n Document Revision 2.2
Date: 03/2001

pT-110™ Processor Core Datasheet

1 Introduction

The pT-110™ core is a 32-bit RISC processor optimized for designs that demand high performance, minimal chip
area, and low power, such as PDAs, cellular phones, and system-on-chip (SOC) applications. The core is provided
with design files and software tools that enable easy integration into popular chip-design environments. The pT-
110 processor is designed for use with applications that require ARM® (version 4T) instructions.

The pT-110 processor provides a fully programmable cache design with sizes range from 1 Kbyte to 64 Kbytes in
2x increments. Both instruction and data caches are direct-mapped and support locking on a per-entry basis. The
cache line size is 16-bytes, requiring four sequential memory transfers on a cache line fill operation.

The pT-110 cache allows support for up to 8 separate memory regions or ‘pages’. Each region can contain specific
cacheability attributes for the instruction cache, data cache, and write buffer. In addition, multiple levels of access
permissions can be attached to each memory region. Memory prefetching is supported on a per-instruction basis.

In addition to the primary caches, the pT-110 also contains separate instruction and data scratch pad caches that are
programmable between 256 and 2 Kbytes. These caches are used to store time-sensitive code or data segments that
require a guaranteed amount of bandwidth when executing.

2 Features

® 32-bit RISC architecture

® 300 MHz clock rate (0.18 micron process)

® 5-stage pipeline

® Programmable cache sizes from 1 Kbyte to 64
Kbytes

® Direct mapped instruction and data caches

® Instruction and data cache locking on a per-entry
basis

® Data cache writeback/writethrough on a per-entry
basis

® Support for up to 8 separate memory regions
® Memory access protection for each region

® [6-byte fixed line size for both caches

Support for both Supervisor mode and User mode on
cache accesses

4-deep write buffer for data cache writebacks
Memory prefetching on a per-instruction basis
Memory prefetch and lock in one operation
Cache flush on single lines or the entire cache

Cache ‘clean’ mechanism writes all dirty cache lines
to memory in one operation

Burst transfers on cache line fill operations
Built-In Self Test (BIST) for both caches

Instruction and Data Scratch Pad caches
programmable from 256 bytes to 2 Kbytes

picoTurbo, Inc. Confidential

picoTurbo pT-110 Processor Core Datasheet 1

Document Organization

3 Document Organization

This document is organized into the following main sections.

Section Name Description Page
Number

1 Introduction Provides a brief overview and market positioning for the pT-110 page 1
Processor.

2 Features Provides a list of features provided by the pT-110 processor. page 1

3 Document Organization Provides an overview of how this datasheet is organized. page 2

4 Block Diagram Provides a block diagram of the pT-110 processor and an over- page 3
view of each block.

5 Modes of Operation Discusses the six operating modes of the pT-110 processor. page 7

6 Pipeline Describes the 5 stages of the pT-110 processor pipeline. page 10

7 Memory Management Discusses the address regions and programmability of the address page 12
space.

8 Primary Caches Discusses the features and programmability of the primary page 16
instruction and data caches.

9 Scratch Pad Caches Discusses the features and programmability of the instruction and page 22
data scratch pad caches.

10 Register Set Provides a list of General Purpose (GP) registers and CP15 Con- page 26
trol registers.

11 Exception Processing Defines the types of exceptions serviced by the pT-110 processor. page 29

12 Signal Descriptions Lists the external signals of the pT-110 processor along with a page 32
definition of each signal.

13 Bus Interface Unit Describes the types of transactions supported on the external bus. page 35

14 Instruction Set Overview Provides a list of all 32-bit and 16-bit instructions executed by the page 39
pT-110 processor.

picoTurbo pT-110 Processor Core Datasheet

picoTurbo, Inc. Confidential

Block Diagram

4 Block Diagram

Figure 1 shows a block diagram of the pT-110 core. The following subsections describe each block in the diagram.
For more information on the connectivity of the MMU, refer to Figure 6.

pT-110 Bus Interface >
PLL/Clock
MMU Multipl(;:r — Internal Clock ‘ ﬂ] [
i Write <: Data Data
Instruction| | Instruction ; Buffer Cache Scratch Pad
Scratch Pad| Cache
— [) _
16- Bit
Bit N
D r
e ALU
D |¢ —
e |° :> 32-Bit Load/Store Unit
Instruction| c |Mm Register
Fetch [N o |P File
Unit ——/| d r L
PC e |©
ro| S __\| 32-Bit
$ Multiplier
i
0
[n | v

Writeback Bus

Figure 1. pT-110 Block Diagram

4.1 Instruction Fetch Unit

The Instruction Fetch Unit fetches one instruction per clock cycle and contains a 3-deep FIFO for instruction storage
during pipeline stalls. If the pipeline is stalled, instruction fetching continues until the FIFO becomes full, at which
time fetching stops.

The program counter (PC) is used to increment the address values used to access memory. In 32-bit mode, the counter
increments by 4 each time an instruction is fetched. In 16-bit mode, the counter increments by 2 each time an instruc-
tion is fetched. All instruction fetching is performed on the physical address value, eliminating the need for internal
virtual to physical address translation.

4.2 Primary Instruction Cache

The pT-110 primary cache design includes a fully programmable direct-mapped Instruction Cache that ranges
between 1 Kbyte and 64 Kbytes in size. In general, application requirements, available die area, and price/perfor-
mance constraints are some of the factors that determine the size of the cache. As a point of reference, in a 4 Kbyte
instruction / 4 Kbyte data pT-110 cache implementation, the caches effectively double the size of the die.

The pT-110 primary instruction cache contains a fixed line size of 128 bits and incorporates a 32-bit wide data SRAM
and a Tag SRAM. Refer to Section 8, "Caches" for more information.

picoTurbo, Inc. Confidential picoTurbo pT-110 Processor Core Datasheet 3

Block Diagram

4.3 Instruction Scratch Pad Cache

The pT-110 scratch pad cache design includes a programmable direct-mapped Instruction Scratch Pad Cache that
ranges between 256 bytes and 2 Kbytes in size. This cache can be used to store code segments which must execute in
a guaranteed amount of time and which require a guaranteed amount of bandwidth. The cache is typically filled on
power up and cannot be written to by the processor core. The cache is flushed whenever the primary instruction cache
is flushed. This cache can be used to store interrupt service routines (ISR), or any other time-sensitive code segment.
Refer to Section 9, "Scratch Pad Caches" for more information.

4.4 Decoder

The Decoder is used to decode instructions prior to being written to the register file. The instructions are decoded and
the appropriate signals are sent to the core indicating the type of operation to be performed. Note that 32-bit instruc-
tions bypass the Decompression block.

4.5 16-bit Decompression

The 16-bit Decompression block is used when the processor is operating in 16-bit THUMB® mode. Before being
written to the register file, 16-bit instructions are decoded and are decompressed to 32 bits using the Decompression
block.

4.6 32-bit Register File

The 32-bit General Purpose (GP) Register File stores the operands and results of a computation. The pT-110
accesses the GP register file in one of 6 operating modes: User, FIQ, IRQ, Supervisor, Abort, and Undefined Instruc-
tion. The following GP registers are contained in each mode. A complete list of GP registers is shown in Table 16.

® User Mode - In user mode the following registers can be accessed: RO through R14, PC, and the Current Processor
Status Register (CPSR). RO through R14 are temporary storage registers, the PC register contains the program
counter value, and the CPSR contains the current processor status.

® FIQ Mode - FIQ mode shares registers RO through R7 with User mode (and all other operating modes). In addi-
tion, this mode contains a separate set of 7 dedicated registers (R8_ FIQ through R14 FIQ) that can be accessed
only in FIQ mode. R8 FIQ through R12_FIQ are used for to accelerate interrupt processing by providing dedi-
cated registers that help to eliminate push and pop operations during interrupt processing. Register R13_FIQ con-
tains the stack pointer, and register R14_FIQ is the Link register. FIQ mode also contains a dedicated Saved
Processor Status Register (SPSR), called SPSR_FIQ, that contains the saved contents of the processor status reg-
ister.

® [RQ Mode - IRQ mode shares registers RO through R12 with all other operating modes (except FIQ mode where
it shares only registers RO through R7). In addition, this mode contains a separate set of 2 dedicated registers
(R13_IRQ and R14 IRQ) that can be accessed only in IRQ mode. Register R13 IRQ contains the stack pointer,
and register R14 IRQ is the Link register. IRQ mode also contains a dedicated SPSR register, called SPSR_IRQ,
that contains the saved contents of the processor status register.

® Supervisor Mode - Supervisor mode shares registers RO through R12 with all other operating modes (except FIQ
mode where it shares only registers RO through R7). In addition, this mode contains a separate set of 2 dedicated
registers (R13_SVC and R14_SVC) that can be accessed only in Supervisor mode. Register R13_SVC contains
the stack pointer, and register R14 SVC is the Link register. Supervisor mode also contains a dedicated SPSR reg
ister, called SPSR_SVC, that contains the saved contents of the processor status register.

® Abort Mode - Abort mode shares registers R0 through R12 with all other operating modes (except FIQ mode
where it shares only registers RO through R7). In addition, this mode contains a separate set of 2 dedicated regis-
ters (R13_ABORT and R14_ABORT) that can be accessed only in Abort mode. Register R13_ABORT contains
the stack pointer, and register R14 ABORT is the Link register. Abort mode also contains a dedicated SPSR reg-
ister, called SPSR_ABORT, that contains the saved contents of the processor status register.

4 picoTurbo pT-110 Processor Core Datasheet picoTurbo, Inc. Confidential

Block Diagram

® Undefined Instruction Mode - Undefined Instruction mode shares registers R0 through R12 with all other operat-
ing modes (except FIQ mode where it shares only registers RO through R7). In addition, this mode contains a sep-
arate set of 2 dedicated registers (R13_UND and R14_UND) that can be accessed only in Abort mode. Register
R13 _UND contains the stack pointer, and register R14 UND is the Link register. Undefined Instruction mode
also contains a dedicated SPSR register, called SPSR_UND, that contains the saved contents of the processor sta-
tus register.

Refer to Section 10, "Register Set" and Section 5, "Modes of Operation" for more information.

4.7 Shifter

The Shifter performs logical and arithmetic shifting based on the type of instruction being executed. The pT-110
instruction set incorporates certain shift operations into the instructions and hence does not require a separate shift
operation to be performed.

4.8 Arithmetic Logic Unit (ALU)

The Arithmetic Logic Unit accepts two operands and associated control signals, one from the register file and one
from the shifter. The ALU processes all operations except multiply. These include move, load/store, data processing,
and coprocessor operations.

4.9 32-bit Multiplier

The pT-110 processor contains a 32-bit multiplier that performs signed and unsigned multiply and multiply-accumu-
late operations. The multiplier requires two cycles to perform a multiply-accumulate operation. In the first cycle three
operands are provided to the multiplier and the actual multiply operation is performed. In the second cycle the 4th
operand is provided and the accumulate operation is performed. The multiplier requires two operands to perform the
multiply, and another two operands to perform the accumulate.

The pT-110 processor always generates a 64-bit value on a multiply or multiply-accumulate operation. The lower 32-
bits of the result are stored to a GP register whose location is defined in the instruction. The upper 32-bits are stored
to the CP15 RdHi register (CP15-11) using the Move to Coprocessor from Register (MCR) instruction. CP15-11 is
register 11 in the CP15 Control register set. Unlike a multiply long or multiply-accumulate long operation, generating
a 64-bit result on multiply and multiply-accumulate operations allows the upper and lower halves of the 64-bit result
to be written to nonsequential registers.

For a long multiply or multiply-accumulate operation, the 64-bit result is stored to two sequential General Purpose
(GP) registers whose locations are defined in the instruction.

The pT-110 multiplier executes the following operations:

® Multiply: The multiply instruction (MUL) multiplies two signed or unsigned variables to produce a 64-bit result.
The lower 32-bits of the result are stored to a GP register whose location is defined in the instruction. The upper
32-bits are stored to the CP15 RdHi register (CP15-11) using the MCR instruction. This allows the 64-bit result to
be stored to two nonsequential registers. This instruction is only executed if the condition specified in bits 31:28
of the instruction matches the condition code status.

® Multiply-accumulate: The multiply-accumulate instruction (MLA) multiplies two signed or unsigned operands to
produce a 64-bit result, which is added to a third operand and written to the destination register. The lower 32-bits
of the result are stored to a GP register whose location is defined in the instruction. The upper 32-bits are stored to
the CP15 RdHi register (CP15-11) using the MCR instruction. This allows the 64-bit result to be stored to two
nonsequential registers. This instruction is only executed if the condition specified in bits 31:28 of the instruction
matches the condition code status.

picoTurbo, Inc. Confidential picoTurbo pT-110 Processor Core Datasheet 5

Block Diagram

® Signed multiply long: The signed multiply long instruction (SMULL) multiplies two signed variables to produce
a 64-bit result. The result is written to two sequential GP registers defined in the instruction. This instruction is
only executed if the condition specified in bits 31:28 of the instruction matches the condition code status.

® Signed multiply-accumulate long: The signed multiply-accumulate long instruction (SMLAL) multiplies two
signed variables to produce a 64-bit result, which is then added to another 64-bit value stored in two sequential
destination GP registers. This instruction is only executed if the condition specified in bits 31:28 of the instruction
matches the condition code status.

® Unsigned multiply long: The unsigned multiply long instruction (UMULL) multiplies two unsigned variables to
produce a 64-bit result. The result is written to two sequential GP registers defined in the instruction. This instruc-
tion is only executed if the condition specified in bits 31:28 of the instruction matches the condition code status.

® Unsigned multiply-accumulate long: The unsigned multiply-accumulate long instruction (UMLAL) multiplies
two unsigned variables to produce a 64-bit result, which is then added to another 64-bit value stored in two
sequential destination GP registers. This instruction is only executed if the condition specified in bits 31:28 of the
instruction matches the condition code status.

4.10 Data Cache

The pT-110 primary cache design includes a fully programmable direct-mapped data cache that ranges between 1
Kbyte and 64 Kbytes in size. In general, application requirements, available die area, and price/performance con-
straints are some of the factors that determine the size of the cache. As a point of reference, in a 4 Kbyte instruction /
4 Kbyte data pT-110 cache implementation, the caches effectively double the size of the die.

