Document Title

64Kx36-Bit Synchronous Burst SRAM, 3.3V Power Datasheets for 100TQFP

Revision History

Rev. No.	<u>History</u>	<u>Draft Date</u>	<u>Remark</u>
Rev. 0.0	Initial draft	Nov. 02. 1996	Preliminary
Rev. 1.0	Final spec release	May. 27. 1997	Final

The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or contact Headquarters.

64Kx36-Bit Synchronous Burst SRAM FEATURES

- Synchronous Operation.
- On-Chip Address Counter.
- Write Self-Timed Cycle.
- · On-Chip Address and Control Registers.
- Single 3.3V ±5% Power Supply.
- 5V Tolerant Inputs except I/O Pins.
- Byte Writable Function.
- · Global Write Enable Controls a full bus-width write.
- Power Down State via ZZ Signal.
- Asynchronous Output Enable Control.
- ADSP, ADSC, ADV Burst Control Pins.
- LBO Pin allows a choice of either a interleaved burst or a linear burst.
- Three Chip Enables for simple depth expansion with No Data Contention.
- TTL-Level Three-State Output.
- 100-TQFP-1420A

FAST ACCESS TIMES

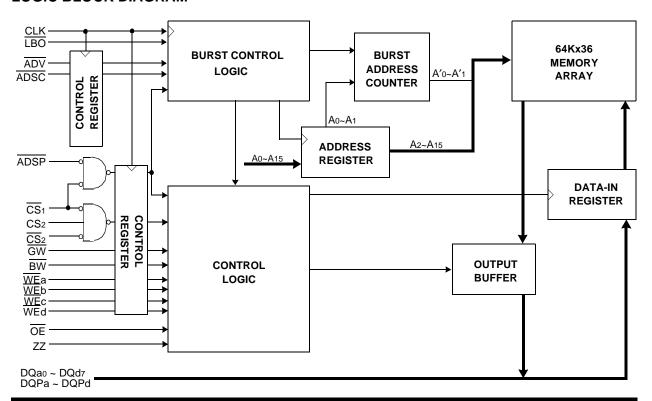
Parameter	Symbol	-8	-9	-10	Unit
Cycle Time	tcyc	12	12	15	ns
Clock Access Time	tcD	8.5	9	10	ns
Output Enable Access Time	toe	4	4	5	ns

GENERAL DESCRIPTION

The KM736V687 is 2,359,296 bits Synchronous Static Random Access Memory designed to support zero wait state performance for advanced Pentium/Power PC based system. And with CS1 high, ADSP is blocked to control signals.

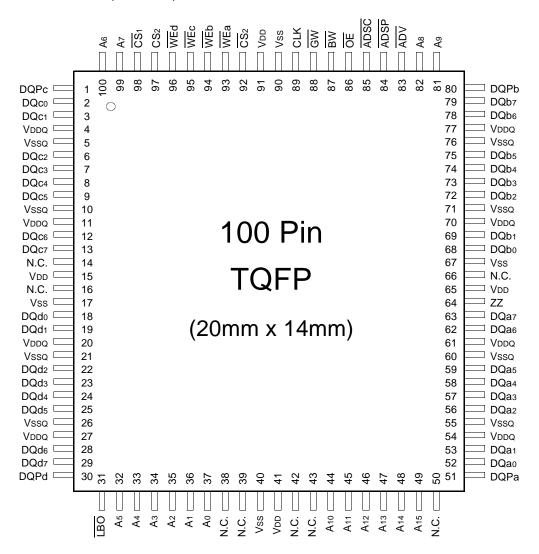
It can be organized as 64K words of 36 bits. And it integrates address and control registers, a 2-bit burst address counter and high output drive circuitry onto a single integrated circuit for reduced components counts implementation of high performance cache RAM applications.

Write cycles are internally self-timed and synchronous.


The self-timed write feature eliminates complex off chip write pulse shaping logic, simplifying the cache design and further reducing the component count.

Burst cycle can be initiated with either the address status processor(ADSP) or address status cache controller(ADSC) inputs. Subsequent burst addresses are generated internally in the system's burst sequence and are controlled by the burst address advance(ADV) input.

ZZ pin controls Power Down State and reduces Stand-by current regardless of CLK.


