PRELIMINARY PRODUCT INFORMATION

MOS INTEGRATED CIRCUIT μ PD78F4225Y

16/8-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD78F4225Y is a product in the μ PD784225Y subseries in the 78K/IV series.

The μ PD78F4225Y has a flash memory in the place of the internal ROM of the μ PD784225Y. Data can be written to or erased from the flash memory of the μ PD78F4225F with the microcontroller mounted on a printed wiring board.

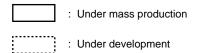
The μ PD78F4225Y is based on the μ PD78F4225 with an I²C bus control function appended, and is ideal for applications in audio visual.

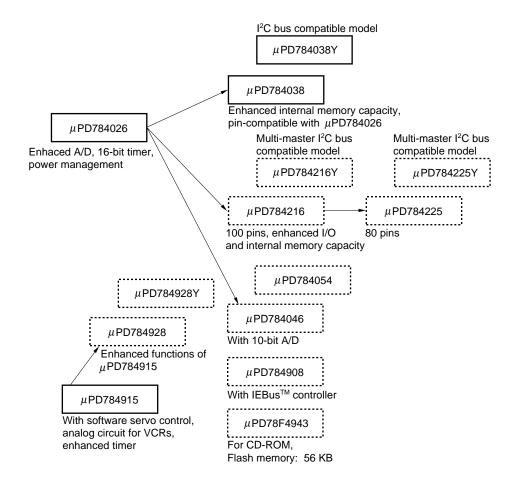
The functions are explained in detail in the following user's manuals. Be sure to read this manual when designing your system.

 μ PD784225, 784225Y Subseries User's Manual - Hardware : Planned 78K/IV Series User's Manual - Instruction : U10905E

FEATURES

- I²C bus serial interface supporting multi task
- Pin-compatible with mask ROM model (except VPP pin)
- Flash memory: 128K bytes
- Internal RAM: 4352 bytes
- Same operating voltage as mask ROM model: VDD = 1.8 to 5.5 V


ORDERING INFORMATION


Part Number	Package
μPD78F4225YGC-8BT	80-pin plastic QFP (14 × 14 mm)
μ PD78F4225YGK-BE9	80-pin plastic TQFP (fine pitch) (12 \times 12 mm)

The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.

78K/IV Series Product Development

FUNCTIONS

Item		Function						
Number of basic instructions (mnemonics)		113						
General-purpose register		8 bits × 16 registers ×	8 bits × 16 registers × 8 banks, or 16 bits × 8 registers × 8 banks (memory mapping)					
Minimum instructime	tion execution		ns/1280 ns/2560 ns (main system ock: fxx = 32.768 KHz)	n clock: fxx = 12.5 MHz)				
Internal	Flash memory	128 KBytes						
memory	RAM	4352 Bytes						
Memory space		1 MB with program an	d data spaces combined					
I/O port	Total	67						
	CMOS Input	8						
	CMOS I/O	59						
Pins with ancillary	Pins with pull-up resistor	57						
functionsNote	LEDs direct drive output	16						
Real-time output	t port	4 bits \times 2, or 8 bits \times 1						
Timer/counter		16-bit timer/counter:	timer register \times 1 Capture/compare register \times 2	Pulse output PWM/PPG output Square wave output One-shot pulse output				
		8-bit timer/counter 1 :	timer register \times 1 Compare register \times 1	Pulse output • PWM output • Square wave output				
		8-bit timer/counter 2 :	timer register \times 1 Compare register \times 1	Pulse output • PWM output • Square wave output				
		8-bit timer/counter 5: timer register × 1 Compare register × 1						
		8-bit timer/counter 6 :	8-bit timer/counter 6 : timer register × 1 Compare register × 1					
Serial interface		UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator) CSI (3-wire serial I/O, I ² C bus supporting multi master): 1 channel						
A/D converter		8-bit resolution × 8 channels						
D/A converter		8-bit resolution × 2 channels						
Clock output		Selectable from fxx, fxx/2, fxx/2 ² , fxx/2 ³ , fxx/2 ⁴ , fxx/2 ⁵ , fxx/2 ⁶ , fxx/2 ⁷ , fxt						
Buzzer output		Selectable from fxx/2 ¹⁰ , fxx/2 ¹¹ , fxx/2 ¹² , fxx/2 ¹³						
Watch timer		1 channel						
Watchdog timer		1 channel						
Standby		HALT/STOP/IDLE mode						
lata munit	Handwan:	In power-saving mode (with subsystem clock): HALT/IDLE mode OF (integral, 40 systemal, 7)						
Interrupt Hardware Software Non-maskable Maskable		25 (internal: 18, external: 7)						
		BRK instruction, BRKCS instruction, operand error						
		Internal: 1, external: 1						
		Internal: 17, external: 6						
		4 programmable priority levels 3 service modes: vectored interrupt/macro service/context switching						
Supply voltage		V _{DD} = 1.8 to 5.5 V						
Package		 80-pin plastic QFP (14 × 14 mm) 80-pin plastic TQFP (fine pitch) (12 × 12 mm) 						