The pT-110 primary data cache contains a fixed line size of 128 bits and incorporates a 32-bit wide data SRAM, a Tag
SRAM, and a 1-bit wide Dirty Bit RAM. Refer to Section 8, "Caches" for more information.

4.11 Data Scratch Pad Cache

The pT-110 scratch pad cache design includes a fully programmable direct-mapped Data Scratch Pad Cache that
ranges between 256 bytes and 2 Kbytes in size. This cache can be used to store any time-sensitive operation where
the data must be fetched and executed in a guaranteed amount of time and which requires a guaranteed amount of
bandwidth. The cache is typically filled on power up and can be written to by the processor core. The cache is flushed
whenever the primary data cache is flushed. Refer to Section 9, "Scratch Pad Caches" for more information.

4.12 Write Buffer

The pT-110 provides a 4-entry write buffer to maximize memory bus bandwidth. This buffer is used by the data cache
to store modified lines to be written out to memory, and by the core to store non-cacheable data that has access to the
write buffer. Entries in the cache that are marked as ‘writeback’ are written to the write buffer instead of directly to
memory. Writethrough pages are written directly to memory and do not use the write buffer.

Refer to Section 8.2, "Write Buffer" for more information.

4.13 Load Store Unit

The pT-110 processor contains a load/store unit that controls the loading and storing of data between the data cache
and the write buffer. During a data cache access, the address is generated by the Load/Store Unit of the core and
driven to the cache.

The address and data paths between the load/store unit and the write buffer are also used for non-cacheable stores that
have access to the buffer.

6 picoTurbo pT-110 Processor Core Datasheet picoTurbo, Inc. Confidential

Modes of Operation

4.14 Memory Management

The Memory Management Unit (MMU) provides an interface between the pT-110 core and the caches. The MMU
accepts only MCR and MRC instructions from the core. Although the pT-110 processor executes the CDP, LDC, and
STC instructions, no coprocessor is implemented that will respond to them. Therefore, execution of these three
instruction results in an Undefined Instruction exception.

The MMU decodes the instruction and manipulates the cache accordingly. This includes updating the contents of the
caches, flushing the caches, and locking certain lines within either cache.

Refer to Section 7, "Memory Management" for more information.

4.15 PLL/Clock Multiplier

The clock multiplier multiplies the input reference clock by a value of 2 to 16. The RCLK input clock to the pT-110
processor is multiplied within the PLL to derive the CPU clock. The input clock can be multiplied by the following
ratios: 2,4, 6, 8, 10, 12, 14, and 16.

Figure 2 shows a block diagram of the clock generator.

PRESET
\
RCLK ——— PLL ‘
= Internal
PF[2:0] ————>| Multiplier » Core Clock
BYPCLK > (PCLK)
BYP

BF[2:0] Divider

Yy

™ -
» BCLK
l/
MCLK

In Figure 2, the RCLK input is multiplied by the ratio determined by the PF[2:0] input pins to produce the internal
PCLK used by the core. A separate clock divider is used to divide the PCLK signal by the ratio determined by the
BF[2:0] pins to produce the clock outputs MCLK and BCLK used to drive the bus.

Figure 2. pT-110 Clock Generator

Because of skew between RCLK and the bus clock outputs, all devices on the system bus must synchronize to ei-
ther MCLK or BCLK when the the PLL is used as the clock source.

Alternatively, the BYP input can be asserted to bypass the PLL. In this case, an external clock BYPCLK is used. If
the PLL is bypassed, the frequency of BYPCLK is used to drive PCLK directly.

S5 Modes of Operation

The pT-110 processor contains seven operating modes controlled by the M[4:0] field in the Current Processor Sta-
tus Register (CPSR), as shown in Table 1.

picoTurbo, Inc. Confidential picoTurbo pT-110 Processor Core Datasheet 7

Modes of Operation

Table 1. Processor Modes

M]4:0] Name Operating Mode Description
10000 User User Application program
10001 FIQ Privileged Fast interrupt request handler
10010 IRQ Privileged Normal interrupt request handler
10011 Supervisor Privileged Operating system
10111 Abort Privileged Memory manager
11011 Undefined Instruction Privileged Emulator for instruction set extensions
11111 User User Device drivers and other tasks

There are two basic types of operating modes as shown in Table 1, User and Privileged.

5.1 User Mode

User mode is where the application program and other user code such as device drivers resides. The processor oper-
ates in this mode during normal operation and only enters one of the privileged modes when an exception or interrupt
occurs. User mode is selected when the M[4:0] field contains a value of 0b10000 or Ob11111.

5.2 Privileged Modes

There are five types of privileged modes in Table 1 above which are defined in the following subsections.

5.2.1 TRQ Mode

IRQ mode is a privileged mode that is entered when an external interrupt is generated on the IRQ pin. IRQ contains a
dedicated Link register (R14 IRQ) that contains the return address, and a Save Processor Status Register
(SPSR_IRQ) that contains the processor state at the time the interrupt was taken. Once the interrupt has been ser-
viced, the contents of R14 IRQ are loaded into the program counter (PC), and the contents of SPSR_IRQ are loaded
into the CPSR, allowing the program to resume execution in the mode specified in SPSR_IRQ.

5.2.2 FIQ Mode

FIQ mode is a privileged mode that allows for faster interrupt processing than IRQ mode by providing five additional
dedicated general purpose registers (R8 FIQ through R12 FIQ) that the interrupt handler can use for temporary stor-
age. FIQ mode is entered when an external interrupt is generated on the FIQ pin. Like IRQ mode, FIQ mode also con-
tains a dedicated Link register (R14_FIQ) that contains the return address, and a Save Processor Status Register
(SPSR_FIQ) that contains the processor state at the time the interrupt was taken. Once the interrupt has been serviced,
the contents of R14 FIQ are loaded into the program counter (PC), and the contents of SPSR_FIQ are loaded into the
CPSR, allowing the program to resume execution in User mode.

5.2.3 Supervisor Mode

Supervisor mode is a privileged mode entered through execution of the Software Interrupt (SWI) instruction. Certain
memory spaces not available in User mode can be accessed while in Supervisor mode. In addition, many core main-
tenance functions are performed in Supervisor mode. Supervisor mode contains a dedicated Link register (R14_SVC)
that contains the return address, and a Save Processor Status Register (SPSR_SVC) that contains the processor state
at the time the interrupt was taken. Once the interrupt has been serviced, the contents of R14 SVC are loaded into the
program counter (PC), and the contents of SPSR_SVC are loaded into the CPSR, allowing the program to resume
execution in User mode.

8 picoTurbo pT-110 Processor Core Datasheet picoTurbo, Inc. Confidential

Modes of Operation

5.2.4 Abort Mode
Abort mode is a privileged mode that is entered when the processor must abort an operation. There are four types of
abort operations.

® External Instruction Abort

® External Data Abort

Internal Instruction Abort

® Internal Data Abort

An external data or instruction abort is initiated when external logic asserts the ABORT pin to the pT-110. An instruc-
tion abort occurs when the processor attempts to fetch instruction from an invalid or restricted address. An instruction
operation is indicated by the processor driving the nOPC pin low. A data abort occurs when the processor attempts to
store or load instructions to or from an invalid or restricted address. A data operation is indicated by the processor
driving the nOPC pin high.

The MMU can also perform an internal instruction or data abort by checking the address generated by the processor
against its own access permissions.

Internal and external abort operations are logically OR’d within the pT-110 core to provide a single internal Abort
signal as shown in Figure 3. The MMU compares the 32-bit address with the access permissions. If the does match
the access permissions provided by the processor, the MMU generates an internal abort. The internal abort signal is
then logically OR’d with the external ABORT pin. If either of these signals is asserted, an abort signal is sent to the
core.

Full Access ———— |

.. IE——
Access permissions No Access Internal abort Internal
from pT-110 core User read-only access ——»{ MMU Abort to
Supervisor access —————» Core

32-bit address —3

External abort

External ABORT pin

Figure 3. Logical OR of Internal and External Abort Signals

Abort mode contains a dedicated Link register (R14 ABORT) that contains the return address, and a Save Processor
Status Register (SPSR_ABORT) that contains the processor state at the time the abort was taken. Once the abort
request has been serviced, the contents of R14 ABORT are loaded into the program counter (PC), and the contents of
SPSR_ABORT are loaded into the CPSR, allowing the program to resume execution in User mode.

5.2.5 Undefined Instruction Mode

Undefined Instruction mode is a privileged mode that is entered under either of the following two conditions:

® When no coprocessor responds to a coprocessor instruction generated by the processor.

® When bits 27:25 of the 32-bit instruction contain a value of 0b011, and bit 3 is Ob1, indicating an access to unde-
fined instruction space.

picoTurbo, Inc. Confidential picoTurbo pT-110 Processor Core Datasheet 9

Pipeline

Undefined Instruction mode contains a dedicated Link register (R14 UND) that contains the return address, and a
Save Processor Status Register (SPSR_UND) that contains the processor state at the time the interrupt was taken.

Once the interrupt has been serviced, the contents of R14 UND are loaded into the program counter (PC), and the
contents of SPSR_UND are loaded into the CPSR, allowing the program to resume execution in User mode.

5.3 Context Switching Between Operating Modes

When switching from Supervisor mode to User mode, cleaning and flushing of the cache is recommended. This is
because certain cache lines in Supervisor mode may not be available in User mode, thereby limiting the total number
of available cache lines in User mode. Flushing the cache invalidates all lines in the cache, regardless of their dirty bit
status.

When flushing the data cache, there may be lines in the cache that should be written out to memory before the flush
operation is performed. In this case the Clean instruction can be executed. There are two ‘clean’ instructions, one of
which locates all dirty lines in the data cache and writes them out to memory (the other Clean instruction writes only
a single line out to memory and would not be used during a context switch). A flush operation can then be performed.

6 Pipeline

The pT-110 core is a high-performance, single-issue RISC architecture that implements a 5-stage pipeline:
® [etch Stage—instruction prefetch.

® Decode Stage—instruction decode and read source registers from multiported register file.

® FExecute Stage—generate memory read address and perform ALU/MAC operation.

® Memory Stage—read data input bus and ALU/MAC result.

® riteback Stage—writeback to register file and load write buffer.

A block diagram of the pipeline is shown in Figure 4.

N

PCLK

Fetch Decode : Execute : Memory :Writeback:

Figure 4. pT-110 Pipeline Block Diagram

6.1 Fetch Stage

During the Fetch stage the Instruction Fetch Unit retrieves the instruction from the Instruction Cache and passes it to
the decoder.

6.2 Decode Stage

In the Decode stage 32-bit instructions are decoded and the appropriate internal signals are driven to indicate the type
of operation to be performed. If the processor is operating in 16-bit mode, a 16-bit instruction is decompressed into a
32-bit instruction during this stage. The result of the operation is written to the register file.

6.3 Execute Stage

In the Execute stage the instruction operands are read from the register file and passed to the ALU or 32-bit multiplier
depending on the type of operation. Most ALU operations require only one PCLK cycle to complete. A multiply

10 picoTurbo pT-110 Processor Core Datasheet picoTurbo, Inc. Confidential

Pipeline

instruction occupies the Execute stage for three PCLK cycles, which stalls the next instruction, as shown in Figure
5. The latency for a multiply is constant, not data-dependent.

pek N NN NN

|
|
I | | | |
Fetch | Decode
I
T
I
T

Execute | Execute

Execute | Memory | Writeback |

MUL Instruction

Next Arithmetic

. Fetch
Instruction

Decode : Decode
T

|
Decode : Execute : Memory :Writeback
T T T

Pipeline Stalled

Figure 5. Pipeline Usage During a Multiply Instruction

In Figure 5, the next instruction stalls in the Decode stage for two clocks because the MUL instruction is using the
Execute stage. Once the multiplication is complete and the MUL instruction propagates to the Memory stage, the
next instruction can move to the Execute stage. This diagram assumes that the next instruction is an arithmetic in-
struction since only one Execute cycle is required.

6.4 Memory Stage

In the Memory stage the data cache is accessed and store data is written to the write buffer in write back mode. The
address and data paths between the Load/Store Unit and the Write Buffer in Figure 6 below are used for non-cache-
able stores that have access to the buffer.

6.5 Writeback Stage

During the Writeback stage data from the load/store unit, the ALU, or the 32-bit multiplier is written back to the reg-
ister file.

6.6 Cycle Timings

Table 2 provides a summary of minimum cycle times for the following operations.

Table 2. pT-110 Cycle Times

Pipeline Operation Number of PCLK Cycles
Multiply 3

Multiply-Accumulate 3
Load After Store 3
1
1
1

Store After Load
Back-to-Back Loads
Back-to-Back Stores

picoTurbo, Inc. Confidential picoTurbo pT-110 Processor Core Datasheet 11

7 Memory Management
The memory management unit (MMU) provides an interface between the pT-110 core and the caches.

The MMU accepts only MRC and MCR instructions from the core. The MMU decodes the instruction and manipu-
lates the cache accordingly. This includes updating the contents of the primary caches, flushing the caches, locking
certain lines within either primary cache, etc. Figure 6 shows a block diagram of how the MMU connects to the other

logic blocks in the pT-110 processor.

External Bus

I

Bus Interface Unit

A
Miss Dat z2 |9
iss Data § g § =
Miss Address > é
o |O
Write %‘ g
Buffer |3

w

>

o

o |» <

2l |3

Y N g y Y
Command/Control Command/Control
Instruction Instr Dat
Scratch Pad Cach;e MMU c a}? Data Scratch
Cache Addr Addr ache Pad Cache
A Abort MRC/MCR A A
Command
Addr Addr
Load/ .
Data Fetc-h pT-110 Core Store Write Data
Unit Unit Read Data

Figure 6. pT-110 MMU Interface Block Diagram

During an instruction cache access, the address is generated by the Fetch Unit of the core and driven to the cache. At
the same time this address is driven to the MMU. The MMU checks access permissions for that address. If the address
is not permitted access by the processor, the MMU asserts the Abort signal to the core, thereby aborting the access. If
the requested address is located in the cache and is accessible (a cache ‘hit’), the instruction cache provides the data to
the core and the cycle completes. If the requested address is not located in the cache (a cache ‘miss’), the ‘miss’
address is driven to the Bus Interface Unit and a memory access is initiated. If the address is not cacheable, then the
MMU signals the cache not to perform a burst read.