The KM736V687 is implemented with SAMSUNG's high performance CMOS technology and is available in a 100pin TQFP package. Multiple power and ground pins are utilized to minimize ground bounce.

LOGIC BLOCK DIAGRAM

PIN CONFIGURATION(TOP VIEW)

PIN NAME

SYMBOL	PIN NAME	TQFP PIN NO.	SYMBOL	PIN NAME	TQFP PIN NO.
A0 - A15	Address Inputs	32,33,34,35,36,37,	VDD	Power Supply(+3.3V)	15,41,65,91
		44,45,46,47,48,49,	Vss	Ground	17,40,67,90
		81,82,99,100	N.C.	No Connect	14,16,38,39,42,43,50,66
ADV	Burst Address Advance	83			
ADSP	Address Status Processor	84	DQao~a7	Data Inputs/Outputs	52,53,56,57,58,59,62,63
ADSC	Address Status Controller	85	DQb0~b7		68,69,72,73,74,75,78,79
CLK	Clock	89	DQco~c7		2,3,6,7,8,9,12,13
CS ₁	Chip Select	98	DQdo~d7		18,19,22,23,24,25,28,29
CS ₂	Chip Select	97	DQPa~Pd		51,80,1,30
<u>CS</u> 2 <u>CS</u> 2	Chip Select	92			
WEx	Byte Write Inputs	93,94,95,96	VDDQ	Output Power Supply	4,11,20,27,54,61,70,77
OE	Output Enable	86		(+3.3V)	
GW	Global Write Enable	88	Vssq	Output Ground	5,10,21,26,55,60,71,76
BW	Byte Write Enable	87			
ZZ	Power Down Input	64			
LBO	Burst Mode Control	31			

FUNCTION DESCRIPTION

The KM736V687 is a synchronous SRAM designed to support the burst address accessing sequence of the Pentium and Power PC based microprocessor. All inputs (with the exception of $\overline{\text{OE}}$, $\overline{\text{LBO}}$ and ZZ) are sampled on rising clock edges. The start and duration of the burst access is controlled by $\overline{\text{ADSC}}$, $\overline{\text{ADSP}}$ and $\overline{\text{ADV}}$ and chip select pins.

When ZZ is pulled high, the SRAM will enter a Power Down State. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM normally operates after 2 cycles of wake up time. ZZ pin is pulled down internally.

Read cycles are initiated with \overline{ADSP} (or \overline{ADSC}) using the new external address clocked into the on-chip address register when both \overline{GW} and \overline{BW} are high or when \overline{BW} is low and \overline{WE} , \overline{WE} , \overline{WE} , \overline{WE} , and \overline{WE} are high. When \overline{ADSP} is sampled low, the chip selects are sampled active, and the output buffer is enabled with \overline{OE} . the data of cell array accessed by the current address are projected to the output pins.

Write cycles are also initiated with $\overline{\text{ADSP}}$ (or $\overline{\text{ADSC}}$) and are differentiated into two kinds of operations; All byte write operation and individual byte write operation.

All byte write occurs by enabling \overline{GW} (independent of \overline{BW} and \overline{WEx} .), and individual byte write is performed only when \overline{GW} is high and \overline{BW} is low. In KM736V687, a 64Kx36 organization, \overline{WE} controls DQa0 ~ DQa7 and DQPa, \overline{WE} controls DQb0 ~ DQb7 and DQPb, \overline{WE} controls DQc0 ~ DQc7 and DQPc and \overline{WE} controls DQd0 ~ DQd7 and DQPd.

CS1 is used to enable the device and conditions internal use of ADSP and is sampled only when a new external address is loaded.

 $\overline{\text{ADV}}$ is ignored at the clock edge when $\overline{\text{ADSP}}$ is asserted, but can be sampled on the subsequent clock edges. The address increases internally for the next access of the burst when $\overline{\text{ADV}}$ is sampled low.

Addresses are generated for the burst access as shown below, The starting point of the burst sequence is provided by the external address. The burst address counter wraps around to its initial state upon completion. The burst sequence is determined by the state of the LBO pin. When this pin is Low, linear burst sequence is selected. And this pin is High, Interleaved burst sequence is selected.