 $\textbf{Note} \hspace{0.2cm} \textbf{The pins with ancillary functions are included in the I/O pins.} \\$

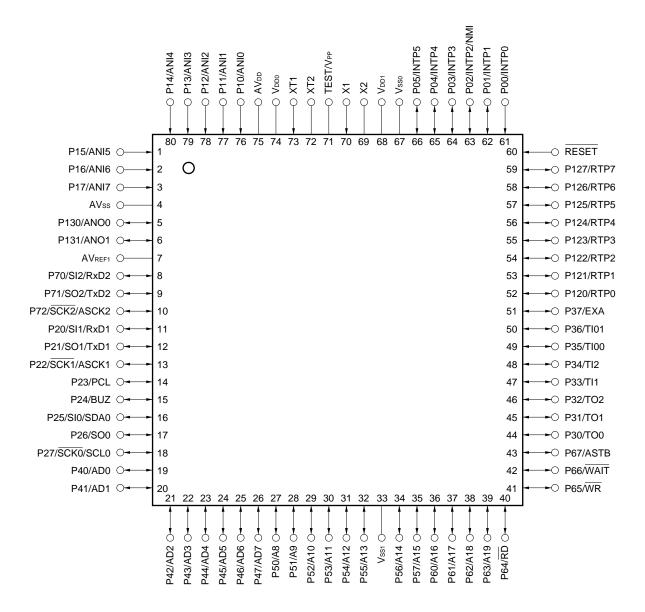
CONTENTS

1.	DIFFERENCES AMONG MODELS IN μ PD784225Y SUBSERIES	5
2.	PIN CONFIGURATION (Top View)	6
3.	BLOCK DIAGRAM	8
	PIN FUNCTION	9
	 4.2 Pins Other Than Port Pins	
5.	INTERNAL MEMORY SIZE SELECT REGISTER (IMS)	16
	FLASH MEMORY PROGRAMMING	17 18
7.	PACKAGE DRAWINGS	20
ΑP	PENDIX A. DEVELOPMENT TOOLS	22
۸DI	DENDLY B. DELATED DOCUMENTS	24

1. DIFFERENCES AMONG MODELS IN μ PD784225Y SUBSERIES

The only difference among the μ PD784224Y and 784225Y lies in the internal memory capacity.

The μ PD78P4225Y is provided with a 128-KB flash memory instead of the mask ROM of the above models. These differences are summarized in Table 1-1.


Table 1-1. Differences among Models in μ PD784225Y Subseries

Part Number Item	μPD784224Y	μPD784225Y	μPD78F4225Y	
Internal ROM	96 KBytes 128 KBytes (mask ROM) (mask ROM)		128 KBytes (flash memory)	
Internal RAM	3584 Bytes	4352 Bytes		
Internal memory size switching register (IMS)	None	Provided		
V _{PP} pin	None	Provided		

2. PIN CONFIGURATION (Top View)

- 80-pin plastic QFP (14 \times 14 mm) μ PD78F4225YGC-8BT
- 80-pin plastic TQFP (fine pitch) (12 \times 12 mm) μ PD78F4225YGK-BE9

Notes 1. Directly connect the TEST/V_{PP} pin to V_{SS0} in normal operation mode.

2. Connect the AVss pin to Vsso.

Remark When using in applications where noise from inside the microcomputer has to be reduced, it is recommended to take countermeasures against noise such as supplying power to VDD0 and VDD1 independently, and connecting Vss0 and Vss1 to different ground lines.