During a data cache access, the address is generated by the Load/Store Unit of the core and driven to the cache. At the
same time this address is driven to the MMU as well as the Write Buffer. The MMU checks access permissions for that
address. If the address is not permitted access by the processor, the MMU asserts the Abort signal to the core, thereby
aborting the access. If the requested address is located in the cache and is accessible (a cache ‘hit”), the data cache
provides the data to the core and the cycle completes. If the requested address is not located in the cache (a cache
‘miss’), the ‘miss’ address is driven to the Bus Interface Unit and a memory access is initiated. If the address is not
cacheable, then the MMU signals the cache not to perform a burst read. The address and data paths between the Load/
Store Unit and the Write Buffer are used for non-cacheable stores that have access to the buffer.

12 pT-110™ Processor Core Datasheet picoTurbo Confidential

Memory Management

When a line is modified in the data cache, the address and data for the dirty line are written to the Write Buffer. As
soon as an entry in the buffer becomes valid, the write buffer requests a memory access and sends the address and
data for that entry to the Bus Interface Unit for transfer to memory.

7.1 Memory Regions

The pT-110 provides up to 21 different memory region sizes covering a maximum 4 Gbyte address space. Region
sizes range from 4 Kbyte to 4 Gbyte in 2x increments. Once the region size is selected, all regions are configured to
the same size. The Region Size register controls the size of each memory region. Region sizes between 4 Kbytes and
512 Mbytes support 8 different memory regions. For region sizes less than 512 MBytes, the regions are aliased across
the address space to fill the entire memory. A 1 Gbyte region size supports 4 different memory regions, a 2 Gbyte
region size support 2 different memory regions, and a 4 Gbyte region size supports 1 memory region. Table 3 shows
the encoding of the Region Size register fields and the corresponding memory region sizes.

Table 3. Region Size Field Encoding

Encoding Region Size (bytes)
01011 4K
01100 8K
01101 16K
01110 32K
01111 64K
10000 128K
10001 256K
10010 512K
10011 IM
10100 M
10101 4M
10110 8SM
10111 16M
11000 32M
11001 64M
11010 128M
11011 256M
11100 512M
11101 1G
11110 2G
11111 4G

Figure 7 shows how the memory is divided for the commonly used 256 Mbyte, 512 Mbyte, and 1 Gbyte region sizes.

picoTurbo, Inc. Confidential picoTurbo pT-110 Processor Core Datasheet 13

RSIZE=1G RSIZE = 512M RSIZE =256M

0 0 0 i

Region 0 Reg}on 0

. Region 1

Region 0 Region 2
Region 1]

ceton Region 3

. Region 4

Region 2 Region 5

Region 1 Region 6

Region 3 Region 7

. Region 0

Region 4 Region |

Region 2 Region 2

Region 5 Region 3

. Region 4

Region 6 Region 5

Region 3 Region 6
Region 7 B

4G 4G £ 4G LRegion 7

Figure 7. Region Size Configurations

Figure 7 above shows the number of regions available for three common region sizes. Note that for region sizes of
256 MBytes and smaller, the regions are repeated across the entire address space as shown.

The pT-110 provides three registers for configuring the memory regions and attaching access permission attributes to
each one.

The Region Size register (CP15 - 6) contains two 5-bit fields for programming the region size. One 5-bit field is used
for instruction cache memory, and the other 5-bit field is used for data cache memory. Each of these 5-bit fields stores
one of the values in Table 3 above. Note that the value in each field must be the same. For example, a value of 0x1C
indicates a 512 Mbyte region size. This value must appear in both 5-bit fields of the Region Size register.

The Instruction Space Protection register (CP15 - 4) attaches access permission attributes to each instruction memory
region. These attributes range from “unrestricted access in any mode’ to ‘no access’. Refer to Table 4 for a complete
list of access permissions.

The Data Space Protection register (CP15 - 5) attaches access permission attributes to each data memory region.
These attributes range from “unrestricted access in any mode’ to ‘no access’. Refer to Table 5 for a complete list of
access permissions.

7.2 Memory Region Cacheability

The address regions of the pT-110 processor can be marked as cacheable or noncacheable on a per-page basis. The
Configuration (CP15 - 2) and Cache Control (CP15 - 3) registers are used to select the cacheability attributes for a
particular region. In addition, each cacheable page can be marked as writeback or writethough using the Write Buffer
Control register.

7.3 Setting Address Space Protections

Once the memory address regions have been determined, the address space protections can be set for both instruction
and data accesses. In the instruction and data regions the pT-110 offers a number of different read/write accesses in
Supervisor and User Mode. The pT-110 limits User mode access to any or all memory regions based on the program-
ming of the Instruction Space Protection and Data Space Protection registers.

14 pT-110™ Processor Core Datasheet picoTurbo Confidential

Memory Management

7.3.1 Instruction Space Protection

For instruction spaces, the Instruction Space Protection register (CP15 - 4) contains eight 2-bit encoded values (IPRO
- IPR7) that determine the level of access protection for each memory region. For example, if a region is marked ‘no
access’, the fact that the same region may have been programmed as instruction-cacheable is ignored. The encoding
of each 2-bit field is shown in Table 4 below.

Table 4. IPRx Field Encoding in the Instruction Space Protection Register

Encoding Description
00 No access
01 Read access in any privileged mode (any mode except User mode)
10 Read/write access in any privileged mode, read-only access in User mode
11 Read/write access in any mode

Figure 8 shows how the access to the various memory regions is affected by programming a value if OxF3FE into the
Instruction Space Protection register.

Region Size = 512 Mbyte

Region 0
Region 1
Region 2
Region 3
Region 4
Region 5
Region 6
Region 7

Read/Write Access (S). Read-only Access (U)

Read/Write Access (U/S)

Read/Write Access (U/S)

Read/Write Access (U/S)

Read/Write Access (U/S)

NO Access

Read/Write Access (U/S)

Read/Write Access (U/S)

Instruction Space Protection Register | | | 111 | 110 | 011 | 111 | 111 | 111 | 111 |

U/S = User/Supervisor

A
0

e

IPR7 IPR6 IPR5 IPR4 IPR3 IPR2 PRI IPRO

Figure 8. Setting Instruction Space Protections in Memory

7.3.2 Data Space Protection

For data spaces, the Data Space Protection register (register 5 in CP15) contains eight 2-bit encoded values (DPRO -
DPR?7) that determine the level of access protection for each memory region. These access protections override any
other cacheability attributes. For example, if a region is marked as ‘no access’, the fact that the same region may have
been programmed as data-cacheable is ignored. The encoding of each 2-bit field is shown in Table 5 below.

Table 5. DPRx Field Encoding in the Data Space Protection Register

Encoding Description
00 No access
01 Read access in any privileged mode (any mode except User mode)
10 Read/write access in any privileged mode, read-only access in User mode
11 Read/write access in any mode

picoTurbo, Inc. Confidential

picoTurbo pT-110 Processor Core Datasheet 15

Figure 9 shows how the access to the various memory regions is affected by programming a value of 0x13FE into the
Instruction Space Protection register.

Region Size = 512 Mbyte

Region 0 Read/Write Access (S) - RO Access (U)
Region 1 Read/Wr%te Access (U/S)
. Read/Write Access (U/S)
Region 2 -
Region 3 Read/Wr?te Access (U/S)
Region 4 Read/Write Access (U/S)
Region 5 No Access
Region 6 Read Access - Any Privileged Mode
. No Access
Region 7

Data Space Protection Register 0|0 0|1 0|0 1|1 1|1 1|1 1|1 1|0

U/8 = User/Supervisor DPR7 DPR6 DPR5 DPR4 DPR3 DPR2 DPRI DPRO

Figure 9. Setting Data Space Protections in Memory

8 Caches

The pT-110 cache design includes direct-mapped primary instruction and data caches that range between 1 Kbyte and
64 Kbytes in size. This section is divided into the following subsections.

® Section 8.1, "Primary Cache Organization”
® Section 8.2, "Write Buffer"

® Section 8.3, "Writeback and Writethrough"
® Section 8.4, "Cache Locking"

® Section 8.5, "Cache Cleaning and Flushing"
® Section 8.6, "Built-In Self Test"

For more information on the instruction and data scratch pad caches, refer to Section 9.

8.1 Primary Cache Organization

The picoTurbo pT-110 cache offers a flexible array of cache sizes and configurations. In general, application require-
ments, available die area, and price/performance constraints are some of the factors that determine the size of the
cache. As a point of reference, in a 4 Kbyte instruction / 4 Kbyte data pT-110 cache implementation, the caches effec-
tively double the size of the die. The pT-110 cache contains a fixed line size of 128 bits. Each cache contains a 32-bit
wide data SRAM, and a Tag SRAM. The data cache also contains a 1-bit wide Dirty Bit RAM. Table 6 shows the
configuration options for the pT-110 processor.

16 pT-110™ Processor Core Datasheet picoTurbo Confidential

Memory Management

Table 6. pT-110 Primary Cache Size Options

Cache Tag Tag Total Index Tag Number of | Numberof | Number of
Size Index | Address Tag Width | Width | Tag RAM | DataRAM Dirty Bit
(Kbytes) | Width | Width Width Offset | Offset Entries Entries RAM
(bits) (bits) (bits) Entries

1 6 22 24 9 10 64 256 64

2 7 21 23 10 11 128 512 128

4 8 20 22 11 12 256 1024 256

8 9 19 21 12 13 512 2048 512

16 10 18 20 13 14 1024 4096 1024
32 11 17 19 14 15 2048 8192 2048
64 12 16 18 15 16 4096 16384 4096

The entries in Table 6, from left to right, are defined as follows.

Cache Size: This number represents the size of the instruction or data cache in kilobytes.

Tag Index Width: This number represents the actual number of bits used to index the Tag RAM, not including the
four low-order bits which are always zero. Since each tag RAM entry corresponds to four entries in the data
RAM, the lower four bits of the index are zero. Bits 3:2 are used to select one of four words within a cache line,
while bits 1:0 are used to select one of four bytes within a given word. This field is referred to as the Tug RAM
Index field in Figure 10 below.

Tag Address Width: This number represents the actual number of bits in the tag address and is referred to as the
Tag field in Figure 10 below.

Total Tag Width: Total number of bits in the tag address portion of the tag entry. This value is defined as the Tag
Address Width + a Valid bit + a Lock bit (Tag Address Width + 2).

Index Width Offset: Highest order bit of the Tag Index Width field.

Tag Width Offset: Lowest order bit of the Tag Address Width field.

Number of Tag RAM Entries: Number of tag RAM entries required for each cache size.

Number of Data RAM Entries: Number of data RAM entries required for each cache size. Since each tag RAM
entry corresponds to four data RAM entries, the number of data RAM entries is always four times the number of
tag RAM entries.

Number of Dirty Bit RAM Entries: This number represents the total number of entries in the 1-bit dirty SRAM for
the data cache. Since there is one dirty bit per tag entry, this number is always the same as the number of data
cache tag RAM entries. This value is only relative to the data cache as the instruction cache does not contain a
Dirty Bit RAM.

The cache is indexed using the Tag RAM Index portion of the 32-bit address. Figure 10 shows the address breakdown
for a 4 Kbyte cache implementation.

picoTurbo, Inc. Confidential picoTurbo pT-110 Processor Core Datasheet 17

Index Width Byte Offset

Offset within Word
Tag Width Word Offset
Offset
31 12 11 4 3 0
Tag Data Tag RAM Index 10_0n0_0:
20 8 4

Figure 10. Address for a 4 Kbyte Cache Size

In Figure 10 above, the 8-bit 7Tag RAM Index field is used to index the tag RAM. The data to be copied into the RAM
is stored in the Tag Data field. There is one Valid (V) bit and one Lock (L) bit per tag RAM entry.

In addition to indexing the Tag RAM, bits 11:4 and bits 3:2 are also used to index the data RAM. Since there are four
data RAM entries for each tag RAM entry, bits 3:2 are used to select one of four words that correspond to a given tag
RAM entry. Bits 1:0 are used to select one of four bytes within each 32-bit word.

Figure 11 shows the cache organization in a 4 Kbyte instruction / 4 Kbyte data implementation with 32-bits per data
RAM entry.

Instruction Cache Data Cache
ICache ICache DCache Dirty DCache DCache
Tag RAM Data RAM Bit RAM Tag RAM Data RAM
Line 255 Line 1023 | 32 bits Line 255 Line 255 Line 1023| 32 bits
Line 254 Line 1022| 32 bits Line 254 Line 254 Line 1022| 32 bits
Line 253 Line 1021| 32 bits Line 253 Line 253 Line 1021| 32 bits
Line 252 Line 1020| 32 bits Line 252 Line 252 Line 1020| 32 bits
o o [o ®
[[o [] [
[[[) [J [
Line 3 Line 3| 132 bits Line 3 Line 3 Line 3| 32 bits
Line 2 Line 2| 132 bits Line 2 Line 2 Line 2| 32 bits
Line 1 Line 1| 132 bits Line 1 Line 1 Line 1| 32 bits
Line 0 Line 0| 132 bits Line 0 Line 0 Line 0| 32 bits
1 Instruction Cache 1 Data Cache
Line (128 bits) Line (128 bits)

Figure 11. 4 Kbyte Instruction / 4 Kbyte Data Cache Organization Example

8.2 Write Buffer

The pT-110 provides a 4-entry write buffer to maximize memory bus bandwidth. This buffer is used by the data cache
to store modified lines to be written out to memory, and by the core to store non-cacheable data that has access to the
write buffer. Entries in the cache that are marked as ‘writeback’ are written to the write buffer instead of directly to
memory. Writethrough pages are written directly to memory and do not use the write buffer.

When at least one entry in the write buffer is valid, a memory access is initiated. If all four entries in the write buffer
are valid, the contents are written out to memory on a first-in, first-out basis. However, these four transactions are not
performed atomically. Other memory accesses can occur in between the write operations. For example, there could be

18 pT-110™ Processor Core Datasheet picoTurbo Confidential

Memory Management

two sequential writes from the buffer to memory, followed by a read, then a non-cacheable write, then another write
from the buffer, etc.