BURST SEQUENCE TABLE

(Interleaved Burst)

I BO DIN	LBO PIN HIGH	Case 1		Case 2		Cas	se 3	Case 4	
LBOTIN		A 1	A ₀	A 1	Ao	A 1	Ao	A 1	Ao
Fi	rst Address	0	0	0	1	1	0	1	1
		0	1	0	0	1	1	1	0
	\downarrow	1	0	1	1	0	0	0	1
Fou	urth Address	1	1	1	0	0	1	0	0

(Linear Burst)

LBO PIN	LOW	Case 1		Case 2		Cas	se 3	Case 4	
LBOTIN		A 1	Ao	A 1	Ao	A 1	Ao	A 1	Ao
Fir	st Address	0	0	0	1	1	0	1	1
		0	1	1	0	1	1	0	0
	\downarrow	1	0	1	1	0	0	0	1
Fou	rth Address	1	1	0	0	0	1	1	0

NOTE: 1. LBO pin must be tied to high or low, and floating state must not be allowed.

ASYNCHRONOUS TRUTH TABLE

(See Notes 1 and 2):

	,	,	
Operation	ZZ	OE	I/O Status
Sleep Mode	Н	Χ	High-Z
6 -	L	L	DQ
Read	L	Н	High-Z
Write	L	Х	Din, High-Z
Deselected	L	Х	High-Z

NOTE

- 1. X means "Don't Care".
- 2. ZZ pin is pulled down internally
- 3. For write cycles <u>that</u> following read cycles, the output buffers must be disabled with \overline{OE} , otherwise data bus contention will occur.
- Sleep Mode means power down state of which stand-by current does not depend on cycle time.
- Deselected means power down state of which stand-by current depends on cycle time.

SYNCHRONOUS TRUTH TABLE

CS ₁	CS ₂	CS ₂	ADSP	ADSC	ADV	WRITE	CLK	Address Accessed	Operation
Н	X	Χ	X	L	Χ	X	↑	N/A	Not Selected
L	L	Χ	L	Χ	Χ	X	↑	N/A	Not Selected
L	X	Н	L	Χ	Χ	X	\uparrow	N/A	Not Selected
L	L	Χ	X	L	Χ	X	\uparrow	N/A	Not Selected
L	X	Н	Х	L	Χ	Х	1	N/A	Not Selected
L	Н	L	L	Х	Χ	X	1	External Address	Begin Burst Read Cycle
L	Н	L	Н	L	Χ	L	1	External Address	Begin Burst Write Cycle
L	Н	L	Н	L	Х	Н	1	External Address	Begin Burst Read Cycle
Х	Х	Х	Н	Н	L	Н	1	Next Address	Continue Burst Read Cycle
Н	X	Χ	X	Н	L	Н	\uparrow	Next Address	Continue Burst Read Cycle
Х	Х	Χ	Н	Н	L	L	1	Next Address	Continue Burst Write Cycle
Н	Х	Χ	Х	Н	L	L	1	Next Address	Continue Burst Write Cycle
Х	Х	Χ	Н	Н	Н	Н	1	Current Address	Suspend Burst Read Cycle
Н	Х	Х	Х	Н	Н	Н	1	Current Address	Suspend Burst Read Cycle
Х	Х	Х	Н	Н	Н	L	1	Current Address	Suspend Burst Write Cycle
Н	Χ	Χ	X	Н	Н	L	1	Current Address	Suspend Burst Write Cycle

NOTE: 1. X means "Don't Care".

- 2. The rising edge of clock is symbolized by \uparrow .
- 3. WRITE = L means Write operation in WRITE TRUTH TABLE.
 WRITE = H means Read operation in WRITE TRUTH TABLE.
- 4. Operation finally depends on status of asynchronous input pins(ZZ and $\overline{\text{OE}}$).

WRITE TRUTH TABLE

GW	BW	WEa	WEb	WEc	WEd	Operation
Н	Н	X	X	X	X	READ
Н	L	Н	Н	Н	Н	READ
Н	L	L	Н	Н	Н	WRITE BYTE a
Н	L	Н	L	Н	Н	WRITE BYTE b
Н	L	Н	Н	L	L	WRITE BYTE c and d
Н	L	L	L	L	L	WRITE ALL BYTEs
L	X	X	Х	Х	X	WRITE ALL BYTEs

NOTE: 1. X means "Don't Care".

