DATA SHEET

Part No.	AN26027A
Package Code No.	ALGA005-W-0609ANA

Panasonic

AN26027A

Contents

■ Overview	3
■ Features	3
■ Applications	3
■ Package	3
■ Type	3
■ Application Circuit Example (Block Diagram)	4
■ Pin Descriptions	5
■ Absolute Maximum Ratings	6
■ Operating Supply Voltage Range	6
■ Electrical Characteristics	7
■ Electrical Characteristics (Reference values for design)	8
■ Switching Logic Table	9
■ Technical Data	10
• P _D — T _a diagram	10
■ Usage Notes	11

AN26027A

Single band LNA-IC for 600 MHz band applications

Overview

AN26027A is single band LNA-IC for 600 MHz band applications. It realizes high performance by using 0.18 μ m SiGeC Bi-CMOS process (f_T = 90 GHz, f_{max} = 140 GHz). High/Low gain-mode is changeable, controlled by integrated CMOS logic circuit. A WLCSP package (wafer level chip sized package) achieves miniaturization.

■ Features

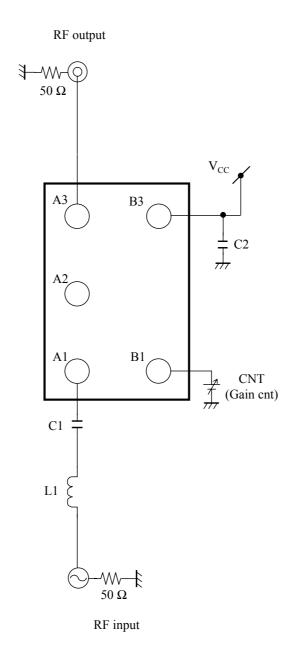
 Low voltage operation 	+2.85 V typ.		
• Low current consumption	3 mA typ.		(High-gain mode)
	1 μA typ.		(Low-gain mode)
• High gain (gain)	15.0 dB typ.	fRX = 620 MHz	(High-gain mode)
• Low noise figure (NF)	1.30 dB typ.	fRX = 620 MHz	(High-gain mode)
• Low distortion (IIP3 +10 MHz offset)	-4.0 dBm typ.	fRX = 620 MHz	(High-gain mode)
• Small and thin neakage (WI CSD)			

• Small and thin package (WLCSP)

Applications

• 600 MHz band single band LNA

■ Package


• 5 pin wafer level chip size package (WLCSP) Size: $0.86 \times 0.56 \text{ mm}^2$ (0.3 mm pitch)

■ Type

• Bi-CMOS IC

■ Application Circuit Example (Block Diagram)

(Top View)

Note) 1. This circuit and these circuit constants show an example and do not guarantee the design as a mass-production set.

2. This block diagram is for explaining functions. The part of the block diagram may be omitted, or it may be simplified.

Panasonic

AN26027A

■ Pin Descriptions

Pin No.	Pin name	Туре	Description
A1	IN	Input	RF input
A2	GND	Ground	GND
A3	OUT	Output	RF output
B1	CNT	input	High-gain / Low-gain switch
В3	V_{CC}	Power Supply	V _{CC}

■ Absolute Maximum Ratings

A No.	Parameter	Symbol	Rating	Unit	Note
1	Supply voltage	V _{CC}	3.6	V	*1
2	Supply current	I_{CC}	18	mA	_
3	Power dissipation	P_{D}	36	mW	*2
4	Operating ambient temperature	T _{opr}	-25 to +75	°C	*3
5	Storage temperature	T_{stg}	-40 to +125	°C	*3

Note) *1: The range under absolute maximum ratings, power dissipation.

■ Operating Supply Voltage Range

Parameter	Symbol	Range	Unit	Note
Supply voltage range	V _{CC}	2.5 to 3.0	V	_

Note) The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

^{*2:} Power dissipation shows the value of only package at $T_a = 70^{\circ}$ C. When using this IC, refer to the \bullet $P_D - T_a$ diagram in the \blacksquare Technical Data and use under the condition not exceeding the allowable value.

^{*3:} Expect for the storage temperature and operating ambient temperature, all ratings are for $T_a = 25$ °C.

■ Electrical Characteristics V_{CC} = 28.5 V Note) Unless otherwise specified, T_a = 25°C±2°C

D No	Darameter	Symbol	Conditions	Limits			1.1	No
B NO.	B No. Parameter		Conditions	Min	Тур	Max	Unit	te
DC ele	DC electrical characteristics							
DC-1	Supply current HG	$I_{CC}H$	V _{CC} current at High-gain mode No input signal	_	3.0	4.4	mA	_
DC-2	Supply current LG	$I_{CC}L$	I _{CC} L V _{CC} current at Low-gain mode No input signal		1.0	10	μΑ	
DC-3	Switching voltage (High gain mode)	VIH	VIH $VIH = V_{CC} \times 0.90$		2.85	_	V	
DC-4	Switching voltage (Low gain mode)	VIL	$VIL = V_{CC} \times 0.14$		0.0	0.4	V	_
DC-5	Switching current (High)	IIH	Current at CNT pin VIH = V _{CC}		4.6	20	μΑ	_

Note) Unless otherwise specified, $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXa = 620 MHz, PRX = -30 dBm, CW