8.3 Writeback and Writethrough

Each page in each region can be marked as writeback or writethrough. In order for a page to be marked as
writethrough, that page must be data-cacheable. The W bit in the Configuration register enables the write buffer. In
order for this bit to have meaning, the P bit in the Configuration register must also be set.

8.3.1 Writeback

A page is considered writeback when:

® The W bit in the Configuration register is set.

® The page is data cacheable.

® The corresponding WBR bit in the Write Buffer Control register is set.

In order for a page to be marked as writeback, that page must be data-cacheable. The W bit in the Configuration reg-
ister enables the write buffer. In order for this bit to have meaning, the P bit in the Configuration register must also be
set.

8.3.2 Writethrough

A page is considered writethrough when:

® The W bit in the Configuration register is set.

® The page is data cacheable.

® The corresponding WBR bit in the Write Buffer Control register is clear.

The eight bit WBR field in the Write Buffer Control register determines which regions of memory have access to the
write buffer. Each of the 8 bits in this field corresponds to a given memory region. If a particular bit is set, that regions
is marked as bufferable. If the bit is cleared, that region is marked as writethrough. For example, if bit 2 in the WBR
field is cleared, then memory region 2 is writethrough.

8.4 Cache Locking

The PT-110 cache supports locking for both the primary instruction and data caches on a per-line basis. Each line in
the cache contains a lock bit that is set whenever that line is locked. There are two ways to lock a cache line; read in a
locked line from memory, or lock a line in the cache by setting the lock bit using the appropriate instruction.

Of the nine registers in coprocessor 15, register 7 is used to store the address contained in the Rd field of the instruc-
tion. The Rd field represents general Core registers r0 through r14. To perform a ‘lock’ operation, the core writes one
of the following instructions to CP15 register C7. The MMU decodes this instruction and performs the operation on
the appropriate cache. The pT-110 supports the following instructions for locking the cache. For a definition of each
instruction described in the tables below, refer to Section 10.2, "CP15 Control Registers".

Table 7. pT-110 Cache Locking Instructions

Operation Instruction
Instruction Cache Prefetch and Lock MCR pl15, 0, R4, C7, C7, 1
Data Cache Prefetch and Lock MCR pl5, 0, R4, C7, C1l1, 1
Instruction Cache Unlock MCR pl5, 0, Rd, C7, C8, 0

picoTurbo, Inc. Confidential picoTurbo pT-110 Processor Core Datasheet 19

Table 7. pT-110 Cache Locking Instructions (Continued)

Operation Instruction
Instruction Cache Lock MCR pl5, 0, R4, C7, C8, 1
Data Cache Unlock MCR pl5, 0, R4, C7, C12, 0
Data Cache Lock MCR pl5, 0, Rd, C7, C12, 1

® The ‘Instruction Cache Prefetch and Lock’ operation performs a memory access and locks the contents of that line
in the instruction cache in one operation. The line is fetched from memory and copied into the instruction cache,
then locked. The ‘Data Cache Prefetch and Lock’ performs the same type of operation on the data cache.

® The ‘Instruction Cache Unlock’ operation unlocks a single line in the instruction cache as determined by the index
address.

® The ‘Instruction Cache Lock’ operation locks a single line in the instruction cache as determined by the index
address.

® The ‘Data Cache Unlock’ operation unlocks a single line in the data cache as determined by the index address.

® The ‘Data Cache Lock’ operation locks a single line in the data cache as determined by the index address.

When a line is locked in the instruction cache and is scheduled for replacement with another locked line, it is not
always necessary to unlock the current instruction cache line before copying in the new locked line from memory. In
this case simply executing the ‘Instruction Cache Prefetch and Lock’ instruction causes the original locked line to be
overwritten. However, in the instruction cache, locked lines cannot be replaced with unlocked lines from memory.
For example, the 'Instruction Cache Prefetch'instruction cannot be used to fetch a line in memory and replace a
locked line in the instruction cache. In this case the locked line must first be unlocked using the 'Instruction Cache
Unlock' instruction. Unlocked single lines in the instruction cache can be locked using the ‘Instruction Cache Lock’
instruction.

In the same manner, when a line is locked in the data cache and is scheduled for replacement with another locked line,
it is not necessary to unlock the current cache line before copying in the new locked line from memory. In this case
simply executing the ‘Data Cache Prefetch and Lock’ operation causes the original locked line to be overwritten.

Data cache stores can be done to locked lines without having to first unlock them, but loads from memory performed
using the 'Data Cache Prefetch' operation cannot replace a locked line in the data cache. In this case the locked line
must first be unlocked using the ‘Data Cache Unlock' operation. Unlocked single lines in the data cache can be
locked using the ‘Data Cache Lock’ operation.

8.5 Cache Cleaning and Flushing

The pT-110 provides a cache flush mechanism that invalidates the contents of the cache, and a cache ‘clean’ mecha-
nism for writing dirty lines out to memory. To maximize performance, cache cleaning and flushing should be per-
formed when switching from Supervisor mode to User mode as there may be lines in the cache that are not accessible
in User mode, thereby limiting the total number of cache lines available.

8.5.1 Cache Cleaning

The pT-110 provides a mechanism for writing dirty data cache lines to memory in the primary caches. When per-
forming a context switch it is recommended that the primary instruction and data caches be flushed. However, flush-
ing the data cache invalidates the entries and all data is lost. To preserve the contents of modified lines in the data
cache, the Clean operation is used to write out either a single dirty line to memory, or all dirty lines in sequence. The
pT-110 provides the following instructions for performing a cache Clean operation:

20 pT-110™ Processor Core Datasheet picoTurbo Confidential

Memory Management

Table 8. Cache Clean Instructions

Operation Instruction
Clean Data Cache (all) MCR pl5, 0, R4, C7, Cl0, O
Clean Data Cache (single entry) MCR pl5, 0, Rd, C7, Clo0, 1

To perform a ‘clean’ operation, the core writes one of the above instructions to CP15 register C7. The MMU decodes
this instruction and performs the operation on the data cache.

The ‘Clean Data Cache (single)’ operation writes the contents of a single line in the cache out to memory. The loca-
tions is determined by the index address contained in the Rd field of the instruction.

The ‘Clean Data Cache (all)” operation writes out all dirty lines to memory in sequence. This operation should
always be performed prior to flushing the data cache.

8.5.2 Cache Flushing

The pT-110 provides the following instructions for flushing the cache:

Table 9. pT-110 Cache Flush Instructions

Operation Instruction
Flush Instruction Cache (all) MCR pl5, 0, Rd, C7, C5, 0
Flush Instruction Cache (single entry) MCR pl5, 0, Rd, C7, C5, 1
Flush Data Cache (all) MCR pl5, 0, Rd, C7, C6, 0
Flush Data Cache (single entry) MCR pl5, 0, R4, C7, C6, 1

To perform a ‘flush’ operation, the core writes one of the above instructions to CP15 register C7. The MMU decodes
this instruction and performs the operation on the appropriate cache.

The ‘Flush Instruction Cache (all)’ operation flushes the entire contents of the instruction cache, invalidating all
locked and unlocked lines.

The ‘Flush Instruction Cache (single)’ operation flushes a single line in the cache as determined by the index address
contained in the Rd field of the instruction. Both locked and unlocked lines can be flushed. Is it not necessary to
unlock an instruction cache line prior to performing a flush operation.

The ‘Flush Data Cache (all)’ operation flushes the entire contents of the data cache, invalidating all locked and
unlocked lines regardless of dirty bit status. Note that certain lines dirty lines in the cache may require being written
out to memory prior to performing the flush operation. This is called ‘cleaning the data cache’. When the cache is
‘cleaned’ all cache locations that have their dirty bit set are written out to memory prior to performing the flush.

The ‘Flush Data Cache (single)’ operation flushes a single line in the data cache as determined by the index address.
Both locked and unlocked lines can be flushed. Is it not necessary to unlock a data cache line prior to performing a
flush operation. As with the ‘Flush Data Cache (all)’ operation explained above, if the single line to be flushed has
its dirty bit set, that line may need to be written to memory prior to executing the flush operation.

picoTurbo, Inc. Confidential picoTurbo pT-110 Processor Core Datasheet 21

8.6 Built-In Self Test

The pT-110 processor contains a Built-In Self Test (BIST) mechanism for both the instruction and data caches. The
BIST should be performed whenever the system is powered-up and is typically performed as part of the reset handler.
The pT-110 provides two instructions for performing the BIST on the caches.

Table 10. pT-110 BIST Instructions

Operation Instruction
BIST Instruction Cache MCR pl5, 0, Rd, C7, C13, 0
BIST Data Cache MCR pl15, 0, Rd, C7, C13, 1

The BIST Instruction Cache instruction performs the Built-In Self Test on the instruction cache. This instruction is
performed by executing an MCR instruction along with the instruction parameters shown in Table 10.

The BIST Data Cache instruction performs the Built-In Self Test on the data cache. This instruction is performed by
executing an MCR instruction along with the instruction parameters shown in Table 10.

When the BIST for both caches is complete, the results are obtained by reading the BIST Result register (CP15 - 8).
Only the low-order two bits of this register contain valid information. Bit 0 contains the result of the instruction cache
BIST, while bit 1 contains the result of the data cache BIST. If either of these bits are set, the BIST for the correspond-
ing cache has failed.

9 Scratch Pad Caches

The pT-110 cache design includes direct-mapped instruction and data scratch pad caches that range between 256
bytes and 2 Kbytes in size. These caches can be used to store code or data segments which must execute in a guaran-
teed amount of time and which require a guaranteed amount of bandwidth. The caches are filled on power up. The
scratch pad caches can be configured as follows.

Table 11. Instruction and Data Scratch Pad Cache Configuration Options

Size Base Address Offset Address
256 bytes 24 bits 6 bits
512 bytes 23 bits 7 bits
1 Kbytes 22 bits 8 bits
2 Kbytes 21 bits 9 bits

Each base and offset address in the above table comprises the lower 30 bits of the 32 bit address. The upper two bits
are used for control as shown in Table 12 below. This table applies to both the instrucion and data scratch pad caches.

Table 12. Encoding of Address Bits 31:30

Bit 31 Bit 30 Action
0 0 Cache disabled
0 1 Cache disabled
1 0 Cache enabled, no fill operation
1 1 Cache enabled, fill operation

If bit 31 is zero, the cache is disabled and the state of bit 30 has no meaning. If bits 31 is one and bit 30 is zero, the
cache is enabled but the fill operation does not occur. In order to fill the cache, bits 31:30 must be Ob11.

22 pT-110™ Processor Core Datasheet picoTurbo Confidential

Memory Management

9.1 Instruction and Data Scratch Pad Cache Organization

The pT-110 scratch pad cache design includes a programmable direct-mapped instruction and data scratch pad caches
that range between 256 bytes and 2 Kbytes in size. These caches can be used to store code or data segments which
must execute in a guaranteed amount of time and which require a guaranteed amount of bandwidth.

Table 13 shows the configuration options for the pT-110 processor instruction and data scratch pad caches.

Table 13. pT-110 Scratch Pad Cache Size Options

Cache Size Base Address Offset Address | Number of Tag | Number of Data
(bytes) Width (bits) Width (bits) RAM Entries RAM Entries
256 24 6 1 64
512 23 7 1 128
1024 22 8 1 256
2048 21 9 1 512

The entries in Table 13, from left to right, are defined as follows.

® Cache Size: This number represents the size of the instruction or data cache in bytes.

® Base Address Width: This number represents the actual number of bits used to index the Tag RAM. If the ‘base
address’ portion of the address on the bus matches that stored in the tag RAM, there is a ‘hit’ to the scratch pad
cache, and the offset address is then used to select one of the entries in the data RAM.

® Offset Address Width: Each value within the offset address corresponds to one location in the data RAM. For
example, in a 256 byte scratch pad implementation, the offset address is 6 bits as shown in the above table. These

bits corresponds to one of 64 entries in the cache (26 = 64).

® Number of Tag RAM Entries: Each scratch pad cache contains only one tag RAM entry which corresponds to the
base address where the cache is located.

® Number of Data RAM Entries: Each scratch pad cache contains a data RAM that stores the information. The num-
ber of data RAM entries depends on the size of the cache as shown in the table above.

The cache is indexed using the 32-bit address, which is divided into base and offset addresses. Figure 12 shows the
address breakdown for a 1 Kbyte cache implementation.

31 10 9 2 1 0
Offset Address

Base Address ‘ X X |

Figure 12. Address Format for a 1 Kbyte Scratch Pad Cache Implementaion

Bits 1:0 support byte and halfword accesses to the caches. On a word access, both bits are zero. On a byte access, bits
1:0 can be any combination of ones and zeros in order to access one of the four bytes the 32-bit word entry.

Figure 13 shows the cache organization in a 2 Kbyte instruction / 2 Kbyte data scratch pad cache implementation with
32-bits per data RAM entry.

picoTurbo, Inc. Confidential picoTurbo pT-110 Processor Core Datasheet 23

Instruction Scratch Data Scratch

Pad Cache Pad Cache
I-Scratch D-Scratch
Data RAM Data RAM
Line 511| 32 bits Line 511| 32 bits
Line 510| 32 bits Line 510| 32 bits
Line 509| 32 bits Line 509| 32 bits
Line 508| 32 bits Line 508| 32 bits
o [J
o o
o [J
Line 3| 32 bits Line 3| 32 bits
[-Scratch Line 2| 32 bits D-Scratch Line 2| 32 bits
Tag RAM Line 1| 32 bits Tag RAM Line 1| 32 bits
Line 0 I:I Line 0| 32 bits Line 0 l:l Line 0| 32 bits

Figure 13. 2 Kbyte Instruction / 2 Kbyte Data Scratch Pad Cache Organization Example

9.2 Accessing the Scratch Pad Caches

The instruction and data scratch pad caches are accessed in the same manner. The instruction scratch pad cache is
read-only, while the data scratch pad cache is read/write. There is one tag for each cache, meaning that all entries in
the cache reside at a single base address. All entries are filled at the same time during a fill operation. After the caches
have been filled, the data scatch pad cache can read or write to single lines in the cache. The instruction scratch pad is
read only.

