

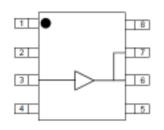
## Applications

- Final stage amplifiers for Repeaters
- Mobile Infrastructure



SOIC-8 Package

**Functional Block Diagram** 


#### **Product Features**

- 1800 2300 MHz
- 14 dB Gain @ 1960 MHz
- 28.5 dBm P1dB
- +44 dBm Output IP3
- +5V Single Positive Supply
- Lead-free/green/RoHS-compliant SOIC-8 SMT Pkg

#### **General Description**

The AH115 is a high dynamic range driver amplifier in a low-cost surface mount package. The InGaP/GaAs HBT is able to achieve high performance for various narrow-band tuned application circuits with up to +44 dBm OIP3 and +28.5 dBm of compressed 1-dB power. All devices are 100% RF and DC tested. The AH115 is available in lead-free/green/RoHS-compliant SOIC-8 package.

The product is targeted for use as driver amplifiers for wireless infrastructure where high linearity and medium power is required. The internal active bias allows the AH115 to maintain high linearity over temperature and operate directly off a +5 V supply. This combination makes the device an excellent fit for transceiver line cards and power amplifiers in current and next generation multi-carrier 3G base stations.



### Pin Configuration

| Pin #           | Symbol     |
|-----------------|------------|
| 1               | Vref       |
| 3               | Input      |
| 6, 7            | Output     |
| 8               | Vbias      |
| Backside Paddle | GND        |
| 2, 4, 5         | N/C or GND |

# **Ordering Information**

| Part No.                                     | Description                      |  |  |  |  |
|----------------------------------------------|----------------------------------|--|--|--|--|
| AH115-S8G                                    | 1/2 Watt, High IP3 InGaP HBT Amp |  |  |  |  |
| AH115-S8PCB1960                              | 1960 MHz Evaluation Board        |  |  |  |  |
| AH115-S8PCB2140 2140 MHz Evaluation Board    |                                  |  |  |  |  |
| Standard T/R size = 500 pieces on a 7" reel. |                                  |  |  |  |  |

Disclaimer: Subject to change without notice Connecting the Digital World to the Global Network<sup>®</sup>



## **Specifications**

## Absolute Maximum Ratings

# **Recommended Operating Conditions**

| Parameter                                           | Rating          | Parameter                                                                                                                                                          | Min | Тур | Max  | Units |
|-----------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------|-------|
| Storage Temperature                                 | -65 to +150 ° C | V <sub>cc</sub>                                                                                                                                                    |     | +5  |      | V     |
| RF Input Power, CW, $50\Omega$ , T = $25^{\circ}$ C | +22 dBm         | I <sub>cc</sub>                                                                                                                                                    | 200 | 250 | 300  | mA    |
| Device Voltage                                      | +8 V            | $T_J$ (for >10 <sup>6</sup> hours MTTF)                                                                                                                            |     |     | +200 | °C    |
| Device Power                                        | 2 W             |                                                                                                                                                                    | 1   |     |      |       |
| Device Current                                      | 400 mA          | <ul> <li>Electrical specifications are measured at specified test conditions.</li> <li>Specifications are not guaranteed over all recommended operating</li> </ul> |     |     |      |       |
|                                                     |                 | conditions.                                                                                                                                                        |     |     |      | C C   |

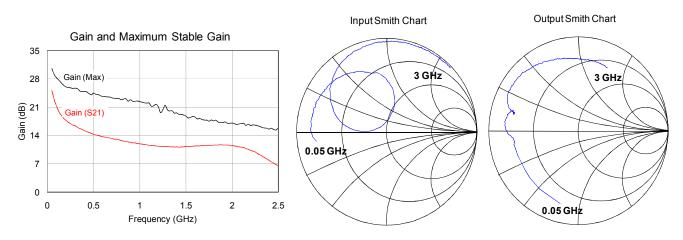
Operation of this device outside the parameter ranges given above may cause permanent damage.

