PbS Photoconductive Cells

Easy-to-Use Photoconductive Detectors with High Responsivity Over 3 μ m

PbS cells make use of the photoconductive effect by which the electrical resistance decreases with application of infrared radiation

Operates at Room Temperature

Since PbS cells operate stably at room temperature, they are used in a wide range of applications such as radiation thermometers and flame monitors. (Cooled types are also available for precision photometry.)

High Responsivity

Lower Temperature Detection Limit: Approx. 100°C

Noncooled Types

These devices can stably operate at room temperature, making them easy to use in diverse fields.

Multielement Types

Multielement types are provided as standard items, including a 256element linear array (P4248-256) that achieves high resolution.

SPECIFICATIONS (Common)

Peak wavelength	2.2 μ m (element temperature 25°C) 2.9 μ m (element temperature 25°C)						
Cutoff Wavelength							
337' 1- 36-41	Borosilicate glass						
Window Material	Sapphire glass (P2682 series, P5168						
Thermistor Allowable Dissipation	0.2 mW						
Peltier Element Allowable	1.5 A (one-stage TE-cooled types)						
Current	1 A (two-stage TE-cooled types)						
Maximum Supply Voltage	100 V						

Cooled Types

Thermoelectrically-cooled devices and glass dewar devices are available. Cooling a PbS cells enhances the responsivity and improves the S/N ratio, thus cooled types are widely used in precision photometry for applications such as in analytical instruments.

Operating Temperature	−30 to +50°C
Storage Temperature	-55 to +50℃

ACCESSORIES (Optional)

Heatsink for one-stage TE-cooled types : A3179 Heatsink for two-stage TE-cooled types : A3179-01 Temperature controller for TE-cooled types: C1103-04 Preamplifier for PbS/PbSe cells : C3757-02 : A3262-02 Housing for glass dewar devices

(Typical data unless otherwise specified)

Type No.	Outline No. (P.32—34)		Active Area	Element Tempera- ture	Photo Sensitivity S		Noise® N		D*(500, 600, 1)		D*	Diag Tierra	Dont	
					at λρ Vs=15V		Turn	May	Min	T	(λp,600,1)	Rise Time tr 0 to 63%	Dark Resistance Rd	
						Min.	Тур.	Тур.	Max.	Min.	Тур.	Тур.	0 10 63%	nu l
			(mm)	(℃)	(V/W)	(μV)	(μV)	(μV)	(μV)	(cm•Hz1/2/W)	(cm•Hz1°2/W)	(cm•Hz1/2/W)	(μs)	(MΩ)
Noncooled	Types													
P394A		2-pin TO-5	2×5	25	5×10 ⁴	100	250	2	4	5×108	1×109	1×10 ¹¹	50 to 200	0.1 to 1.5
P3258-02	©	2-pin TO-5	2×2	25	5×10⁴	100	250	2	4	5×10 ⁸	1×10 ⁹	1×10 ¹¹	50 to 200	0.5 to 2.5
P3258-03	1	2-pin TO-5	3×3	25	5×10 ⁴	100	250	2	4	5×10 ⁸	1×109	1×10 ¹¹	50 to 200	0.5 to 2.5
P3226-02	•	2-pin TO-5	1.5×1.5©	25	1.5×10 ⁵	1500	2000	2	4	5×10 ⁸	1×109	1×10 ¹¹	50 to 200	0.3 to 2
P397	₽	2-pin TO-8	4×5	25	3×10 ⁴	100	250	2	4	2×10 ⁸	5×10 ⁸	5×10 ¹⁰	50 to 200	0.3 to 2
Multielemen	t Types											=		
P4248-256	(Ceramic Pin-grid array	0.08×0.2 (256 element)	25	1×10 ⁷	80	150	20	40	5×10 ⁸	1×10 ⁹	1×10 ¹¹	50 to 200	0.5 to 4
P3210-16	3	4-pin DIP	(16 element)	25	4×10⁵	100	200	4	8	5×10 ⁸	1×10 ⁹	1×10 ¹¹	50 to 200	0.5 to 2.5
One-stage 1	Thermoe	lectrically-	cooled Type	es										
P2532	8	6-pin TO-8	1×3	-10	6×10 ⁵	300	750	4	8	1×10 ⁹	2×109	2×10 ¹¹	200 to 600	0.3 to 5
P2532-01		6-pin TO-8	4×5	-10	9×10 ⁴	300	750	4	8	5×10 ⁸	1×10 ⁹	1×10 ¹¹	200 to 600	0.5 to 10
Two-stage	Thermo	electrically-	cooled Type	es										
P2682	40	6-pin TO-8	1×3	-20	1×10 ⁶	600	1500	5	10	2×10 ⁹	4×109	4×10 ¹¹	200 to 600	1 to 10
P2682-01	_ •	6-pin TO-8	4×5	-20	2×10 ⁵	600	1500	5	10	8×10 ⁸	2×10 ⁹	2×10 ¹¹	200 to 600	1 to 10
Glass Dewa	r Types													
P5168®	•	Glass dewar	2×10	—77	3×10 ⁶	10000	20000	3	6	1×10 ¹⁰	2×10 ¹⁰	1×10 ¹²	2 to 10(ms)	0.5 to 10
A Light source . 500 K blackbody														

Incident energy

Nearly equal to the element dark resistance 4.8 µW/cm²

Spectral Response 1.0 to 3.6 μ m

Spectral Response

● S/N Ratio vs. Supply Voltage

If a voltage higher than 60V is applied, the noise increases exponentially, degrading the S/N ratio The device should be operated at 60V or less

S/N Ratio vs. Chopping Frequency

Increasing the chopping frequency reduces the 1/f noise and results in an improved S/N ratio. The S/N ratio can also be improved by narrowing the noise bandwidth using a lock-in amplifier.

• Responsivity vs. Temperature

Cooling the device enhances its responsivity But the responsivity also depends on the load resistance in the circuit

Dark Resistance, Rise Time vs. Temperature

Linearity

When making the incident light spot is smaller than the active area, the upper limit of the linearity becomes lower.

Connection Example

KIRDC0003EA