The 32 bit address used to access the cache is embedded in the instruction and contains the offset followed by the
base address. The 32-bit address is transferred into register r0 using the MOV instruction as shown in the following
example:

MOV r0, 0xC0010000

In this instruction the lower 20 bits contains a value of 0x10000, which indicate the base address where the scratch
pad cache resides. This is the value stored in the single-entry tag RAM. The upper 12 bits contain a value of 0xC00.
The ‘C’ represents bits 31:28 of the address and translates to a binary value or O0b1100. The ‘1’ on bits 31:30 indicate
that the cache is enabled and a fill operation is enabled. The instruction and data scratch pad caches can be enabled
and disabled by driving a ‘1’ or a ‘0’ onto bit 31 of the base address where each cache resides. The remaining bits
indicate the particular entry within the scratch cache being accessed.

The following is an example of how the address is moved into r0 using a 2 Kbyte cache implementation. The E indi-
cates the enable bit, and the F indicates the Fill bit.

31 30 29 21 20 0
| E ‘ F | Offset Address Base Address

Figure 14. Instruction Format for 2 Kbyte Cache Implementaion

Once the above address is moved into 10, the address format is translated by hardware and driven onto the address bus
in the format shown below:

31 11 10 2 10
Base Address Offset Address ‘ X X |

Figure 15. Physical Address Format for 2 Kbyte Cache Implementaion

24 pT-110™ Processor Core Datasheet picoTurbo Confidential

Memory Management

In Figure 15 above, bits 1:0 are driven based on the size of the transfer. For example, on a byte write bits 1:0 would
contain a value between 00 and 11 to indicate which of the four bytes of the 32-bit wide cache entry is being written.
For word writes, both bits must be zero.

In Figure 15 the offset address is 9 bits wide for a 2 Kbyte cache implementation. Since each cache entry is 32-bits
wide, this means that 512 cache entries are present as shown in Table 11.

The MRC and MCR instructions are used in conjunction with the MOV instruction to access the scratch pad caches.
The MOV instruction moves the target address value into register r0. The MCR instruction is used to move the value
in 10 into CP15 register 9 or 10, depending on whether the target is the instruction scratch pad of the data scratch pad,
respectively.

The following instruction is used to write the value in r0 to CP15-9 and enable the instruction scratch pad RAM.

MCR pl15, 0, x0, c9, c0, O

The following instruction is used to write the value in r0 to CP15-10 and enable the data scratch pad RAM.

MCR pl15, 0, x0, cl10, cO, O

Under certain conditions it may be necessary to read the address stored in the corresponding CP15 register in order to
perform a compare operation with the current address. The following two instructions are used to read the CP15-9
instruction scratch pad and CP15-10 data scratch pad registers.

MRC pl5, 0, r0, c¢9, c0, 1 #read base address of instruction scratch RAM
MRC pl5, 0, r0, cl0, cO0, 1 #read base address of data scratch RAM

9.3 Data Scratch Pad Cache Write Protocol

The data scratch pad cache is a read/write cache that is filled on power-up. After the cache has been filled, read and
write operation can be performed on single entries in the scratch pad cache. The data scratch pad cache conforms to
the following write protocols as shown in Table 14.

Table 14. Cache and Memory Update Protocol

Data Scratch Pad Data Cache Action
Hit Miss Update data scratch pad and also write through data
to memory.
Miss Hit Update data cache. Do not writethrough to memory.
Hit Hit Update data scratch pad and data cache.
Miss Miss Write data to memory.

Two internal signals, ‘write_half” and ‘write_byte’, are used along with the lower 2 bits of address to determine the
size and location of the write operation. The pT-110 supports byte, halfword, and word writes as shown in Table 15
below.

Table 15. Determining Write Operation Size

write_half write_byte Address 1:0 Write Size
0 0 00 32 bit word write
0 1 00, 01, 10, or 11 8 bit byte write
1 0 00 or 10 16 bit halfword write
1 1 Invalid. Should never occur.

picoTurbo, Inc. Confidential

picoTurbo pT-110 Processor Core Datasheet

25

9.4 Flushing the Scratch Pad Caches

The scratch pad caches are flushed whenever the corresponding cache is flushed. The scratch pad caches do not sup-
port ‘clean’ operations, meaning that modified lines can not be written to memory.

There are 3 ways to flush the instruction and data scratch pad caches.

1. Asserting Reset: By default, a reset operation flushes and disables the caches. The appropriate MCR command is
used to enable the caches.

2. Cache Flush - All: Execution of the Instruction Cache Flush All instruction causes both the primary instruction

cache and the instruction scratch pad cache to be flushed. In the primary instruction cache this means that all valid
bits are reset. Since the scratch pad cache does not have valid bits, the hardware automatically disables the instruc-
tion scratch pad whenever the Instruction Cache Flush All instruction is executed.
The same basic protocol also applies to the data scratch pad cache. Execution of the Data Cache Flush All instruc-
tion causes both the primary data cache and the data scratch pad cache to be flushed. In the primary data cache this
means that all valid bits are reset. Since the scratch pad cache does not have valid bits, the hardware automatically
disables the data scratch pad whenever the Data Cache Flush All instruction is executed.

3. Cache Flush - Single Entry: In the primary instruction cache, execution of the Instruction Cache Flush Single
instruction causes a single line in the primary instruction cache to be flushed by resetting its valid bit. When this
instruction is executed, hardware compares the base address in the instruction to the base address where the
instruction scratch pad cache is located. If the compare is valid, the scratch pad is flushed.

The same applies to the data scratch pad. execution of the Data Cache Flush Single instruction causes a single line
in the primary data cache to be flushed by resetting its valid bit. When this instruction is executed, hardware com-
pares the base address in the instruction to the base address where the data scratch pad cache is located. If the
compare is valid, the scratch pad is flushed.

10 Register Set

The pT-110 register set consists of both General Purpose (GP) registers and CP15 Control registers. General Purpose
registers are used to store the operands and results of a computation. A 4-bit value contained in each operand of an
instruction indicates which one of the 16 General Purpose registers the information is stored to or read from.

In addition to the GP registers, the pT-110 contains 16 Control registers, called Coprocessor 15 (CP15). These regis-
ters are accessed using the MRC and MCR instructions. Distinct fields within these instructions indicate which CP15
register is used as the destination of the operation.

10.1 General Purpose Registers

The pT-110 contains 30 general purpose registers, 6 status registers, and a program counter (PC). The general pur-
pose registers can be accessed in any operating mode. However, only certain registers are available in certain
modes. Table 16 shows a diagram of the general purpose register set.

Table 16. pT-110 General Purpose Register File

User FIQ IRQ Supervisor Abort Undefined

Instruction
RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
RS RS RS RS RS RS

26 pT-110™ Processor Core Datasheet picoTurbo Confidential

Memory Management

Table 16. pT-110 General Purpose Register File

User FIQ IRQ Supervisor Abort Undefined
Instruction
R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7
RS R8 FIQ RS RS RS RS
R9 R9 FIQ R9 R9 R9 R9
R10 R10_FIQ R10 R10 R10 R10
R11 R11 FIQ R11 R11 R11 R11
R12 R12_FIQ R12 R12 RI12 R12
R13 R13 FIQ R13 1IRQ R13 SVC R13 ABORT R13 UND
R14 R14_FIQ R14_IRQ R14 _SVC R14_ABORT R14_UND
PC
CSPR
SPSR FIQ SPSR IRQ SPSR SVC SPSR_ABORT SPSR_UND

In Table 16, the non-shaded areas indicate registers that are accessible in any mode. These registers are shared by
all modes. For example, there is only one register R1 that is shared by all modes. Shaded areas indicate registers
which are only available in that mode. For example, FIQ mode has access to common registers RO - R7. In addi-
tion, this mode contains 7 dedicated registers (R8 FIQ - R14 FIQ) that are only available in FIQ mode, as well as

a dedicated SPSR_FIQ register.

IRQ mode has access to common registers RO - R12. In addition, this mode contains 2 dedicated registers
(R13_IRQ - R14 IRQ) that are only available in IRQ mode, as well as a dedicated SPSR_IRQ register.

10.1.1 Link Register

In Table 16 above, each mode also has its own general-purpose register R14. This register has a dedicated function
as the Link register. On interrupts and exceptions, the corresponding R14 register is loaded with a return address.
The treatment of the return address varies with the type of interrupt or exception, as shown in Table 17.

Table 17. Return Address Loaded in the Link Register

(16-bit instruction set)

Event Type Return Address Return Instruction
FIQ Address of next instruction + 4 SUBS PC, R14, #4
IRQ Address of next instruction + 4 SUBS PC, R14, #4
Software Interrupt Address of SWI instruction + 4 MOVS PC, R14
(32-bit instruction set)
Software Interrupt Address of SWI instruction + 2 MOVS PC, R14

Instruction Abort

Address of aborted instruction + 4

SUBS PC, R14, #4

(16-bit instruction set)

Data Abort Address of aborted instruction + 8 SUBS PC, R14, #8
Undefined Instruction Address of undefined instruction + 4 MOVS PC, R14
(32-bit instruction set)

Undefined Instruction Address of undefined instruction + 2 MOVS PC, R14

picoTurbo, Inc. Confidential

picoTurbo pT-110 Processor Core Datasheet

27

Table 17 also shows the instruction executed to return from the handler for each type of event. For FIQ and IRQ in-
terrupts, the handler returns to the instruction following the last instruction that was executed before the handler
was called. For software interrupts (SWI instruction) and undefined instructions, the handler returns to the instruc-
tion following the instruction which raised the exception. For instruction and data aborts, the handler returns to the
instruction which raised the exception, which is re-executed after the aborting condition has been removed.

10.1.2 Program Counter

Register R15 is the program counter (PC). While executing the 32-bit instruction set, bits 1:0 of this register read
as zero and are unaffected by writes. While executing the 16-bit subset, bit 0 reads as 0 and is unaffected by writes.

10.1.3 CPSR and SPSR

The Saved Processor Status Register (SPSR) is loaded with the contents of the Current Processor Status Register
(CPSR) when an interrupt or exception handler is called. Every mode except User mode has its own dedicated
SPSR.

The data processing instruction encoding contains a bit that usually controls whether the condition codes are writ-
ten. However, when the destination register is the PC, this bit controls whether the CPSR is simultaneously loaded
from the SPSR. The format of the CPSR and SPSR is shown in Figure 16.

31 30 29 28 27 8 7 6 5 4 0

|N‘Z|C‘V| unused |I|F‘T‘ M[4:0]

Figure 16. CPSR/SPSR Format

The upper four bits of the CPSR and SPSR registers contain the condition codes:
® N—Sign of the result (i.e. bit 31).
® 7—Set on zero result, clear on non-zero result.

® (—Set on carry, otherwise clear. In the case of move and logical instructions, carry comes from the calculation of
the second source operand.

® | Set on overflow, otherwise clear. Unaffected by move or logical instructions.

The lower eight bits hold various mode control bits:

® [—Set when IRQ interrupts are disabled, otherwise clear.

® [—Set when FIQ interrupts are disabled, otherwise clear.

® T—Set when executing the 16-bit instruction set, clear when executing the 32-bit instruction set.
® M/4:0]—Processor mode. Refer to Table 1 for the encoding of this field.

Attempts to modify the mode control bits from User mode are ignored. The unused bits read as zero, and must only
be written with values that preserve their state. Future implementations may define uses for these bits, so software
that forces them to a particular state might create compatibility problems.

10.2 CP15 Control Registers

In the pT-110 processor, the CP15 Control register set consists of 16 registers accessed with the MCR and MRC
coprocessor register transfer instructions. CP15 is the only coprocessor supported by the pT-110 processor. Accesses
to all other coprocessors result in an exception.

28 pT-110™ Processor Core Datasheet picoTurbo Confidential

Memory Management

The CP15 registers are summarized in Table 18.

Table 18. CP15 Register Map

Number Name Description
0 ID Code Code to identify the processor type and revision level.
1 Configuration Control bits to enable/disable caches, protection, and write buffers. Also con-
trols endianness.
2 Cache Control Control bits to enable/disable cacheability of eight regions of the address space.
Write Buffer Control Control bits to enable/disable write buffering for eight regions of the address
space.
4 Instruction Space Protection | Protection bits for instruction access to eight regions of the address space.
5 Data Space Protection Protection bits for data access to eight regions of the address space.
6 Region Size Selects the granularity of control over eight regions of the address space, in
power of 2 increments.
7 Data Cache Address Stores the address provided by the Rd field of the instruction.
BIST Result Indicates the result of the most recent BIST operation.
9 Instruction Scratch Pad Indicates the address used to access the instruction scratch pad RAM.
10 Data Scratch Pad Indicates the address used to access the data scratch pad RAM.
11 RdHi Stores the upper 32 bits of the 64-bit result from a multiply or multiply-accumu-
late operation.
12-15 Reserved Reserved.

11 Exception Processing

The pT-110 processor core supports seven exceptions types. Each exception is identified with a particular privileged
operating mode. When an exception is generated by either an external or internal source, the contents of the CPSR are
moved to the corresponding SPSR.

For example, if the external FIQ pin is asserted, indicating a request for fast interrupt servicing, the contents of the
CPSR are moved to SPSR_FIQ. The corresponding Link register (R14 FIQ) contains the return address that is
moved into the PC once the exception has been processed. These values are shown in Table 17. Once the exception
has been serviced, the contents of R14_FIQ are moved into the PC, and the contents of SPSR_FIQ are moved into the

CPSR and the program resumes execution.

When an exception is taken, the processor vectors to one of the addresses shown in Table 19.

Table 19. pT-110 Exception Types

Exception Mode Vector Address
Reset SvC 0x00000000
Undefined Instruction UND 0x00000004
Software Interrupt (SWI) SvVC 0x00000008
Prefetch Abort (instruction fetch) ABORT 0x0000000C
Data Abort (data fetch) ABORT 0x00000010
Reserved Reserved 0x00000014
Interrupt IRQ 0x00000018
Fast Interrupt FIQ 0x0000001C
picoTurbo, Inc. Confidential picoTurbo pT-110 Processor Core Datasheet 29

11.1 Reset Exception

The Reset exception is taken whenever the processor’s reset pin is asserted. In this case the processor immediately
stops instruction execution and vectors to address 0x00000000. This exception is handled in Supervisor mode.