# **Electrical Specifications**

Test conditions unless otherwise noted: T<sub>LEAD</sub>=25°C, Vcc=+5V, in tuned application circuit.

| Parameter                             | Conditions  | Min   | Typical | Max  | Units |
|---------------------------------------|-------------|-------|---------|------|-------|
| Operational Frequency Range           |             | 1800  |         | 2300 | MHz   |
| Test Frequency                        |             |       | 2140    |      | MHz   |
| Gain                                  |             | 12.5  | 14.4    |      | dB    |
| Input Return Loss                     |             |       | 23      |      | dB    |
| Output Return Loss                    |             |       | 8       |      | dB    |
| Output P1dB                           |             | +26.5 | +28.5   |      | dBm   |
| Output IP3                            | See Note 1. | +41   | +42     |      | dBm   |
| WCDMA Channel Power<br>@ -45 dBc ACLR | See Note 2. |       | +20     |      | dBm   |
| Noise Figure                          |             |       | 5.3     |      | dB    |
| Device Voltage, Vcc                   |             |       | +5      |      | V     |
| Quiescent Current, Icq                |             | 200   | 250     | 300  | mA    |
| Thermal Resistance, R <sub>TH</sub>   |             |       |         | 62   | ° C/W |

Notes:


1. 3OIP measured with two tones at an output power of +11 dBm/tone separated by 1 MHz. The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule.

2. 3GPP WCDMA, TM1+64DPCH, ±5 MHz Offset, no clipping, PAR = 10.2 dB @ 0.01% Probability.



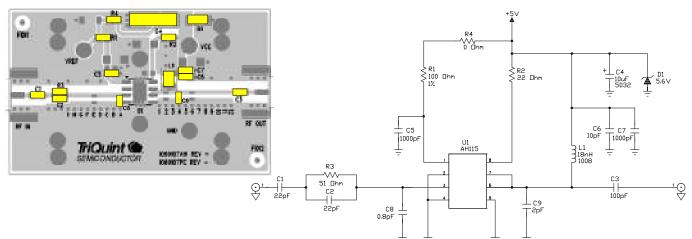
#### **Device Characterization Data**

 $V_{CC}$  = +5 V,  $I_{CQ}$  = 250 mA,  $T_{LEAD}$  = 25 °C, unmatched 50 ohm system



Notes:

The gain for the unmatched device in 50 ohm system is shown as the trace in black color. For a tuned circuit for a particular frequency, it is expected that actual gain will be higher, up to the maximum stable gain. The maximum stable gain is shown in the dashed red line. The impedance plots are shown from 0.5 - 3 GHz, with markers placed at 0.5 GHz and 3 GHz.


# S-Parameter Data

 $V_{CC}$  = +5 V,  $I_{CQ}$  = 250 mA,  $T_{LEAD}$  = 25 °C, unmatched 50 ohm system, calibrated to device leads

| Freq (MHz) | S11 (dB) | S11 (ang) | S21 (dB) | S21 (ang) | S12 (dB) | S12 (angle) | S22 (dB) | S22 (ang) |
|------------|----------|-----------|----------|-----------|----------|-------------|----------|-----------|
| 50         | -2.11    | -172.90   | 25.10    | 133.84    | -36.03   | 31.44       | -2.06    | -105.55   |
| 100        | -1.59    | -178.94   | 21.15    | 126.67    | -35.22   | 15.04       | -2.73    | -138.75   |
| 200        | -1.51    | 173.71    | 17.75    | 124.19    | -34.29   | 7.30        | -2.80    | -160.44   |
| 400        | -1.45    | 163.84    | 15.23    | 111.50    | -34.45   | -2.16       | -2.73    | -174.00   |
| 600        | -1.58    | 153.68    | 13.69    | 98.94     | -33.58   | -2.99       | -1.96    | -179.13   |
| 800        | -1.78    | 144.31    | 12.77    | 84.57     | -32.84   | -12.80      | -1.68    | 172.00    |
| 1000       | -1.96    | 134.21    | 11.94    | 69.70     | -32.77   | -18.76      | -1.85    | 166.98    |
| 1200       | -2.46    | 123.44    | 11.36    | 55.57     | -31.79   | -30.73      | -2.14    | 164.05    |
| 1400       | -3.30    | 111.21    | 11.17    | 40.93     | -31.12   | -45.14      | -2.30    | 163.07    |
| 1600       | -4.70    | 92.57     | 11.39    | 22.80     | -30.30   | -61.92      | -2.52    | 164.84    |
| 1800       | -8.15    | 78.58     | 11.64    | 1.64      | -29.47   | -83.99      | -2.43    | 164.25    |
| 2000       | -19.01   | 93.29     | 11.51    | -25.24    | -29.31   | -112.79     | -1.84    | 162.38    |
| 2200       | -9.59    | 177.56    | 10.35    | -55.97    | -30.51   | -150.45     | -1.22    | 155.68    |
| 2400       | -4.09    | 159.30    | 7.87     | -83.78    | -32.59   | 177.62      | -1.06    | 147.58    |
| 2600       | -1.99    | 141.65    | 4.95     | -105.90   | -33.96   | 137.14      | -1.07    | 139.74    |
| 2800       | -1.12    | 127.57    | 1.97     | -122.86   | -34.68   | 109.27      | -1.19    | 132.15    |
| 3000       | -0.72    | 116.11    | -0.88    | -136.93   | -35.64   | 81.83       | -1.44    | 125.05    |