A8-A19 : Address Bus P130, P131 : Port13

AD0-AD7 : Address/Data Bus PCL : Programmable Clock

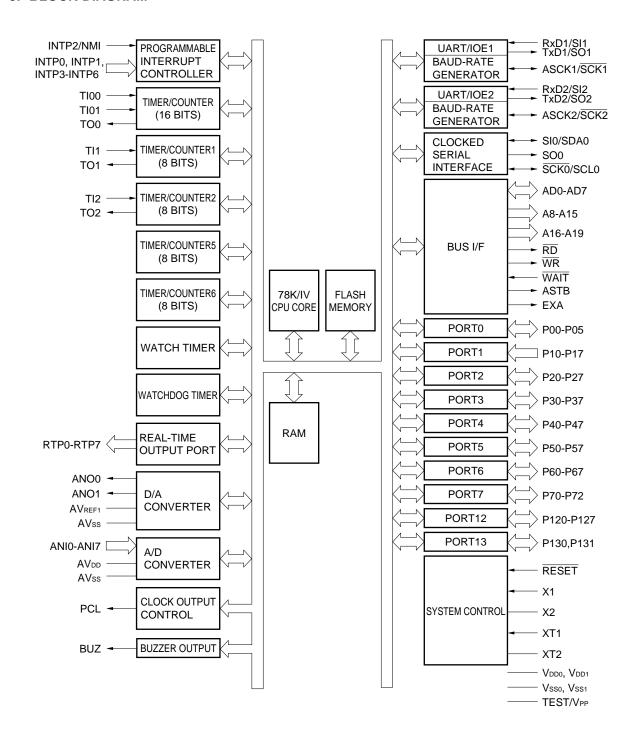
ASCK1, ASCK2 : Asynchronous Serial Clock RTP0-RTP7 : Real-time Output Port

ASTB : Address Strobe RxD1, RxD2 Receive Data AV_{DD} : Analog Power Supply SCK0-SCK2 Serial Clock AV_{REF1} : Analog Reference Voltage SCL0 Serial Clock **AVss** : Analog Ground SDA0 : Serial Data BUZ : Buzzer Clock SI0-SI2 Serial Input EXA : External Access Status Output SO0-SO2 Serial Output

INTP0-INTP5 : Interrupt from Peripherals TEST : Test

: Non-maskable Interrupt NMI TI00, TI01, TI1-TI2 : Timer Input P00-P05 : Port0 TO0-TO2 Timer Output P10-P17 : Port1 TxD1, TxD2 Transmit Data P20-P27 : Port2 VDD0, VDD1 **Power Supply**

P30-P37 : Port3 VPP : Programming Power Supply


P40-P47 : Port4 V_{SS0}, V_{SS1} : Ground P50-P57 : Port5 \overline{WAIT} : Wait

P60-P67 : Port6 \overline{WR} : Write Strobe

P70-P72 : Port7 X1, X2 : Crystal (Main System Clock)
P120-P127 : Port12 XT1, XT2 : Crystal (Subsystem Clock)

3. BLOCK DIAGRAM

4. PIN FUNCTION

4.1 Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function
P00	I/O	INTP0	Port 0 (P0):
P01]	INTP1	6-bit I/O port
P02]	INTP2/NMI	Can be set in input or output mode bit-wise. Pins set in input mode can be connected to internal pull-up
P03		INTP3	resistors by software bit-wise.
P04		INTP4	7
P05]	INTP5	7
P10-P17	Input	ANIO-ANI7	Port 1 (P1): • 8-bit input port
P20	I/O	RxD1/SI1	Port 2 (P2):
P21		TxD1/SO1	8-bit I/O port
P22		ASCK1/SCK1	Can be set in input or output mode bit-wise. Pins set in input mode can be connected to internal pull-up
P23		PCL	resistors by software bit-wise.
P24]	BUZ	7
P25		SI0/SDA0	7
P26		SO0	7
P27		SCK0/SCL0	7
P30	I/O	TO0	Port 3 (P3):
P31]	TO1	8-bit I/O port
P32		TO2	Can be set in input or output mode bit-wise. Pins set in input mode can be connected to internal pull-up
P33		TI1	resistors by software bit-wise.
P34		TI2	1
P35		TI00	7
P36]	TI01	7
P37]	EXA	
P40-P47	I/O	AD0-AD7	Port 4 (P4): • 8-bit I/O port • Can be set in input or output mode bit-wise. • All pins set in input mode can be connected to internal pull-up resistors by software. • Can drive LEDs.
P50-P57	I/O	A8-A15	Port 5 (P5): • 8-bit I/O port • Can be set in input or output mode bit-wise. • All pins set in input mode can be connected to internal pull-up resistors by software. • Can drive LEDs.