2. All inputs in this table must meet setup and hold time around the rising edge of CLK(1).

ABSOLUTE MAXIMUM RATINGS*

Parameter	Symbol	Rating	Unit
Voltage on VDD Supply Relative to Vss	VDD	-0.3 to 4.6	V
Voltage on VDDQ Supply Relative to Vss	VDDQ	VDD	V
Voltage on Input Pin Relative to Vss	VIN	-0.3 to 6.0	V
Voltage on I/O Pin Relative to Vss	Vio	-0.3 to VDDQ+0.5	V
Power Dissipation	PD	1.2	W
Storage Temperature	Tstg	-65 to 150	°C
Operating Temperature	Topr	0 to 70	°C
Storage Temperature Range Under Bias	TBIAS	-10 to 85	°C

*NOTE: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING CONDITIONS(0°C≤ TA≤70°C)

Parameter	Symbol	Min	Тур.	Max	Unit
Supply Voltage	VDD	3.13	3.3	3.47	V
Supply Voltage	VDDQ	3.13	3.3	3.47	V
Ground	Vss	0	0	0	V

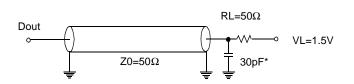
CAPACITANCE*(TA=25°C, f=1MHz)

Parameter	Symbol	Test Condition	Min	Max	Unit
Input Capacitance	Cin	VIN=0V	-	5	pF
Output Capacitance	Соит	Vout=0V	-	8	pF

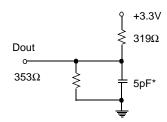
^{*}NOTE: Sampled not 100% tested.

TEST CONDITIONS(TA=0 to 70°C, VDD=3.3V±5%, unless otherwise specified)

Parameter	Value
Input Pulse Level	0 to 3V
Input Rise and Fall Time(Measured at 0.3V and 2.7V)	2ns
Input and Output Timing Reference Levels	1.5V
Output Load	See Fig. 1


DC ELECTRICAL CHARACTERISTICS(TA=0 to 70°C, VDD=3.3V±5%)

Parameter	Symbol	Test Conditions	Min	Max	Unit	
Input Leakage Current(except ZZ)	lıL	VDD=Max , VIN=Vss to VDD	-2	+2	μΑ	
Output Leakage Current	loL	Output Disabled, Vout=Vss to VDDQ	abled, Vout=Vss to VDDQ			μΑ
Operating Current	Icc	Device Selected, Iouт=0mA, ZZ≤VIL,	-8	-	330	mA
		All Inputs=VIL or VIH	-9	-	330	
		Cycle Time≥tcyc min	-10	-	300	
Standby Current	IsB	Device deselected, IOUT=0mA,	-8	-	80	mA
		ZZ≤Vı∟, f=Max,	-9	-	80	
		All Inputs≤0.2V or≥VDD-0.2V	-10	-	60	
	ISB1	Device deselected, IouT=0mA, ZZ≤0.2V, f=0, All Inputs=fixed (VDD-0.2V or 0.2V)		-	10	mA
	ISB2	Device deselected, Iouт=0mA, ZZ≥Vdd-0.2V, f=Max, All Inputs≤ViL or≥ViH	-	10	mA	
Output Low Voltage	Vol	IoL = 8.0mA		-	0.4	V
Output High Voltage	Voн	IOH = -4.0mA		2.4	-	٧
Input Low Voltage	VIL			-0.5*	0.8	V
Input High Voltage	ViH			2.2	5.5**	V


^{*} V_{IL}(Min)=-3.0(Pulse Width≤20ns) ** In Case of I/O Pins, the Max. V_{IH}=V_{DDQ}+0.5V

Output Load(A)