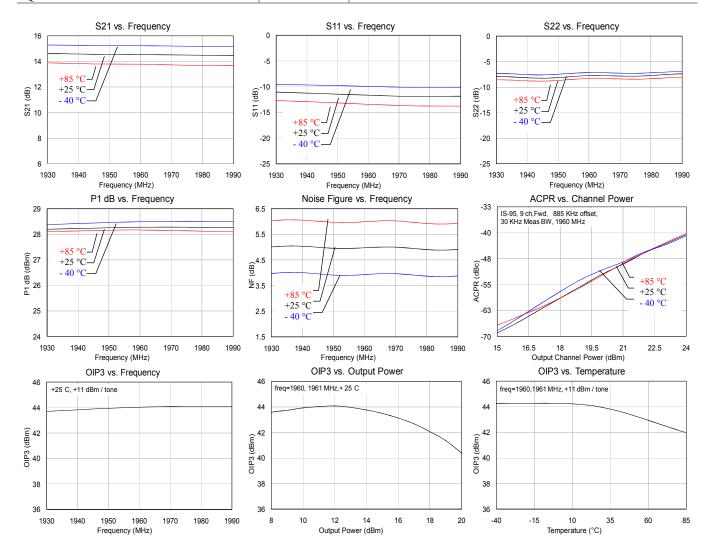


## 1960 MHz Application Circuit (AH115-S8PCB1960)



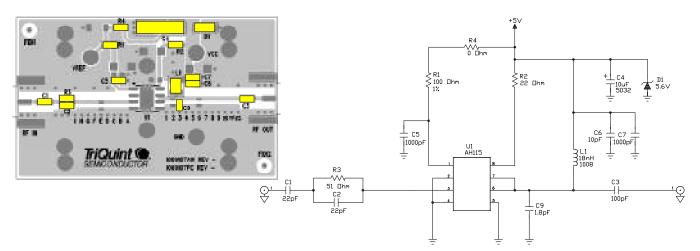
Notes:

- 1.0  $\Omega$  jumpers may be replaced with copper traces in the target application layout.
- 2. C8 is placed at 1.8 deg @ 1.96 GHz from C8 centerline to end of U1 pin 3.
- 3. C9 is placed at 20 deg (a) 1.96 GHz from C9 centerline to end of U1 pin 6 and 7.


#### Bill of Material

| Ref Des | Value   | Description                        | Manufacturer | Part Number |
|---------|---------|------------------------------------|--------------|-------------|
| U1      |         | High Linearity Amplifier           | TriQuint     | AH115-S8G   |
| C1, C2  | 22 pF   | Cap, Chip, 0603, 50V, 5%, NPO/COG  | various      |             |
| C3      | 100 pF  | Cap, Chip, 0603, 50 V, 5%, NPO/COG | various      |             |
| C4      | 10 uF   | Cap, Chip, 6032, 25 V, 20%, TANT   | various      |             |
| C5, C7  | 1000 pF | Cap, Chip, 0603, 50 V, 5%, X7R     | various      |             |
| C6      | 10 pF   | Cap, Chip, 0603, 50V, 5%, NPO/COG  | various      |             |
| C8      | 0.8 pF  | Cap, Chip, 0603, 50 V, ±0.05 pF    | various      |             |
| С9      | 2.0 pF  | Cap, Chip, 0603, 50 V, ±0.05 pF    | various      |             |
| L1      | 18 nH   | Coil, Wire Wound, 1008, 5%         | various      |             |
| R1      | 100 Ω   | Cap, Chip, 0603, 50 V, 1%, 1/16W   | various      |             |
| R2      | 22 Ω    | Res, Chip, 0603, 5%, 1/16W         | various      |             |
| R3      | 51 Ω    | Res, Chip, 0603, 5%, 1/16W         | various      |             |
| R4      | 0 Ω     | Res, Chip, 0603, 5%, 1/16W         | various      |             |
| D1      |         | Zener Diode, 5.6V                  | various      |             |