4.1 Port Pins (2/2)

Pin Name	I/O	Alternate Function	Function
P60	I/O	A16	Port 6 (P6):
P61		A17	8-bit I/O port Con be get in input or output mode hit wice.
P62		A18	Can be set in input or output mode bit-wise. All pins set in input mode can be connected to internal pull-up
P64		RD	resistors by software.
P65		WR	
P66		WAIT	
P67		ASTB	
P70	I/O	RxD2/SI2	Port 7 (P7): • 3-bit I/O port
P71		TxD2/SO2	Can be set in input or output mode bit-wise. Pins set in input mode can be connected to internal pull-up resistor
P72		ASCK2/SCK2	by software bit-wise.
P120-P127	I/O	RTP0-RTP7	Port 12 (P12): • 8-bit I/O port • Can be set in input or output mode bit-wise. • Pins set in input mode can be connected to internal pull-up resistor by software bit-wise.
P130, P131	I/O	ANO0, ANO1	Port 13 (P13): • 2-bit I/O port • Can be set in input or output mode bit-wise.

4.2 Pins Other Than Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function	
TI00	Input	P35	External count clock input to 16-bit timer register	
TI01		P36	Capture trigger signal input to capture/compare register 00	
TI1		P33	External count clock input to 8-bit timer register 1	
TI2		P34	External count clock input to 8-bit timer register 2	
TO0	Output	P30	16-bit timer output (shared by 14-bit PWM output)	
TO1		P31	8-bit timer output (shared by 8-bit PWM output)	
TO2		P32		
RxD1	Input	P20/SI1	Serial data input (UART1)	
RxD2		P70/SI2	Serial data input (UART2)	
TxD1	Output	P21/SO1	Serial data output (UART1)	
TxD2		P71/SO2	Serial data output (UART2)	
ASCK1	Intput	P22/SCK1	Baud rate clock input (UART1)	
ASCK2		P72/SCK2	Baud rate clock input (UART2)	
SI0	Input	P25/SDA0	Serial data input (3-wire serial clock I/O0)	
SI1		P20/RxD1	Serial data input (3-wire serial clock I/O1)	
SI2		P70/RxD2	Serial data input (3-wire serial clock I/O2)	
SO0	Output	P26	Serial data output (3-wire serial I/O0)	
SO1		P21/TxD1	Serial data output (3-wire serial I/O1)	
SO2		P71/TxD2	Serial data output (3-wire serial I/O2)	
SDA0	I/O	P25/SI0	Serial data input/output (I ² C bus)	
SCK0	I/O	P27/SCL0	Serial clock input/output (3-wire serial I/O0)	
SCK1		P22/ASCK1	Serial clock input/output (3-wire serial I/O1)	
SCK2		P72/ASCK2	Serial clock input/output (3-wire serial I/O2)	
SCL0		P27/SCK0	Serial clock input/output (I ² C bus)	
NMI	Input	P02/INTP2	Non-maskable interrupt request input	
INTP0		P00	External interrupt request input	
INTP1		P01		
INTP2		P02/NMI		
INTP3		P03		
INTP4		P04		
INTP5		P05		
PCL	Output	P23	Clock output (for trimming main system clock and subsystem clock)	
BUZ	Output	P24	Buzzer output	
RTP0-RTP7	Output	P120-P127	Real-time output port that outputs data in synchronization with trigger	
AD0-AD7	I/O	P40-P47	Low-order address/data bus when external memory is connected	
A8-A15	Output	P50-P57	Middle-order address bus when external memory is connected	
A16-A19		P60-P63	High-order address bus when external memory is connected	
RD	Output	P64	Strobe signal output for read operation of external memory	
WR		P65	Strobe signal output for write operation of external memory	

4.2 Pins Other Than Port Pins (2/2)

Pin Name	I/O	Alternate Function	Function
WAIT	Input	P66	To insert wait state(s) when external memory is accessed
ASTB	Output	P67	Strobe output to externally latch address information output to ports 4 through 6 to access external memory
EXA	Output	P37	External access status output
RESET	Input	_	System reset input
X1	Input	_	To connect main system clock oscillation crystal
X2	_		
XT1	Input	_	To connect subsystem clock oscillation crystal
XT2	_		
ANI0-ANI7	Input	P10-P17	Analog voltage input for A/D converter
ANO0, ANO1	Output	P130, P131	Analog voltage output for D/A converter
AV _{REF1}	_	_	To apply reference voltage for D/A converter
AV _{DD}			Positive power supply for A/D converter. Connected to VDDO.
AVss			GND for A/D converter and D/A converter. Connected to Vsso.
V _{DD0}			Positive power supply for port block
Vsso			GND potential for port block
V _{DD1}			Positive power supply (except port block)
Vss1			GND potential (except port block)
TEST		VPP	Directly connect this pin to Vss (this pin is for IC test).
V _{PP}		TEST	Sets flash memory programming mode. To apply a high voltage when program is written or verified.