When the nRESET signal is deasserted, the processor defaults to Supervisor mode and begins execution at address
0x00000000 with all interrupts disabled.

11.2 Undefined Instruction Exception

The Undefined Instruction exception is taken under the following conditions:

® Whenever the processor executes a coprocessor instruction and no coprocessor responds.

® Whenever an attempt is made to execute an instruction that is undefined. Undefined instructions occur when bits
27:25 of the instruction contain a value of 0b011, and bit 4 contains a value of Ob1.

In either case the processor allows the instruction currently in the W stage to complete. The address corresponding to
the instruction in the M state at the time of this exception is copied to the corresponding Link register (R14 _UND)
and the processor vectors to address 0x00000004. This exception is handled in Undefined Instruction mode. Once the
exception has been serviced, the contents of R14 UND are copied to the program counter (PC) and the processor
begins execution at the instruction previously in the M stage when the exception was taken.

When the Undefined Instruction exception is taken, the contents of the PC are copied to R14 UND and the contents
of the CPSR are copied to SPSR_UND. Once the exception has been serviced, the contents of R14 UND are incre-
mented by 4 (in 32-bit mode) and copied to the PC. The contents of SPSR_UND are copied back to the CPSR and
execution resumes.

11.3 Software Interrupt Exception

Execution of the SWI instruction causes the processor to enter Supervisor mode to perform a particular operating sys-
tem function. The processor allows the instruction currently in the W stage to complete and then vectors to address
0x00000008.

When the Software Interrupt exception is taken, the contents of the PC are copied to R14 SVC and the contents of
the CPSR are copied to SPSR_SVC. Once the exception has been serviced, the contents of R14 SVC are incre-
mented by 4 (in 32-bit mode) and copied to the PC. The contents of SPSR_SVC are copied back to the CPSR and
execution resumes.

11.4 Prefetch Abort Exception

A Prefetch Abort exception is taken whenever the processor attempts to execute an invalid instruction. The processor
allows the instruction currently in the W stage to complete and then vectors to address 0x0000000C.

The memory system can signal an abort to the processor on any instruction fetch to memory. In doing so, the fetched
instruction is marked as invalid. If the processor attempts to execute this invalid instruction, a Prefetch Abort excep-
tion occurs. Note that if the fetched instruction is not executed due to a branch being taken or an unconditional jump,
no Prefetch Abort exception is taken.

When the Prefetch Abort exception is taken, the contents of the PC are copied to R14 ABORT and the contents of the
CPSR are copied to SPSR_ABORT. Once the exception has been serviced, the contents of R14 ABORT are incre-
mented by 4 (in 32-bit mode) and copied to the PC. The contents of SPSR_ABORT are copied back to the CPSR and
execution resumes.

30 pT-110™ Processor Core Datasheet picoTurbo Confidential

Memory Management

11.5 Data Abort Exception

A Data Abort exception is taken whenever the processor attempts to execute invalid data. The processor allows the
instruction currently in the W stage to complete and then vectors to address 0x00000010.

The memory system can signal an abort to the processor on any data fetch from memory. In doing so, the fetched data
(load or store) is marked as invalid. If this occurs the exception is taken before any subsequent instruction are exe-
cuted.

When the Data Abort exception is taken, the contents of the PC are copied to R14 ABORT and the contents of the
CPSR are copied to SPSR_ABORT. Once the exception has been serviced, the contents of R14 ABORT are incre-
mented by 8 (in 32-bit mode) and copied to the PC. The contents of SPSR_ABORT are copied back to the CPSR and
execution resumes.

11.6 Interrupt Exception

The Interrupt exception is taken in response to external logic asserting the IRQ input pin whenever bit 7 of the CPSR
is cleared to 0b0. When this bit is set to Ob1, normal interrupts are disabled and the state of the IRQ pin is ignored.
Note bit 7 can only be modified in one of the privileged modes. User mode cannot modify the state of this bit. When
this exception is taken the processor allows the instruction currently in the W stage to complete and then vectors to
address 0x00000018.

When an Interrupt exception is taken, the contents of the PC are copied to R14 IRQ and the contents of the CPSR are
copied to SPSR_IRQ. Once the exception has been serviced, the contents of R14_IRQ are incremented by 4 based on
the PC value of the next instruction (in 32-bit mode) and copied to the PC. The contents of SPSR_IRQ are copied
back to the CPSR and execution resumes.

11.7 Fast Interrupt Exception

The Fast Interrupt exception is taken in response to external logic asserting the FIQ input pin whenever bit 6 of the
CPSR is cleared to 0b0. When this bit is set to Ob1, fast interrupts are disabled and the state of the FIQ pin is ignored.
Note bit 6 can only be modified in one of the privileged modes. User mode cannot modify the state of this bit. Fast
interrupt mode (FIQ) differs from normal interrupt mode (IRQ) in that FIQ mode contains additional dedicated regis-
ters that minimize the need for register saving and hence context switching. When this exception is taken the proces-
sor allows the instruction currently in the W stage to complete and then vectors to address 0x0000001C.

When an Fast Interrupt exception is taken, the contents of the PC are copied to R14_FIQ and the contents of the
CPSR are copied to SPSR_FIQ. Once the exception has been serviced, the contents of R14_FIQ are incremented by 4
(in 32-bit mode) based on the PC value of the next instruction and copied to the PC. The contents of SPSR_FIQ are
copied back to the CPSR and execution resumes.

11.8 Exception Priorities

The pT-110 processor prioritizes the above exceptions as shown in Table 20.

Table 20. pT-110 Exception Priorities

Exception Type Priority Level
Reset 1 (highest)
Data Abort 2
FIQ 3
IRQ 4

picoTurbo, Inc. Confidential picoTurbo pT-110 Processor Core Datasheet 31

Table 20. pT-110 Exception Priorities

Exception Type Priority Level
Prefetch Abort 5
Undefined Instruction, SWI 6 (lowest)

12 Signal Descriptions

Table 21 lists the pT-110 processor signals.
Table 21. pT-110 Signal Descriptions

Name Type Description

A[31:0] (¢ Address Bus—a 32-bit byte address driven by the processor. On halfword transactions,
A[0] is undefined. On word transactions, A[1:0] is undefined.

If non-pipelined operation is selected (APE low), the address is driven valid after the
beginning of the current cycle and remains valid past the end of the current cycle. If pipe-
lined operation is selected (APE high), the address is driven valid before the end of the
previous cycle and remains valid past the middle of the current cycle.

ABORT I Abort Cycle—when sampled asserted at the end of the cycle, terminates the current
instruction, restores the processor state to before execution of the instruction began, and
raises an exception. Either a data abort or an instruction abort is raised, depending on the
type of access that triggered the abort. Can be used with external logic to implement vir-
tual memory.

ACK (¢ Acknowledge—asserted by the processor to indicate that an external bus master has
control of the bus. In response to receiving an assertion of the HOLDREQ input, the
processor quits driving the bus at the end of the current bus cycle and asserts the ACK
output. The external bus master then has control of the bus, and it retains control until it
deasserts HOLDREQ and the processor deasserts ACK.

APE I Address Pipelining Enable—when sampled asserted in the middle of the current cycle,
selects pipelined operation for the following cycle.

If pipelined operation is selected, A[31:0], LOCK, MAS[1:0], nOPC, nRW, and nTRANS
are driven valid before the end of the current cycle and are sustained until the middle of the
following cycle. If non-pipelined operation is selected, these signals are driven valid after
the end of the current cycle and sustained until after the end of the following cycle.

BCLK (¢ Bus Clock—all devices on the system bus must be synchronized to either BCLK or its
complement, MCLK. In the pT-110, the RCLK input clock is multiplied by the value
determined by the state of the PF[2:0] pins to derive the internal processor clock frequency
(PCLK). BCLK is derived from dividing the internal processor clock (PCLK) signal by
the value determined by the state of the BF[2:0] pins. MCLK is an inverted form of
BCLK.

BF[2:0] 1 Bus Clock Divisor—tied to static logic levels for selecting the clock divisor for the bus
clock, which is generated from the internal processor clock. These state of these bits can-
not be changed dynamically.

BF[2:0] Divide By
000 2
001 4
010 6
011 8
100 10
101 12
110 14
111 16

32 pT-110™ Processor Core Datasheet picoTurbo Confidential

Memory Management

Table 21. pT-110 Signal Descriptions (Continued)

Name Type Description

BIGEND (¢ Big-Endian Enable—driven high to indicate the processor is using big-endian byte order,
or low to indicate little-endian. Byte order is controlled by the B bit in the CP15 Configu-
ration register.

BL[3:0] 1 Byte Latch Enable—when sampled asserted on a falling edge of MCLK, enables the corre-
sponding latches on the D[31:0] bus. Each BL[3:0] signal controls one of the byte lanes,
e.g. BL[3] controls the latch on D[31:24]. Used with the nWAIT signal to assemble data
from memory and peripherals that are narrower than the transaction requested by the pro-
Cessor.

For example, to assemble a 32-bit instruction fetch or data load from four 8-bit memory
reads, nWAIT is asserted to add at least three additional falling edges of MCLK to the
cycle. On each edge, the 8-bit data is driven on one of the four byte lanes, and the corre-
sponding BL[3:0] signal is asserted. The bytes may be assembled in any order.

The latches may be loaded more than once before the end of the cycle, as long as the last
data to be loaded is the correct data. If the processor is requesting less than a word of data,
the unused bytes are masked off. Latches for masked bytes may be loaded with any data,
or not loaded at all.

BYP I Bypass—asserted to bypass the PLL and drive the processor clock directly from the exter-
nal BYPCLK clock input.
BYPCLK 1 Bypass Clock—external clock used when BYP is asserted.
D[31:0] /0 Data Bus—a bidirectional 32-bit bus for transferring data between the processor and the
system.
nFIQ I Fast Interrupt Request—asserted to raise the FIQ exception after execution of the current

instruction is completed. This exception processing mode has a partial register file not
shared with the other processor modes, to minimize context-switch overhead for fre-
quently called or time-critical interrupts. The nFIQ input is synchronized, so it may be
asserted asynchronously to MCLK.

HOLDREQ I Hold Request—Asserted by an external bus master to request ownership of the bus. The
pT-110 relinquishes ownership of the bus by asserting ACK.
nIRQ I Interrupt Request—asserted to raise the IRQ exception after execution of the current
instruction is completed. The nIRQ input is synchronized, so it may be asserted asynchro-
nously to MCLK.
LOCK O Locked Cycles—indicates that the processor is performing an atomic load/store operation,

which only occurs during execution of a swap instruction (SWP or SWPB). The LOCK
signal is valid simultaneously with A[31:0].

nM[4:0] (0] Processor Mode—indicates the current processor mode. Driven valid after the falling edge
of MCLK.
MASJ1:0] (¢ Memory Access Size—indicates the transfer size of a bus transaction. 00 indicates a byte

transfer, 01 a halfword transfer, and 10 a word transfer. 11 is a reserved combination. The
MASJ1:0] signals are valid simultaneously with A[31:0].

MCLK O Master Clock—all devices on the system bus must be synchronized to either MCLK or its
complement, BCLK. In the pT-110, the RCLK input clock is multiplied by the value deter-
mined by the state of the PF[2:0] pins to derive the internal processor clock frequency
(PCLK). BCLK is derived from dividing the internal processor clock (PCLK) signal by
the value determined by the state of the BF[2:0] pins. MCLK is an inverted form of
BCLK.

nMREQ (¢ Memory Request—indicates that the processor will transfer data on the next cycle. Driven
valid in the middle of the cycle before the data transfer, and sustained until after the begin-
ning of the cycle in which the data is transferred.

picoTurbo, Inc. Confidential picoTurbo pT-110 Processor Core Datasheet 33

Table 21. pT-110 Signal Descriptions (Continued)

Name

Type

Description

nOPC

Opcode Fetch—indicates that the processor is performing an opcode fetch. The nOPC sig-
nal is valid simultaneously with A[31:0].

PF[2:0]

Processor Clock Multiplier—tied to static logic levels for selecting the clock multiplier for
the internal processor clock, which is generated from the external clock input RCLK. The
state of these bits are determined at reset and cannot be changed dynamically.

PF[2:0] Multiply By
000 2
001 4
010 6
011 8
100 10
101 12
110 14
111 16

PRESET

PLL Reset—asserted for at least 0.5 milliseconds to initialize the PLL.

RCLK

External Clock Input—the internal processor clock and the two bus clock outputs (MCLK
and BCLK) are generated from RCLK. All devices on the system bus must synchronize to
MCLK or BCLK, because the PLL introduces skew between RCLK and the operation of
the bus.

nRESET

Reset—asserted for at least four periods of the internal processor clock after PRESET goes
low to initialize the processor. When nRESET goes high, the processor then begins execu-
tion at address 0.

nRW

Read/Write—a low indicates that the processor is performing a read cycle, while a high
indicates a write cycle. The nRW signal is valid simultaneously with A[31:0].

SEQ

Sequential Cycle—indicates that the processor will transfer data to a sequential address on
the next cycle. A sequential address is either the same address used for the current cycle,
an address that is greater by 2 if the TBIT signal is high, or an address that is greater by 4
if the TBIT signal is low. Driven valid in the middle of the cycle before the data transfer,
and sustained until after the beginning of the cycle in which the data is transferred.

TBIT

T Bit Status—indicates the current value of the T bit in the CPSR. The T bit is 1 (i.e. the
TBIT signal is high) when the processor is executing the 16-bit code-density instruction
set. The T bit is 0 (i.e. TBIT low) when the processor is executing the full 32-bit instruc-
tion set.

nTRANS

Translation Enable—a low indicates that the processor is in user mode, which may be
used by external memory mapping logic to enable address translation. The nTRANS sig-
nal is valid simultaneously with A[31:0].

nWAIT

Wait—asserted to stall the processor for an integral number of MCLK periods. If this capa-
bility is not needed in a system, tie nWAIT high. The nWAIT signal may change only
when MCLK is low.

nTRST

Test Reset—Active low master reset for the JTAG Test Access Port (TAP). At power-up
the assertion of nTRST causes the TAP controller to be reset.

