), and ($\mathrm{CP}_{\mathrm{V} 1}$). 5. Apply no signal input to TP50. 6. Measure \#47 clamp pulse phase ($\mathrm{CP}_{\mathrm{S} 2}$), width ($\mathrm{CP}_{\mathrm{W}_{2}}$), and output level $\left(\mathrm{CP}_{\mathrm{V}_{2}}\right)$ in relation to \#39. \#39 waveform \#47 waveform

Note	Characteristics	Test Conditions
HA09	Black peak detection pulse phase and level	1. Set subaddress (00) data to 40 H . 2. Set SW70 to C, SW68 to C, and SW39A to OPEN 3. Input signal C (as the figure shown below) to \#39 (FBP input). 4. Measure \#70 (BPH filter) black peak detection pulse phase (HBPs00a and HBP $\mathrm{H}_{\mathrm{SOOb}}$) in relation to signal C . 5. Set HBP-PHS $1 / 2$ to (01), (10), and (11). Measure black peak detection pulse phase.
HA10	FBP input threshold	1. Set subaddress (00) data to 40 H . 2. Input signal B (as shown in the figure below) to TP50. 3. Increase amplitude of FBP signal to be input to \#39 (FBP input) from 0 Vp-p. When \#37 (H-OUT) phase locks with that of signal B, measure \#39 input amplitude $V_{\text {thFBP. }}$.

Note	Characteristics	Test Conditions
HB01	H-OUT pulse duty	1. No signal input. 2. Measure T1 and T2 (as shown in the figure below) from \#37 (H-OUT) output waveform when subaddress (00) data is 80 H and AOH . Calculate duties $\left(\mathrm{TH}_{\mathrm{A}}\right.$ and $\left.\mathrm{TH}_{\mathrm{B}}\right)$ using the following equation: $\mathrm{TH}=\mathrm{T} 1 /(\mathrm{T} 1+\mathrm{T} 2) \times 100 \%$ \#37 waveform
HB02	Horizontal free-run frequency	1. Set SW44 to open. 2. Set subaddress (00) data to 01 H and measure horizontal free-run frequency (F15K) according to \#37 (H-OUT) output waveform. 3. Set subaddress (00) data to $00 \mathrm{H}, 41 \mathrm{H}, 81 \mathrm{H}, \mathrm{COH}$, and C 1 H . Measure horizontal free-run frequency F28K, F31K, F33K, F37K, and F45K as in the step 2 above.
HB03	Horizontal oscillation frequency variable range	1. Set subaddress (00) data to 01 H . 2. Connect $10-\mathrm{k} \Omega$ resistor between $\# 44$ and V_{CC}. Measure horizontal frequency ($\mathrm{F} 15 \mathrm{~K}_{\mathrm{MIN}}$) according to \#37 (H-OUT) output waveform. 3. Connect $68-\mathrm{k} \Omega$ resistor between \#44 and GND. Measure horizontal frequency ($\mathrm{F} 15 \mathrm{~K}_{\mathrm{MAX}}$) according to \#37 (H-OUT) output waveform. 4. Set subaddress (00) data to $00 \mathrm{H}, 41 \mathrm{H}, 81 \mathrm{H}, \mathrm{C} 0 \mathrm{H}$, and C 1 H . Repeat the steps 2 and 3 above F33K ${ }_{\text {MAX }}$, F37K $_{\text {MIN }}$, F37K $_{\text {MAX }}, \mathrm{F}_{3} \mathrm{~K}_{\text {MIN }}$, and F45K ${ }_{\text {MAX }}$.
HB04	Horizontal oscillation control sensitivity	1. Set SW44 to open. 2. Connect external power supply to TP44, and set subaddress (00) data to 01 H . 3. Apply $\mathrm{V}_{44}+0.05 \mathrm{~V}$, and $\mathrm{V}_{44}-0.05 \mathrm{~V}$ to TP44. Measure frequencies FA and FB according to \#37 (H-OUT) output waveform. Calculate frequency change rate (BH 15 K) using the following equation. $\mathrm{BH} 15 \mathrm{~K}=(\mathrm{FB}-\mathrm{FA}) / 0.1$ 4. Set subaddress (00) data to $00 \mathrm{H}, 41 \mathrm{H}, 81 \mathrm{H}, \mathrm{COH}$, and C 1 H . Repeat the step 2 above, and measure frequency change rate $\mathrm{BH} 28 \mathrm{~K}, \mathrm{BH} 31 \mathrm{~K}, \mathrm{BH} 33 \mathrm{~K}, \mathrm{BH} 37 \mathrm{~K}$, and BH 45 K
HB05	H-OUT output voltage	1. Set SW37 to open. 2. Measure voltage at High $\left(\mathrm{V} 37_{\mathrm{H}}\right)$ and Low $\left(\mathrm{V} 37_{\mathrm{L}}\right)$ of \#37 (H-OUT) output waveform.