4.3 I/O Circuit Type of Respective Pins and Recommended Connections of Unused Pins

Table 4-1 shows symbols indicating the I/O circuit types of the respective pins and the recommended connection of unused pins.

For the circuit diagram of each type of I/O circuit, refer to Figure 4-1.

Table 4-1. I/O Circuit Type of Respective Pins and Recommended Connections of Unused Pins (1/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connections of Unused Pins
P00/INTP0	8-C	I/O	Input : Individually connected to Vsso via resistor
P01/INTP1			Output: Open
P02/INTP2/NMI			
P03/INTP3-P05/INTP5			
P10/ANI0-P17/ANI7	9	Input	Connected to Vsso or VDD0
P20/RxD1/SI1	10-B	I/O	Input : Individually connected to Vsso via resistor
P21/TxD1/SO1			Output: Open
P22/ASCK1/SCK1			
P23/PCL			
P24/BUZ			
P25/SDA0/SI0			
P26/SO0			
P27/SCL0/SCK0			
P30/T00-P32/T02	8-C		
P33/TI1, P34/TI2			
P35/TI00, P36/TI01			
P37/EXA			
P40/AD0-P47/AD7	5-H		
P50/A8-P57/A15			
P60/A16-P63/A19			
P64/RD			
P65/WR			
P66/WAIT			
P67/ASTB			
P70/RxD2/SI2	8-C		
P71/TxD2/SO2			
P72/ASCK2/SCK2			
P120/RTP0-P127/RTP7			
P130/ANO0, P131/ANO1	12-C		

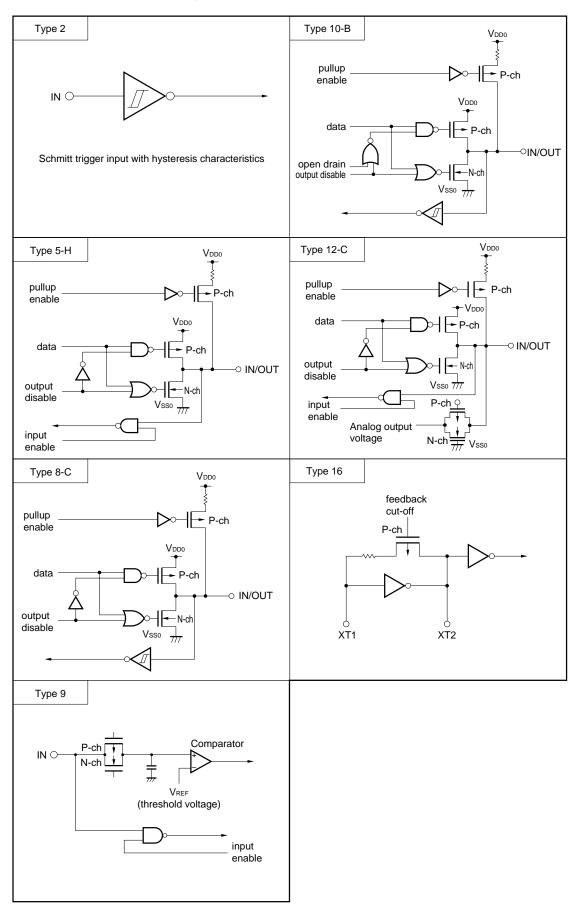


Table 4-1. I/O Circuit Type of Respective Pins and Recommended Connections of Unused Pins (2/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connections of Unused Pins
RESET	2	Input	_
XT1	16		Connected to Vsso
XT2		_	Open
AV _{REF1}	_		Connected to VDD0
AVDD			
AVss			Connected to Vsso
TEST/V _{PP}			Directly connected to Vsso

Remark Because the circuit type numbers are standardized among the 78K series products, they are not sequential in some models (i.e., some circuits are not provided).

Figure 4-1. Types of Pin I/O Circuits

5. INTERNAL MEMORY SIZE SELECT REGISTER (IMS)

The IMS is a register that prevents by software a part of the internal memory from being used. By using this register, the memory of the μ PD78F4225Y can be mapped in the same manner as a mask ROM model with different internal memory (ROM and RAM) capacity.