TCK

Test Clock—Test clock input for the JTAG TAP.

™S

Test Mode Select—Test mode select input for the JTAG TAP.

TDI

Test Data In—Test data input for the JTAG TAP.

TDO

O —| —| =

Test Data Out—Test data output for the JTAG TAP.

34

pT-110™ Processor Core Datasheet picoTurbo Confidential

Memory Management

Table 21. pT-110 Signal Descriptions (Continued)

Name Type Description
Debug Request—This is a level sensitive input which, when HIGH, causes the pT-110
DBGRQ I processor core to enter debug state after executing the current instruction. This allows
external hardware to force the pT-110 processor core into the debug state.
DBGACK o Debug Acknowledge—This signal is an output from the pT-110 processor core which, when
HIGH, indicates that the core is in the debug state.

picoTurbo, Inc. Confidential

picoTurbo pT-110 Processor Core Datasheet 35

13 Bus Interface Unit

The Bus Interface Unit manages the flow of data between the processor core and all external logic.

13.1 Bus Cycle Types

Two signals, nMREQ and SEQ, indicate whether a bus transfer occurs on the following MCLK cycle. There are
three cycle types indicated by these signals, as shown in Table 22.

Table 22. Bus Cycle Types
Type nMREQ SEQ Description

N-cycle Low Low Non-sequential cycle—the target of the bus transfer is an
address which is not sequential from the address driven during
the previous cycle.

S-cycle Low High Sequential cycle—the target of the bus transfer is either the
same address driven on the bus during the previous cycle, or
an increment of that address. The increment is either 2 for
halfwords or 4 for words.

I-cycle High Low Idle cycle—no bus transfer is occurring.

The timing of the these signals is shown in Figure 17.

S-cycle S-cycle S-cycle I-cycle

vek /N N N N

I I
| I | ! !
A[31:0] ad(%ress :>< : ><add:ress +38 ><add:ress + IC>< :
I [I I ! I ! [
| I | | : | : | !
I
AMREQ \ | R |
| I | 1 ! 1 ! | !
SEQ | | / | 1 | 1 \ I I
| I | I
| 1 | | | | | | |
MAS[1:0] 0b10 |><

—

|
[
[
|
|
[
[
|
10b10
Il
[
[
|
|
[
[
[
[

PO G G

Figure 17. Relationship of MRQ and SEQ During a 32-bit Read Operation

In Figure 17 the processor asserts nMREQ and deasserts SEQ at the start of the cycle indicate a non-sequential cy-
cle (N-cycle) as shown in Table 22 above. The processor drives a value of 0b10 onto MAS[1:0] throughout the cy-
cle to indicate a 32 bit transfer. The processor drives nRW low to indicate a read operation. In this example the
memory returns data in two clocks after address first becomes valid on the falling edge of MCLK. The assertion of
nWAIT for one clock causes the ‘address + 4’ value to be driven on the address bus for two clocks.

36 pT-110™ Processor Core Datasheet picoTurbo Confidential

Memory Management

Since MAS[1:0] contains a value of 0b10, indicating a 32-bit transfer, the processor increments the address by 4
SEQ, indicating a sequential cycle (S-cycle) in Table 22 above. The state of nMREQ and SEQ remains stable
throughout the remainder of the cycle. Both signals are deasserted on the next rising edge of MCLK after the last
address is driven onto the bus (on the previous negative edge of MCLK). The deassertion of these signals indicates
an idle cycle (I-cycle) condition as shown in Table 22 above.

13.2 Address Pipelining

Figure 18 and Figure 19 show the behavior of the address bus with address pipelining disabled and enabled. The
memory controller drives the APE signal high or low depending on the type of memory being accessed. When
APE is low, as illustrated in Figure 18, address pipelining is disabled and the address is driven on the falling edge
of clock 2 below. This mode is typically used to interface to an SRAM memory array. Data can be returned on the
following negative edge of MCLK as shown in clock 3.

Clock 1 2 3 4 5
vew NN NN

| | | | |

| | | | |

APE=L |

| | | | |

nMREQ, T T T T T

SEQ X emit e 7Y X |

| | T I |

| | | | |

A[31:0] X W adart W addr2 Y |

| | | | |

T T T T T

D[31:0] | | Dath 1 Dath 2 |

Figure 18. Address Pipelining Disabled

In Figure 19 the memory controller drives the APE signal high, enabling address pipelining. In this mode address
is driven one half clock earlier than when pipelining is disabled, at the rising edge of clock 2. This facilitates ac-
cess to devices with longer initial access times and is typically used to interface to a DRAM memory array. When
APE is high, the processor drives address on the rising edge of clock 2. The memory samples the address on the
falling edge of clock 2, then drives data on the falling edge of clock 3.

Clock 1 2 3 4 5
I
!
APE=H :
I

N U U e U e U O
nMREQ, :[>< i

SEQ
A[31:0] >< >< Addr 1 >< IAder ><

T T
| |
D[31:0] | | Data 1 Data 2

Figure 19. Address Pipelining Enabled

picoTurbo, Inc. Confidential picoTurbo pT-110 Processor Core Datasheet 37

13.3 Data Bus Latches

To support memory and peripherals that are 8- or 16-bits wide, the data bus latches allow assembling a 32-bit word
from bytes or 16-bit halfwords. Figure 20 shows an example of assembling a word from two halfwords.

Clock 1 2 3 4

MCLK ;

APE=H

| |
! !
" DX ;
A[31:0] i >< i i
nWAIT \ '/ :
i

|

I

|

|

D[15:0]

D[31:16]

xx11 .>< 1100 .><

BL[3:0]

Figure 20. Assembling a Word from Two Halfwords

In the example, the memory controller asserts nWAIT at the falling edge of clock 1 to stall the processor for one
additional MCLK cycle. The assertion of nWAIT does not affect the clock for the D[31:0] latches, so data can be
loaded into these latches while nWAIT is asserted.

At the falling edge of clock 2, the first halfword is transferred on D[15:0]. The memory controller drives a value of
0bxx 11 onto the byte latch signals BL[1:0], indicating that the lower two bytes of the 32-bit processor data bus are
valid. BL[1] controls the latch on D[15:8], and BL[0] controls the latch on D[7:0]. Since the data corresponding to
BL[3:2] will be loaded in the following clock, the value on these signals is ignored by the processor.

The memory controller drives the second halfword of data at the rising edge of clock 3. The controller asserts the
BL[3:2] signals to load the second halfword into the data bus latches. In this cycle, the memory controller must
drive a value of 0b00 onto BL[1:0] so that the halfword loaded during the first cycle is preserved.

13.4 Locked Cycles

Locked cycles are generated when the swap (SWP) or swap byte (SWPB) instructions are executed. These instruc-
tions provide a mechanism for atomic load and store operations (locked cycles). Figure 21 shows an example of
locked cycles with pipelined addressing. The timing of the LOCK signal is the same as A[31:0].

38 pT-110™ Processor Core Datasheet picoTurbo Confidential

Memory Management

e \ NS
N e @ M @ —
D[31:O]: I | | :

Figure 21. Locked Read and Write Cycles

13.5 Memory Prefetch

Memory prefetching is performed on a per-instruction basis. Each prefetch instruction fetches four words, or one
cache line, from memory. Where data is prefetched from is determined by the Rd field of the instruction, which con-
tains the memory address.

13.6 Burst Transactions

The pT-110 performs sequential read operations during a line fill operation. The processor places a new address on
the bus for each 32-bits of data to be retrieved and asserts the SEQ signal, indicating to the memory controller that
this address is part of a burst sequence and should not be interrupted. With a line size of 16-bytes, four read opera-
tions are required to perform a cache line fill.

During a cache line fill operation, the pT-110 processor does not fetch the critical word first. Therefore, the CPU must
wait until the critical word is returned from memory. Cache lines are fetched in-order with the progression of the two
low-order address bits always being 00, 01, 10, 11. For example, if the critical word that caused the cache miss is
word 2, the memory transfers word 0, followed by word 1, 2, and 3. In this case the processor must wait for words 0
and 1 to be copied to the cache before gaining access to word 2. However, the CPU does not have to wait for the crit-
ical word to actually be written to the cache before gaining access to it. Rather, a bypass mechanism allows the criti-
cal word to be written to the cache and forwarded to the CPU simultaneously.

The pT-110 processor does not support burst write operations. If four sequential write addresses appear on the bus,
this is a coincidence and simply means that the write buffer was able to empty without other transactions being
inserted between the write transactions.

picoTurbo, Inc. Confidential picoTurbo pT-110 Processor Core Datasheet 39

14 Instruction Set Overview

The pT-110 instruction set is divided into 32-bit and 16-bit instructions.

14.1 32-bit Instructions

Table 23 lists the 32-bit instructions.

Table 23. pT-110 32-bit Instruction Set

Mnemonic Name Description
Branch Instructions
B Branch Performs an unconditional branch. The program flow is interrupted
and begins execution at the target address.

BL Branch and Link Performs a conditional branch. The program flow is interrupted if the
condition is met. If the condition is met, program flow resumes at the
target address.

BX Branch and Exchange This instruction is used to branch between 32-bit instruction mode and

Instruction Set 16-bit instruction mode.
Data Processing Instructions

ADC Add with Carry Adds the value of the shifter operand and the value of the carry flag to
the value stored in register Rn, then stores the result to register Rd.

ADD Add Adds the value of the shifter operand to the value stored in register Rn,
then stores the result to register Rd.

AND Logical AND Performs a logical AND function on the value stored in register Rn
with the value of the shifter operand. The result is then stored to regis-
ter Rd.

BIC Logical Bit Clear Performs a logical AND function on the value stored in register Rn
with the complement of the value of the shifter operand. The result is
then stored to register Rd.

CMN Compare Negative Compares one arithmetic value with the negative of another arithmetic
value and sets the appropriate condition flags.

CMP Compare Compares two arithmetic values and sets the appropriate condition
flags.

EOR Logical Exclusive OR Performs a logical Exclusive-OR function between the value stored in
register Rn, and the value of the shifter operand. The result is stored to
register Rd.

MOV Move Moves a value from one register to another.

MNV Move Negative Moves the logical 1’s complement of the value of the shifter operand
to register Rd.

ORR Logical OR Performs a logical OR function between the value in register Rn with
the value of the shifter operand. The result is stored to register Rd.

RSB Reverse Subtract Subtracts the value in register Rn with the value of the shifter operand
field. The result is stored to register Rd.

RSC Reverse Subtract with Subtracts the value in register Rn and the value of the NOT (carry

Carry flag) with the value of the shifter operand field. The result is stored to
register Rd.

SBC Subtract with Carry Subtracts the value of the shifter_operand field and the value of the
NOT (carry flag) from the value stored in register Rn. The result is
written to register Rd.

SUB Subtract Subtracts the value of the shifter_operand field from the value stored

in register Rn. The result is written to register Rd.

40

pT-110™ Processor Core Datasheet

picoTurbo Confidential

Memory Management

Table 23. pT-110 32-bit Instruction Set (Continued)

Mnemonic Name Description
TEQ Test Equivalence Performs a logical Exclusive-OR of two operands to determine if they
have the same sign. The result does not affect the V-flag.
TST Test Used to determine the state of each bit in a register. The condition
code flags are updated if at least one bit in the register being tested is
set.

Multiply Instructions

MLA Multiply Accumulate Multiplies signed or unsigned operands to produce a 32-bit result. This
result is then added to a third operand and the result is written to regis-
ter Rd.

MUL Multiply Multiplies signed or unsigned operands to produce a 32-bit result.

SMLAL Signed Multiply Multiplies two signed values (stored in registers Rm and Rs) to pro-
Accumulate Long duce a 64-bit result. This result is then added to a 64-bit value stored

in two general purpose registers. The result is then stored to two gen-
eral purpose registers. Bits 31:0 are stored to one register (RdLo),
while bits 63:32 are stored to another register (RdHi).

SMULL Signed Multiply Long Multiplies two signed values (stored in registers Rm and Rs) to pro-
duce a 64-bit result. The result is then stored to two general purpose
registers. Bits 31:0 are stored to one register (RdLo), while bits 63:32
are stored to another register (RdHi).

UMLAL Unsigned Multiply Multiplies two unsigned values (stored in registers Rm and Rs) to pro-
Accumulate Long duce a 64-bit result. This result is then added to a 64-bit value stored
in two general purpose registers. The result is then stored to two gen-
eral purpose registers. Bits 31:0 are stored to one register (RdLo),
while bits 63:32 are stored to another register (RdHi).

UMULL Unsigned Multiply Long Multiplies two unsigned values (stored in registers Rm and Rs) to pro-
duce a 64-bit result. The result is then stored to two general purpose
registers. Bits 31:0 are stored to one register (RdLo), while bits 63:32
are stored to another register (RdHi).

Status Register Access Instructions

MRS Move SR to General Moves the value of the CSPR register (or the appropriate SPSR regis-
Purpose Register ter) into the general purpose register file.
MSR Move General Purpose Moves the value of the general purpose register file to the CSPR regis-
Register to SR ter (or the appropriate SPSR register).

Load / Store Instructions

LDM(1) Load Multiple Loads some of all of the general purpose registers from sequential
memory locations determined by the starting and ending addresses of
the operation. This instruction can be used for block load operations.

LDM(2) User Registers Loads some of all of the general purpose registers from sequential
Load Multiple memory locations determined by the starting and ending addresses of
the operation. This instruction allows for the loading of User mode
registers while the processor is in Privileged mode.

LDM(3) Load Multiple and Loads some of all of the general purpose registers from sequential
Restore CPSR memory locations determined by the starting and ending addresses of
the operation. In this instruction the contents of the SPSR register for
the current mode are copied to the CSPR register. This instruction can
be used as an exception return vehicle, of for restoring saved registers.

LDR Load Word Allows 32-bit memory data to be loaded into the general purpose reg-
ister file.

picoTurbo, Inc. Confidential picoTurbo pT-110 Processor Core Datasheet 41

Table 23. pT-110 32-bit Instruction Set (Continued)

Mnemonic Name Description
LDRB Load Byte Allows 8-bit memory data to be loaded into the general purpose regis-
ter file.