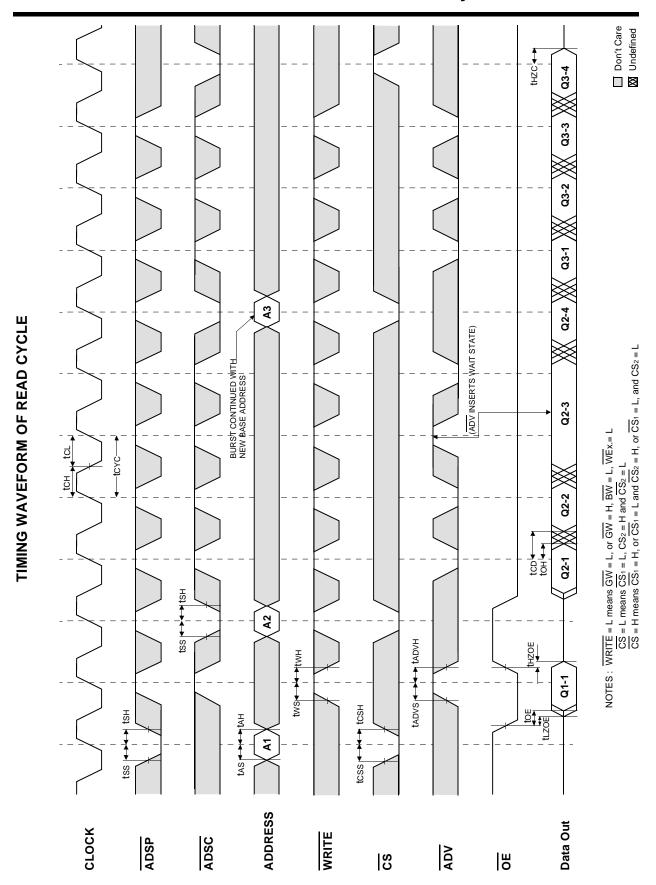
* Capacitive Load consists of all components of the test environment.

Output Load(B) (for tLZC, tLZOE, tHZOE & tHZC)

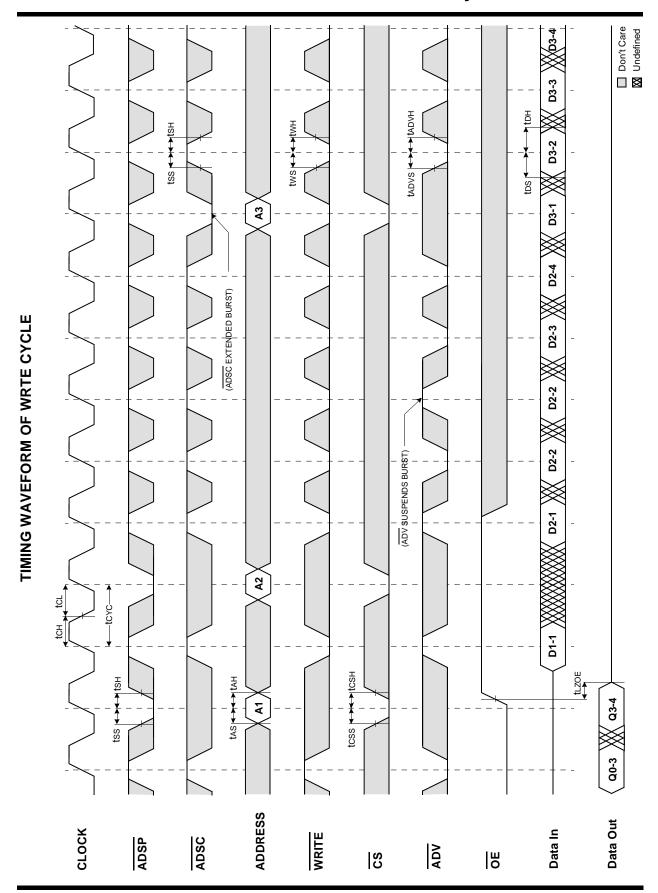
* Including Scope and Jig Capacitance

AC TIMING CHARACTERISTICS(TA=0 to 70°C, VDD=3.3V±5%)