This register is set by using an 8-bit memory manipulation instruction.

Its value is set to FFH by RESET input.

Figure 5-1. Format of Internal Memory Size Select Register (IMS)

Addres	s: 0FFFCH	At re	set: FFH	W				
	7	6	5	4	3	2	1	0
IMS	1	1	ROM1	ROM0	1	1	RAM1	RAM0

ROM1	ROM0	Selects internal ROM capacity
0	0	48K bytes
0	1	64K bytes
1	0	96K bytes
1	1	128K bytes

RAM1	RAM0	Selects peripheral RAM capacity	
0	0	1536 bytes	
0	1	2304 bytes	
1	0	3072 bytes	
1	1	3840 bytes	

Caution IMS is not provided on the mask ROM models (μ PD784224Y and 784225Y).

The value to be set to the IMS to map the memory of the μ PD78F4225Y in the same manner as the mask ROM model is shown in Table 5-1.

Table 5-1. Set Value of Internal Memory Size Select Register (IMS)

Mask ROM Model	Set Value of IMS	
μPD784225Y	EEH	
μPD784226Y	FFH	

6. PROGRAMMING FLASH MEMORY

The flash memory can be written with the μ PD78F4225Y mounted on the target board (on-board). To do so, connect a dedicated flash writer (Flashpro II) to the host machine and target system.

Remark Flashpro II is a product of Naito Densei Machida Mfg. Co., Ltd.

6.1 Selecting Communication Mode

To write the flash memory, use Flashpro II and serial communication. Select a serial communication mode from those listed in Table 6-1 in the format shown in Figure 6-1. Each communication mode is selected by the number of VPP pulses shown in Table 6-1.

Communication Mode Number of Channels Pins Used Number of VPP Pulses 3-wire serial I/O 3 SCK0/SCL0/P27 SO0/P26 SI0/SDA0/P25 SCK1/ASCK1/P22 1 SO1/TxD1/P21 SI1/RxD1/P20 SCK2/ASCK2/P72 2 SO2/TxD2/P71 SI2/RxD2/P70 I²C bus 1 SCL0/SCK0/P27 4 SDA0/SI0/P25 **UART** 2 TxD1/SO1/P21 8 RxD1/SI1/P20 9 TxD2/SO2/P71 RxD2/SI2/P70 Psendo-3-wire serial P32/TO2 12 I/ONote (serial clock I/O) P31/T01 (serial data output) P30/TO0 (serial data output)

Table 6-1. Communication Modes

Note Performs serial transfer by controlling port by software.

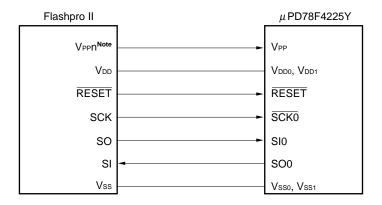
Caution Be sure to select a communication mode with the number of VPP pulses shown in Table 6-1.

VPP VDD 1 2 NDD NSS VSS VDD VSS

Figure 6-1. Communication Mode Selecting Format

6.2 Flash Memory Programming Function

The flash memory is written by transferring or receiving commands and data in a selected communication mode. The major functions of flush memory programming are listed in Table 6-2.


Table 6-2. Major Functions of Flash Memory Programming

Function	Description		
Batch erasure	Erases all contents of memory.		
Block erasure	Erases contents of specified memory block.		
Batch blank check	Checks erased status of entire memory.		
Block blank check	Checks erased status of specified block		
Data write	Writes flash memory based on write start address and number of data to be written (in bytes).		
Batch verify	Compares all contents of memory with input data.		
Block verify	Compares contents of specified memory block with input data.		

6.3 Connecting Flashpro II

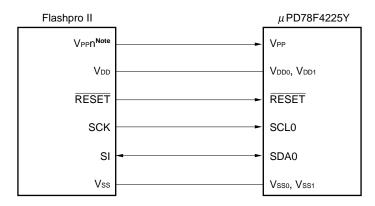

The Flashpro II and μ PD78F4225Y are connected differently depending on the selected communication mode. Figures 6-2 through 6-5 show the connections in the respective communication modes.