LDRBT Load Byte with This instruction is used by the exception handler in Privileged mode to

User Mode Privilege emulate a memory access instruction that would normally be executed
in User mode. The instruction loads a byte from memory, zero-extends
the byte to 32-bits, and writes the result to register Rd.

LDRH Load Unsigned Halfword Allows 16-bit unsigned memory data to be loaded into the general
purpose register file.

LDRSB Load Signed Byte Allows 8-bit memory data to be loaded into the general purpose regis-
ter file.

LDRSH Load Signed Halfword Allows 16-bit signed memory data to be loaded into the general pur-
pose register file.

LDRT Load Word with This instruction is used by the exception handler in Privileged mode to

User Mode Privilege emulate a memory access instruction that would normally be executed
in User mode. The instruction loads a 32-bit word from memory and
writes the result to register Rd.

STM(1) Store Multiple Stores a subset of the general purpose register file to sequential loca-
tion in memory determined by the start_address and end_address
fields. This instruction is typically used in User mode.

STM(2) User Registers Stores a subset of the general purpose register file to sequential loca-

Store Multiple tion in memory determined by the start_address and end address
fields. This instruction is typically used to store User mode registers to
memory when the processor is operating in a Privileged mode.

STR Store Word Stores a 32-bit data word from the general purpose register file to
memory.

STRB Store Byte Stores an 8-bit data byte from the general purpose register file to
memory.

STRBT Store Byte with Stores an 8-bit data byte from the general purpose register file to

User Mode Privilege memory. This instruction is typically used by an exception handler in
Privileged mode to emulate a memory access that would normally
occur in User mode.

STRH Store Halfword Stores a 16-bit data value from the general purpose register file to
memory.

STRT Store Word with Stores a 32-bit data word from the general purpose register file to

User Mode Privilege memory. This instruction is typically used by an exception handler in
Privileged mode to emulate a memory access that would normally
occur in User mode.

Coprocessor Instructions
CDP Coprocessor Data The pT-110 does not support any coprocessor that responds to this
Operations instruction. The CP15 coprocessor is accessed using only the MRC
and MCR instructions listed below. Execution of this instruction
results in an Undefined Instruction exception.

LDC Load Coprocessor Register | The pT-110 does not support any coprocessor that responds to this
instruction. The CP15 coprocessor is accessed using only the MRC
and MCR instructions listed below. Execution of this instruction
results in an Undefined Instruction exception.

MCR Move From Register Moves data from a general purpose register to a coprocessor register.

to Coprocessor

MRC Move from Coprocessor Moves data from a coprocessor register to a general purpose register.

to Register

42

pT-110™ Processor Core Datasheet

picoTurbo Confidential

Memory Management

Table 23. pT-110 32-bit Instruction Set (Continued)

Mnemonic Name Description

STC Store Coprocessor Register | The pT-110 does not support any coprocessor that responds to this
instruction. The CP15 coprocessor is accessed using only the MRC
and MCR instructions listed above. Execution of this instruction
results in an Undefined Instruction exception.

Software Interrupt Instruction

SWI Software Interrupt Execution of this instruction causes a software interrupt.

Data Swap Instruction

SWP Swap Swaps a 32-bit word between a general purpose register and a speci-
fied location in memory.

SWPB Swap Byte Swaps an 8-bit byte between a general purpose register and a specified
location in memory.

picoTurbo, Inc. Confidential picoTurbo pT-110 Processor Core Datasheet 43

14.2 16-bit Instructions

Table 24 lists the 16-bit instructions.

Table 24. pT-110 16-bit Instruction Set

Mnemonic Name Description
Branch Instructions
B(1) Branch Performs a conditional branch to the target address. The target address
is loaded into the PC only if the condition is met.
B(2) Unconditional Branch Performs an unconditional branch to the target address.
BL Branch and Link Performs an unconditional subroutine call by loading the value of LR
into the program counter (PC).
BX Branch and Exchange This instruction is used to branch between 16-bit instruction mode and
Instruction Set 32-bit instruction mode.
Data Processing Instructions
ADC Add with Carry Adds the value of register Rd and the carry flag, to the value stored in
register Rm. The result is then written to register Rd.

ADD(1) Add (Immediate) Adds the value stored in register Rn with a 3-bit immediate value. The
result is stored to register Rd.

ADD(2) Add (Large Immediate) Adds the value stored in register Rn with an 8-bit immediate value.
The result is stored to register Rd.

ADD(3) Add (Register) Adds the value stored in register Rn to the value stored in register Rm.
The result is stored to register Rd.

ADD(4) Add (High Registers) This instruction adds the value of a low register to the value of a high
register, or the value of a high register to the value of a low register, or
the value of a high register to the value of another high register.

ADD(5) Add (Immediate to This instruction clears two low-order bits of the program counter (PC)

Program Counter) and adds the value to an 8-bit immediate value. The result is stored to
register Rd.

ADD(6) Add (Immediate to Adds the value of the stack pointer with an 8-bit immediate value. The

Stack Pointer) result is stored to register Rd.

ADD(7) Increment Stack Pointer Adds the value of the stack pointer with a 7-bit immediate value. The

result is stored to register Rd.
AND Logical AND Performs a logical AND function between the contents of register Rm
and the contents of register Rd, then stores the result back to register
Rd.
ASR(1) Arithmetic Shift Right Performs an arithmetic shift right on the value stored in register Rm by
(Immediate) an immeditate value ranging between 1 and 32. The result is stored to
register Rd.
ASR(2) Arithmetic Shift Right Performs an arithmetic shift right on the value stored in register Rd by
(Register) the least-significant byte of register Rs. The result is stored to register
Rd.
BIC Logical Bit Clear Used to clear selected bits in a register.
CMN Compare Negative Compares one arithmetic value with the negative of another arithmetic
value and sets the appropriate condition flags.

CMP(1) Compare (Immediate) Compares two arithmetic values and sets the appropriate condition
flags. In this instruction an 8-bit immediate value is subtracted from
the value in register Rd and the appropriate condition flags are set.

CMP(2) Compare (Register) Compares two arithmetic values and sets the appropriate condition

flags. In this instruction the value of register Rm is subtracted from the
value in register Rd and the appropriate condition flags are set.

44

pT-110™ Processor Core Datasheet

picoTurbo Confidential

Memory Management

Table 24. pT-110 16-bit Instruction Set (Continued)

Mnemonic Name Description

CMP(3) Compare (High Registers) This instruction compares the value of a low register to the value of a
high register, or the value of a high register to the value of a low regis-
ter, or the value of a high register to the value of another high register.

EOR Logical Exclusive OR Performs an Exclusive OR function between the value in register Rm
and the value in register Rd. The result is then written back to register
Rd and the appropriate conditions flags are set.

LSL(1) Logical Shift Left Performs a logical shift left between the value stored in register Rm

(Immediate) with an immediate value between 0 and 31.
LSL(2) Logical Shift Left Performs a logical shift left between the value stored in register Rm
(Register) and the least-significant byte of register Rs. The resulting value is then
stored to register Rd.
LSR(1) Logical Shift Left Performs a logical shift right between the value stored in register Rm
(Immediate) with an immediate value between 1 and 32.
LSR(2) Logical Shift Left Performs a logical shift right between the value stored in register Rm
(Register) and the least-significant byte of register Rs. The resulting value is then
stored to register Rd.

MOV(1) Move (Immediate) Moves an 8-bit immediate value to register Rd.

MOV(2) Move (High Registers) Moves the value in a low register to a high register, or the value in a
high register to a low register, or the value in a high register to another
high register.

MUL Multiply Multiplies signed or unsigned values to produce a 32-bit result.

MNV Move NOT (Register) Moves the logical 1’s compliment of register Rn to register Rd.

NEG Negative (Register) Subtracts the value stored in register Rn from zero and stores the result
to register Rd.

ORR Logical OR Performs a logical OR operation between the contents of register Rm
and the contents of register Rd. The result is then stored back to regis-
ter Rd and the appropriate condition flags are set.

ROR Rotate Right (Register) Performs a rotate right function on the contents of register Rd with the
least-significant byte of register Rs. The result is then stored to register
Rd.

SBC Subtract with Carry Subtracts the contents of register Rm and the NOT (carry flag) from

(Register) the contents of register Rd. The result is then stored back to register
Rd.
SUB(1) Subtract (Immediate) Subtracts a 3-bit immediate value from the contents of register Rn.
SUB(2) Subtract Subtracts an 8-bit immediate value from the contents of register Rn.
(Large Immediate)

SUB(3) Subtract (Register) Subtracts the value in one general purpose register from the value of
another general purpose register. The result is then stored to a third
general purpose register.

SUB(4) Decrement Stack Pointer Subtracts an 7-bit immediate value from the contents of the stack
pointer. The result is then written back to the stack pointer.

TST Test Used to determine the state of each bit in a register. The condition
code flags are updated if at least one bit in the register being tested is
set.

Load / Store Instructions
LDM Load Multiple Allows for the block load of instructions or data from memory.

picoTurbo, Inc. Confidential

picoTurbo pT-110 Processor Core Datasheet

45

Table 24. pT-110 16-bit Instruction Set (Continued)

Mnemonic Name Description
LDR(1) Load Word Loads a 32-bit memory data value into general purpose register Rd.
(Immediate Offset) This instruction always contains an offset of 0.
LDR(2) Load Word Loads a 32-bit memory data value into general purpose register Rd.
(Register Offset) The memory location to be accessed is determined by adding the con-
tents in register Rm to the contents of register Rn.
LDR(3) Load Word Loads a 32-bit memory data value into general purpose register Rd.
(PC-Relative) The memory location to be accessed is determined by adding a spe-
cific value to the program counter.
LDR(4) Load Word Loads a 32-bit memory data value into general purpose register Rd.
(SP-Relative) The memory location to be accessed is determined by adding a spe-
cific value to the stack pointer.
LDRB(1) Load Unsigned Byte Loads an 8-bit unsigned memory data value into general purpose reg-
(Immediate Offset) ister Rd. This instruction always contains an offset of 0.
LDRB(2) Load Unsigned Byte Loads an 8-bit unsigned memory data value into general purpose reg-
(Register Offset) ister Rd. The memory location to be accessed is determined by adding
the contents in register Rm to the contents of register Rn.
LDRH(1) Load Unsigned Halfword Loads a 16-bit unsigned memory data value into general purpose reg-
(Immediate Offset) ister Rd. This instruction always contains an offset of 0.
LDRH(2) Load Unsigned Halfword Loads a 16-bit unsigned memory data value into general purpose reg-
(Immediate Offset) ister Rd. The memory location to be accessed is determined by adding
the contents in register Rm to the contents of register Rn.
LDRSB Load Signed Byte Loads an 8-bit signed memory data value into general purpose register
(Register Offset) Rd. The memory location to be accessed is determined by adding the
contents in register Rm to the contents of register Rn.
LDRSH Load Signed Halfword Loads a 16-bit unsigned memory data value into general purpose reg-
(Register Offset) ister Rd. The memory location to be accessed is determined by adding
the contents in register Rm to the contents of register Rn.
POP Pop Multiple Loads a subset of the general purpose register file from sequential
locations in memory.
PUSH Push Multiple Stores a subset of the general purpose register file from sequential
locations in memory.
STM Store Multiple Performs a block store operation.
STR(1) Store Word Stores the contents of a 32-bit general purpose register to memory.
(Immediate Offset) This instruction always contains an offset of 0.
STR(2) Store Word Stores the contents of a 32-bit general purpose register to memory.
(Register Offset) The memory location to be accessed is determined by adding the con-
tents in register Rm to the contents of register Rn.
STR(3) Store Word Stores the contents of a 32-bit general purpose register to memory.
(SP-Relative) The memory location to be accessed is determined by adding a spe-
cific value to the stack pointer.
STRB(1) Store Byte Stores the contents of a single byte in a general purpose register to
(Immediate Offset) memory. This instruction always contains an offset of 0.
STRB(2) Store Byte Stores the contents of a single byte in a general purpose register to
(Register Offset) memory. The memory location to be accessed is determined by adding
the contents in register Rm to the contents of register Rn.
STRH(1) Store Halfword Stores the contents of a 16-bit value in a general purpose register to
(Immediate Offset) memory. This instruction always contains an offset of 0.

46

pT-110™ Processor Core Datasheet

picoTurbo Confidential

Memory Management

Table 24. pT-110 16-bit Instruction Set (Continued)

Mnemonic Name Description
STRH(2) Store Halfword Stores the contents of a 16-bit value in a general purpose register to
(Register Offset) memory. The memory location to be accessed is determined by adding
the contents in register Rm to the contents of register Rn.
Software Interrupt Instruction
SWI Software Interrupt Execution of this instruction causes a software interrupt.

picoTurbo, Inc. Confidential

picoTurbo pT-110 Processor Core Datasheet

47

© 2001 picoTurbo Inc.
Printed in U.S.A
All Rights Reserved

This publication is provided as is. picoTurbo Inc. (the “Company”) does make any warranty of any kind, either expressed or
implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Information in
this document is provided solely to enable system developers to use the Companies products. Unless specifically set forth herein,
there are no express or implied patent, copyright, or any other intellectual property rights or licenses granted hereunder to design or
fabricate integrated circuits based on the information in this document. The Company does not warrant that the contents of this
publication, whether individually or as one or more groups, meets anyone’s requirements, or that the document is error-free. This
publication may include technical inaccuracies or typographical errors. Changes may be made to the information herein, and these
changes may be incorporated in new editions of this publication.

picoTurbo™ is a trademark of picoTurbo, Inc.

pT-100™, pT-110™, pT-100Ax, pT-110Ax™, and pT-120™ are trademarks of picoTurbo, Inc.
ARMU® is a registered trademark of Advanced RISC Machines, Inc.

All other trademarks and registered trademarks are the property of their respective companies.

picoTurbo, Inc.

860 Hillview Ct. Suite 160
Milpitas, CA. 95035

(408) 586-8801

(408) 586-8802 (fax)
www.picoTurbo.com

48 picoTurbo pT-110 Processor Core Datasheet picoTurbo, Inc. Confidential