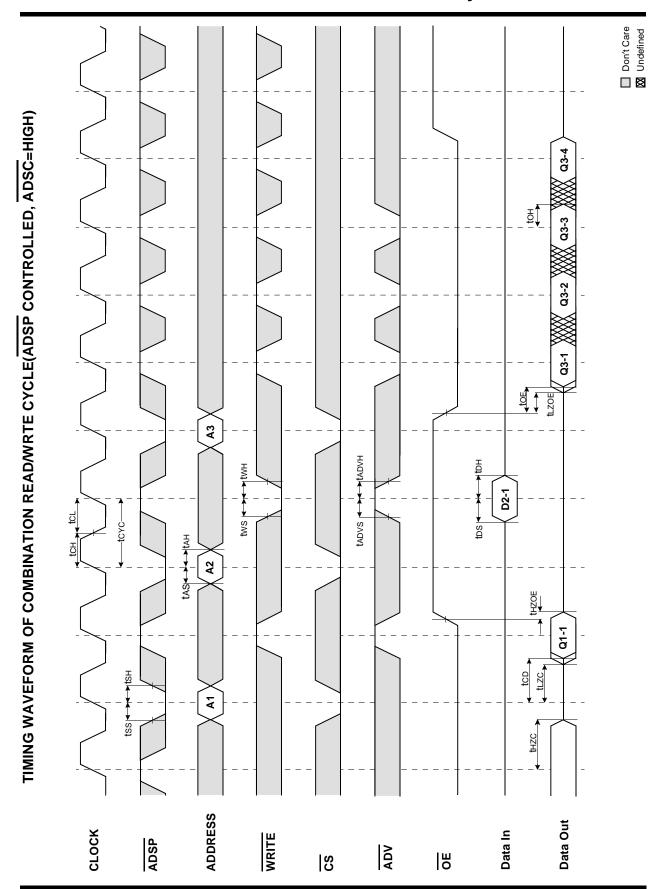
Danamatan	Symbol	KM736	SV687-8	KM736	V687-9	KM736	V687-10	Unit
Parameter		Min	Max	Min	Max	Min	Max	
Cycle Time	tcyc	12	-	12	-	15	-	ns
Clock Access Time	tcD	-	8.5	-	9	-	10	ns
Output Enable to Data Valid	toe	-	4	-	4	-	5	ns
Clock High to Output Low-Z	tLZC	4	-	4	-	6	-	ns
Output Hold from Clock High	tон	3	-	3	-	3	-	ns
Output Enable Low to Output Low-Z	tlzoe	0	-	0	-	0	-	ns
Output Enable High to Output High-Z	tHZOE	2	5	2	5	2	5	ns
Clock High to Output High-Z	tHZC	-	5	-	5	-	6	ns
Clock High Pulse Width	tch	4	-	4	-	5	-	ns
Clock Low Pulse Width	tcl	4	-	4	-	5	-	ns
Address Setup to Clock High	tas	2.5	-	2.5	-	2.5	-	ns
Address Status Setup to Clock High	tss	2.5	-	2.5	-	2.5	-	ns
Data Setup to Clock High	tDS	2.5	-	2.5	-	2.5	-	ns
Write Setup to Clock High	tws	2.5	-	2.5	-	2.5	-	ns
Address/Advance Setup to Clock High	tadvs	2.5	-	2.5	-	2.5	-	ns
Chip Select Setup to Clock High	tcss	2.5	-	2.5	-	2.5	-	ns
Address Hold from Clock High	tah	0.5	-	0.5	-	0.5	-	ns
Address Status Hold from Clock High	tsh	0.5	-	0.5	-	0.5	-	ns
Data Hold from Clock High	tDH	0.5	-	0.5	-	0.5	-	ns
Write Hold from Clock High	twn	0.5	-	0.5	-	0.5	-	ns
Address Advance Hold from Clock High	tadvh	0.5	-	0.5	-	0.5	-	ns
Chip Select Hold from Clock High	tcsh	0.5	-	0.5	-	0.5	-	ns
ZZ High to Power Down	tpds	2	-	2	-	2	-	cycle
ZZ Low to Power Up	tpus	2	-	2	-	2	-	cycle