Figure 6-2. Connection of Flashpro II in 3-Wire Serial I/O Mode (When Using 3-Wire Serial I/O 0)

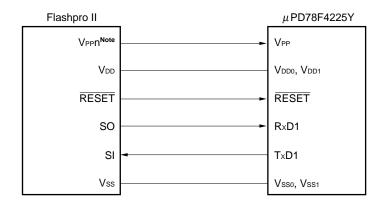

Note n = 1, 2

Figure 6-3. Connection of Flashpro II in I²C Bus Mode

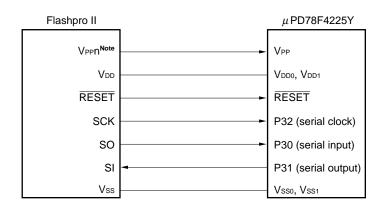
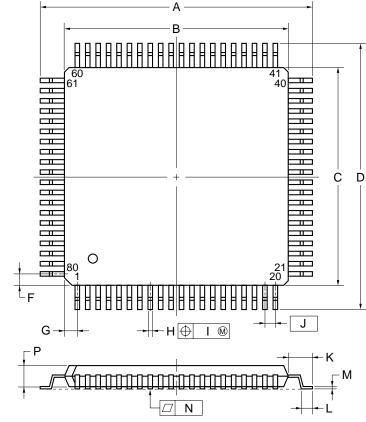
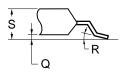

Note n = 1, 2

Figure 6-4. Connection of Flashpro II in UART Mode (When Using UART1)

Note n = 1, 2

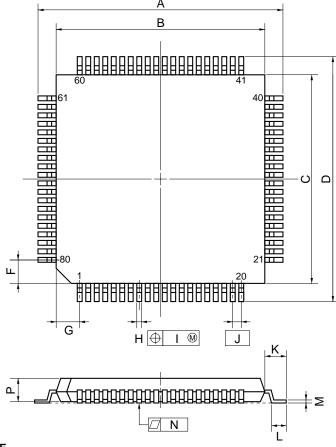

Figure 6-5. Connection of Flashpro II in Pseudo-3-Wire Serial I/O Mode


Note n = 1, 2

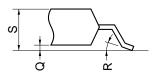
7. PACKAGE DRAWINGS

80 PIN PLASTIC QFP (14×14)

detail of lead end


NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS	INCHES
Α	17.20±0.20	0.677±0.008
В	14.00±0.20	$0.551\substack{+0.009 \\ -0.008}$
С	14.00±0.20	$0.551^{+0.009}_{-0.008}$
D	17.20±0.20	0.677±0.008
F	0.825	0.032
G	0.825	0.032
Н	0.32±0.06	0.013+0.002
- 1	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
K	1.60±0.20	0.063±0.008
L	0.80±0.20	0.031+0.009
М	0.17 ^{+0.03} -0.07	0.007+0.001
N	0.10	0.004
Р	1.40±0.10	0.055±0.004
Q	0.125±0.075	0.005±0.003
R	3°+7° -3°	3°+7° -3°
S	1.70 MAX.	0.067 MAX.

P80GC-65-8BT

80 PIN PLASTIC TQFP (FINE PITCH) (\Box 12)

detail of lead end

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
А	14.0±0.2	$0.551^{+0.009}_{-0.008}$
В	12.0±0.2	$0.472^{+0.009}_{-0.008}$
С	12.0±0.2	$0.472^{+0.009}_{-0.008}$
D	14.0±0.2	0.551+0.009
F	1.25	0.049
G	1.25	0.049
Н	0.22 ^{+0.05} -0.04	0.009±0.002
1	0.10	0.004
J	0.5 (T.P.)	0.020 (T.P.)
K	1.0±0.2	$0.039^{+0.009}_{-0.008}$
L	0.5±0.2	0.020+0.008
М	0.145 ^{+0.055} _{-0.045}	0.006±0.002
N	0.10	0.004
P	1.05	0.041
Q	0.05±0.05	0.002±0.002
R	5°±5°	5°±5°
S	1.27 MAX.	0.050 MAX.

P80GK-50-BE9-4

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for supporting development of a system using the μ PD78F4225Y.

Language processor software

RA78K4Note 1	Assembler package common to 78K/IV series	
CC78K4Note 1 C compiler package common to 78K/IV series		
CC78K4-LNote 1 C compiler library source file common to 78K/IV series		

Flash memory writing tool

Flashpro II	Dedicated flash writer. Flashpro is the product of Naito Densei Machida Mfg. Co., Ltd.
Product name pending Adapter for flash memory writing.	