D No	B No. Parameter	Darameter Symbol	Conditions	Limits			Linit	No
B NO.		Symbol	Conditions	Min	Тур	Max	Unit	te
LNA A	LNA AC electrical characteristics							
A-1	Power gain HG	GHS	High-gain mode	13.0	15.0	17.0	dB	
A-2	Power gain LG	GLS	Low-gain mode PRX = -20 dBm	-7.5	-4.0	-1.0	dB	_
A-3	IIP3 +10 MHz offset HG	ПРЗН1	IIP3H1 High-gain mode f1 = fRXa + 10 MHz f2 = fRXa + 20 MHz Input 2 signals (f1, f2)		-4.0	_	dBm	

■ Electrical Characteristics (Reference values for design) $V_{CC} = 2.85 \text{ V}$

Note) Unless otherwise specified, $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRX = 470 MHz, 620 MHz, 770 MHz, PRX = -30 dBm, CW. The characteristics listed below are reference values for design of the IC and are not guaranteed by inspection. If a problem does occur related to these characteristics, Matsushita will respond in good faith to user concerns.

B No.	Parameter	Cymbol	Symbol Conditions	Limits			Unit	No
D INO.	Parameter	Symbol	ymbol Conditions		Тур	Max	Utill	te
LNA A	C electrical characteristics							
C-1	Power gain HG	GH	GH High-gain mode $f = fRX$		15.0	17.5	dB	
C-2	Power gain LG	GL	Low-gain mode f = fRX, PRX = -20 dBm	-8.0	-4.0	-1.0	dB	
C-3	Noise Figure HG	NFH	NFH High-gain mode $f = fRX$		1.3	2.3	dB	*
C-4	Noise Figure LG	NFL	Low-gain mode f = fRX	_	6.5	8.5	dB	
C-5	IIP3 +10 MHz offset HG	ПРЗН1	High-gain mode f1 = fRX + 10 MHz f2 = fRX + 20 MHz Input 2 signals (f1, f2)	-13	-4.0	_	dBm	_
C-6	IIP3 –10 MHz offset HG	IIP3H2	IIP3H2 High-gain mode f1 = fRXa - 10 MHz f2 = fRXa - 20 MHz Input 2 signals (f1, f2)		-4.0	_	dBm	_
C-7	Input P1dB HG	IP1dBH	High-gain mode f1 = fRX	-10	-6	_	dBm	
C-8	Reverse Isolation HG	ISOH	ISOH High-gain mode $f1 = fRX$		-24	_	dB	_
C-9	Reverse Isolation LG	ISOL	High-gain mode f1 = fRX	_	-3.5		dB	

Note) Connector & substrate loss (0.1 dB) included.

■ Switching Logic Table

Note) See parameters B No. DC-3 to B No. DC-4 in the ■ Electrical Characteristics for control voltage retention ranges.

Pin No.	Description	Pin vo	oltage	Domarka
PIII NO.	Description	Low	High	Remarks
B1	High-Gain / Low-Gain Switching (Gain Control)	Low-Gain	High-Gain	_

■ Technical Data

• P_D — T_a diagram

Usage Notes

- 1. This IC is intended to be used for general electronic equipment [cellular phones]. Consult our sales staff in advance for information on the following applications:
 - Special applications in which exceptional quality and reliability are required, or if the failure or malfunction of this IC may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
 - (1) Space appliance (such as artificial satellite, and rocket)
 - (2) Traffic control equipment (such as for automobile, airplane, train, and ship)
 - (3) Medical equipment for life support
 - (4) Submarine transponder
 - (5) Control equipment for power plant
 - (6) Disaster prevention and security device
 - (7) Weapon
 - (8) Others: Applications of which reliability equivalent to (1) to (7) is required
- 2. Pay attention to the direction of LSI. When mounting it in the wrong direction onto the PCB (printed-circuit-board), it might smoke or ignite.
- 3. Pay attention in the PCB (printed-circuit-board) pattern layout in order to prevent damage due to short circuit between pins. In addition, refer to the Pin Description for the pin configuration.
- 4. Perform a visual inspection on the PCB before applying power, otherwise damage might happen due to problems such as a solder-bridge between the pins of the semiconductor device. Also, perform a full technical verification on the assembly quality, because the same damage possibly can happen due to conductive substances, such as solder ball, that adhere to the LSI during transportation.
- 5. Take notice in the use of this product that it might break or occasionally smoke when an abnormal state occurs such as output pin V_{CC} short (power supply fault), output pin GND short (ground fault), or output-to-output-pin short (load short). And, safety measures such as an installation of fuses are recommended because the extent of the above-mentioned damage and smoke emission will depend on the current capability of the power supply.
- 6. When using the LSI for new models, verify the safety including the long-term reliability for each product.
- 7. When the application system is designed by using this LSI, be sure to confirm notes in this book. Be sure to read the notes to descriptions and the usage notes in the book.
- 8. Due to unshielded structure of this IC, under exposure of light, function and characteristic of the product cannot be guaranteed. During normal operation or even under testing condition, please ensure that IC is not exposed to light.
- 9. Basically, chip surface is ground potential. Please design to ensure no contact between chip surface and metal shielding.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).

 Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support
 systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - · Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 - Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.