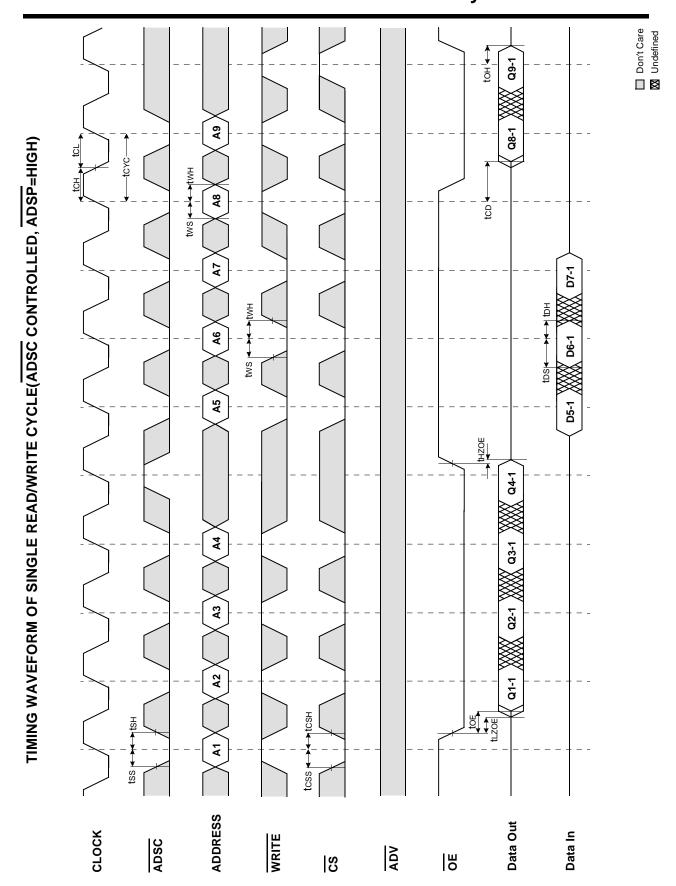

Fig. 1

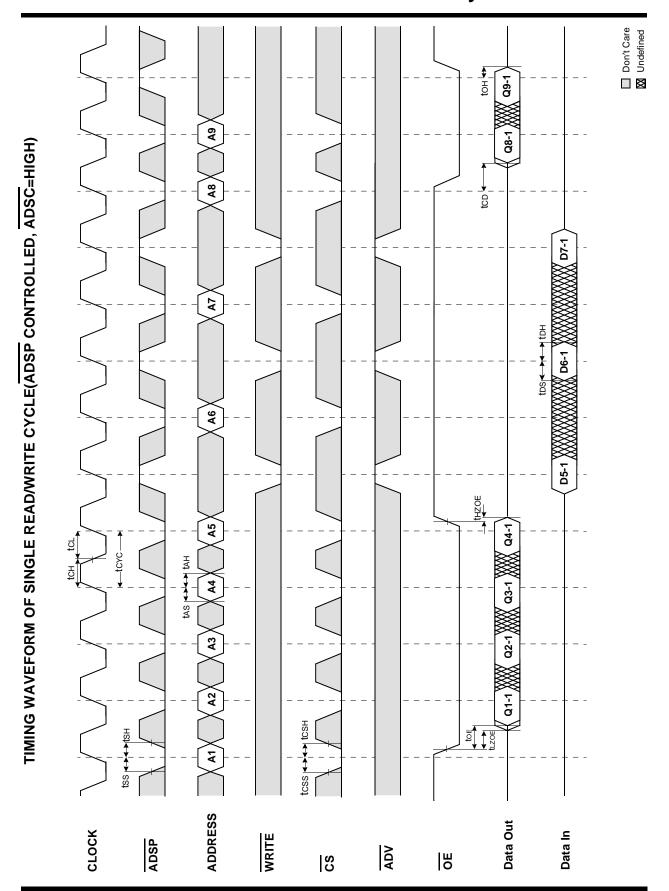
NOTE: 1. All address inputs must meet the specified setup and hold times for all rising clock edges whenever ADSC and/or ADSP is sampled low and CS is sampled low. All other synchronous inputs must meet the specified setup and hold times whenever this device is chip selected.