Debugging tool

IE-784000-R	In-circuit emulator common to 78K/IV series
IE-784000-R-BK	Break board common to 78K/IV series
IE-784218-R-EM1 IE-784000-R-EM	Emulation board for evaluation of μ PD784225Y subseries
IE-70000-98-IF-B	Interface adapter when PC-9800 series (except notebook type) is used as host machine
IE-70000-98N-IF	Interface adapter and cable when notebook type PC-9800 series is used as host machine
IE-70000-PC-IF-B	Interface adapter when IBM PC/AT™ is used as host machine
IE-78000-R-SV3	Interface adapter and cable when EWS is used as host machine
Product name pending	Emulation probe common to μ PD784225Y subseries
SM78K4Note 2	System simulator common to 78K/IV series
ID78K4Note 2	Integrated debugger for IE-784000-R
DF784225 (Pending)Note 3	Device file for μPD784225Y subseries

Real-time OS

RX78K/IVNote 3	Real-time OS for 78K/IV series	
MX78K4Note 4	OS for 78K/IV series	

Remark RA78K4, CC78K4, SM78K4, and ID78K4 are used in combination with DF784225.

NEC μ PD78F4225Y

- Notes 1. PC-9800 series (MS-DOS™) base
 - IBM PC/AT and compatible machine (PC DOS™, Windows™, MS-DOS, IBM DOS™) base
 - HP9000 series 700[™] (HP-UX[™]) base
 - SPARCstation[™] (SunOS[™]) base
 - NEWS™ (NEWS-OS™) base
 - 2. PC-9800 series (MS-DOS+Windows) base
 - IBM PC/AT and compatible machine (PC DOS, Windows, MS-DOS, IBM DOS) base
 - HP9000 series 700 (HP-UX) base
 - SPARCstation (SunOS) base
 - 3. PC-9800 series (MS-DOS) base
 - IBM PC/AT and compatible machine (PC DOS, Windows, MS-DOS, IBM DOS) base
 - HP9000 series 700 (HP-UX) base
 - SPARCstation (SunOS) base
 - 4. PC-9800 series (MS-DOS) base
 - IMB PC/AT and compatible machine (PC DOS, Windows, MS-DOS, IBM DOS) base

APPENDIX B. RELATED DOCUMENTS

Documents related to device

Document Name	Document No.	
	Japanese	English
μPD784224Y, 784225Y Preliminary Product Information	U12376J	Planned
μPD78F4225Y Preliminary Product Information	U11824J	This document
μPD784225, 784225Y Subseries User's Manual - Hardware	Planned	Planned
μPD784225Y Subseries Special Function Register Table	Planned	_
78K/IV Series User's Manual - Instruction	U10905J	U10905E
78K/IV Series Instruction Table	U10594J	-
78K/IV Series Instruction Set	U10595J	_
78K/IV Series Application Note - Software Basics	U10095J	_

Documents related to development tools (User's Manuals)

Document Name		Document No.	
		Japanese	English
RA78K4 Assembler Package	Operation	U11334J	U11334E
	Language	U11162J	_
RA78K Series Structured Assembler Preprocessor		EEU-817	EEU-1402
CC78K4 Series	Operation	EEU-960	-
	Language	EEU-961	-
CC78K Series Library Source File		U12322J	-
IE-784000-R		EEU-5004	EEU-1534
IE-784218-R-EM1		U12155J	U12155E
SM78K4 System Simulator - Windows Base	Reference	U10093J	U10093E
SM78K Series System Simulator	External component user open interface specification	U10092J	U10092E
ID78K4 Integrated Debugger - Windows based	Reference	U10440J	U10440E

Caution The contents of the above related documents are subject to change without notice. Be sure to use the latest edition of a document for designing.

Documents related to embedded software (User's Manual)

Document Name		Document No.	
		Japanese	English
78K/IV Series Real-Time OS	Basics	U10603J	-
	Installation	U10604J	-
	Debugger	U10364J	-
78K/IV Series OS MX78K4	Basics	U11779J	-

Other documents

Document Name	Document No.	
	Japanese	English
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	-
Guide to Quality Assurance for Semiconductor Devices	C11893J	MEI-1202
Guide to Microcomputer-Related Products by Third Parties	U11416J	-

Caution The contents of the above related documents are subject to change without notice. Be sure to use the latest edition of a document for designing.

[MEMO]

NOTES FOR CMOS DEVICES -

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

Seoul Branch

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130

Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

J96. 8

Caution Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

IEBus is a trademark of NEC Corp.

MS-DOS and Windows are trademarks of Microsoft Corp.

IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corp.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Co.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corp.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5