#### Typical Performance 1930 - 1990 MHz (AH115-S8PCB1960)

| Test conditions unless otherwise noted: $V_{CC} = +5 \text{ V}$ , $I_{CQ} = 250 \text{ mA}$ , $T_{LEAD} = 25 \text{ °C}$ |     |       |       |       |  |
|--------------------------------------------------------------------------------------------------------------------------|-----|-------|-------|-------|--|
| Frequency                                                                                                                | MHz | 1930  | 1960  | 1990  |  |
| Gain                                                                                                                     | dB  | 14.3  | 14.3  | 14.3  |  |
| Input Return Loss                                                                                                        | dB  | 11    | 12    | 13    |  |
| Output Return Loss                                                                                                       | dB  | 8     | 8     | 8     |  |
| OIP3<br>@ Pout = 11 dBm/tone, 1 MHz spacing                                                                              | dBm | +43.7 | +44   | +44   |  |
| Channel Power<br>@-45 dBc ACPR, IS-95 9 channels fwd                                                                     | dBm | +22.5 | +22.5 | +22.5 |  |
| Noise Figure                                                                                                             | dB  | 5     | 5     | 5     |  |
| Output P1dB                                                                                                              | dBm | +28.1 | +28.3 | +28.3 |  |
| Device / Supply Voltage                                                                                                  | V   |       | +5    |       |  |
| Quiescent Current                                                                                                        | mA  |       | 250   |       |  |





## 2140 MHz Application Circuit (AH115-S8PCB2140)



Notes:

1.0  $\Omega$  jumpers may be replaced with copper traces in the target application layout.

2. C9 is placed at 13 deg @ 2.14 GHz from C9 centerline to end of U1 pin 6 and 7.

### **Bill of Material**

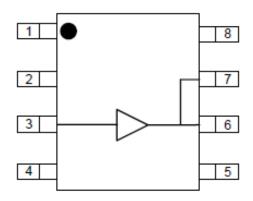

| Ref Des | Value   | Description                        | Manufacturer | Part Number |
|---------|---------|------------------------------------|--------------|-------------|
| U1      |         | High Linearity Amplifier           | TriQuint     | AH115-S8G   |
| C1, C2  | 22 pF   | Cap, Chip, 0603, 50V, 5%, NPO/COG  | various      |             |
| C3      | 100 pF  | Cap, Chip, 0603, 50 V, 5%, NPO/COG | various      |             |
| C4      | 10 uF   | Cap, Chip, 6032, 25 V, 20%, TANT   | various      |             |
| C5, C7  | 1000 pF | Cap, Chip, 0603, 50 V, 5%, X7R     | various      |             |
| C6      | 10 pF   | Cap, Chip, 0603, 50V, 5%, NPO/COG  | various      |             |
| С9      | 1.8 pF  | Cap, Chip, 0603, 50V, ±0.05 pF     | various      |             |
| L1      | 18 nH   | Coil, Wire Wound, 1008, 5%         | various      |             |
| R1      | 100 Ω   | Cap, Chip, 0603, 50 V, 1%, 1/16W   | various      |             |
| R2      | 22 Ω    | Res, Chip, 0603, 5%, 1/16W         | various      |             |
| R3      | 51 Ω    | Res, Chip, 0603, 5%, 1/16W         | various      |             |
| R4      | 0 Ω     | Res, Chip, 0603, 5%, 1/16W         | various      |             |
| D1      |         | Zener Diode, 5.6V                  | various      |             |



#### Typical Performance 2110 - 2170 MHz (AH115-S8PCB2140)

Test conditions unless otherwise noted:  $V_{CC} = +5 \text{ V}$ ,  $I_{CQ} = 250 \text{ mA}$ ,  $T_{LEAD} = 25 \text{ °C}$ 

| Frequency                                                  | MHz | 2110  | 2140  | 2170  |
|------------------------------------------------------------|-----|-------|-------|-------|
| Gain                                                       | dB  | 14.4  | 14.4  | 14.3  |
| Input Return Loss                                          | dB  | 20    | 23    | 24    |
| Output Return Loss                                         | dB  | 9     | 8     | 7     |
| OIP3<br>@ Pout = 11 dBm/tone, 1 MHz spacing                | dBm | +41.8 | +41.5 | +42.3 |
| Channel Power<br>@-45 dBc ACPR, WCDMA, 3GPP, ±5 MHz offset | dBm | +20   | +20   | +20   |
| Noise Figure                                               | dB  |       | 5.3   | ·     |
| Output P1dB                                                | dBm |       | +28.5 |       |
| Device / Supply Voltage                                    | V   |       | +5    |       |
| Quiescent Current                                          | mA  |       | 250   |       |




Data Sheet: Rev A 11/23/10 © 2010 TriQuint Semiconductor, Inc. Disclaimer: Subject to change without notice Connecting the Digital World to the Global Network<sup>®</sup>