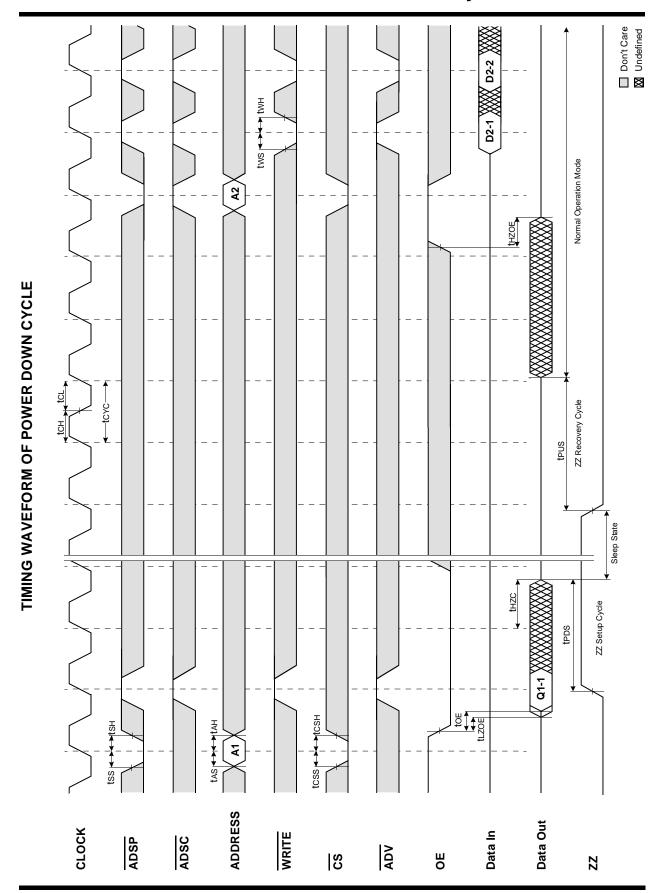

2. Both chip selects must be active whenever ADSC or ADSP is sampled low in order for the this device to remain enabled.

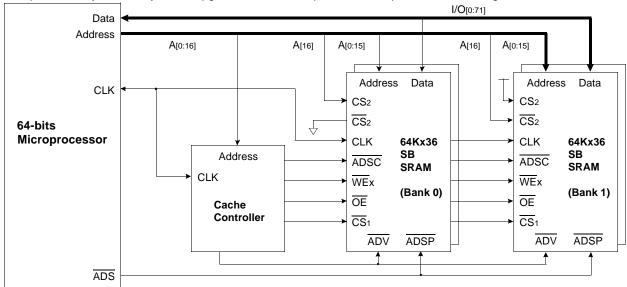
3. ADSC or ADSP must not be asserted for at least 2 Clock after leaving ZZ state.



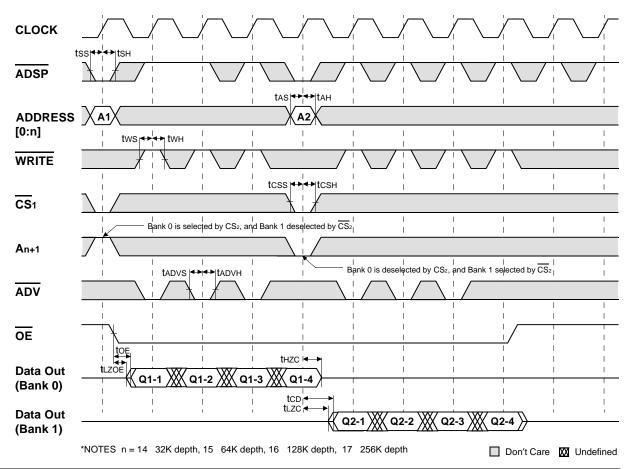








APPLICATION INFORMATION


DEPTH EXPANSION

The Samsung 64Kx36 Synchronous Burst SRAM has two additional chip selects for simple depth expansion. This permits easy secondary cache upgrades from 64K depth to 128K depth without extra logic.

^{*} Please refer to attached timing diagram 1

INTERLEAVE READ TIMING (Refer to non-interleave write timing for interleave write timing)

PACKAGE DIMENSIONS

100-TQFP-1420A Units Inches(millimeters) 0~8° 22.00 ±0.30 20.00 ±0.20 0.127 + 0.10 16.00 ±0.30 □ 0.10 MAX 14.00 ±0.20 (0.83) 0.50 ±0.10 0.30 ±0.10 (0.58)⊕0.10 MAX 1.40 ±0.10 1.60 MAX

0.05 MIN