Note	Characteristics	Test Conditions
V01	VP output pulse width, Vertical free-run (maximum pull-in range)	1. Input signal D (shown in the figure below) to TP50, and signal E (shown in the figure below) to \#39 (FBP input). 2. Measure VP output pulse width (VPw) according to TP35 output waveform. 3. Measure VP pull-in range (VPt0) according to TP35 output waveform. 4. Set subaddress (03) data to $01 \mathrm{H}, 02 \mathrm{H}, 03 \mathrm{H}, 04 \mathrm{H}, 05 \mathrm{H}$, and 06 H . Measure pull-in range VPt1, VPt2, VPt3, VPt4, VPt5, and VPt6 as in the step 3 above. Signal D (TP50 input signal) \#39 input waveform
V02	Vertical minimum pull-in range	1. Repeat the step 1 of Note \#V01. 2. Input signal F (shown in the figure below) to TP52. 3. Increase signal-F cycle from 30 H . Measure the cycle (TVPULL) when phase locks with that of TP35.

Note	Characteristics	Test Conditions
V03	Vertical black peak detection pulse	1. Repeat the step 1 of Note \#V01. Set SW70 to C, and SW68 to C. 2. Input signal F (shown in the figure below) to TP52. 3. Measure phase differences VBPP 0 E and $\mathrm{VBPP}_{0 S}$ according to \#47 output waveform. 4. Set subaddress (03) data to $01 \mathrm{H}, 02 \mathrm{H}, 03 \mathrm{H}, 04 \mathrm{H}, 05 \mathrm{H}$, and 06 H . Measure phase differences VBPP $_{1 \mathrm{E}}$, VBPP $_{1 \mathrm{~s}}$, VBPP $_{2 \mathrm{E}}$, VBPP $_{2 \mathrm{~S}}$, VBPP $_{3 \mathrm{E}}$, VBPP $_{3 \mathrm{~S}}$, VBPP $_{4 \mathrm{E}}$, VBPP $_{4 \mathrm{~S}}$, VBPP $_{5 \mathrm{E}}$, VBPP $_{5 S}$, VBPP $_{6 \mathrm{E}}$, and $\mathrm{VBPP}_{6 \mathrm{~S}}$ as in the step 3 above.
V04	Vertical blanking stop phase	1. Repeat the step 1 of Note \#V01. 2. Input signal F (shown in the figure below) to TP52. 3. Set subaddress (03) data to 00 H and FOH. Measure blanking stop phase VBLK MIN and $V_{B L K}$ MAX according to \#12 output waveform.

(1) Video signal

(2) Input signal 1

(3) Input signal 2

(4) Input signal 3

Figure T-1 Signals for Text/Color Difference Signal 2

Figure T-2 Test Pulses for Text/Color Difference Signal 2

est Circuit

ACB Application Circuit

Package Dimensions

Weight: 1.6 g (typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