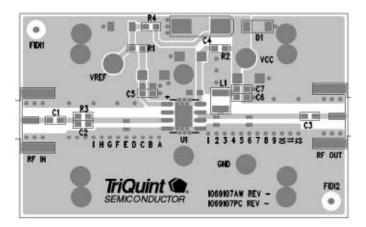
# **AH115** 1/2 Watt, High Linearity InGaP HBT Amplifier



## **Pin Description**



| Pin             | Symbol     | Description                                                                                                                          |  |  |
|-----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1               | Vref       | Set reference current                                                                                                                |  |  |
| 2, 4, 5         | N/C or GND | No electrical connection. Provide an isolated or grounded solder pad for mounting integrity.                                         |  |  |
| 3               | RF Input   | RF Input. Requires matching circuit to 50 $\Omega$ . See application circuits.                                                       |  |  |
| 6, 7            | RF Output  | RF Output. Requires matching circuit to 50 $\Omega$ . See application circuits.                                                      |  |  |
| 8               | Vbias      | Set operating current.                                                                                                               |  |  |
| Backside Paddle | GND        | Backside Paddle. Multiple vias should be employed to minimize inductance and thermal resistance; see page 9 for suggested footprint. |  |  |


# **Applications Information**

# **PC Board Layout**

Circuit Board Material: .014" Getek, 4 - layer, 1 oz copper, Microstrip line details: width = .026", spacing = .026"

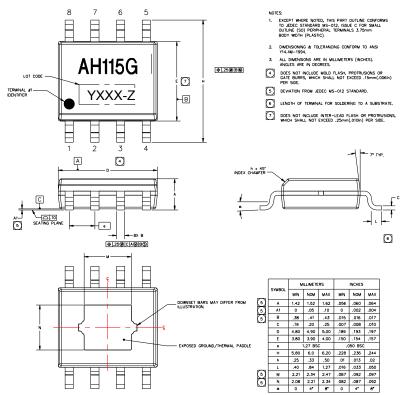
The silk screen markers 'A', 'B', 'C', etc. and '1', '2', '3', etc. are used as placemarkers for the input and output tuning shunt capacitors – C8 and C9. The markers and vias are spaced in .050" increments.

The pad pattern shown has been developed and tested for optimized assembly at TriQuint Semiconductor. The PCB land pattern has been developed to accommodate lead and package tolerances. Since surface mount processes vary from company to company, careful process development is recommended.



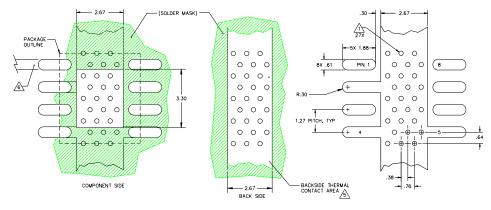
For further technical information, Refer to <a href="http://www.triquint.com/prodserv/more\_info/default.aspx?prod\_id=AH115">http://www.triquint.com/prodserv/more\_info/default.aspx?prod\_id=AH115</a>

Data Sheet: Rev A 11/23/10 © 2010 TriQuint Semiconductor, Inc.




#### **Mechanical Information**

#### **Package Information and Dimensions**


This package is lead-free/Green/RoHScompliant. It is compatible with both lead-free (maximum 260 °C reflow temperature) and leaded (maximum 245 °C reflow temperature) soldering processes. The plating material on the leads is NiPdAu.

The component will be marked with an "AH115G" designator with an alphanumeric lot code on the top surface of the package.



# **Mounting Configuration**

All dimensions are in millimeters (inches). Angles are in degrees.



Notes:

- 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- 2. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- 3. Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- 4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- 5. RF trace width depends upon the PC board material and construction.
- 6. Use 1 oz. Copper minimum.
- 7. All dimensions are in millimeters (inches). Angles are in degrees.



**Product Compliance Information** 

#### **ESD** Information



| ESD Rating: | Class 1B                      |
|-------------|-------------------------------|
| Value:      | Passes between 500V and 1000V |
| Test:       | Human Body Model (HBM)        |
| Standard:   | JEDEC Standard JESD22-A114    |

#### **MSL** Rating

Level 2 at +260 °C convection reflow JEDEC standard J-STD-020.

# Solderability

Compatible with the latest version of J-STD-020, Lead free solder,  $260^{\circ}$ 

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A ( $C_{15}H_{12}Br_40_2$ ) Free
- PFOS Free
- SVHC Free

#### **Contact Information**

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

| Web:   | www.triguint.com   | Tel: | +1.503.615.9000 |
|--------|--------------------|------|-----------------|
| Email: | info-sales@tqs.com | Fax: | +1.503.615.8902 |

For technical questions and application information:

Email: sjcapplications.engineering@tqs.com

#### **Important Notice**

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.